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Abstract—The number of resources or items that users can ~ Recommender systems (RS) provide users with personalized
now access when navigating on the Web or using e-services, is sgecommendations of resources or items, based on the knowl-
huge that these might feel lost due to the presence of 100 much oqqe they have about users. A recent observation showed that

information. Recommender systems are a way to cope with this f thei dto b isted [24 d
profusion of data by suggesting items that fit the users’ needs. users are now aware of their need to be assisted [24], and are

One of the most popular techniques for recommender systems Prepared to adopt recommender systems [21]. The increasing
is the collaborative filtering approach that does not use any a popularity of these systems in information seeking or comme
priori information about the users, nor any data about the con- cial e-services has meant that the need for quality, acgurac
ti”.t of the items. %ogaborative_lti:fering relies or?l the pre;ergnceds and reliability of recommendations has become tremendous.
of items expressed by users. These are usually recorded under . L
the form of ratings and the recommendation technique exploits Recommender systems ggnerally fall into three Ca_tegor'es'
these ratings. However, in many e-services, it is inappropriate content-based systems which compute recommendations from
to ask to rate items; it may indeed interrupt users’ activity. In  the semantic content of items [56]; knowledge-based system
the absence of ratings, classical collaborative filtering techniques where recommendations rely on knowledge about the domain,
cannot be applied; especially the selection of like-minded users for na sers and pre-established heuristics [13]; and at st ¢

a given user, also called his mentor users, cannot be performed. . S . -
Fortunately, the behavior of users, such as their consultations, laborative filtering systems which compute recommendation

can be collected; this collection is transparent for users. In this DY examining either users’ preferences on items, or theit pa
paper, we focus on rating-free collaborative filtering: we present interactions with the system, called tracesushge[33].

a new approach to perform collaborative filtering when no rating The general principle behind collaborative filtering (CBhc

is available but when user consultations are known. be summarized into one sentence: an active user will probably

We propose to take inspiration from local community detection . ‘< lilearmi
algorithms to form communities of users and deduce the set of be keen on the items that his like-minded users (also called

mentor users of a given user. These algorithms have the advan- Neighbors or mentors) have previously liked, and that he or
tage of not only being less complex than community detection she has not yet consulted. Users usually express if they have
algorithms, but also of discovering overlapping communities. We |iked an item or not under the form of ratings [77]. Based on
a?apt”c;lr;)% state O;ilttg?i ar allzgi(ogtrr;nr?e?ct)sasc o (fjihtcftlgdch:r:a;t]‘zrim% this piece of information, CF identifies the users which have
or co . . . . . .
datasets show that thg pre(?ision achieved by this community similar ratl_ngs with the_actlve user: his mentors. The syste
detection algorithm is higher then the baseline that does not then exploits the collective knowledge of mentors’ prefiesss,
perform any mentor selection. In addition, our model almost and estimates the rating that this active user would assign to
offsets the absence of ratings by exploiting a set of mentors each item he or she has not rated yet. This way, the system
reduced by 71% and 99% compared to the baseline. is able to determine which item(s) to recommend to a user:
those with the highest estimated ratings.

CF has been adopted these last few years mainly due to

The democratization of Internet and network technologigise fact that no explicit information about users is rectiige
has resulted in a large increase of information, readilyescc priori: users do not have to fill any questionnaire or forms to
sible to everybody. This growth had been an advantage duriget some recommendations. Moreover, no explicit infornmatio
its first years as the access to information became geredlalizabout items is required either: the tedious and time-coirsgim
However, the volume of information is now so enormous thaitdexing task is avoided [12]. In addition, the accuracy of
users cannot easily get the information they search for, athe CF-based recommendations provided to users is high in
are drowned in the mass of resources. This overabundacoenparison with the content-based approach [43], as soon as
has very often the effect of leading to unsatisfied users. the system gets a sufficient (and high) number of ratings. CF

As a consequence, a critical issue of the current Wellso has the advantage to recommend items not directlydinke
applications is the incorporation of mechanisms for deiing to those the active user has already liked. This featurellisdca
information that fits users’ needs, whilst increasing theirovelty or serendipity [37].
satisfaction. One drawback of CF is the requirement of user provided

I. INTRODUCTION



ratings. Relying on ratings may be penalizing since usestred under the form of a rating matrix UxI. Let a be the
often provide few ratings, not to say no ratings at all. IrdJeeactive user. To make recommendationsatothe CF system
assigning a rating to an item is a complex and time consumifigst estimates the ratinggq, 7) thata would assign to all the
task, and users are not aware of the benefit they can getnsi he has not rated yet. Second, given this set of ratings,
when rating items. Moreover, user provided ratings may rot the system recommends the items with the highest estimated
reliable [11]: on a predefined and usually small scale, whichting values. In the literature, “making recommendatioiss”
rating should be assigned to an item? For example, let seppeguivalent to estimating the user’s ratings for unratethéte
that a user has liked a given movie, on a scale of 1 (he didTo estimater(a, ), the system adopts either an item-based
not like it) to 5 (he did really like it). Which rating should or a user-based approach. The item-based approach supposes
he/she assign to this movie? a 4 or a 5? In addition, in mathat a user will more likely appreciate items that are sinla
application domains, the system cannot ask users to rate.iterelated to the items he has already liked. At the opposite, th
For example, when users navigate on a Web site or conauder-based approach exploits similarities between uswils a
news, it is inappropriate to ask them voting, since it intetsu recommends a user the items that his like-minded users, or
their information seeking process. mentors, have appreciated. In this paper, we are interésted
Standard CF relies on the computation of similarities ahe user-based approach.
ratings (or preferences) between users to perform mentorrhere are basically two approaches to implement a
selection. When no rating is available, no similarity of pref user-based collaborative filtering algorithm: respedyivilie
ences can be precisely estimated and classical CF teclnigwemory-based and the model-based approaches. The memory-
cannot be used. Then, the question is: how to select mentpgged approach, also known as “lazy learning”, simply @iplo
when no information about user preferences (ratings) afite user-item rating matrix without any transformation whe
about users’ similarities are known? the system is asked for a recommendation. We can say that the
To answer this question, we propose to represent the inf@ggarning phase is skipped. On the contrary, the model-based
mation about users collected by the system in an unweightggbroach first builds a model of the user-item rating matrix
graph. The nodes correspond to users. In the graph, wed then uses this model to make recommendations.
simply consider that two users are connected if they have
common consultation behaviors. This connection does ngt Memory-Based Collaborative Filtering
reflect a similarity in preferences, but the fact that theyeha . i .
some commonly consulted items. Based on this represemtatio ON€ classical way to estimate a rating in a memory-based
we investigate ways to identify mentors by using the onfgPProach is presented in Equation (1):
:gfgrsﬁggiz?ezv\i\;ilt?‘b:ﬁétﬂﬁks;t)r.ucture of the graph (as nagivei r(a,i) = r(@) + Z sim(a,u) % (r(u,i) — 7(@) (1)
Community detection algorithms are efficient in detecting el

