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Abstract. We consider the problem of formal automatic verification of crypto-
graphic protocols when some data, like poorly chosen passwords, can be guessed by
dictionary attacks. First, we define a theory of these attacks and propose an inference
system modeling the deduction capabilities of an intruder. This system extends a
set of well studied deduction rules for symmetric and public key encryption often
called Dolev—Yao rules with the introduction of a probabilistic encryption operator
and guessing abilities for the intruder. Then, we show that the intruder deduction
problem in this extended model is decidable in PTIME. The proof is based on a
locality lemma for our inference system. This first result yields to an NP decision
procedure for the protocol insecurity problem in presence of a passive intruder. In the
active case, the same problem is proved to be NP—complete: we give a procedure for
simultaneously solving symbolic constraints with variables which represent intruder
deductions. We illustrate the procedure with examples of published protocols and
compare our model to other recent formal definitions of dictionary attacks.

Keywords: Verification, Cryptographic protocols, Formal methods, Dictionary at-
tacks, Probabilistic encryption.

1. Introduction

The formal verification of cryptographic protocols in an insecure net-
work is known to be an undecidable problem, even with strong re-
strictions. The undecidability results from several factors: the ability
of agents to generate fresh random data (nonces), the unlimited size of
terms, the unboundedness of the number of sessions. Removing the last
condition is sufficient for decidability (while removing the others is not,
see (Durgin et al., 1999; Comon and Cortier, 2005; Amadio and Chara-~
tonik, 2002)) and several procedures have been proposed to decide the

* This work has been partly supported by the RNTL project PROUVE 03V360
and the ACI-SI Rossignol.

T Corresponding author: Stéphanie Delaune, LSV, ENS de Cachan & CNRS, 61
avenue du Président Wilson, 94235 Cachan Cedex - France tel: 433 1 47 40 75 32
faz: +33 147 40 75 21 (delaune@lsv.ens-cachan.fr)

';:‘ © 2005 Kluwer Academic Publishers. Printed in the Netherlands.

guessNP.tex; 1/06/2005; 8:34; p.1



2 Delaune, Jacquemard

protocol insecurity problem with a bounded number of sessions (Ama-
dio and Lugiez, 2000; Millen and Shmatikov, 2001) and (Rusinowitch
and Turuani, 2001) where the problem is shown NP—complete.

In the works cited above, as well as in many other approaches
concerning automated verification of security protocols, the intruder
model is based on the so—called Dolev—Yao deduction rules for public—
key encryption (Dolev and Yao, 1983). This deduction system specifies
how the attacker can obtain new information from previous knowledge,
which he has obtained by silently eavesdropping the communication
network (it is a passive intruder behavior) and by participating to
protocol by sending new messages, thus provoking honest participants
to reply according to the protocol rules (in this latter case, the intruder
has an active behavior). The deduction abilities of the intruder still
comply to the perfect cryptography assumption, which states that the
only way to obtain knowledge about an encrypted plaintext is to know
the decryption key, and there is no way to obtain the key from cipher-
texts. This abstraction happened to be accurate enough to reveal many
logical attacks on known cryptographic protocols in an automated way.
However, it may be too strong to capture some specific attacks that may
occur in real word situations. For instance, in the Dolev—Yao model it is
not possible to take into account attacks based on algebraic properties
of cryptographic operators, like exclusive or, in presence of which the
protocol insecurity problem with a bounded number of sessions is still
decidable (Comon-Lundh and Shmatikov, 2003; Chevalier et al., 2003).

In this paper, we formalize another interesting attack technique
which appears to be out of the scope of the Dolev—Yao model: the
so—called dictionary attacks (Gong et al., 1993; Lowe, 2004). In some
situations, an intruder is able to guess poorly chosen passwords (or
other data belonging to a reasonably small domain) by an offline brute
force iteration through a dictionary, using messages previously collected
on the network to verify his guess at each step. The reason for the
interest of this kind of attacks is simple: password—guessing attacks are
a common avenue for breaking into systems, and the application of
formal method to analyze password protocols can help.

There are number of facets to the study of dictionary attacks. At the
beginning of the nineties, several examples of dictionary attacks have
been analyzed, and some countermeasures have been proposed to design
protocols resistant to this kind of attacks (Gong et al., 1993; Gong,
1995; Tsudik and Herreweghen, 1993; Bellovin and Merritt, 1992). Lot
of effort seems to have been put into using provable security (Gold-
wasser and Micali, 1984) for analysis such protocols that use poorly—
chosen data (Wu, 1998; Bellare et al., 2000; Katz et al., 2001). However,
the automatic verification methods which have been used successfully
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Decision Procedures for the Security of Protocols against Dictionary Attacks 3

for cryptographic protocol analysis, were not used at this time for pass-
word protocols. Perhaps this is due to the complex nature of dictionary
attacks, whose analysis involves complications similar to combining
cryptanalytical and abstract protocol analysis. Only recently, some
procedures have been implemented to automatically find dictionary
attack (Lowe, 2004; Corin et al., 2003; Cohen, 2002; Blanchet, 2004).
However, neither the complexity or the completeness of the procedures,
nor the decidability of the problem have been studied in these works.

We propose decision procedure (and complexity) results for the de-
cision of the security of protocols against dictionary attacks, when the
number of sessions is bounded. Our model of dictionary attacks is based
on an inference system extending the Dolev—Yao rules for symmetric
and public—key encryption to take into account probabilistic encryption
and offline dictionary attacks. Our inference rules for dictionary attacks
are semantically closed to the definition of (Lowe, 2004). The first
result is a locality result showing that the intruder deduction problem
is PTIME. The second result concerns the case where the intruder is
active. We show that the problem is NP—complete by reducing it to the
problem of the satisfaisability of symbolic constraint systems. Though
this complexity is the same as in the Dolev—Yao model, see (Rusinow-
itch and Turuani, 2001), the proofs of our decision procedure are made
dramatically harder by the introduction of guessing abilities in the in-
ference system. Indeed, some basic results easy to prove in the standard
Dolev—Yao model are not basic anymore in our extended model.

Moreover, the extension of the intruder deduction model to proba-
bilistic encryption operators is an important contribution when consid-
ering vulnerability to dictionary attacks. Indeed, this kind of encryption
can be used as a countermeasure to prevent dictionary attacks.

After some motivating examples of dictionary attacks (Section 2)
and preliminary definitions of protocols syntax and semantics (Sec-
tion 3) we define in Section 4 our extended intruder model which
formalize in particular dictionary attacks and we give in Section 5
decision problems (intruder deduction, trace insecurity, protocol inse-
curity) we are interested in. We then prove a locality result from which
it follows that the intruder deduction problem protocol can be decided
in polynomial time (Section 6). This yields to an NP algorithm for the
trace and protocol insecurity problems in presence of a passive intruder.
In Section 7, we reduce the trace and protocol insecurity problems in
presence of an active intruder to the satisfaisability of symbolic con-
straint systems (where each individual constraint is a lifting of the
problem defined in the passive case). We give in Section 8 a non—
deterministic polynomial time procedure to decide the satisfaisability
of such constraint systems. A comparison with other models based on
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4 Delaune, Jacquemard

CSP (Lowe, 2004) and the applied pi—calculus (Corin et al., 2004) can
be found at the end of the paper.

A preliminary version of this work as been published in (Delaune
and Jacquemard, 2004).

2. Examples

A simple subcase of dictionary attacks is the known-plaintext attacks,
where an intruder intercepts a message { M}k encrypted with a weak
password K and whose encrypted content M is known (for instance
an instruction like hello). The intruder can then try to decrypt this
ciphertext with each word in a dictionary one by one, and verify for
each guess d whether the value obtained is the known plaintext M,
which means with a high probability that d = K. This method also
works against a challenge-response scheme where a server sends to a
user A a random number (nonce) N as a challenge and A responds
with { N}, where K is its weak password.

The examples below show that similar attacks are also possible
in some cases where the plaintext is not known, with more subtle
techniques to verify the guesses.

2.1. NAIVE VOTE PROTOCOL AND PROBABILISTIC ENCRYPTION

Consider the following naive vote protocol:
0. A — S : {V}pub(S)

The voter A encrypts his vote V' with the public key pub(S) of the vote
server S. The server decrypts the message with his private key priv(5)
and registers the vote. The security requirement is that only A and S
know V. This protocol is secure if we assume strong encryption primi-
tives: an intruder who intercepts the message {V}pub( s) will not be able
to learn the vote V of A as long as he does not know priv(S). However,
if we assume that the intruder knows a finite set D (reasonably small)
of values that V can take, then he can deduce V without knowing
priv(S): for each value d € D, he encrypts d with pub(S) and verifies
whether the ciphertext {d},,(s) obtained is equal to {V'},,;(s), which
means that the guess d = V. Therefore, an intruder able to eavesdrop
the vote messages will be able to deduce who voted for whom.

The attack described above can be mounted only if the encryption
scheme is deterministic. This means that encrypting a given message
with a key always returns the same result. This is the case of encryption
algorithms such as e.g. RSA and AES. To prevent such of failure, in
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Decision Procedures for the Security of Protocols against Dictionary Attacks 5

real vote protocols, the algorithms used for encryption often include
random choices and therefore are probabilistic. This kind of encryption
scheme was invented by Shafi Goldwasser and Silvio Miscali (Gold-
wasser and Micali, 1984) and recent practical implementations have
been proposed. The idea behind probabilistic encryption is roughly
that the encryption algorithm relies on some random value, chosen by
the agent involving encryption. It means that encrypting several times
the same plaintext with the same key returns different ciphertexts.
However, the decryption function will return the same plaintext from
all these ciphertexts.

Let us consider the naive vote protocol is based on probabilistic
encryption. We model this situation by adding a third parameter to the
encryption primitive, which represents the random choice performed by
the agent before applying the encryption algorithm. Hence, we obtain:

Assume that the attacker intercepts the ciphertext C' (i.e. {V};ub( S)).
Even if he guesses V' correctly, encrypting V' with the public key of .S,
the result will be a completely different ciphertext C’. He, therefore,
cannot compare C' and C’, and so cannot know that he has guessed the
message V correctly.

2.2. HANDSHAKE PROTOCOL

Consider this challenge-response transaction which is commonly used
in authentication protocols, see (Gong et al., 1993):

0. A — B: {N}ya o

. b
LB — A: {N+1}° o

A generates a nonce N and sends it to B encrypted probabilistically
with the symmetric key pw(A, B) (the cryptosystem is symmetric in
this example). B decrypts the message, computes N + 1, and returns
to A the encrypted result. In the standard Dolev—Yao model, an in-
truder who intercepts the messages cannot deduce pw(A, B), and the
incrementation of IV in the second message prevents replay attacks.
However, if pw(A, B) is a poorly chosen password, and belongs to a
finite dictionary D, then the challenge-response transaction can be
attacked in other ways: the intruder guesses d € D and tries to de-
crypt both messages 0 and 1 with d. He obtains two values, vy and v
respectively. If v;1 = vg + 1, then the attacker has guessed the correct
value d = K with high probability.

This dictionary attack has been used to exploit systems in the past,
often quite successfully. Note that using probabilistic encryption do not
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6 Delaune, Jacquemard

allow to prevent the attack described above since the attack uses only
the decryption algorithm which is necessarily deterministic.

