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Abstract. In this paper we present a new method for fusing classifiers
output for problems with a number of classes M > 2. We extend the
well-known Behavior Knowledge Space method with a hierarchical ap-
proach of the different cells. We propose to add the ranking information
of the classifiers output for the combination. Each cell can be divided into
new sub-spaces in order to solve ambiguities. We show that this method
allows a better control of the rejection, without using new classifiers
for the empty cells. This method has been applied on a set of classi-
fiers created by bagging. It has been successfully tested on handwritten
character recognition allowing better-detailed results. The technique has
been compared with other classical combination methods.

1 Introduction

In any recognition system, an optimal reliability is one of the main requirements.
In order to obtain such high reliability, the system must be able to consider the
rejection. We distinguish three main ways to build a system able to reject:

– A single classifier, which also considered a rejection class (trained with junk
patterns for example).

– A single classifier, which does not consider a rejection class, but uses some
rejection rules for rejecting or not the results.

– A multi-classifiers system (MCS), where the rejection is processed by the
module that fuses each classifier output.

Among these solutions, we consider in this paper the third solution for several
reasons. We consider that for a high reliability several classifiers must take part
into the recognition, to have several points of view of the problem. In this work,
we will consider a specific MCS type: MCS with a parallel topology. In this
case, the outputs of each classifier are combined thanks to a fusing module [?,?].
Usually, classifiers are combined by voting methods, belief functions, statistical
techniques or Dempster-Shafer evidence theory. We distinguish several types of
fusing rules:

– Fixed rules: majority voting, Borda count method... These rules are usually
simple, fast and they are well-suite for classifiers ensembles that have similar
performances and low correlated errors.



– Trained rules: Bayesian, behavior knowledge space, neural network,... These
rules are potentially better than the fixed rules as they use knowledge about
how to combine. These rules allow taking more into account the complemen-
tarities between classifiers.

This paper will focus on the behavior knowledge space method and its po-
tential issues [?,?]. We will show that it is possible to improve this method by
adding information about the ranking output of each classifier. Accordingly, in
the first part, the initial fusing rule using the behavior knowledge space will
be defined. Then the hierarchical behavior knowledge space is described in the
second section. The third section will present the different classifiers. Finally, we
exhibit the improvement given by the method with several experiments.

2 Behavior Knowledge Space

We consider a problem with M classes: Ci, 1 ≤ i ≤ M and D classifiers: ei,
1 ≤ i ≤ D.

For applying the Bayes rule, classifiers must be independent. Each classifier
must act separately in a total independent way. This condition cannot be always
verified. The method using the history of the classifiers behavior allows getting
free from this condition. The BKS (Behavior-Knowledge Space) method allows
to determine a belief degree of a proposition x ∈ Ci based on the combination
of the first best answer of each classifier ek = jk, k ∈ {1, . . . , D} :

bel(Ci) =
P (e1(x) = j1, . . . , eD(x) = jD, x ∈ Ci)

P (e1(x) = j1, . . . , eD(x) = jD)

This equation corresponds to the degree of belief definition by a Bayesian
approach. It can be represented in a behavior knowledge space (BKS) [?]. This
space represents the behavior for all the possible combinations in the training
database. The BKS is a D dimensional space where each dimension represents
the decision of a classifier. Each classifier has M + 1 possible outputs (M classes
and 1 rejection class). The intersection of the decision of each classifier corre-
sponds to a cell of the BKS. This method will estimate MD posterior probabil-
ities.

Each cell of the space is noted by BKS(j1, j2, . . . , jD) with ji ∈ {1, . . . ,M +
1} ∀i ∈ {1, . . . , D}. Each cell of the BKS is defined by 3 features:

– n(j1, . . . , jD)(i): the total number of samples x such that e1(x) = j1, . . . , eD(x) =
jD and x ∈ Ci i ∈ {1, . . . ,M}.

– S(j1, . . . , jD): the total number of samples x such that e1(x) = j1, . . . , eD(x) =
jD and

S(j1, . . . , jD) =
M∑
i=1

(n(j1, . . . , jD)(i))

S(j1, . . . , jD) corresponds to the total sum of the samples that have as com-
bination result the configuration j1, . . . , jD.



– Bj1,...,jD is the best representative class of the cell j1, . . . , jD of the BKS
then:

n(j1, . . . , jD)(B(j1, . . . , jD)) = maxi(n(j1, . . . , jD)(i))

B(j1, . . . , jD) = Argmaxi(n(j1, . . . , jD)(i))

with i ∈ {1, . . . ,M}.