communities or classes of nodes in graphs, focusing on theyherer; is the set of users that rated itemr (u, i) is the
topology of the graph [30]. We thus take inspiration from eontating that usen. has assigned to iter) r(u) is the average
munity detection algorithms, specifically one local comityn rating of useru and sim(a, v) is the similarity between users
deteCtion algorithm from the state Of the art [23], to Sohe t a and u. The estimated rating is the We|ghted average of
problem of mentor selection in collaborative filtering. Tet the absolute difference between the ratings the other users
best of our knowledge, the structure of the graph, communif¢signed to the item and their average rating, added to the
detection and local community detection algorithms hawene average rating of user. The more a user is similar to, the
been exploite_d in the frame of CF, in particular to performjgher his weight in the estimation ofa, i) is.
mentor selection. The similarity between two users is a similarity of ratings,
The section Il focuses on CF and the way mentors afghich measures if both users rated (i.e. appreciated) items
usually selected. In section IIl, community detection amthl  he same way. This similarity is classically computed wité th

community detection algorithms are presented. Section Pearson correlation coefficient, presented in Equation (2)
introduces our model that exploits local community detecti

algorithms to detect mentors in the frame of CF. Section V
and VI are respectively dedicated to the evaluation of thigorr(mu)

new approach and to the discussion of the results. Last, we a N — N =
conclu?jl?e this work. 2 jetan(1(0:9) — (@) = (r(u, j) — r(u))

Il. COLLABORATIVE FILTERING \/Zjelmu (r(a,j) —r(a))? * \/Zjelamu (r(u,j) — r(u))?

A. Collaborative Filtering in General )

Given a set of itemd, and a set of user#/, the input wherel,~, is the set of commonly rated items by userand
data of a CF system is the set of ratings:,¢) that users « andr(a) is the average rating of user This correlation
u € U have assigned to itemise I, most of the time on a measure has been proved to be the most adequate measure in
non binary rating scale (for example, from 1 to 5). This set isser-based approaches [9].




The cosine measure can also be used to compute thd) Direct Neighbor SelectionGiven a set of users that have
similarity between two users. The corresponding Equatign (& non-null similarity value witha, direct neighbor selection

presents the way the cosine measure is computed. consists in keeping the users that comply with a given crite-
; ; rion.
. ria,y)*xru,) L .
sim(a,u) = ZJEI"““' (@,9) *r(w,5) - (3) This criterion can be a threshold value [3], [38]. A simitgri
\/ng@ r(a, j)? * \/Zje[u r(u,j)? threshold is fixed a priori and all users that have a similarit

wherel, is the set of items rated by, The cosine measureWith the active user above this threshold are selected as
a A

has proved to be more efficient in the item-based approach gNtors ofa. The resulting community is user-centered.
compute the similarity between items [63]. The criterion can also be an integer valdé. The K

The similarity values in Equation (1) are instantiated bjj€arest neighbors (KNN) of are retained/ being fixed a
either the correlation or the similarity value in Equatiq@y Pror [38]_. The K neighbors with the hlghe§t S|m|lar|t_y values
and (3) above. [16] presents an overview of equations tii€ c9n5|dered as the mentors of the active user (if less than
compute user similarities or estimate ratings. K neighbors exist, all the neighbors are kept).

Although accurate, memory-based approaches suffer fromrPne main drawback of direct neighbor selection is scala-

combinatory complexity problem, since it requires to cotepuPility. Mentors are detected at runtime since the profile lof a
the similarity between each pair of items or users. users has to be kept in memory; similarities between users ar

) o recomputed each time mentor selection and recommendations
C. Model-Based Collaborative Filtering have to be performed. In addition, the choice of fkievalue
Model-based collaborative filtering techniques constitat or of the threshold value is tricky. At last, KNN is not robust
good alternative to reduce the time complexity of memorye data sparsity: it is unable to form reliable neighbort®od
based collaborative filtering [9]. These algorithms cdnsith case of high sparsity level [34]. However, as similastie
in creating descriptive models correlating users, itemd aare up-to-date when recommendations are made and as the
associated ratings via a learning process. These models eammunities are user-centered, this direct neighbor setec
take several forms, such as bayesian networks, classesws itapproach is accurate.
and/or users, etc. The basic idea is that a partial knowlefige 2) Clustering: The second approach classically used to se-
data may be sufficient to provide accurate recommendatiofist mentors performs clustering. These clusters are ctedpu
As an example, in Equation (1), only a subset of users is actiffline and constitute the model that is periodically reused
ally useful to estimate(a, ). This subset of users is referredo generate recommendations. Depending on if an item-based
to as mentors or the community of userin CF, a mentor or a user-based approach is chosen, the system builds either
is a like-minded user who is used as a representative user dR{sses of items [63], or classes of users [18]. ltem-baged C
computing estimated ratings. The choice of the mentors (agdknown to be very accurate and for highly improving the
their number) highly influences three main features in a Gcalability, as long as the relationships between itemsaiem
system: the computation time, the accuracy of the estimatedatively static. Item-based approaches are widely deulo
ratings and the coverage. More concretely: in industry and commonly studied in research settings. ig th
« mentor selection has the advantage to speed up the ratiragper however and as mentioned previously, we focus on the
estimation process as only a subset of users is usedugr-based approach, as it is known to be more adapted for
estimate ratings [18]; web applications where items are greatly volatile [18]: ské
» mentor selection increases the accuracy of recommesi-items often change, since some items are deleted, new item
dations as lowly related users may lower the accuracpnstantly appear, and some others are modified.
of the estimation [19]. Additionally, the accuracy of the Concretely, user-based clustering identifies groups ofsuse
rating estimation highly depends on the adequacy of théth similar preferencesj.e. who appear to have similar
mentors; ratings [9]. Once the clusters are created, recommendsafibon
« mentor selection influences the coverage [45]. The cothe active usern can be made by exploiting the preferences
erage reflects the ability of the recommender system (oere ratings) of all users belonging to the clusten of
estimate a rating value for a given useand a given item  There are typically three kinds of clustering methods: par-
i. When no rating can be estimated, no recommendatititioning [51], hierarchical [18], and fuzzy techniques2]7
can be performed. The lower the number of mentors, tivost of the time, CF relies on a partitioning techniques. In
lower the coverage, since the probability that a mentdthis case, users are grouped into separated clusters: sach u
has already rated the item is low. At the opposite, thgelongs to exactly one cluster.
larger the number of mentors, the higher the coverage.Many partitioning algorithms have been studied in the frame
However, this increases the computation time. of CF, such as [54], [75]. Some of these algorithms require
Given these features, we can conclude that the choiegher an a priori number of clusters, or a fixed-size for
of mentors is a tricky and important task that may highlglusters, others a similarity threshold, etc. These allyors
influence the recommendations. are parametric. For example, the K-means algorithm [51],
Two main approaches of mentor selection are often useddomputesK clusters so that the average pairwise similarity
CF: direct neighbor selection and clustering. between users within clusters is maximized. Most of non-