2.3. ENHANCED KERBEROS PROTOCOL

As outlined in (Gong et al., 1993), the Kerberos protocol (Steiner et al.,
1988) contains some messages which make it vulnerable to known-—
plaintext attacks. To avoid this problem, (Gong et al., 1993) propose
the following modification, which we shall use as a running example.
Like in Section 2.2, probabilistic encryption do not prevent the at-
tack described below, hence, for sake of clarity, we shall use below the
deterministic encryption symbol with only two parameters.

0. A — S: {A,B,Ni, N, Ca,{Ta}tpu(a,s)}pup(s)
LS — A: {N,K® Na}puas), {14, K, Ts}pus,s)
2. A — B: {A K, Ts}y,5s)

In this protocol, the user A obtains from S a secret key K to be shared
between himself and the ticket—granting service B. Afterward, A can
obtain tickets for other services from B using this key K. The sym-
bol & denotes the bit—wise exclusive or operation. We do not consider
any algebraic properties of this operation here and rather see it as an
encryption: K @ N is equivalent to {K} . pub(S) is the public-key of
the server S, and pw(A4, S), pw(B,S) are symmetric keys (passwords)
that A and B respectively share with S.

The password pw(B,S) can be assumed to be well-chosen since
B is a server, but the password pw(A,S) of the user A is likely to
come from a dictionary. This protocol implements some protections
against dictionary attacks on pw(A,S), using the nonces N, Ny, the
confounder Ca (which is a long nonce whose role is to confound attacks
like in Section 2.2), and the timestamps Ta and Ts, added in order to
prevent the replay of messages 0 and 1. We refer the reader to (Gong
et al., 1993) for the details about this protocol.

As described in (Tsudik and Herreweghen, 1993; Gong et al., 1993,;
Lowe, 2004) for similar protocols, if the server S does not record the
timestamp 7a, and if moreover the clocks of S and A are not well syn-
chronized, an intruder can replay a copy of an eavesdropped message 0
within the clock skew, making possible the attack described in Figure 1.

In the session (3, the intruder replays A’s message «.0, so as to get the
server to issue (in .1) another message using the same nonces N; and
Nj. Hence, N; can be used as a verifier to guess pw(A, S): the intruder
can decrypt {N1, K@ Na}py(a,5) and {N1, K'©Na}pya,s) With a value
d chosen in a dictionary, and if the first field of the two values obtained
is the same, then it means that the value guessed d = pw(A, S). After
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Decision Procedures for the Security of Protocols against Dictionary Attacks 7

a.0. A—5: {Aa B, Ny, No, Caa{Ta}pw(A,S)}pub(S)
al. S—A: {NlaK S N2}pw(A,S)7 {Aa K, TS}pw(B,S)

f3.0. I(A) — 5 {AvB7N17N27 Ca, {Ta}pw(A,S)}pub(S)
6'1- S — I(A) : {leK, S NZ}pw(A,S)a {Aa Kla Tsl}pw(B,S)

I guesses pw(A,S) offline

7.0. I(A) — S: {A, B, My, My, Ci, { Ti}pu(a,s) }pub(s)
1. S — I(A): {M1, K" @ Ma}pya,s),{A K" Ts"} pu(s,s)
v.2. I(A) = B: {A, K", Ts"} . (B,s)

The notation I(A) represents: on the left hand side of an arrow, the

intruder I masquerading A to send a message, and on the right hand

side of an arrow, the intruder intercepting a message intended for A.
Figure 1. The description of the attack on the Kerberos protocol.

that, the intruder can impersonate A in a third session ~y, with chosen
nonces M; and My, and he obtains in 7.1 the session key K” which is
assumed to be a secret shared between A, S and B.

3. Abstract Model for Protocols

We assume given a signature JF containing the symbols (_, ) (pairing!),
{-}_ (deterministic encryption), {_}- (probabilistic encryption), some
unary function symbols representing invertible functions, others repre-
senting one way functions, and three other special constructors: pw(_-)
(for symmetric keys, or passwords shared between agents), pub(_) (for
asymmetric public keys of agents), and priv(_) (for the corresponding
private keys).

The signature F contains also an arbitrary subset Fy of constant
symbols representing objects like keys, agent names, nonces... We also
assume given an infinite set of variables X'. The set of terms built with
F and X is denoted by 7 (F, X') and the subset of ground terms (terms
without variables) 7 (F). We denote vars(t) the set of variables occur-
ring in a term ¢ € 7(F,X), and st(t) the set of subterms of ¢. These
two notations are extended as expected to a structure 7' containing
some terms: vars(T") (resp. st(T")) is the union of the sets vars(t) (resp.
st(t)) for every term ¢ occurring in 7.

L For sake of simplicity we usually write ¢1,t2 instead of (t1,t2).
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8 Delaune, Jacquemard

We assume a linear well-founded ordering < on the ground terms of
7 (F) such that the constant 0 is minimal w.r.t. <. We shall use below
the (well-founded) extension < of < to multisets of ground terms,
see (Dershowitz, 1987). For sake of notations, given two substitutions
o1 and o9, we write 01 < o9 iff img(o1) < img(o2) (img(o;) is the
multiset of all zo such that x € dom(o;)).

Among the terms of 7 (F), we distinguish a finite subset G of guess-
able symbols such that G C Fy U {pw(t), pub(t), priv(t)|t € T(F)}.
Theses symbols all have the distinctive feature of taking their values
in finite (quite small) dictionaries known by everyone. Moreover, we
assume a bijective mapping denoted _~! from 7T (F,X) into 7 (F,X)
which associates to a public key the corresponding private key and
reciprocally. More precisely, if k € Fy represents an asymmetric key,
public or private, then k=1 € Fy represents its private (resp. public)
counterpart. For every t € 7(F,X), we have pub(t)~! = priv(t) and
priv(t)~t = pub(t), and for every other s € T(F,X) (which does not
represent a public or private key), we have s=! = s.

A substitution is the term morphism extension of a finite mapping
{z1+—t1,..., 2y — t,} where z1,...,2, € X and ti,...t, € T(F,X).
If t1,...t, € T(F), the substitution is called ground. As usual, the
application of a substitution ¢ to a term ¢ and the composition of
substitutions o1 by o2 are written in postfix notation, respectively to
and o102. A substitution o is grounding for t if to € T (F). Given two
terms w and v the replacement of u by v, denoted by [u — v], maps
every term ¢ to the term ¢[u — v] which is obtained by replacing all
occurrences of u in ¢ by v. Note that the result of such replacement is
uniquely determined.

In the paper, |S| denotes the cardinal of the set S. The size ||t]|
of a term ¢ is the number of nodes in ¢t. This notation is extended as
expected to a set of terms ||T'||. The dag-size ||T||4 of a term container
T is the number of distinct subterms of T' (i.e. the number of nodes
in a representation of 7" as a dag with maximal sharing). More details
about the dag representations of terms can be found in (Rusinowitch
and Turuani, 2001).

3.1. PROTOCOL SYNTAX

Definition 1. (protocol)
A protocol is a finite set of programs, each program being a finite se-

quence of pairs of instructions of the form recv(r);send(s) with r,s €
T(F,X).

It is semantically equivalent to consider programs which are se-
quences of send and recv in an arbitrary order, since we may add some
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Decision Procedures for the Security of Protocols against Dictionary Attacks 9

instructions send(0) and recv(0) where 0 € Fy \ G is a special constant
known to everyone.

The formalism used here to model protocols is close to so—called
strand spaces (Thayer et al., 1999) and is sufficiently general to describe
a lot of protocols. However, like the strand space model, it suffers from
some drawbacks. For instance, it does not permit to model an agent
who receives a ciphertext and who later verifies after he receives the
decryption key.

Example 1. (Kerberos protocol)
The Kerberos protocol variant described in Section 2.3 is made of three
programs:

role A: 0. recv(0); send({xA,xOB,xg)Vl,xS)VQ,:cCa,{xTa} oo )
w(A,S) pub(S)
1. recv({al,, 2% ® 2Ry, } 0 (AS),xO); send(x )
role S : 0. recv({azA,alfB,:z:N1 az}w,mCa,{a?Ta}pw(xA,xs)} b(s))

Send({prxK@xNg}pw(x Tg) {xA7$}(7x%“s}pw(xB7x ))

role B: 0. recv({z?, 2%, 2%}, 2 B’S)); send( )

The symbols x'y ... (i = 0,1,2) are distinct variables of X. Note that
A receives (in step 1) the ciphertext {A, K, Ts},,(p,s) as a value 20,
and forwards it blindly (to B), since he does not know B’s password
pw(B,S). The program of role B implements only the reception of the
last message by B.

3.2. PROTOCOL SEMANTICS

Definition 2. (process)
Given a protocol P, a process (p,o) following P is made of a program
p € P and a ground substitution o whose domain is a subset of vars(p).

Every program of the protocol P defines a role, and a process (p, o)
is an honest agent playing the role p. A configuration is a pair (S, N)
where S is a finite set of processes whose programs have disjoint sets
of variables, and N is a set of ground terms representing the messages
currently in the network (the message sent and not yet received).

We define operational semantics for the execution of processes. Each
step changes the running configuration, denoted (S,N) —; (S, N’)
for some 0 < i < |S], if the i*" process of S is (p,o) with p =

recv(r);send(s);p’ and:

— the instruction recv(r) is executed properly, i.e. there exists a
ground substitution # such that rof € N, S’ is obtained from S
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10 Delaune, Jacquemard

by updating the i*" process to (p/,0’), where o’ = ¢, and leaving
the other process unchanged, and the message 76 is later removed
from the network,

— the instruction send(s) is executed, by adding the term so’ to the
network, i.e. N’ = (N \ {r0}) U {so’'}.

We assume that the protocol and the initial configuration are such that
after every such step, so’ is ground. It means that the messages sent
are built from values completely defined by the previous steps of the
protocol and the initial knowledge of the processes. More formally:

Definition 3. (runnable)

An anitial configuration ({(po,00), ..., (Pm,om)}, No) of a protocol P
is called runnable iff for each i < m such that the program p; is the
sequence (recv(r; j);send(s; j))j<n, for each j < mn, we have:

vars(s; ;) € dom(o;) U U vars(ri k)
k<j

Example 2. (Kerberos protocol)

The set of processes ((po,00), (p1,01), (p2,02)) described below is the
first component of a runnable initial configuration of the protocol of
Example 1:

xOA »—>A,m% HB,x%HS,mOCa — Ca,

oo = :cgvl — Nl,x(])v2 — ]\gz,x%a — Ta,
Toup(s) pUb(S)7$pw(A,S) — pw(A,S),
ar}< — K,:clTs — Ts,

9173 2Ll — S, 2! — pub(S

S > ¥ pub(S) pu ( )

02 = {3312;1,,(3,5) — pw(B,S)}

where A, B, S, N1, Na, Ca, Ta, K, Ts are constants of Fg.