In an implementation view, the BKS space can be represented by a space
BKS′ of dimension D + 1, where D dimensions correspond to the classifiers
outputs and the last dimension represents the final optimal result of the com-
bination. The BKS′ is a space where all the extracted results are represented.
In this case, each cell of BKS′(j1, . . . , jD+1) is a natural positive number such
that:

BKS′(j1, . . . , jD+1) = n(j1, . . . , jD)(jD+1)

The degree of belief that a sample x belongs to the class Ci denoted by
bel(Ci) i ∈ {1, . . . ,M} is defined by:

bel(Ci) =
P (e1(x) = j1, . . . , eD(x) = jD, x ∈ Ci)

P (e1(x) = j1, . . . , eD(x) = jD)

=
BKS′(j1, . . . , jD, i)∑M

k=1BKS
′(j1, . . . , jD, k)

=
n(j1, . . . , jD)(i)
S(j1, . . . , jD)

Finally, the combination E of the classifiers will give to the input x the
following class:

E(x) =

R(j1, . . . , jD) if (S(j1, . . . , jD) > 0)
and (bel(CRj1,...,jD

) ≥ α)
M + 1 else

where α is a rejection threshold; 0 ≤ α ≤ 1.
During the test phase, it is possible to access to an empty cell. In this case,

it means that the classifiers output combination has been never seen during the
creation of the space. The input x is rejected.

In a statistical point of view, the BKS method tries to estimate the prob-
ability distribution of the classifiers outputs thanks to the frequencies of its
occurrences. Although the BKS does not require a special dependency between
each classifier, several observations can be made for this method.

3 Possible improvements

The BKS method suffers of several defaults [?]:



– The size of the database is one issue. In order to estimate the distribution
of each classifier output, a large database is needed for representing all the
possible combinations. However, this observation is mostly valid for weak
classifiers that cannot offer a good recognition. For strong classifiers, all the
non-empty cells are expected to stay close to the diagonal of the behavior
space. Weak classifiers may lead to a better generalization thanks to their
cover of the input space, but they will require much more samples to fill
the space. Because of the statistical nature of the BKS, the quality of the
database is very important for obtaining a good generalization.

– The confusion of BKS cells where the representative class R has a very low
probability. If such cell exists, the result remains ambiguous. Although this
cell will propose the best solution, many patterns will obtain a bad class.
For the training database, in each cell, S(j1, . . . , jD)−maxi(n(j1, . . . , jD)(i))
samples, with i ∈ {1, . . . ,M}, will not be recognized correctly. In order
to solve this problem, it is possible to add a new classifier specialized for
dealing with the confusion problem involved by the ambiguous cell. Instead
of using such process, we propose to extract more knowledge contained in
the classifiers outputs: the ranking.

In the BKS method, only the first result of each classifier is considered during
the combination. The confidence value and the ranking of the different classes
are unfortunately not considered. We propose to use more information in order
to improve the description of the ideal combination.

4 Hierarchical Behavior Knowledge Space

The Hierarchical Behavior Knowledge Space is based on the hypothesis that the
ranking of the different classes for each classifier may bring relevant informa-
tion for improving the quality of the combination. During the creation of the
behavior space, the only information is the first best answer. The addition to
new information to the space will lead to the creation of new cells. The HBKS
is strongly equivalent to the BKS space for 2 classes. Indeed, for a two classes
problem, with C0 and C1, we have P (C0) = 1 − P (C1). Thus there is no in-
formation in the second best answer as it is dependent of the first. For taking
advantage of the cell splitting, we must have M > 2. The new space becomes
a tree of sub-space. The root of space is defined by the initial BKS. For each
cell j1, . . . , jD if bel(CRj1,...,jD

) ≥ α then the cell is split into (M − i+ 1)D cells
where i is the actual rank of the cell.

Each cell of the space is noted by HBKS((j1,1, . . . , j1,k), . . . , (jD,1, . . . , jD,k))
with ji,k ∈ {1, . . . ,M + 1} ∀(i, k) ∈ ({1, . . . , D} × {1, . . . ,M − 1}). k is the rank
of the output.

For the following definition, we note by J the cell
(j1,1, . . . , j1,k), . . . , (jD,1, . . . , jD,k)

Each cell of the HBKS is defined by 3 features:



– n′(J)(i): the total number of samples x such that the best answer of ed(x)
is jd,1, the kth best answer of ed(x) is jd,1 with d ∈ {1, . . . , D} and x ∈ Ci

i ∈ {1, . . . ,M}. We note ed,k(x) the kth best answer of ed(x).
– S′(J): the total number of samples x such that ed,1(x) is jd,1 and ed,k(x) is
jd,k.

S′(J) =
M∑
i=1

(n′(J)(i))

S′(J) corresponds to the total sum of the samples that have as outputs the
configuration J .