parametric algorithms aim at maximizing a given criterion
(that usually represents the quality of the classificatiwithy-
out any parameter chosen by hand [48]. the clusters, weighted by degree of participation of the

Partitioning algorithms provide a good recommendation user in each cluster.
accuracy among clustering techniques. When recommending Some users may be border nodes (at the limit of the
items, exploiting clusters of users is robust to scalapbilit class they belong to). Thus, their mentors (those in the
problem as it reduces the memory requirements, and classes same class) may be really different of their actual near-
are computed offline. However, partitioning algorithmseaft est neighbors, which may decrease the recommendation
suffer from convergence problems, as they are highly seasiti performance. We can notice that this drawback does not
to initial starting conditions [7]. Moreover, the compuiex occur when using the direct neighbor selection, as the
time require to execute such algorithms is high. community formed is user-centered.

Hierarchical clustering deals with these issues by lovgerin « Despite its ability to cope with the scalability problem,
the complexity, speeding up the convergence time, and allow clustering is known to generate less-personal thus less

techniques thus allow users to belong to several clus-
ters [70]. The estimated rating is then an average across

ing the distribution of computations. Castagmosl. proposed

in particular a recursive model that simplifies the selectio «

of optimal initial points, by splitting the population intwo
subsets at each step [18]. Nevertheless, the quality isndepé

accurate recommendations [65], [42].

Few works focused on user-centered clustering. [19]
proposed a decentralized algorithm to build user-centered
clusters. However, the complexity remains high if compu-

of the expected number of clusters. If the number of clusters tations are not distributed on a high number of processors.

is low, the system will provide inaccurate recommendati¢ns. \Whatever the mentor selection method is, a similarity mea-
this number is too large, there is a risk of overgenerabrati syre between users is required. As a consequence, they can
An interesting way to avoid bias due to bad clusterizatiofus not be used in the case no similarity value is available.
consists in relaxing the constraint of belonging to one amg 0 Based on the above statements, we can deduce that devel-
one class. This is the principle of fuzzy collaborative fitg, oping user-centered communities or clusters, where eash us
in which allocation of data points to clusters is not hard|[57may belong to several communities (clusters), would lead to
Let us observe that whatever the approach adoptedaaigh accuracy of recommendations and a solution to the
similarity value is exploited; for example it may be the oneparsity and scalability problems.
presented in Equation 2 or Equation 3. ) )
In some approaches, the similarity value is used in comf Managing Unary Ratings
nation with another criterion. For example, [41] has praubs Most of the works on CF exploit user preferences under the
a clustering algorithm based on the information about tHerm of ratings. As previously mentioned, in many applioati
shared nearest neighbors, in addition to their similahitythis cases, ratings cannot be collected. Only the informatiautb
approach, two elements are grouped if they share many of thibie user consultations may be known. These consultations ca
nearest neighbors, and if they are themselves nearestiegyhbe viewed as unary ratings (has consulted/has not congulted
of the other element. This algorithm has been re-used in manyWhen unary ratings are available, three main approaches
domains such as information retrieval [27], databases4B6] may be used:
recently in data traffic [82]. The first approactaims at estimating the ratings that users
would have assigned to the items if they had rated them.
The user preferences are estimated from implicit feedback.
In this section we have presented the main approaches ugepb3], Oard and Kim question whether it might be possible to
in CF to select mentors. The direct neighbor selection ntkthgubstitute implicit feedback for explicit ratings. Theyoppse
leads to accurate recommendations. However this approdi§fee types of implicit feedback (Examination, Retentiangl
is neither scalable nor robust to data sparsity. Clusteoing Reference) and a set of observable behaviors. Castagmnos
users is one way to solve these two problems [80]. Firgd). have extended this work by defining a generic implicit
it has the advantage to only compute similarities betwegfodeling function to transform implicit feedback into esti
users and to select the mentors periodically, and not eah timated ratings [17], [20]. This approach relies on usage rginin
recommendations are needed. Second, two users may bel@niques, and infer preferences from usages. The generic
to the same class even if they have a null similarity valu@nction first collects every possible implicit feedback. It
(due to a null number of co-rated items). Third, the size @hen groups user consultations per item and per user, and
the clusters does not have to be defined a priori, contrary gpnthetizes data under the form of criteria. These critevagy
the KNN approach and the resulting clusters may have vesg the duration or/and the frequency of consultation of the
different sizes. items. Finally, these criteria are used to provide an esgtima
These clustering algorithms have however several dragf the ratings. This approach alleviates the sparsity jerobl
backs: and offers the advantage of providing estimated ratings tha
« In most of the clustering methods, users belong to onban be reused by collaborative filtering techniques.
one cluster. However, in some cases, users may needHowever, rating estimation is also very intrusive into pdy
to belong to several groups of users. Some clusterinf users and is quite imprecise due to the inference process