In this paper, we are interested in proving the reachability (from
a given runnable initial configuration) of a configuration where some
security property is compromised, assuming the presence of an intruder
who has some control over the communication network, as defined in
the next section.
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ueT ThHu Tho
Axiom (A) Pairing (P) _
T+u T+ (u,v)
T+ T+
Unpairing (UL) ﬂ Unpairing (UR) ﬂ
TFu TFw
TFu ThHw Tk , ThHot
Encryption (E) ——————  Decryption (D) {u} Y
T+ {uly TrHu

Figure 2. The Standard Dolev—Yao Model.

4. Intruder Model

We consider now an intruder with some control over the communication
network. He is able to read any message in the network and to analyze
the messages read in order to deduce new messages, using some in-
ference rules like the ones defined in the following subsections 4.1, 4.2,
and 4.3. When the abilities of the intruder are limited to the two former
actions, we call him a passive intruder. The problems of the complexity
of intruder deduction, as well as protocol verification in presence of a
passive intruder with guessing abilities are studied in Section 6.

The intruder can also be assumed to be able to send new messages
to the network: he is then called an active intruder. The verification
of protocol insecurity in presence of an active intruder is studied in
Section 7 and 8.

We shall give more formal definitions of passive and active intruders
in Section 4.6.

4.1. DOLEV-YAO DEDUCTION MODEL

The most widely used deduction relation representing the analysis abil-
ities of an intruder is often refereed as Dolev—Yao model after (Dolev
and Yao, 1983), though the formalism of this paper is not exactly the
same as the one used here. It is denoted by a “sequent” T b u (the
intruder is able to deduce the term w € 7 (F) from the finite set of
terms 7' C 7 (F)), and is defined by the inference rules in Figure 2.

In this model, the intruder can form pairs and ciphertexts from
known terms (rules P, E), decompose pairs (rules UL, UR), and decrypt
ciphertexts, providing that he can deduce the decryption key (rules D).
The latter condition is known as the perfect cryptography assumption.
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12 Delaune, Jacquemard

THu THv ThEr T - Ay Ay
Enc. (Ep) Dec. (Dp) 1w THv
TF{u}y THu

Figure 3. Probabilistic Encryption a la Dolev—Yao.

4.2. PROBABILISTIC ENCRYPTION

We have seen the importance of the probabilistic encryption primitive
in the context of dictionary attacks (see Section 2.1). We propose here
an extension of the above Dolev—Yao model by adding two inference
rules, described in Figure 3, to deal with probabilistic encryption. The
rule (Ep) says that the intruder can form a ciphertext from a known
term (plaintext) u, and a random value r. The ciphertext depends on
the input r. The rule (Dp) do not depends on the random input 7: a
decryption algorithm is necessarily deterministic.

The Dolev—Yao model of Section 4.1 extended with the two infer-
ence rules displayed in Figure 3 is called the Dolev-Yao model with
probabilistic encryption.

4.3. GUESSING MODEL

We shall now describe how dictionary attacks can be modeled as an
extension of the above Dolev—Yao model. For this purpose, we refer to
the following definition of dictionary attacks from (Lowe, 2004) that
claims to generalize the definition of (Gong et al., 1993):

A dictionary attack consists of the intruder guessing a value d, and
then verifying it. The verification will be by the intruder using d to
produce a value v, which we call the verifier and can take a number
of different forms:

1. the intruder knew v initially, (see Section 2.1)

2. the intruder produced v in two distinct ways from d, (see Sec-
tion 2.2)

3. v is an asymmetric key, and the intruder knows v’s inverse from
somewhere.

Intuitively, the intruder knows that g € G belongs to a dictionary, in
which he picks d. If the verifier v, built with d and the intruder’s knowl-
edge ensures one of the three conditions above, then the probability is
high that d = g. We shall use a variant of the rules of Figure 2 in order
to model the guessing of a d, and the production of a verifier v € 7T (F)
by the intruder. In the rules of this variant, presented in Figure 4, we
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weT ueg
Axiom — (A) Guess —————
T/0H w T/ut u
T/T{H uw T/TyH v
Pairing P’/
T/T{UTyH (u,v)
 T/T{Hu T/ToH v
Encryption
T/TT U Ty H {u}y
. T/T' + {u,v) T/T' + {u,v)
Unpairing ————— (ULl') ———— (UR')
T/T"+ u T/T"+H v
o T/TiH {u)y, T/THH vt
Decryption

T/TIUT)H u
T/TIH w T/TyH v T/TEH r

Enc. (Ep’)
T/Ty UTy U Ty H {u},

T/T ' {u}" T/T)+ vt
Dec. [Ty F {uly T/T, (Dp')
T/T]UTyH u

Figure 4. The Dolev—Yao’ model with probabilistic encryption.

introduce a new form of sequent T/T' I’ v, which means that if the
intruder knows the messages in 7' C 7 (F) and guessed values for the
symbols of 77 C G, then he can build the verifier v € 7(F). In other
words, he can deduce that v belongs to a finite set that he can compute.
The members of T and T” are respectively called the strong and weak
hypotheses of T/T' ' v, and v is called its target.

Figure 5 introduces a deduction rule Compare which models the
verification of a guess d with one of the 3 cases described above. The
conditions (i) and (ii) ensure that one of the proofs P, or P, really uses
the guessable value g and it is necessary to prevent certain false attacks
(see Section 4.5). The normality condition (ii) will prohibit deduction
steps that simply undo previous steps. It refers to the notion of normal
DY ’—proof which is formally defined in Section 4.4. Lastly, (iii) ensures
that the two proofs P, and P, do not end with the same instance of
the same rule. Hence, the two ways to obtain the verifier v are really
distinct.
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P, Hou oo H Unp, P, Ho ... F Uns

R
T/T F (#1) T/T)F v

ThHg

where:

() g €T UT;

(ii) P, and P» are normal DY ’—proofs

(iii) Ry # Rp or {u,u1, .., tun, } # {v,v1, ..., Uny }
(ivyu=voru=ov"!

Figure 5. The Compare Rule.

The inference system made of the rules displayed in Figures 2, 3
and 4 and the rule Compare of Figure 5 is called the guessing model.

4.4. PROOF TREES

Definition 4. (proof)
A DY-proof (resp. DY ’—proof) P of T - u (resp. T/T' H ) is a tree
such that:

— every leaf of P is labeled with some v € T (resp. v € TUG),

— for every node n labeled with s with k sons labeled with sq, ..., sy,
(81, ..,8k,8) is an instance of an inference rule R of Figure 2, 3
(resp. Figure 4) which s1, ..., s, are the premises and s the conclu-
sion. We say that P contains the instance (s1,...,Sk,s), or ends
with this instance (or simply with rule R) if n is the root of P,

— the root is labeled with some T+ u (resp. T/T' + u).

A guessing—proof is a tree ending with an instance of the rule Compare
and whose two sons are DY '—proofs which satisfy the conditions (i)—(iv)
of Figure 5.

Let P be a DY-proof (resp. DY'-proof). We say that the pair
(u1,ug) is decomposed in P if P contains an instance of the rule (UL)
or (UR) (resp. (UL") or (UR")) whose target of the premise is (u1, uz).
Similarly, the ciphertext {u1}y, (resp. {u1};3) is said decomposed in P
if P contains an instance of the rule (D) or (D’) (resp. (Dp) or (Dp’))
Wh)OSG targets of premises are {u1},, and uy L (resp. {ur}ys, ug ! and
us).
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Definition 5. (minimality)
A DY-proof or DY —proof P is called minimal if it does not contain
two modes on the same path labeled by sequents with the same target.

The following notion of normal proof is used in the definition of the
rule Compare.

Definition 6. (normality)
A DY ’—proof P is called normal if the rewrite rules defined in Figure 6
can not be applied to P.

The normality of DY—proofs is defined with a similar set of rewrite
rules, where (D', E', P', UL’, UR’, Dp’, Ep’) are replaced respectively
by (D, E, P, UL, UR, Dp, Ep).

The rewrite rules of Figure 6 correspond to algebraic properties of
the operators. For instance, the first rule expresses that the composition
of encryption and decryption (with the keys of the same keypair) is
the identity. The third rewrite rule states that this is also the case
of the composition of decryption and deterministic encryption. To be
more precise, the rewrite rules described in Figure 6 are used to model
the algebraic properties listed below. The pairing, the left and right
projection operators are respectively denoted P, UL, UR. The encryp-
tion and decryption operators, and their probabilistic counterparts, are
respectively denoted E, D, Ep, Dp.

- D(E(‘Tay)ay_l) =z and E(D(ﬂj‘,y_l),y) =,
- Dp(Ep(xv:% Z)7y_1) =Z,
— UL(P(z1,22)) = 21, UR(P(21,x2)) = 22 and P(UL(x),UR(z)) = =.

Note that there is no analogous of the rule E(D(x,y~1),y) = z, for Ep
and Dp. Indeed, while the decryption of a ciphertext {u;}}, returns
u1, the probabilistic re-encryption of u; returns {ul}z;, with ' # r
and hence this ciphertext differs from the original one. In the setting of
dictionary attacks, it is crucial to be able to find proof which are not
equivalent modulo these rewrite rules, as explained in Section 4.5.

Note that every minimal DY’ —proof is normal. Indeed, every left
member of rewrite rule of Figure 6 contains two nodes on the same
path labeled by sequents with the same target (but not necessarily
with the same set of weak hypotheses).

Lemma 1. If there exists a DY—proof of T + u, then there exists a
manimal DY—-proof of T F .
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16 Delaune, Jacquemard

Q1 Q2
T/T] H uy T/T5F ugy () Q3
T)T, UThH {ug b, /Ty uyt Q1
T/T, UT, UTE H uy ) T/T{ F w
Q1 Q2 Q3
T/T H w  T/ThH us wﬂer/ Qu
T/T{UTyUTsH {ui}s, (Ep) T/Ty H uy? /
T/T UT,UT,UT, - (De)
Q1
T/T) H

We also have an additional rule for the deterministic encryption:

Q1 Q2
T)T{H {wituy — T/T5H uy? o Q3
T/T] UTyH wy T/T4 F ug

(E')

T/T{ UTy UTH {ug b,
Q1
T/T7 ' {us }u,

Concerning the pairing symbol, we have the following rules:

Q1 Q2
U F e TR
T/T{ UTyH (uy,us Q1
Mon ™ w - e
T/T, UTyH wy T/Ti H wy
and a similar rewrite rule for (P',UR’).
Q1 Q2
T/T{ V' {(u1,us T/T5 F (ug, us
/Ti F (w >(UL’) /T3 ( >(UR’)
T/TiH w T/TjF us Py — @
T/T{U T H (ur,ug) T/T; ' (u1, uz)

Figure 6. The proof rewrite rules.
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Proof. We can show this result by induction on the proof P of T . If
P is reduced to an instance of the rule (A), then it is obvious. Otherwise,
by induction hypothesis the direct subproofs of P are minimal. So, if
P is not minimal, there exists two nodes on the same path labeled by
the sequent T'F u and one of these is the root of P. Hence, the other
is the root of a minimal proof of T" - . O

However this result is not valid for DY ’—proofs, unless the set of weak
hypotheses is empty for every node. The problem with DY —proofs is
that we can not assume that two nodes on the same path and with the
same target have the same set of weak hypotheses.

4.5. RULE COMPARE

In this section, we shall explain in more details the conditions of appli-
cation of the rule Compare. We also provide some examples to illustrate
this rule.