– B′(J) is the best representative class of the cell J of the HBKS then:

n′(J)(B′(J)) = max(i∈{1,...,M})(n′(J)(i))

B′(J) = Argmax(i∈{1,...,M})(n′(J)(i))

The creation of such sub-spaces can denoise the initial cells and discover
evidence of confusion between classes. For example, the rejection of a cell can be
due to the noise of the different outputs. It is the case where always the same
2 classes are confused and the combination can solve the ambiguity. If a couple
of classes is confused, which have never happened, the creation of sub-spaces in
the BKS may solve this problem.

E(x) =


R′(j1, . . . , jD) if (S′(j1, . . . , jD) > 0)

and (bel(CR′
j1,...,jD

) ≥ α)
Split the cell else

bel(Ci) =
P (e1(x) = j1,1, . . . , eD(x) = jD, x ∈ Ci)
P (e1(x) = j1, e2(x) = j2, . . . , eD(x) = jD)

=
BKS′(j1, . . . , jD, i)∑M

k=1BKS
′(j1, . . . , jD, k)

=
n(j1, . . . , jD)(i)
S(j1, . . . , jD)

The number of cells of the HBKS is defined by:

MD +
M−1∑
k=1

lk((M − k)D)

where lk is the number of new sub-spaces at the step k or the number of am-
biguous cells at the step k − 1.

The maximum number of cells of the HBKS is defined by:

MD +
M−1∑
k=1

(M − k + 1)D ∗ (M − k)D − (M − k + 1)D



When a sub-space is created for a cell, the sub-space replaces its corresponding
cell.

The creation of the HBKS can be built this way:
k ← 1
Fill the HBKS with the training database
While (∃J |((S′(J) > 0) and (bel(CR′(J)) ≤ α))
{

For all J |((S′(J) > 0) and (bel(CR′(J)) ≤ α))
Create a sub-space for the cell J

Fill the new HBKS sub-spaces with the training database
k ← k + 1

}

The table ?? presents an example for a problem with 2 classifiers and 3 classes
(A,B and C). Each cell of the table represents n(j1, . . . , jD)(i). In the BKS cell
AB, there is an ambiguity between the answers A and B. In the classical BKS,
this cell could have been considered as being too ambiguous. The table ?? shows
the subspace involved by the split of the cell AB. In these new cells, some cells
remain ambiguous (c1,c4) but for some others the problem may be solved (c2,c3).

Table 1. Example of some cells in a BKS.

top 1 AA AB AC BA BB BC CA CB CC

A 90 50 80 40 9 30 20 0 0
B 5 51 12 60 80 30 20 30 0
C 5 0 8 0 11 40 60 70 100

Table 2. Example for a subspace in a HBKS.

cell c1 c2 c3 c4

top 1 AB AB AB AB

top 2 BA BC CA CA

A 21 20 5 1
B 20 2 20 2
C 0 4 3 2

5 Classifiers

In this section, the different classifiers used for the combination are described.
They are based on the same architecture: a convolutional neural network. This



type of classifier has been already successfully used on handwritten digits recog-
nition and word recognition [?].

5.1 Convolutional Neural Network

The neural network used is composed of 5 layers, it is based on the topology
given in [?]:

– The first one corresponds to the input image. The image is normalized by
its center and reduced to a size of 29*29 [?].

– The next two layers corresponds to the information extraction, performed by
convolutions. The second layer is composed of 10 maps, each one corresponds
to a specific image transformation by convolution and sub-sampling reducing
its size. The third layer is composed of 50 maps. For these 2 layers, the
activation function is f(σ) = 1.7159 ∗ tanh((2.0/3.0) ∗ σ) [?]

– The last two layers are fully connected. For these 2 layers, the activation
function is f(σ) = 1/(1 + exp(−σ)).

– The last one corresponds to the output: 10 neurons, for the number of classes.

For a neuron n, weights are initialized with values w such that |w| ≤ 1/
√
Ninput

where Ninput represents the number of inputs to the neuron n. During the back
propagation, shared weights are corrected by the factor 2/

√
Nshare where Nshare

represents the number of neurons that share the same set of weights.

5.2 Creation of the classifiers

Each classifier is built on the same architecture, described previously. D classi-
fiers are created, each classifier being trained on a different versions of the initial
database. For creating the ensemble of classifiers, we did use the bagging tech-
nique [?]. This method is based on obtaining different training sets of equal size
as the original one, by using the statistical bootstrap method.