D. Discussion



under uncertainty. As an example, the active user can be ormrhe concept of community detection is linked to the concept
phone, which explains a long consultation duration but a lowf clustering objects in graphs. The notion of community
interest for an item. He can also save a document to reeah be seen in a broad sense: depending on the context, it
it later without having any opinion on it, or delete it bycan be synonymous of module, class, group, cluster, etc. The
accident. Thus, implicit modeling functions generallydea aim of community detection in graphs is to identify groups
poor performance in term of accuracy. of objects, by only analyzing the topology. As a result a
The second approactskips the rating estimation stepcommunity in a graph is a set of nodes between which the
and directly applies similarity measures on unary ratingmteractions are (relatively) frequent. We assume thahtides
Karypis [44], Lindenet al. [46], and Mirandaet al. [49] in a community probably share common properties or play
adopt an item-based point of view. They compute the simsimilar roles within the graph. For example, communities of
ilarities between pairs of items, using adapted versions w$ers in the blogspace often correspond to users sharifgg top
the cosine-based or conditional probability-based measuref interests. The community detection task may be defined as
As mentioned previously, item-based models are known to fdlowing: “Community detection involves the analysis otth
accurate; for these reasons, the unary model presented]in [detwork structure with the goal of identifying communities
will be evaluated in our experiment framework. i.e. groups of objects (which are represented as nodes in the
Recently, Redpatht al. have extended these works to usemetwork) that are more densely connected (on the network) to
based CF, where similarities between users are also cothputach other than with the rest of the objects” [55].
with either the adapted cosine similarity measure or the Community detection methods have been applied in a wide
Jaccard coefficient [61]. This approach assumes that therlarrange of scientific problems, e.g. social networks to identi
the number of items two users co-consult, the more similgroups of friends [32], [50], citation networks to study the
they are. However, as no information about their prefergiice centrality and the significance of scientific disciplinesl émeir
known, this assumption may not always be true. This approaier-relations [79], [62], the World Wide Web to identifpa
will also be evaluated in our experiment framework. manage web page topics [28], biology and epidemiology to
The third approachproposes to use one additional infordetect the diffusion of viruses [78], [59].
mation about the user consultations, which is the order ofin the frame of social networks, Tang [71] asked for
consultation of the items. Sequences of consultationseafst the actual difference between graph clustering and commu-
are mined [52], [5]. However, this approach may be quiteity detection, and makes a clear comparative presentation
unprecise, since it is extremely hard and time-consuming ¢6 what distinguishes the two processes. Clustering works
identify typical robust usage patterns under uncertainty. on a distance or similarity matrix whereas community de-
In the following section, we focus on community detectection works on discrete data and manages an adjacency
tion methods from the literature, to determine the adequamatrix. The community detection algorithms thus use the
between our unary rating framework and the literature. graph properties and exploit notions such as: k-cliquesiqua
cligue [2], node-betweenness, edge-betweeness [31],482],
i i As a consequence, the majority of the community detection
A. Community Detection algorithms proposed in the literature have been designed fo
As presented in the previous section, a clustering processdirected and unweighted graphs. However, some of them
requires the information about the links existing betwedmave been proposed for directed [28], weighted [40] or gighe
elements to be clustered, and the weights associated te thgrmphs [81].
links. These elements and their links can also be repratenteThe algorithms used to detect communities can be clas-
under the form of weighted graphs, where the nodes are #ified in similar categories with clustering: fuzzy-comntyn
elements to be clustered and the edges are their links (ftmtection [35], hierarchical community detection [67] qoad-
example, the link value may be the similarity between thioning [22]. For example, a hierarchical community dete
elements) [29]. In our case, nodes of the graph represerg ug®n algorithm either groups highly connected nodes intgda
that have to be clustered. and larger communities, or divides the graph progressively
Graph clustering has recently received much attentiamo smaller and smaller disconnected sub-graphs, idedtifi
[83], [74], [15], especially due to the numerous domainas the communities. One example of hierarchical commu-
where data can be represented under the form of graphsy detection algorithm is the one proposed by Girvan and
The best known graph clustering algorithms attempt tdewman, called the GN algorithm [32]. This algorithm uses
optimize specific criteria related to the graph, such dke edge betweenness measure, that expresses the importanc
k-median, minimum sum, minimum diameter, etc. [64]. Othesf the edges when transmitting across the graph following
algorithms are application-specific and may take advantagaths of minimal length. An edge has a high betweenness
of known characteristics of the application data or of thealue if (almost) all shortest paths connecting nodes of two
application domain. In general, the approaches proposedctimmunities run through it. The GN algorithm splits the d¢rap
perform clustering in graphs cannot easily scale up to largeo disconnected sub-graphs, by removing the edges with
problems due to their high time complexity [30]. the highest betweenness score. Sub-graphs then undergo the
same procedure, until the whole graph is divided into a set of

I1l. COMMUNITY AND LocAL COMMUNITY DETECTION



Fig. 1. An example of simple graph Fig. 2. An example of two communities
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isolated nodes. _ _the graph may be too huge to be stored. For example, the
Partitioning algorithms frequently use another kind of inyep is a so large and evolving structure that no graph can
formation: the number of links within a set of nodes, and thg, easily constructed. In addition, as the Web is stored in
number of links between nodes of this set and the rest of theyecentralized way, building such a graph is difficult. On
graph. A community is thus a set of nodes highly connectgde same principle, in social networks such as the Facebook
to each other, but not much connected to nodes outside figjicatiort, the number of users is so huge that the network
community. Thus the problem consists in dividing the nodgs,not easily be stored.
in.g.roups, such that the number of edges between the groups i§, recommender system applications, specifically those
minimal. The number of groups has to be defined beforehapdiseq on collaborative filtering, graphs of items (itemelas
A description of partltlor_ung algor_|thms can be_ found |r_1158 approach) or graphs of users (user-based approach) are man-
_ Let G be a graph, with an adjacency mati;,; making aged: the corresponding graphs are huge and their storage
links within the graph explicit. Lej be a node of the graphs 5 complex task. Specifically, the stage of finding the set
andk; = 3 ,cq Aj the degree ofj. Let us considerD &  of negrest neighbors of a given user (his community) in the
subgraph ofG, to which nodej belongs.k;, the degree of, graphs of users is not tractable in the frame of large graphs.

can be split in two elements, with regard £z In such cases, community detection algorithms cannot be
k;(D) = ki*(D) + k“(D) (4) Used, thus it is not feasible to determine the globally optim

4 community structure. Instead, the search may be limited to

where ki*(D) = > ,.pAj is the number of edges determining the local community structure in the neighbor-

connecting nodg to other nodes insid® and k?*/(D) = hood of a query node. The complexity of the search is thus