Condition (ii) By the condition (i), one son P, or P, contains the
guess g among the weak hypotheses, but it is not sufficient to ensure
that P} or P, really depends on the guess g: only the condition (ii)
ensures this property. Indeed, without this condition, there would be
a guessing—proof with the two (non normal) sons below, which would
mean that the intruder is able to guess any g € G from any message m
known by the intruder.

meT g
;/ (A') L/ (G)
T/0H m T/{g}+ g )
meT "lm
T/0H m T/{g} ' m

The idea behind condition (ii) is that in a proof like the one above,
re-obtaining the value m after the successive applications of pairing
(P’) and projection (UL’) is not a commitment that the guess of g is
correct. It is just an algebraic property of the operators, characterized
by a rewrite rule of Figure 6.

Condition (iii) The condition (iii) also prevents certain false at-
tacks. Consider the program which is made up of one pair of instructions
recv(z);send((z, x)). An agent executing this program will answer to
any message m with the pair (m,m). Thus, if the intruder knows the
message m = {n}y, he obtains from the agent the answer ({n}y, {n}y).
The two DY’—proofs below verify the conditions (i), (ii) and (iv) of
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18 Delaune, Jacquemard

the rule Compare. However, the condition (iii) is not verified and these
two proofs indeed represent a fake dictionary attack. Intuitively, in this
attack, the intruder guesses a value d for g, computes the left and right
projections ((UL’) and (UR')) of m, tries to decrypt each projection
with d (rule (Dp’)) and compares the values obtained. But, since both
projections are {n}y, the values will always be equal, even when d # g.
We see that the two proofs differ (the first step is left or right projection)
but that their last instance is the same (decryption applied to the same
premises).

({n}g {n}g) €T

o0l ()
Tk k) 99
T/0H {n} ey
T/{g} Hn
(ot et
T/ ({n}}, {n}}) 9eg
UR’ _—
ey O T o)
T/{g} F'n

Note that if the two ciphertexts of the pair would have been obtained
by two distinct applications of the probabilistic encryption algorithm,
we would have obtained a pair which is composed of two distinct
terms, i.e. ({n}y, {n}gl), allowing surprisingly the intruder to mount
a dictionary attack.

We illustrate the application of the rule Compare on the protocols
given in Section 2.

Example 3. (naive vote protocol)
Let T = {{V}pur(s), pub(S)} and G = {V'}. The following guessing—
proof models the gquessing attack performed by the intruder on V :

Vegdg c pub(S) € T
T/{V} FV T/@ ! pub(S) (E/) {V}pub(S) eT
T/{V} - {V}pub(S’) T/@ H {V}pub(S)

THV

(A)

(©)
Example 4. (handshake protocol)

Let T = {{N}}% ap N + 1};30(1473)} and G = {pw(A,B)}. The
required guessing—proof of T + pw(A, B) can be obtained by applying
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the rule Compare to the two DY —proofs below:

{N}pw(A,B) eT ) pw(A,B) e g ©
T/0H {N}5ua,B) T/{pw(A, B)} V' pw(A, B) (D)
T/{pw(A,B)} ' N
T/{pw(A,B)} ' N +1
{N+1}ameT A pw(A,B)€G ©
T/0H {N + 1} pua,5) T/{pw(A, B)} V' pw(A, B) (D)

T/{pw(A,B)} ' N +1

Note that the conditions (i)—(iv) required to apply the rule Compare
are satisfied.

4.6. PASSIVE AND ACTIVE INTRUDER

A ground term u € 7 (F) is called deducible from a set of ground terms
N C T(F) if and only if there exists a finite subset 7' of N and a
DY-proof of T'F u. We note ded(N) the set of ground terms deducible
from N.

In order to define the transition performed by the intruder, we
extend the configurations of the system with a third component repre-
senting the intruder’s knowledge. Therefore, a configuration is a triple
(S,N,K) where S and N are as in Section 3.2 and K C 7 (F). The
transitions of the intruder, denoted —, are defined as follows:
listen  (S,N,K) — (S,N, K U({s}) for some s € N
deduce (S,N,K)— (S,N,K U{s}) if s € ded(K)
write (S,N,K) — (S,NU{s}, K) for some s € K

divert  (S,N,K)— (S,N \ {s}, K) for some s € N

We define a passive intruder as able of performing the transitions
listen and deduce and an active intruder as able of performing the two
latter transitions and moreover write and divert.

Finally, we define the relation —,4, for ¢ € G, by (S,N,K) —,
(S, N,K U{g}), if and only if there exists a finite subset 7' of K and a
guessing—proof of T'F g.

5. Security Problems

The first problem, we are interested in, is the so—called intruder deduc-
tion problem, which is the following one:
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Definition 7. (Intruder Deduction problem (ID))

IN: a finite set of terms T, a finite set of guessable values G, a
term s (the secret).

OUT: Is s deducible from T knowing that G are guessable values?
In other words, does there exists a proof of T' & s in the guessing
model ?

There are two factors of non determinism in the semantics of proto-
cols and intruder defined respectively in Sections 3 and 4:

— the selection of the process who is going to proceed,

— the choice, by the intruder, of a value that he will be trying to
guess offline, and when he makes the offline dictionary attack.

The following definition of interleavings is a characterization of these
two choices.

Definition 8. (interleaving)

Given an initial configuration S = ({(po,00),-- ., (Pmsom)}, No) of a
protocol P, an interleaving of S is a finite sequence I of values which
can be either terms of G or integers in 0...m (indices of processes of
S) such that the number of occurrences of every index i in I is smaller
than or equal to the number of instruction pairs in p;.

Hence, an interleaving defines a scenario for processes execution and
intruder guessing in a potential attack. The problem of trace insecurity
consists in deciding whether such a scenario can be directed by the
intruder, and whether, when following this scenario, the system reaches
a critical state.

We define the relation —; on configurations, for an integer i, by
—; 1= —*—; =" (=" denotes the reflexive and transitive closure of —,
and —; is extended to triples as expected) and we define the relation
—g, for g € G, by —4 = —"—,—".

The relation —, for an interleaving I, is defined recursively as fol-
lows: —y is the identity, —;; := ——; for an integer ¢ (I,7 denotes
the interleaving obatined by appending i to I) and — 4 := ——, for
geqg.

Definition 9. (Trace Insecurity problem (TI))

IN: a protocol P, a runnable initial configuration (Sy, No) of P, a
finite set Ko C T(F) (the initial knowledge of the intruder), an
interleaving I of (So, No), and a ground term s € T (F).
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OUT: does there exists (S, N, K) such that (So, No, Ko) —1 (S, N, K)
and s is deducible from K ¢

We study in Section 6, the case of a passive intruder. In particular,
we prove that the intruder deduction problem is decidable in PTIME.
This yields to an NP decision procedure for the trace insecurity problem
in presence of a passive intruder. Sections 7 and 8 are devoted to prove
that the trace insecurity problem is NP—complete when the intruder is
active.

Remark 1. For sake of simplicity, the signature F and the set G of
guessable terms are assumed fized, hence their size is a constant in the
complezity results below. However, the complezity results would remain
the same if G would be part of the input of the problem.

We can express several trace properties of protocols as instances of
(TT), like for instance failure of authentication (one process p completes
the protocol presumably with an interlocutor p’ whereas p’ did not even
start to run, and hence p has been fooled in communicating only with
the intruder), or confidentiality.

The problem of the existence of an interleaving I, given P, G, (So, No),
Ky and s as above, returning a positive answer to (TI) is sometimes
called Protocol Insecurity (PI) in the literature. The number of pro-
cesses and their size is bounded by | Sp||, and hence the length of
every possible interleaving is polynomially bounded in this measure.
Therefore, a consequence of the results of Sections 6, 7 and 8 is that
(PI) is decidable in NP in presence of a passive or active intruder.

6. Decision Procedures in Presence of a Passive Intruder

When the intruder is passive, the only messages circulating over the
network are sent by the protocol participants (the processes). Given
a protocol P, an initial configuration (Sp, Ny), and an interleaving I,
the set T of messages known by the intruder at the end is bounded
and can be computed in advance (in non—deterministic polynomial
time). Therefore, in this case, the trace insecurity problem (w.r.t. P,
(S0, No), I, and some Ko C 7(F) and s € 7(F)) is reducible to the
existence of one DY—proof and some guessing—proofs. The complexity
of the decision of the existence of (DY, DY’, guessing) proofs are given
in Section 6.2. Then, we give complexity results for the problems (ID,
TI, PI) presented in Section 5 for the case of a passive intruder. These
latter results are based on technical lemmas proved in Section 6.1.
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6.1. LOCALITY

The notion of locality was coined by McAllester (McAllester, 1993) to
characterize theories with a deduction problem decidable in polynomial
time. We follow a similar approach and prove below three locality
results for, respectively, the Dolev—Yao and Dolev—Yao’ model with
probabilistic encryption, and the guessing model.

The proposition 1 is a locality result for DY—proofs.

Proposition 1. A normal DY-proof P of T F u contains only terms
in st(T U {u}). If moreover P ends with a decomposition rule (A, UL,
UR, D, Dp), then P contains only terms in st(T').

Proof. We prove the following results simultaneously by induction on
the proof P of T+ u:

1. P contains only terms in st(T'U {u}),

2. if the last inference rule of P is a decomposition rule (A, UL, UR,
D, Dp), then P contains only terms in st(7T).

We consider all possible cases for the last inference rule:
— rule (A), the result is straightforward.

— rule (E), then u = {u; }y,. By induction hypothesis (1), the proof
P; (i =1, 2) of T u; contains only terms in st(7"U {u;}). So the
proof which consists of applying the rule (E) on the proofs P; and
P, contains only terms in st(7'U {u}).

— rule (P) and (Ep), it is similar to (E).

— rule (UL), then we have a normal DY-proof P; of T+ (u,v) for
which the last inference rule is necessarily a decomposition rule by
normality of the proof P. By induction hypothesis (2), P, contains
only terms in st(7"). Hence (u,v) € st(1'), and we deduce that P
contains only terms in st(7).

— rule (UR), it is similar to (UL).
— rule (Dp), then we have the following derivation:
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We consider the last inference rule of P;. This rule is necessarily
(A, UL, UR, D, Dp). (Ep) is impossible by normality of P. Now,
we apply the induction hypothesis (2) and obtain that P; involves
only terms in st(7"). We distinguish two possible cases. Firstly, if
k is a symmetric key then k! = k. By induction hypothesis, P,
involves only terms in st(7" U {k}) and we have k € st(T). So,
P involves only terms in st(7"). Secondly, if k is an asymmetric
key then k=1 € Fo U {pub(t), priv(t)|t € T(F)}. Consider the last
inference rule of P,. This rule is necessarily (A, UL, UR, D, Dp).
By induction hypothesis, P, involves only terms in st(7"). So P
involves only terms in st(7').

— rule (D), it is similar to (Dp). O

The proof of Proposition 1 can be straightforwardly extended to the
following analogous locality result for the DY —proofs.

Proposition 2. A normal DY —proof P of T/T' F' w contains only
terms in st(TUT" U{u}), and if P ends with a decomposition rule (G,
A’ UL’, UR’, D’, Dp’) then P contains only terms in st(T' UT").