6 Experiments

6.1 Database description

The system has been tested on the MNIST handwritten digits database [?]. This
database contains separated handwritten digit images of 28 ∗ 28 in gray level.
The learning set contains 60000 images and the test set contains 10000 images.
In the learning set, 50000 images are used for real learning; 10000 images are
used to find the best parameters. For the experiments, 3 classifiers have been
created. Each one is trained with 33151 images.



6.2 Results

The results obtained on each classifier are presented in the table ??. We present
the best result on the test database and the results obtained with the same
network on the training database. For a single classifier or MCS, the results are
defined by a triplet τr/τs/τq where τr, τs and τq are the recognition rate, the
error rate and the rejection rate respectively.

The results obtained on the whole training database and test database are
presented in the table ??. For each classifier, the results correspond to the net-
work that gives the best result on the validation database. Although these clas-
sifiers do not offer the best results on this database function to the state-of-the-
art [?,?], they still provide all a high accuracy. The table ?? illustrates the results
on the test database for the different tops. The good result is almost always in
the first three best answers, which justifies the choice of our approach for the
problem.

Table 3. Results.

Training Test

C1 99.28 / 0.72 / 0 98.51 / 1.49 / 0
C2 99.32 / 0.68 / 0 98.56 / 1.44 / 0
C3 99.27 / 0.73 / 0 98.61 / 1.39 / 0

Table 4. Recognition rate.

Top 1 Top 2 Top 3 Top 4 Top 5 Top 6

C1 98.51 99.63 99.83 99.92 99.99 100
C2 98.56 99.63 99.90 99.94 99.97 99.98
C3 98.61 99.58 99.89 99.96 99.97 99.99

The 3 classifiers have been combined with classical fixed rules:

– The Majority Voting; 2 classifiers must agree to accept the answer.
– The Oracle illustrates the result of an optimal output selection.
– The Maximum rule.
– The combination by outputs sums.
– The combination by outputs products.
– The Borda Count method, which takes into account the outputs ranking [?,?].

The results of these combinations on the test database are shown in the
table ??. The Borda Count method, which uses rank-level information, gives
one of the best results. It is again a proof for considering the ranking during the
combination for our problem.



Table 5. Combination results.

MNIST Test

Majority voting 98.64 / 1.29 / 0.07
Oracle 99.13 / 0.87 / 0
Max 98.69 / 1.31 / 0
Sum 98.68 / 1.32 / 0

Product 98.64 / 1.36 / 0
Borda Count 98.66 / 1.34 / 0

BKS 98.45 / 1.41 / 0.14

For the learning database, we did observe that the HBKS is an optimal
combination: each sub-spaces lead to the good answer. It may lead to the creation
of a sub-space with only one pattern in the space. Such sub-spaces have however
no generalization power. The table ?? presents for different thresholds the results
with the BKS and HBKS methods. For the HBKS, we give the number of
sub-spaces and non-empty cells. The sub-spaces results describe the special effect
of the HBKS. These results are defined by a triplet (ξr, ξs, ξq) where ξr, ξs
and ξq are the number of well recognized patterns, errors and rejected patterns
respectively. For a low threshold (0.4), the HBKS has no effect compared to the
BKS. When the threshold is higher, the number of processed patterns by the
HBKS is higher. Although the addition of information may be risky, we show
that information can be added by the sub-spaces while keeping a good reliability.

Table 6. Results.

Rejection Number Number BKS HBKS Sub-spaces
threshold of sub-spaces of cells results

0.4 2 223 98.45 / 1.41 / 0.14 98.45 / 1.41 / 0.14 (0,0,0)
0.5 5 230 98.43 / 1.40 / 0.17 98.44 / 1.41 / 0.15 (1,1,1)
0.6 58 362 98.31 / 1.29 / 0.40 98.35 / 1.31 / 0.34 (4,2,20)
0.7 107 485 98.23 / 1.20 / 0.57 98.31 / 1.25 / 0.44 (8,5,30)
0.8 137 590 98.11 / 1.14 / 0.75 98.21 / 1.21 / 0.44 (10,7,44)
0.9 166 702 98.10 / 1.02 / 0.88 98.20 / 1.08 / 0.72 (10,6,58)

7 Conclusion

In this paper, a new fusing method has been presented for multi-classifiers sys-
tems with a parallel topology for problems of M classes (M > 2). It corresponds
to an improvement of the existing BKS method by adding knowledge about
the rank of the results. Function to a fixed confidence threshold value, each cell
is divided into sub-spaces in order to solve ambiguities. We have shown that



the proposed method can allow an optimal rejection control for the training
database. It also provides new information for some ambiguous cells, without
using new classifiers for the empty cells. For an optimal use of this method clas-
sifiers must provide ranking results, which have a real sense. Further works would
deal with the optimal use of the HBKS method and the threshold selection for
getting the best generalization.
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