>_1¢p Aji is the number of connections toward nodes in theduced. Local-community detection algorithms are a way to

rest of the graph. detect communities when the graph is really huge, i.e. not

Radicchiet al. [60] proposed two definitions of commu-tractable.
nities: strong communities and weak communities. A strong At the opposite of community detection algorithms that have
community is defined as follows: a global view of the whole graph, local community detection
algorithms have the characteristic to rely on a local point o

k(D) > k"Y (D), VjeD 5 < o :
i (D) i (D) J ®) view and allow to detect communities when focusing on a
D is a strong community if each node has more connectioggecific node rather than on the whole graph.
within the community than with the rest of the graph. Local community detection algorithms start from a query
A weak community is defined as follows: node (also called seed node) and iteratively add nodes to the
in out community being discovered, based on the local view of the
z;kj (D) > z; k(D) 6 graph. At each step of the iteration process, the nodeslictua
VIS JjE

added to the local community are the nodes that are highly
D is a weak community if the sum of all degrees witHinis  connected to all the nodes of this community, i.e. nodesatiat
larger than the sum of all degrees toward the rest of the grapl a bridge with another community (with a high betweenness
We can notice here that the definition of a strong communifylue), and are connected to the whole community.

is more constraining than a weak community, as the conneci_.ocal community detection algorithms have the advantage
tivity measure applies to each node. Moreover, each stropf decreasing the complexity of the process, compared to
community is also a weak community. Figure 1 presents @tandard community detection algorithms, as only a subset
example of a graph. The latter is split into two communitiesf nodes are managed at a time. Local community detection
(respectively in red and in blue) in Figure 2. algorithms have been mostly used in the frame of social
networks [25], [47], [8].

B. Local Community Detection In comparison with traditional graph clustering algorithm

In the context of large-scale graphs, two problems may
arise: first, the complete graph may not be known; secondhttp:/iww.facebook.com



and community detection algorithms, that perform paurtitig )
of edges, local community detection algorithms result in Lin(D) = ZjeD k(D) @)
overlapping communities. . | D

Some algorithms have been proposed to detect local com
munities. For example, Tiaet al. [73] proposes an algorithm
designed for both unweighted and weighted graphs.

The local community detection algorithms have thus the par--l-h'e second terml.,,
ticularity of being iterative and of having a local point aéw. degree of nodes it
We can remark that in graph clustering, some iterative dr/an
local algorithms have also been proposed. For example, Song Leo(D) = > jen ki (B) ®)
et al.[69] has presented a fast iterative one-pass algorithm for “ |B|

dynamic clustering. In [6], a local clustering algorithmsha wherekout(B) is the number of connections between node
been proposed based on a stochastic approach. ; and extérnal nodes. AS is a subset o) that has no link
Most of the local community detection algorithms manaq%. ' : . .
ith nodes out oD, L., (D) is strictly equivalent ta_.,(B).

three sets of nodes [8]: The L(D) metric is defined as:
o D the community under construction, which is typically

wherek!" (D) represents the number of edges between the
node;j and the nodes iD, and|D| is the number of nodes

(B) measures the average external

initialized with the query node; L(D) - Lin (D) )
« N the Neighboring nodes not il but sharing an edge Le. (D)
with at least one element g; The higher theL (D) metric, the better the communit§.

« Uthe Unexplored nodes, |.-e. th(?se npt adjacenbto In this algorithm, the resulting communities are weak com-
In some algorithms, the sd? is divided into the core set munities, according to the definitions of Racchédial. [60].

C and the boundary set. The core seC’ has no edge with  This algorithm has the same scheme than the one described
a node inV, while the boundary seB has at least one edgein Algorithm 1:

with one node in\. « The algorithm starts withtB = D, made up of a single
Any implementation of a local community detection algo- node, a query node andC' = (;
rithm requires: « At a given iteration step, the selection of the next node to
« the instantiation of the selection of the next node to add be inserted in the community is made as following: the
to the community; node that maximized is added toD;
« the termination criterion (when to stop adding nodes); « The termination criterion is the evolution of the value of
« the filtering (which nodes, if any, have to be removed L, the algorithm stops when the value bfdecreases.

from the community). The advantage of this algorithm is that no lower bound
Most of the local community detection algorithms follow thebout the connectivity has to be fixed a priori. The algorithm
scheme presented in Algorithm 1. automatically determines the bound, based on the value of

IV. COMMUNITY DETECTIONALGORITHMS FOR
COLLABORATIVE FILTERING

Noting that community detection algorithms seem appro-
priate for our research framework, we chose to model Col-
laborative Filtering under the form of a graph: the nodes (th

Algorithm 1 Scheme of traditional local-community detection
algorithms

1: D « {queryNode}
: N « neighbors(queryNode)

repeat . )
F')select the 'best’ node € N vertices) are the users, and the edges represent the erigten
D—DuU{n} a link between two users. Using graph-theoretic approaiches

collaborative filtering has been initially proposed by Aggal
et al. in [1]. They rely on the same graph structure and the
twin notions of horting and predictability to address thealae
bility problem. Exploring the graph allows to quickly idéfgit
neighbors and users with valuable experience. Additignall
Recently, Chenet al. [23] proposed an improvement ofEkstrand et al. [26] use a graph structure with collaboeativ
classical local-community detection algorithms to copéhwi filtering to recommend research papers. In our case, thghgra
the problem of outliers that tend to be included in the constructure will be of high value to detect communities in aryna
munities. The information about the number of connectiomating context.
considered to form the communities is replaced by the agerag As explained in introduction, the challenge we address
number of nodes. Th&(D) metric represents the “quality” of is that of not being able to collect ratings, rendering the
a communityD. It is computed with the following two terms. traditional CF approach powerless. Thus, the only inforomat
The first termL;,,(D) measures the average internal degreevailable in those cases is whether a given user has codsulte
of nodes inD and is computed as follows: an item (for example a Web page) or not. Although this data