Proposition 3. A guessing—proof of T + g contains only terms in
st(TUG).

Proof. A guessing—proof is made up of two normal DY —proofs P, of
T/T] F uy and Py of T/T) ' ug. We distinguish two cases:

— U1 = Uy

If the last inference rule of Pj is (G, A’, UL’, UR’, D", Dp’), then by
Proposition 2, P; involves only terms in st(7 U T7), and we have
uy € st(T'UTY). So, since T] C G, we deduce that P involves only
terms in st(T'UG).

If the last inference rule of P is (G, A’, UL', UR’, D', Dp'), then
we have also that P involves only terms in st(7'U G).

Otherwise both of Py and P; end with (E'), (Ep’) or (P"); this case
is inconsistent with the condition (iii).

— wuy is an asymmetric key and wug its inverse (ug = ufl)

In this case, ui,us € Fo U {pub(t),priv(t)[t € T(F)}, and the
last inference rule of P; (and P») is (G, A’, UL, UR', D', Dp’').
By Proposition 2, P; (resp. P») involves only terms in st(7°U T7)
(resp. st(T'UTy)), and we deduce that P involves only terms in
st(T UG). O

guessNP.tex; 1/06/2005; 8:34; p.23



24 Delaune, Jacquemard

This result allows us to consider only subterms of the attacker’s
knowledge as potential verifiers to do a dictionary attack.

6.2. DECIDABILITY AND COMPLEXITY

We show now (see Theorem 1 and Corollary 1) that when the intruder is
passive, the intruder deduction problem and the trace insecurity prob-
lem (w.r.t. P, (So,No), I, Ko C T(F) and s € T(F)) can be decided
by reduction to the existence of one DY-proof, for the deducibility
of s (solved in Proposition 4), and several guessing—proofs(solved in
Proposition 5).

Proposition 4. Given a set of messages T C T(F), and a message
u € T(F), the existence of a DY-proof of T + u can be decided in
polynomial time in [|T U {u}|q.

Proof. This result follows from Lemma 1, which guarantees the exis-
tence of a minimal (hence normal) DY-proof P of T+ u, and Propo-
sition 1, which says that P only involves terms in st(7°U {u}). Indeed,
in order to decide the existence of such a DY—proof, we construct (fol-
lowing (McAllester, 1993)), the set S of ground Horn clauses described
in Figure 7 which implements a marking of every ground subterms
t € st(T'U {u}) such that there exists a proof of T' I ¢t. Therefore, the
existence of a proof of T'F u is equivalent to the non—satisfiability of
S, hence to the non—satisfiability of a set of proposition Horn clauses
(HORN-SAT) which size is polynomial in | 7"U {u}||4. Hence, the exis-
tence of a DY-proof of T'+ u can be decided in linear time in the size
of §, i.e. in polynomial time in ||T°U {u}| 4. O

Proposition 5. Given a set of messages T C T(F), and a guessable
symbol g € G, the existence of a guessing—proof of T'+ g can be decided
in polynomial time in ||T"U G||4.

Proof. Like in the above proof of Proposition 4, we reduce the problem
with the construction of a set of ground Horn clauses &’. In order to
code the instances of the rule Compare with its conditions of appli-
cation, we need though to add some additional information into the
atoms of the clauses.

Given a set of messages T C 7 (F), and a guessable symbol g € G, we
describe in Figure 8 a set S’ of ground Horn clauses from which one can
derive the empty clause if and only if there exists a (normal) guessing—
proof of T' = g. Since the size of S’ is polynomial is ||T°U G||4, this
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= I(ul) | up €T

I(uy), I(uz) = I({u
I((u1, u2))
I(<U1,UQ>) = I(UQ

(uy,ug) € st(T U{u})

\

=~

S

5
S— N

I(uy), I(ug) = T({ui}u,)
I({ul}UQ)7l I(U2_%) = I(ul)l {ui}u, € st(T'U {u})
I(uy), I(ug), I(uz) = I({U1}Z§)

I{w}ip), I(ue™) = I(u)

{ur}i € st(T'U{u})

I(u) =

Figure 7. The set S of ground Horn clauses (proof of Proposition 4)

provides a decision procedure with the complexity wanted. The clauses
of &’ are built with two binary predicates Iy and I;. The ground terms
occurring in the first arguments of atoms are elements of st(7',G), and
in the second argument, one of the nullary symbols A, P, E, Ep, G
corresponding to rules of the system of Figure 4, or UL(u), UR(u),
D(u), Dp(u,v) with u,v € st(T,G). The meaning of Iy(u,l) is that
there exists a normal DY -proof which root is labeled with T/T" ' w,
with 7" C G, and moreover, if [ is A, P, E, Ep or G then the proof ends
by the corresponding inference rule, and if [ = UL(v), then the proof
has the following form (and similarly if [ = UR(v) or if | = Dp(k,r)):

T/T VF {(u,v)
———— (UL)

T/T' ' u

This second argument [ is used to ensure the conditions (ii) and (iii) of
the rule Compare. The meaning of I;(u, ) is the same as Iy(u,l) except
that moreover g € T”. O

The measure ||G||4 in Proposition 5 should not be confused with the
size of the dictionary. Indeed, recall that G is the set of guessable sym-
bols, each of which is assume to belong to a finite dictionary. Therefore,
|G| is rather the number of (finite) dictionaries.

Theorem 1. The intruder deduction problem is decidable in polyno-
mial time.
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S

N‘mA:T Nvg »Nm\ﬁ‘ng N\v

NmAAQT QMV“ D
NmAAQT QMV“ D

N‘mA:TNvg Nm\ﬁ‘ng&\v
NmAT:TS“ D“ Nm\A:mlf N\v
NmAQTD“ Nm\A:m“N\V“ Nm:AQwL:V

L({ua}i3, 1), I (up ™, 1)

/\)\4
/—\
NN

i

=
=

=

NH A.Qv Qv
Iy(u,G)

Iy(u, A)
Nm.TmAA:T ﬁwv“ NUV

NmAQT Q«N\AQMVV
Nmﬁﬁmv Q«NA:HVV

Lo ({ur}ug, E)
Ioyer(ur, D(up™))
Ieteryer({ur}i, Ep)
Leyer(ur, Dp(us™", uz))

Goal
Goal

where ¢, ¢/, ¢” € {0,1} and + denotes the Boolean operation or.

uweG\{g}

u€eT

1 # UL(ug), U'# UR(w1),
(ui,ug) € st(T)

l# P, (u1,uz) € st(T)

1# D(uz™"), {uihu, € st(T)

1+ E,

1 # Dp(uy™",ug), {w}ys € st(T)
L # Ep,

1#£1, e+ =1,
uAul, e+ =1

Figure 8. The set S’ of ground Horn clauses (proof of Proposition 5)
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Proof. First, we compute the set G; of guessable symbols g € G such
that there exists a guessing—proof of T'+ g (Proposition 5). Then, we
solve the existence of a DY—proof of T"U G; F s (Proposition 4). Both
above steps can be performed in polynomial time in ||[TUGU{s}||g. O

Corollary 1. Trace Insecurity (TI) is decidable in non—deterministic
polynomial time when the intruder is passive.

Proof. Let P, (So, No), Ko, I and s € T(F) be an instance of (TT).
First, we have to choose which message (among those currently in the
network) is read by the current protocol rule. It is the non—determinitic
part of the algorithm. Then, we have to verify that the chosen message
matches the message expected by the agents, and also that the secret
s is deducible by the intruder by using all the messages previously
gathered. These verifications can both be performed in polynomial time

(Theorem 1). O

Corollary 2. Protocol Insecurity (PI) is decidable in non—deterministic
polynomial time when the intruder is passive.

Proof. The complexity result follows from the facts that the length of
every possible interleaving is polynomially bounded in the size of the
problem, and we have an NP decision procedure for solving the trace
insecurity problem. O

Note that the three above complexity results are independent from
the concrete size of the dictionary. This is not surprising since we are
interested in the complexity of the decision of the theoretical existence
of a guessing attack rather than on the cost of mounting such an attack.

7. Decision Procedures in Presence of an Active Intruder

When the intruder is active, the situation is much more complicated
than in Section 6. Indeed, in this case, the messages circulating over
the network are either sent by the protocol participants (the processes)
or by the intruder. Therefore, they cannot be computed in advance,
and will be represented by terms with variables. More precisely, (TI)
is reduced to a problem of symbolic constraint solving. An effective
constraint solving procedure is presented in Section 8.
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7.1. SYMBOLIC CONSTRAINTS

Definition 10. (constraint, solution)

A constraint is a sequent of the form T lFgy u (DY-constraint) or
T IFg u (guess—constraint) where T' is a finite subset of T(F,X) and
u € T(F,X). A solution of a finite set (or system) C of constraints
is a grounding substitution o such that for every T lFq, u € C (resp.
every T' kg w € C) there exists a DY -proof (resp. guessing-proof) of
Tot uo.

Note that we do not assume that the constraints of the set C are
variable disjoint.

Definition 11. (well-formed)
A finite set C of constraints is well-formed if its elements can be ordered
as Ty kg 70, - .., 11 kg, 71 such that the following conditions holds:

— 0€Ty,
— for alli <1, x; is either dy or g,
— foralli <1, T; € Tit,

— for all i < I, for all x € vars(T;), there exists j < i such that
x € vars(r;).

7.2. REDUCTION OF (TI) TO CONSTRAINT SOLVING

Let 7 be an instance of (TI) made of a protocol P, a runnable ini-
tial configuration (Sp, Ny), a set Ko C 7(F), an interleaving I of
length ¢ and a secret term s € 7(F). We associate to this input a
set C(m) = {Co,...,C¢} of DY and guess—constraints the solvability
of which is equivalent to the problem of protocol insecurity in presence
of an active intruder. We construct in parallel the constraints of C(m)
and the sequences Ty, . . ., Ty of their hypotheses sets. Let Ty = NogUKj.
For each k < ¢,

if I, € G, then C}, := T}, IFg g (the intruder can deduce g by guessing)
and Tyy1 := T U {g} (he adds this value to his knowledge),

Otherwise I is an index representing a process, say (p,o). Let j
be the number of instances of this index in Igly...I;_1 and let
recv(r);send(s) be the jth instruction pair of the program p. Then
Cy = T} lFgy ro (ro can be received from the network) and
Tiy1 := T U{so} (so is sent to the network).
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And finally, if s € G then Cy := T} I s and otherwise, Cy := Ty I-qy s
(the secret s is revealed).

Example 5. (Kerberos protocol)

The attack described in Section 2.3 can be executed starting with a
(runnable) initial configuration (So, ) where Sy contains five processes,
(pi,0;) with i € {0,1,4,7,8}, and with the initial intruder’s knowledge
Ko = {O, S, pub(S), A, B, Ml, MQ, Ci, Ti}.

The processes pg, p1 correspond to the respective roles A and S of
session o which were described in Example 2, the process p4 to the role
S of session B and the other processes py and ps to the role S and B
of session vy, with:

zh — K/, a2t — K",
B x5y, — Ts, B al, — Ts",
94 = x‘é — S, g7 = xg — S,
7
Tpub(s) pub(S) Tpun(s) pub(S)

08 = {xiw(B,S) = pw(B7 S)}

where K', T's', K", T's" are constants of Fy.
The interleaving I describing the trace of the attack is (together with
the corresponding steps with the notation of Section 2.3):

0 1 4 pw(A,S) 7 8
a.0 a.l 6.1 pw(A,S) ~.1

The steps 3.0, 7.0 and v.2 do not occur in I since they are performed
by the intruder (on behalf of A) in the attack. The step (8,0) (reception
of last message by B) has no corresponding label.

The associated constraint system C is described in Figure 9.

Lemma 2. For every instance 7 of (T1), the size of C(m) is polynomial
in the size of .

Lemma 3. For every instance w of (TI), the set of constraints C(m) is
well-formed.

Proof. By the construction of C(7) and the hypothesis that the initial
configuration (Sp, Np) in 7 is runnable (Definition 3). O

7.3. MAIN RESULTS

We shall give in the next section a resolution procedure for the problem
of satisfiability of a set of constraints, showing the following theorem.
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pw(A4,S)

S, Co =Ty lray 0

To, {A, B, N1, Na, Ca, { Ta} pu(a,9) } pup(s)

1 1 1 1 1 1
T __lav\ ﬁ.&\f LB TNy TNy Lo AH%@W@SA&M,MVWNUEAMV

1 1 1
11, A&ZT Ko Ty, wﬁsﬁ&wamv, ﬁ&.mf K, MJMW@SA&WQMV
4 4 4 4 4 4
Ty lray {274, 2, TN TNy o0 AT 0 pw(at ) Y pub(s)

@%&w@wﬁ@&w@w
T3 lFg pw(A,S)

pw(zd,S) AR.NM“ Nﬂ\u ﬂm@%ggwqmv

ﬂw“@\SA\r%v 7 7 7 7 7
T} :IQ% AH\% LB TNy TNy L g ARHQVEEARM,MVWE:@AMV

M.MT ARW/DQN: @ .&.W/\m WﬁéA&M,MY A&Wﬁ Nm‘:u Mﬂw\@ﬁéﬁawgmv

8 8 8
T5 Ikay {25, T3 T Fpw(B,S)

15,0
Te lFay K"

A receives 0

A sends his request to S

S receives the request

S answers the request

S receives a second request

S answers, I diverts S answer

I guesses pw(A, S) using S answer

pw(A,S) is added to I's knowledge
S receives a third request

S answers, I diverts S answer

B accepts I’s message

B answers 0
and the secret K" is revealed

Figure 9. The constraint system of Example 5.
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Theorem 2. Given a finite well-formed set C of constraints and a
set G of guessable symbols, the existence of a solution is decidable in
non—deterministic polynomial time in C and G.

Corollary 3. Trace Insecurity (TI) is NP—complete when the intruder
15 active.

Proof. The NP part follows from the above polynomial construction of
set of constraints associated to instances of (TI) (Lemmas 2 and 3) and
from Theorem 2.

Concerning the NP—hardness, if we choose G = (), then we fall into
the trace insecurity problem in presence of a standard active attacker
(without guessing abilities). This problem can be shown NP-hard by
a reduction from 3-SAT. Indeed, the reduction given by (Rusinowitch
and Turuani, 2001) can easily be adapted in order to obtain a protocol
with only one process. It allows to remove the choice of the interleaving,
and hence to obtain a reduction from 3-SAT to the trace insecurity
problem. ]

Corollary 4. Protocol Insecurity (PI) is NP—complete when the in-
truder is active.

Proof. The NP part follows from the facts that the length of every
possible interleaving is polynomially bounded in the size of the problem,
and we have an NP decision procedure for solving the trace insecurity
problem.

Concerning the NP—hardness, if we choose G = (), then we fall into
the problem of (Rusinowitch and Turuani, 2001) which has been shown
NP-hard. ]

8. Constraint Solving Procedure

We present in this section a non deterministic polynomial time al-
gorithm to decide the satisfiability of a well-formed set of DY— and
guess—constraints. The idea is that if there exists a solution, then there
exists a minimal one whose dag—size is polynomial in the size of the
system. This fact has been shown in (Rusinowitch and Turuani, 2001)
for the verification of protocols in the Dolev—Yao model and we can
use it to treat DY—constraints. However the case of guess—constraints
is much more difficult because some results which are obvious for DY—
proofs are not true for DY —proofs (see Section 4.4). Indeed, we have
shown that we can always assume that a DY—proof is in normal form,
and we often use this result, but the transformation rules to normalize
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a DY’ —proof of T/T' - u must be used very carefully since we can lose
weak hypotheses in 77 when we apply them. Moreover, a guessing—proof
ends with an instance of the rule Compare which is inherently difficult.

8.1. ALGORITHM

The following non—deterministic decision algorithm takes as input a
finite well-formed set C of DY— and guess— constraints, and checks the
existence of a solution. Let {z1,...,x,} = vars(C).

1. choose for each i < m a term ¢; € st(C), and let o be a most general
unifier (if any) of the equational problem €& = {x; = t1,...,Zm =~ tm},

2. if ¢ is ground, check whether o is a solution of C.

If the answer of 2 is positive for some choices of 1, answer Yes. Other-
wise, answer No.

Example 6. (Kerberos protocol)
We consider the set of constraints C described in Figure 9. At the first
step of the algorithm, we build the following equational problem E:

1 o 1~ 1~ 1 1
A, xp =B, zy = N1, zy, = Na, z¢, Ta,
4

1 ~ ~ ~
& 1 1 4 ~C i
Ty~ A, 2~ B, Ny, ~ N1, vy, = Nay, vg, = Ca, v7, =~ Ta,
A

8
R
l
&
8
2
l
=
3
2
%
5
3
&
%
Q
H\I
S
%

Ti,

Let o be the most general unifier of £. Now, we can check that o
is a solution of C, i.e. there exists a DY-proof of Cio for each i €
{0,1,2,4,5,6} and also a guessing—proof of Cso.

For instance, the required guessing—proof can be obtained by applying
the rule Compare to the two DY ’—proofs below:

{Nla K& NQ}pw(A,S) € Izo (A/) pw(A,S) €g (G)
T30 /0 {N1, K © Na}pu(a,s) Tzo/pw(A,S) H pw(A,S)

Tzo/pw(A, S) H (N1, K & N)

(D)

(UL)
Tyo/pw(A,S) H Ny
{Nl,K’ P NQ}pw(A,S) € Ts0 (A’) pw(A, S) €eg (G)
T30’/® H {N17K/@N2}pw(A,S) Tga/pw(A,S) H pw(A, S) (D/)
Tga/pw(A,S) H <N1,K/EBN2> (UI_’)

Tso/pw(A,S) ' Ny
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8.2. COMPLEXITY

By construction, ||£]| < |vars(C)|.M, where M is the maximal size of a
term in C. At step 1, the mgu o (represented as a dag) can be computed
in polynomial time in ||€]|, using syntactic transformation rules for
solving unification problems, see e.g. (Jouannaud and Kirchner, 1991).
The dag-size of the terms in the codomain of ¢ is polynomial in the
size of £, hence in the size of C.

The test of step 2 consists in checking that each constraint of C is
satisfied by o. By construction of C, and according to the above bound
on the size of o, the instance of any constraint of C by ¢ has a dag—size
polynomial in the size of C. The results of Propositions 4 and 5 yield
polynomial procedures for checking the satisfaction of each constraint
of C by o. Altogether, the complexity of the algorithm is polynomial in
the sizes of G and C.

8.3. COMPLETENESS

The completeness of our algorithm is ensured by the corollary 5 of the
key proposition 6. The following technical lemmas 4,5, 6 will be used in
the proof of this proposition. Given a proof P of a sequent T F wu, the
aim of Lemmas 4 and 6 is to ensure the existence of a particular proof of
Tt w which respects some extra conditions in order to guarantee some
results when we are going to apply transformations, as replacement, on
proof trees.

The following lemma 4 has been proved in (Rusinowitch and Tu-
ruani, 2001) for a slightly less general model than the one we have
presented here, roughly, the DY—model without probabilistic encryp-
tion. Despite this slight difference in models, the proof of (Rusinowitch
and Turuani, 2001) can be translated in a straightforward way to prove
the following lemma.

Lemma 4. Let P be a DY-proof of T -t and P’ be a minimal DY~
proof of T & ~ ending with a composition rule (E, Ep or P). There
exists a proof of T+t in which v is never decomposed.

One may observe that in a guessing—proof of T F g, the only relevant
information in the weak hypotheses T of a node T'/T" |- t is whether
T’ contains g or not. Below, in order to simplify the notations, the
weak hypotheses in DY’—proofs will be noted g™, g= or 0: g© and
g~ represent arbitrary subsets of G respectively containing g and not
containing g. Although ) is a subcase of g~, we shall still use this
notation to emphasis that every DY —proof of T'/() I u is isomorphic
a DY-proof of T' - u. Note that a set of guessing—proof defined with
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the g7 and ¢~ notation can be represented by a unique guessing—proof,
which real contents of weak hypotheses are deduced from the leaves.
Lemma 6 below is an analogous of Lemma 4 for guessing proofs. Its
proof requires the following auxiliary Lemma 5 which gives us sufficient
conditions to have a guessing—proof of a given sequent 71"t g.

Lemma 5. Let P; and P> be two normal DY '—proofs of respectively
T/OF t and T/g*t F' t. There exist two DY ~proofs P{ and Pj, subtrees
of P1 and P» respectively and a guessing—proof of T = g whose two sons
are P{ and Pj.

Proof. We prove this result by induction on the proof Ps. If the proof
P, is an instance of (G), then we can apply the rule Compare since the
conditions (i), (ii) and (iv) are clearly verified, and (iii) also because
the proof Py of T/ ' t can not end with an instance of (G).

If the last rule of P is (UL') then the conditions (i), (ii) and (iv)
of Compare are clearly met. Either the proof P, and P verify the
condition (iii), and we can apply the rule Compare, or these proofs end
respectively by the instances (T/0 F' (t1,t2), T/0 H' t1) and (T/g™
(t1,t2), T/gt ' t1) of (UL'). In such a case we apply the induction
hypotheses on the subtrees of P; and P» which root are labeled with
T/0F (t1,t3) and T/g™ ' (t1,t3) respectively. The other cases, (UR’,
P', D', Dp', E', Ep’) are very similar. O

In the following Lemma 6, equivalent of Lemma 4 for the guessing—
proofs, we impose an extra condition (condition b) to ensure that the
replacement we are going to perform on a such guessing—proof does not
lose the only relevant information in the weak hypothesis set.

Lemma 6. Let P be a guessing—proof of T - g and P’ a minimal DY -
proof of T/0 F ~ ending with a composition rule (E', Ep’ or P’). There
exists a guessing—proof of T & g in which:

(a) 7 is never decomposed,

(b) every instance (s1,s2, T/T' ' ~) (resp. (s1, 82,83, T/T" ' ~) of the
composition rule (P, E') (resp. Ep') is such that g ¢ T'.