N «— (N — n) Uneighbors(n) — D
until termination Criterion
return filter(D)
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is less informative than ratings, a huge quantity of suctadat « The concept of mentor is local and asymmetric: a mentor
is available. is specific to a given user. For example a usemay
One major problem appearing in this case is that selecting be a mentor ofa, but a may not be a mentor 0b.
nearest neighbors or clustering users is not an easy tasle si A local community detection algorithm deals with such
no similarity value can be computed precisely enough. As see  constraints, which is not the case of community detection
before, one way to compute similarities between userssrelie  algorithms;
on the use of the cosine similarity measure, adapted to unary When executing the algorithm for each possiblethe
values or the Jaccard coefficient [61]. resulting communities overlap. Some nodes can thus
However, computing similarities between all pairs of users belong to several (even many) communities. Each node
is time consuming. It takes O(M) time, between two users, can thus be a mentor of several users;
where M is the huge number of itenfsln addition, such  « The size of each community is not fixed a priori and the
metrics assume that users who co-consult a high number of number of communities is equal to the number of users.

items, tend to be similar users. However, these users may havyyq propose to use an adapted and improved version of the

opposite preferences and may actually not be similar. local community detection algorithm proposed by Cle¢ral.
~We thus decide to not compute such a similarity value, by (23] as it has been designed to efficiently manages ostlie

simplifying its computation stage. We consider that if tWoegyting in high-quality classes. The algorithm in [23]Ivoke
users have co-consulted more than(to be fixed) items, cajled LOD in the rest of the paper, and will serve as our

these users are similar, this similarity measure being fixgdsgline.

to a constant valué. The resulting graph has the distinctive

feature of having unweighted edges. Let us notice that the . . _

computation of this similarity value is not complex. Firit, A Selecting Only Direct Neighbors

Is a single count. Second, in the counting process, as soon 3Set us remind that our goal is to detect the appropriate set

the count reaches, the process stops and an edge is Createtﬁ'mentors for each active user The LC D algorithm has the

Besides, as the input data constantly evolves, the Updatecm:\racteristic of building communities with elements timety

the edges is facilitated as the existing edges do not have tor‘f?)t be directly connected to the query userThe resulting

reexamined. ) . communities may not be centered anAs a result,a may
As a result, the challenge we face is the selection of mMentqys at a limit border of his community and many users in his

gf a given usef, Wh?Ir‘ brlw information about the similarity,mnity may not be connecteddoresulting in a decrease
etween users Is available. of the recommendation accuracy.

The first statement that can be made is that too many usergy o propose to apply some modifications on this algorithm,

are connected to the active ugerMoreover, as the edges are, ) s to be properly used in the frame of collaborative fitteri

unweighted, the system cannot select nearest neighbovs. Ho . .
ever, one additional information may be used: the struabfire I_n the recommendatlo_n st'a_ge of standard CF, the e_zstlmated
rating (or score) of an item is computed as the weighted

the graph. ) . S .
grap : . ._average of the neighbors’ ratings on this itémM\eights are
We thus propose to exploit a local community detection : N .
. : Instantiated by the similarity values between the active use
algorithm to detect mentors of the active user. Such an

algorithm mainly exploits the structure (the topology) hét and his mentors. Therefore if the active ugsé& community
is made up of users not connectedat@with a null similarity

graph by finding sets of users (communities) highly conrdectealue)' these users will not be useful in the recommendation

with users within the community and not much connected wit : L . .
. . . stage. The consequence of this observation is that comiesinit

users out of the community. As previously noticed, the nodgs : .
o , ; ave to be strictly made up of users connected,tmeaning
within a community probably share common properties and/gr : . . .
o o . at the LC'D algorithm in [23] is thus not an optimal local

play similar roles within the graph. As a consequence, in the : . ;
L community detection algorithm.

frame of collaborative filtering, we can assume that users in

a community have similar consultation behaviors and maybe',:)urlng the iteration step of th'e LCD algonthm, all the
similar preferences. neighbors of the current communi® (the candidate nodes)
More specifically, we aim at exploiting a local communitfre tested (the metri€ is evaluated). The node maximizing

detection algorithm. A local community detection is preder é’ IS tgen. 'nCIT]ded mD.f we grgpose tg relax tEIS constfralnt
over a community detection algorithm for several reasons: y reducing the set of candidate nodes to the set of users
connected taz. As a result, the mentors that belong to the

o The local community detection algorithm copes with th@ommunity are not only all connected dobut are also highly

scalability problem of community detection algorithms;connected with the users of the community and not so much
« Once a query node is chosen, the users of the resumn%onnected with other nodes

community can be considered as the mentors of that

starting nodez; The resulting community will be directly comparable to the

set of mentors used by a standard KNN approach.
2http://www.eecs.berkeley.edu/ pliang/cs294-spririg@sures/ This adapted version diC'D will be called “User-Centered
collaborative/slides.pdf LCD” or UC — LCD.



B. Filtering out Sub-connected Nodes iterations. In addition, the nodes that can be filtered drthal

Despite the fact thabC'D has been designed to cope witH‘OdeS of the C(_)mmunity, and not only the last node inserted
the unexpected inclusion of outliers in communities, som@ the community. Indeed, a given node may be connected to
outliers may all the same be included in certain configunatiomost of the nodes in the community at one iteration step, and
of the graph. As an example, when focusing on the firthis connectivity may decrease as the community increé3es.
iterations of theLC'D and UC — LCD algorithms, we can COUrse, the connectivity threshofidhas to be fixed a priori.
notice that the node that maximizek is the node that This refined version oUC — LCD, that filters out sub-
minimizesL... In the worst case, this node may be connecté@nnected nodes will be callel — LCD.
to only one node out of the community. However, once th'@_ Recommending
sub-connected node is included in the community, it remiains .
the community till the end of the process. Neverthelesshias t - ONCe the communities have been computed, the recommen-
node is sub-connected, it will be sub-connected to the nod¥&ion Process can be performed. In classical approadhes, t
within the community. Thus, the quality of the communit)fet of mentors is used, I|I_<eW|se the|rS|m|!ar.|t|e_s with dodive
is lowered. In addition, such a node can be also integratﬁae,r' Here, no |r_1format|on .about the similarity betV\_/een the
in further iterations, resulting in the integration of aitsfial active user and his mentors is known. Thus, the classicalyati

nodes potentially sub-connected to the community. estimation step of Equation (1) cannot be used.
To improve the quality of the resulting community, we/V& Propose to adapt this rating estimation step so as to be
propose to filter out the sub-connected nodes from the coHsed when no similarity value is available. Assuming that th

munity. At each iteration step, the connectivity of each eod!'9nest the number af’s mentors having consulted an item,
in the community D is computed and each node with 4he highest the probability will like this item. We propose a

connection value below a predefined threshélds filtered recommendation equation that computes the score of an item

out from the community. The filtering procedure is presentdly @PPlying democratic voting rules among the mentora.of

in Algorithm 2. The resulting communities will thus be only!N® mostly consulted items among the mentors will be those

made up of nodes highly connected with the other nodes rgpommended. The resulting equation is presented in Equati
the community. The new local community detection aIgorithrﬁLO)'
is presented in Algorithm 3.

score(a,i) = Z 1 (10)

Algorithm 2 Procedure FilterSubConnecté}i( UEDai
Require: D: a community D, ; is the set of users in the community ofthat have

1 N«—90 consulted the item. We can notice that, as in traditional

2: for all (j € D) do selection of neighbors with clustering algorithms, the otxa

3 if (k"(D) <6 -|D|) then number of mentors that will be used is not known a priori. It

4 N — NuU{j} is a subset of the community, but their number will depend

5. end if on the item of interest in the estimation of the score.

6: end for

7- for all j € N do V. EXPERIMENTS

8 V< Vu{j} A. Experimental Data

9: end for The experiments conducted in this paper aim at evaluating
10: return (D) the adequacy of community detection algorithms to identify

mentors in CF. These experiments also aim at quantifying
the recommended items’ loss of accuracy when no rating is

Algorithm 3 Scheme of the F-LCD Algorithm available,i.e. when classical approaches cannot be used.

1: D — {queryNode} We choose to conduct our experiments on two corpora from

2: N « neighbors(queryNode) the state of the art, that contain ratings. In these corpeea,

3: 0 — Initialize Connectivity Thresold Value substitute consultations for ratings. The experimentéskts

4: repeat we have chosen are the well-known MovieLens and Jester

5. select the 'best’ node € N datasets.

6: D—DuU{n} The MovieLens datasétontains100,000 explicit ratings, on

7. N — (N —n)Uneighbors(n) — D 1682 movies (items) fronP43 anonymous users. Each rating
8 FilterSubConnected} varies in the range from (dislike) to 5 (like). Each user has

9: until termination Criterion rated at leasR0 movies. The data sparsity on this dataset is
10: return (D) 93.7%.

The Jester datadeis made up ofl.8 Million explicit ratings,

At the opposite of the filtering step presented in Algo- 3np:/movielens.org
rithm 1, the filtering in this algorithm is made within the “http://goldberg.berkeley.edu/jester-data/



on 100 jokes (items) from24,983 anonymous users. EachB. Evaluation
rating varies in the continuous range frori0 to +10. Each | classical collaborative filtering, the system relies oa th
user has rated at least jokes. The data sparsity on thisset of ratings the users have assigned to items (in therigaini
dataset is only27.5%. dataset). These ratings are exploited to estimate unknown
We used these two datasets in order to validate the pleferences on the items the users have not rated yet. These
gorithms we proposed, in different conditions. MovieLenmissing ratings are then compared to the ratings from the
allowed us to evaluate the robustness of the algorithms irtest dataset to evaluate the accuracy of these estimations.
context of high sparsity, with a high number of items, andhis accuracy is often computed under the form of the Mean
in a situation where ratings are mainly highly positive (thdverage Error (MAE), that computes the mean difference
average rating value i8.53 on a scale ranging fromt and between the estimated ratings and the actual ratings [63].
5). However, this dataset suffers from a drawback: there isHerlockeret al. [37] demonstrate that this metric is in fact
no direct mapping between the presence of a rating and raet very accurate when considering users’ ratings, as a user
observable user action. On one hand, users have likely diewe usually interested to know if he is going to like the item
other movies that they did not rate. On the other hand, ratingr not. As a consequence, several papers propose to use other
are frequently given directly on search result pages and rabassical information retrieval metrics, such as precisimd
necessarily on item detail pages. In addition, users may ragcall [37], [66].
a movie they have not actually watched, or that they watchedln our experiments, as no rating is available during tranin
a long time ago. Thus, we chose to validate the algorithragd test, no rating can be estimated. Thus, the MAE measure
on an additional dataset. The Netflix dataset suffers froen thannot be used in this context.
same deficiency than MovieLens. In Jester on the contraryWe propose to evaluate the performance of the various
users necessarily have to read a joke before being able to @pproaches presented in this paper in terms of precisios. Th
it, and they are able to read any of them at any momeiptrecision reflects the ability of a system to recommend items
Moreover, at the opposite of MovieLens, the Jester datageat users will actually like.
does not face any sparsity problem, the distribution ohgsi During the recommendation process, the system computes a
is more homogeneous than MovieLens and the rating scafore for each item the active user has not consulted yet. This
is quite larger. At last, there are many more users than ite$gt of items is then sorted according to this score, and the to
in Jester, which is complementary to MovieLens, where tied the list is the set of recommended items. Obviously, the
number of items is almost twice the number of users. number of recommended items has to be fixed.

Following commonly used test procedutesve divided Concretely, the precision is defined as the percentagerogijte
these corpora into five parts, in order to perform a five-fol@MONg those recommended by the system, that the user has

cross-validation: training is made up of 4 parts and teshef tactually liked; it is defined as follows:

last part, repeated five-times by alternating the test arthe

MovieLens dataset, this division was provided along with th  Precision = & “J:;fgf;'bgf i}’“i‘f;ﬁ;‘:ﬁ’i’;ﬁ?l&dfiZﬁi”“ (11)
dataset; each part contains 20% of the ratings. On the Jester ] o S

dataset, we performed this division; we randomly divideel th 1he highest the precision value, the most accurate the

dataset into 5 parts. Similarly to the MovieLens datasatheaSyStem- _ _ _ _ .
part contains 20% of the ratings. However, this evaluation requires the information about

_ which items have been actually liked by users. In the test
For both corpora, the ratmgs are Fransfqrmed under the foHHtasets we exploit, the users’ ratings are actually kndkurs
of consultations; the value 1 is assigned if a user has ratedigq jtems liked by the users are also known. On the MovieLens
item (whatever is the rating value), and 0 .else. As a res taset, we follow the work presented in [4]: a rating greate
1 means that the user has consulted the item, and 0 megngqa) to 4 reflects that a user has liked an item. On the
he/she has not. Jester dataset, we consider that a rating greater or eqéal to
To build the graph of users, and determine if an edge existans that the user liked the item. Of course, this informatio
between two users, we choose to fix a minimum number about the interest of users on items will not be used to coenput
co-consulted items. On the MovielLens dataset, this valse hacommendations, it will be used only to evaluate the aayura
been set to 20, as suggested by [76]. On the Jester dataseif ihe approaches.
has been set to 36, as it is the minimum number of jokes eachn the experiments below, we fixed the number of items
user has rated. Thus, if two users have co-consulted mone thacommended by the system 10 (size of the top-n list) ,
20 movies or 36 jokes, a link between them is created, atthich is a usual size for recommendation lists [84], [10].
the value of this link is equal to 1; else no link between the
two users is created.