Proof. (for sake of readability, a part of the proof has been moved in
Appendix A)

We make an induction on the number of instances of rules in P which do
not satisfy (a) or (b). First, we consider the case of an instance which
does not satisfy the condition (a), and we distinguish two subcases,
depending on whether a premise of the instance is labeled with T'/g*
vor T/g~ F' ~. Let v = (y1,72) (the other cases v = {71}, and
v = {71}3; are similar).
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Case (a™): Let (T/gT F 7,s) be an instance of (UL") (the case (UR")
is similar) in P which does not satisfy the condition (a), and let P; the
subproof of P whose root is the above T//g" ' ~. We can apply the
induction hypothesis to the guessing—proof P” of T+ g whose direct
subproofs are P; and P’

Case (a™): Let P, and P» be the two direct (DY’—) subproofs of P.
Let (T/g~ F ~,s) be an instance of (UL') (the case (UR’) is similar)
in P; (say ¢ = 1 for simplicity) which does not satisfy (a) and let P
be the tree obtained from P, by replacing the subproof of P; whose
root is the above T//g~ H' ~ by P’ (whose root is T'/() ' ~). This tree
P] is a DY -proof since () is a subcase of g~ in our notation. It is not
normal, and hence the condition (i) of Compare is not satisfied by
P|. We normalize the proof P| using simplification rules, and show by
induction on the number of simplification steps (using Lemma 5) that
we obtain a guessing—proof P” to which we can apply the induction
hypothesis. The simplification rules and the detailed induction proof
can be found in Appendix A.

Case (b): Let (s1,82,T/g" ' 7) be an instance of the composition
rule (P') in P which does not satisfy (b). Hence, we have a normal
DY’—proof P of T/g* +' ~, and we can apply Lemma 5 to P’ and P|
in order to obtain a guessing—proof P” of T' I g on which we apply the
induction hypothesis. O

Proposition 6. Let o be a minimal (w.r.t. <) solution of C. For all
x € vars(C), there exists t € st(C) \ vars(C) such that to = zo.

Proof. (the proofs of the facts can be found in Appendiz A)

We reason by contradiction. Assume that there exists = € vars(C) such

that for all ¢t € T(F,X)\ X with toc = zo, we have t ¢ st(C). We will

show that under this condition there exists a smaller solution ¢’ of C.
Let C = {C1,...Cy} and for each i < ¢, let ; be the target of C;

and Cjo be the (ground) constraint obtained from C; by instantiating

all the terms in its hypotheses and target with o.

Fact 1. If xo € st(so) for some hypothesis s of C; (i < {), then there

exists j < i such that xo € st(rjo).

Fact 1 allows us to define: m = min{j | o € st(rjo)}. Note that the
constraint Cy, is a DY—constraint of the form S, kg, 7,,. Otherwise, r,
would be a ground term, hence xo € st(ry,o) C st(C), a contradiction.
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Fact 2. There exists a minimal DY-proof of Sp,0 b xo ending with a
composition rule (E, Ep or P).

Now, we let 0 be the replacement {zco +— 0} (0 is a special constant

introduced in Section 3). We will show that ¢’ := ¢ is also a solution
of C, which is a contradiction since ¢/ < ¢. For this purpose, we have
to build a proof of each C;o’, i <. For each i < m, xo ¢ st(C;o), by
definition of m and Fact 1. Hence, (C;0)d = Cijo = Cio’, i.e. o' is a
solution of Cj.
Let us show that ¢’ is also a solution of C; for each ¢ > m. We may
note first that C;(0d) = (C;0)d, because of the hypothesis that there
does not exists t € st(C;) \ X such that to = zo. So, we are going to
show that there exists a (DY— or guessing—) proof of (C;o)d for each
7> m.

Case (1): C; is a guess—constraint S; Ik g. There exists a guessing—
proof of S;o F g and moreover, thanks to Fact 2, there exists a normal
DY ’—proof of S;o/0 H xo ending with a composition rule. Thanks to
Lemma 6, there exists a guessing—proof GP of S;o I g which verify
the condition (a) and (b). We shall build from GP a guessing-proof of
(Sio)d F g. We replace first in GP every subtree ended by an instance
(s1,82,8;0/g9 F xo) of composition rule (E', Ep’ or P') by the following
“Instance” of (A"): (xo € S;o,S;o/g~ ' xo). Then we apply d to every
term of the tree obtained, getting GP’.

Fact 3. GP' is a guessing—proof of (S;0)d b g.
It follows that ¢’ is a solution of C;.

Case (2): C;is a DY—constraint S; IFgy 7;. By hypothesis, there exists
a DY—proof of S;o F r;0, and thanks to Fact 2 and Lemma 4, there
exists a DY-proof of S;o F r;o in which xzo is never decomposed. We
can build as in the previous case a DY-—proof of (S;0)d F (r;0)d. O

Corollary 5. If C admits a solution then there exists an equational

problem of the form & = {x1 =~ t1,...,x, = t,}, where {x1,...,2,} =
vars(C) and ti,...,t, € st(C) such that o is the unique most general
unifier of £.

Proof. Let o be a minimal solution of C. By Proposition 6, for each x;,
i < n, there exists t; € st(C) \ vars(C) such that t,c = z;0, i.e. 0 is a
solution of & = {x1 =~ t1,...,x, = t,}. We can permute the indexes of
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the variables 1, ..., x, in order to have £ in dag solved form, i.e. such
that:
for every 1 <i < j <n, z; ¢ vars(t;) (1)

(the z; are pairwise distinct and every t; ¢ X by construction). The
opposite would mean that £ has no solution, using the completeness
results for the dag based syntactic unification procedure presented
in (Jouannaud and Kirchner, 1991). Indeed, the only transformation
rule of this procedure applicable to a system of the form of £ is the
“occur—check”, and its application would mean that £ has no solution.

Hence, see (Jouannaud and Kirchner, 1991), £ has a unique most
general unifier § = 6, ...60,, where each 6; is {x; — t;}. Since for each
i <mn,t; € st(C), and hence vars(t;) € {z1,...,2n}, and by condition
(1), 0 is ground. It implies that 6 = o. O

9. Related Work

Lowe presents in (Lowe, 2004) a formal CSP model of an intruder
able of mounting dictionary attacks and a procedure to detect such
attacks, which is implemented as an extension of the framework based
on the protocol compiler Casper and the model checker FDR. We believe
that our model is compatible with the one of (Lowe, 2004), though
the formalisms differ, and hence that our decidability and complexity
results are also valid for this system.

An other implementation of dictionary attacks detection is presented
in (Corin et al., 2003). The authors, like us, define the existence of dic-
tionary attacks by the solvability of a system of constraints, but unlike
us, they use only Dolev—Yao constraints (of the form I-g4y). Indeed, the
guessing—constraints 7' |- ¢ are encoded in (Corin et al., 2003) into
some DY-constraints and negation of DY—constraints. However, this
gives a definition of attacks strictly coarser than our Definition. For
instance, the tree of the second example of Section 4.5, which is not
a guessing—proof, and which, in our opinion does not represent a real
dictionary attack, is considered as a dictionary attack in (Corin et al.,
2003).

In (Cohen, 2002), the tool TAPS for protocol verification is extended
to deal with offline dictionary attacks. The problem treated is the ver-
ification of protocols for an unbounded number of sessions, and hence,
it is not a decision procedure. The definition of dictionary attacks is
closed to the one of (Lowe, 2004).

In (Corin et al., 2004), offline dictionary attacks are modeled in a
general and powerful framework: the applied—pi calculus of (Abadi and
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Fournet, 2001). To illustrate their definition, the authors analyze manu-
ally in some protocols w.r.t. resistance to dictionary attacks. Applied—pi
calculus is an extension of pi—calculus in which the messages are terms
built on an arbitrary signature and considered modulo an equational
theory FE. This theory characterize the properties of operators such
as encryption and decryption (like the deduction rules defining the
intruder deduction abilities in our paper). This calculus allows also
special processes called active substitutions, of the form {z = t},
meaning that the term ¢ has been sent and read by the intruder but
its contents are unknown, and t can be refereed using the variable z.
A frame is a parallel composition of active substitutions with name
restriction, denoted vm.{x; = t1,...,z, = ty}. Two closed (without
free variable) frames vm.oc and vm.o’ are statically equivalent if for
every pair of terms u, v which do not contains the names of 77, we have
uo =g vo iff uo’ =g vo’'. It means that the frames cannot be distin-
guished by any pair of terms. Offline dictionary attacks can be defined
naturally in this settings: roughly, a weak secret g can be guessed from
the terms t1,...,t, which have been read by the intruder iff v7m.0 and
vi.o’ are not statically equivalent, where o = {x1 = t1,..., 2, = tp},
and ¢’ is obtained from o by replacing g by a fresh nonce ¢’ (the
intruder is able to distinguish a good guess of ¢ from a wrong one).
This definition is of course more general than our. In particular, it is
not restricted to a particular equational theory. We believe however
that our definition is an instance of the one of (Corin et al., 2004),
for the case where E contains axioms for symmetric, public-key and
probabilistic encryption, and pairing. Indeed, the DY —proofs can be
represented by terms with explicit destructors. For instance, a DY’—
proof P ending with an instance of (D’) is represented by d(¢1, t2) where
d is an (explicit) symbol for decryption and t1,¢s represent the two
direct subproofs of P. With such a correspondence, the two terms v and
v in the definition of (non-)static equivalence represent the two direct
subproof of a guessing—proof. Therefore, we believe that our procedure
can be seen as a decision procedure for a particular case of (Corin et al.,
2004).

10. Conclusion

We have defined a formal model of intruder with both deduction abil-
ities a la Dolev—Yao, extended with a representation of probabilistic
encryption, and guessing abilities. The verification of the protocol inse-
curity in this intruder model is shown decidable (when the number of
sessions is bounded) in non—deterministic polynomial time. One may
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note that our procedure is not restricted to one intruder’s guess per
attack.

This paper gives a new complexity result and does not investi-
gate practical issues, as the opposed of (Lowe, 2004; Corin et al.,
2003): the algorithm given in this paper is not intended to be imple-
mented as it is, due to its highly non—deterministic nature. However,
the NP—completeness result of this paper should not be interpreted as
the intractibility of the problem. Indeed, in this field, several security
problems that belong theoretically to NP or even harder classes have
appeared to be tractable in practice. Hence, we think it would be
possible to implement the procedure in a clever manner in order to
apply this framework on real protocols.

In this paper, we focused on offline dictionary attacks. The problem
of online dictionary attacks, where the intruder uses an online exchange
of messages to verify each of his guesses, is claimed to be realistic in
some situations (Ding and Horster, 1995), but its formalization needs
quite a different model than the one presented here.

Another possible extension is to work on an generalization of our
procedure for the definition of protocol resistance against offline dic-
tionary attacks of (Corin et al., 2004). In (Abadi and Cortier, 2004),
it is shown that static equivalence of closed frames is decidable in
polynomial time when the equational theory is a subterm theory (set
of equations ¢ = s where s is a subterm of ¢). A consequence is that
protocol security against dictionary attacks, following the definition
of (Corin et al., 2004), is decidable in subterms theories for a bounded
number of agents in the case of a passive intruder. The extension of
this result to the case of an active intruder remains a challenging open
question. We believe that the techniques developed in this paper could
help in that direction.
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Appendix

A. Completeness of the Decision Procedure

Lemma 6. Let P be a guessing—proof of T - g and P’ a minimal DY -
proof of T/0 F ~ ending with a composition rule (E', Ep’ or P’). There
exists a guessing—proof of T & g in which:

(a) 7 is never decomposed,

(b) every instance (s1, 2, T/T' ' ~) (resp. (s1, 82,83, T/T" ' ~) of the
composition rule (P, E') (resp. Ep') is such that g ¢ T'.

Proof. Case (a™)

We assume (w.l.o.g.) that v = (y1,72) and (T'/g~ ' v, s) be an instance
of (UL") which does not satisfy (a). Let P; and P> be the two direct
DY’ —subproofs of P. Let P| be the tree obtained from P; by replacing
the subproof of P; whose root is the above T'/g~ ' ~ by P’.

We have a DY —proof P| of T/ b u (u is the verifier used in the
guessing—proof P) which is clearly not in normal form. So, we are going
to normalize P] in order to obtain a guessing—proof P” of T' I g on
which we can apply the induction hypothesis. Let us normalize Pj
using the simplification rules of Figure 6. During this normalization,
the following instances of the simplification rules may be applied:

1.

Q1 Q2
T/OF g T/OH us
P’
T/OH (uy,us) oy — Q1
T/g— l—/ u ( ) T/@ l_/ ui

We have a similar rule with (UR') instead of (UL").

2.
@1 Q2
T/OF uy  T/OH us e Q3
T/0H {ui}u, T/g+ u2_1 ) . Q1
T/g - u T/0F u

with e € {—, +}.
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> Q1 Q2 Q3
T/OFH wy  T/0H us  T/OF ug (Ep) Q4
T/0F {u b T/g¢ ugl (Dp)
T/g+ uy
Q1
- T/0+H u
with e € {—, +}.

We have also an additional rule for deterministic encryption.

B @1 Q2
T/0H {urtu, T/OF uy? o Q3
T/ wy T/g¢ ' us )
T/g"F {1 e
Q1
TVQI_I{UI}U2
with e € {—, +}.

We have also some additional rules concerning pairing. We have
omitted them since they do not bring any trouble. They transform
a DY -proof into a DY -proof and can be treated as the rewriting
rule 1.

We can show by induction on the number of simplification steps that
every simplification rules is applied to a tree ) whose root is a node of
Py and such that exactly one of the son of @ is a subproof of P’. This
explains that the only instances of the simplification rules which may
be applied are such that the set of weak hypotheses in the nodes of the
upper part of the left member are empty, i.e. those described above.

Remark 2. Note first that with our hypotheses (y = (v1,72) is decom-
posed by (UL’)) the rule of case 1 must necessarily be applied first in the
simplification sequence, and this removes one instance of rule which do
not satisfy (a).

We may first observe among the instances described above, some
of them (for example 1), transforms a DY’ —proof into a DY —proof.
Indeed, the simplification by one of these rules replaces a DY —subproof
of T/OH wor T/g~ F u by a DY —subproof of T/0 ' u. Hence, the
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iterated simplification of P| by these rules terminates with a normal
DY’ ’—proof N7 which has the same target u as the initial proof P;. So,
the conditions (i), (ii) and (iv) to apply the rule Compare on the proofs
N and P, are clearly verified.

Either the iterated simplification of P by the simplification rules
has not modified its last instance of inference rule and in such a case
Nj and P» verify (iii) since Py and P; verify also this condition. We let
P" be the guessing—proof of T F g with sons Ny and P>.

Or the iterated simplification of P| has modified its last instance of
inference rule, hence N is a DY —proof whose set of weak hypotheses
is empty and we can apply Lemma 5. In such a case, we let P” the
guessing—proof provided by Lemma 5. Since N7 contains at least one
instance of rule which does not satisfy (a) or (b) less than Py, by the
Remark 2 above, we can apply the induction hypothesis to P”.

However the rules of cases 2, 3 and 4 with e = 4+ may not transform a
DY ’—proof into a DY ’—proof, because they may replace a DY —subproof
of T/g" F' u by a DY -subproof of T/0 - u, hence the information
about ¢ is lost. Assume that one of these instances is applied during
the simplification of P and consider the first application.

If the first application case is 2 (with e = +), let Q] be the right DY’—
proof above the instance of (D') (this is a DY’-proof of T/g* F uy!)
and @, be the right DY’ —proof above the instance of (E') (this is a
DY’ —proof of T/0 H us).

By hypothesis, these subproof @} of @ are minimal hence normal.
Hence, we have a normal DY —proof of /g™ F uy land a normal DY~
proof of T/g" H ug. If uy b = uy (it is a symmetric key) we can apply
Lemma 5 as above. Otherwise, we can apply the rule Compare directly
to these two normal DY ’—proofs, since the condition (i) is satisfied.
By Remark 2, P” contains at least one instance of rule which do not
satisfy (a) less than P and we can apply the induction hypothesis to
P” to conclude.

The situation is almost the same for the cases 3 and 4 (withe = +). O

Fact 1. If xo € st(so) for some hypothesis s of C; (i < (), then there
exists j < i such that xo € st(r;o).

Proof. This is a consequence of Lemma 3 since, by hypothesis, if zo €
st(Cyo) then xo € st(yo) for some y € vars(C;) (otherwise there exists
ate st(C;)\ X such that to = x0). O
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Fact 2. There exists a minimal DY-proof of Sp,0 b xzo ending with a
composition rule (E, Ep or P).

Proof. By hypothesis, there exists a DY—proof P of S,,0 I rp,o and by
Lemma 1, we can assume that P is a minimal DY—proof of S,,0 F r,,,0.
If P contains a node labeled by 5,0 F zo, then it is the root of a min-
imal subproof as expected. This proof indeed ends with a composition
rule: otherwise, by minimality of P, we would have an occurrence of xo
as a subterm of S0, which contradicts the definition of m by Fact 1.

We show now that P necessarily contains one node labeled by S,,o
xo. Assume that P contains no such node. We will construct recursively
a path in P, from the root up to one leaf, every node of which is labeled
by Smo F w such that xo € st(u), and we shall show in parallel that
the existence of such a path conducts to a contradiction.

By definition of m, the condition zo € st(ry,o) is true for the root
of P, which is labeled by S,,0 F r;,0. Assume that this condition is
also true for each node of (a prefix of) a path labeled by S,,0 F ug, ...,
S0 = ug, with ug = r,,0 and let us consider the sons of s = S,,0 - uy,
is P:

— if s has 1 son s7 and (s1, s) is an instance of (A), then uy € S0
and xo € st(uy) contradicts the definition of m, because of Fact 1.

— if s has 1 son s; and (s1, s) is an instance of (UL) or (UR), then
uy is a subterm of the target of si, hence also zo, and we let s; be
the next node of the path.

— if s has 2 sons s1, s and (s1, s2, s) is an instance of (D), then wuy
is a subterm of the target of s; or sy (say s1), hence also zo, and
we let s1 be the next node of the path.

— if s has 2 sons s, s2 and (s1, s2,$) is an instance of (P) or (E).
By hypothesis, we have zo # wuj since we have assume that P
contains no such node. So, xo is a strict subterm of uj and it is
also a subterm of the target of one of s; and sy (say s1). Hence,
we can let s1 be the next node of the path. ]

Fact 3. GP' is a guessing—proof of (S;0)d - g.

Proof. The tree GP’ has been obtained from a guessing-proof GP of
S;o F g which verify the condition (a) and (b), by:
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— replacing first in GP every subtree ended by an instance
(s1,82,5;0/g9~ F xo) of composition rule (E', Ep’ or P') by the
following “instance” of (A'): (zo € S;o,S;0/9~ H zo).

— applying § to every term of the tree obtained, getting GP’.

Note that the tree GP” obtained is not a proof (since xo not belongs
to S;jo). The weak hypotheses are left untouched by § since zo & st(G).
We can show that the tree GP’ we have obtained is a guessing—proof
of (S;o)d F g. We show first that in the two sons GP| and GPy of GP’,
for every node labeled by s and with n sons labeled respectively by s/,

ooy 8h(sh, ..., 8,8 is an instance of a rule of Figure 4.

— if n = 1 and (s},s’) is an instance of (A') added by replace-
ment in GP of an instance (s1, s2, ) of a composition rule in the
construction of GP’ above. By construction, we have s’ = s§ =
(Sio)d/g~ F 0 and we have 0 € Sy C (S;0)0. Hence, (s],s) is an
instance of (A’).

— if n = 1 and we are not in the above case, we have (s},s’) =
(s16, s0) where (s1, s) is an instance of (G, A’,UL" or UR’") contained
in GP.

Case (G): let (s1,s) be (u € G,S;o/u F' u). As shown above,
zo ¢ G, therefore (s, s") = (s19, s0) is also an instance of (G).

Case (A’): this case is immediate.

Case (UL"), (UR'): by construction, we have (s},s) = (s10,s9)
where (s1,s) is an instance of (UL’) (the case of (UR’) is similar).
Let (s1,s) be (Sio/g® F' (u1,us2),Sio/g° ' u1). By condition (a)
on GP, (uj,u2) # wo. Hence (u1,u2)d = (u1d,u2d). Therefore
(s},s') is an instance of (UL').

— if n = 2 and we have (), 85, ') = (810, 529, $0) where (s1, 52, ) is
an instance of a composition rule, say (P’) (the case of (E’) is sim-
ilar), contained in GP. Let (s1, s2, s) be (S;0/¢°* ' wuy, Sio /g2 H
ug, S;o/gc1Y%2 ' (uq,us)) (where ey Ueg = — iff 1 = g9 = —). By
construction of GP’, (uy,us) # xo. Indeed, according to condition
(b), all the instances of composition rules with zo as target of
the root has been replaced in the construction of GP”. Therefore,
(u1,u2)d = (u18,ugd). Thus, (s), s, s') is an instance of (P’).

— if n = 2 and we have (], 85, ') = (510, 520, $0) where (s1, 52, ) is

an instance of (D) (the case of (Dp’) is similar), contained in GP.
Let (s1,s2,5) be (Sig /gt F' {u1}uy, Sioc /g2 F uyt, Sio/gov%2 -
u1). By condition (a) on GP, {uj}y, # zo. Hence, {uj}y,0 =
{u16}y,s. Therefore (s, s5,s') is an instance of (D).
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— if n = 3 and we have (], 85, ') = (810, 52, $0) where (s1, 52, ) is
an instance of (Ep’) contained in GP. Let (s1, s2, 83, ) be (S;o/g°*
u1, Sjo /g7 F g, Sio /g% F s, Sio /gt {ug }i3) (where
e1UegUeg = —iff 1 = 69 = g3 = —). By condition (a) on GP,
{u1}s3 # xo. Hence, {u1}130 = {U15}Zzg- Therefore (s}, sb, s4,s')
is an instance of (Ep’).

We have shown that GP| and GP} are both DY —proofs. The condition
(i) of the rule (Compare) of Figure 5 is ensured, and the other conditions
(ii)—(iv), for GP, are preserved in the construction of GP’. So, we have
a guessing—proof GP’ of (S;0)d F g. O
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