S .
C?. Description of the Datasets

We present here some statistics about the datasets used to
train and evaluate the approaches.
5See  Section “Cross-Validation Subset Generation Scripts” AS told.prewously, on th(=T MoyleLens dataset, the number
http://www.grouplens.org/system/files/READMEOM100K.html of users is943. Each user in this dataset has rated at least



20 movies. On the 5 training datasets, on aver@g@ users Fig. 3. Precision values on MovieLens and Jester when usiNl kKind
have co-consulted/co-rated more th2th items with at least clustering approaches for neighbors selection, whengsitare available.
one other user. The average number of connected users among70 ' '

these users 65 (22.3%); the maximum number of neighbors
is 612 (82.8%) and the minimum idl.

On the Jester dataset, the number of usetslj983. Each 65 1
user in the dataset has rated at Ie¥isjokes. On the 5 training
datasets20, 145 users have co-consulted/co-voted at |exist
jokes with at least one other user.

The average number of connections among these users is
averagelb, 644 (77.6%), the maximum number 48,697
(92.8%) and the minimum idl.

=10)

60 1

Preglon (n

55 - 4

D. Baseline Models with Rating Values

In this section, we are interested in the accuracy of recom-
mendations when the ratings are available. We focus on the
user-based collaborative filtering. Two classical coltalive KN Clustering KN Clustering
filtering approaches (see section 1I-C) will give us the refe MoveLens Jester
ence precision values. We will then test our approaches tirgf 4. Precision values on MovieLens dataset for classiparoaches for
do not use ratings, with the aim of getting as close as passibgighbors selection when ratings are not available
to these reference precisions. o ‘ ‘ ‘ ‘ ‘

1) Classical Collaborative Filtering with KNN:We first
evaluate the precision when mentor selection is performed
by selecting direct neighbors (KNN) [38]. We relied on the  esf 1
Pearson Correlation Coefficient (Equation 2) to estimate th
similarity value between users, since literature showsoitke 7 —
well [68]. The number of neighbor& has been set t60, £
for both corpora; this value represents the best compromiseé
between precision and neighborhood size according to thé | ]
experiments we conducted and is in accordance with what has

been suggested in [39]. The resulting precision is preddante 64 1
Figure 3. We can first notice that the precision on the Jester H

10)

n (n

66 — 4

dataset is roughl0% lower than the one on the MovieLens  *[

dataset. o2
2) Classical Collaborative Filtering with ClusteringWe Al Conn.Users. # Co-cons.ltems  Most Pop.items  ltem-based Leo ve-Len

also evaluate the precision when mentors are selected with

a user-based clustering technique [51]. A K-means algarith

has been used and the number of classes has been Zet td0 connect two users if they have co-consulted more than a

The resulting precisions are also presented in Figure 3.  fixed number of items. As a result, as all connected users
When comparing the precisions of the two approaches, Wave the same similarity value, neighbor selection caneot b

can notice that the KNN-based collaborative filtering perfe €asily made.

slightly better than the clustering-based collaboratilterfing; One way to build the set of mentors of the active user

an improvement of around% is achieved on both corpora,is to keep all users that are connected to him. In the rec-

which is not statistically significant. This conclusion is i ommendation stage, a democratic vote among the mentors is

accordance with the state of the art. performed to estimate the score of a given item: the more
The following sections are dedicated to the evaluation #fe users connected to the active user have consulted an item

the precision when only the information about consultatiorihe more the active user should like this item. The minimum

is available. number of co-consulted items has been set to 20 for the

_ ] ) MovieLens dataset and 36 for the Jester dataset. The regulti

E. Classical Approaches when Ratings are not Available precisions for both datasets are presented in the first biar “A
In this section, we present two classical approaches whénnn. Users” of Figures 4 and 5. In addition, the average size

no rating is available. the median and the quartiles of the resulting communities ar
1) Exploiting the Whole set of Connected Uselthen presented in the first line of Tables | and Il

users’ ratings are not available, no quantitative link ca b On the MovieLens dataset, exploiting users’ consultations,

easily computed. Thus, two users are either connected or nating the whole set of connected users as mentors, and a

this link is unweighted. As explained in section V-A, we dici democratic vote among these mentors does not lead to a




Fig. 5.  Precision values on Jester dataset for classicaloappes for the rating scale used in Jester, which is not only continuous,

neighbors selection when ratings are not available but also larger than the one used on the MovieLens dataset.
50 T T T T T T
ol )l 2) Taking into Account the Number of Co-consulted Items:
When no rating is available, the similarity between users can
a8 f 1 even so be computed. The number of items co-consulted by

two users can be used as a basis to compute this similarity:
one can assume that users with a high number of co-consulted
items tend to be similar. The similarity measure we use is the

one presented in [49].

47 |+ -

10)

46 - 1

Precision (n:

asf i The mentors of the active user are selected according to
their similarity measure with the active user. The number of
a“r 1 users kept is has been chosen experimentally as the number

leadings to the highest precision value; it has been s#&i t;m

the MovieLens dataset and #50 on the Jester dataset. The
resulting precisions are presented in the second bar “# Co-
cons. Items” of Figures 4 and 5. On both corpora, when the set
of mentors is selected based on their number of co-consulted
items with the active user, the precision decreases compare
to the use of the whole set of connected users. This decrease

43 | p

42
All Conn.Users # Co-cons.ltems Most Pop.ltems  Item-based LCD UcC-LCD

TABLE |
SETTING-UP OF THE COMMUNITIES OF THEMOVIELENS DATASET

Way of selectin Avg number | lower median | upper . .

meﬁtors 9 ofgmentors quartile un;‘:me is particularly large on the Jester datagét; compared to the
Whole set of 165 7 89 313 use of the whole set of connected users. This decrease is only
connected neigh. ; ;

Algorithm LCD 240 1 387 434 2% on the MovieLens dataset. Thu_s, the choice of the mentors
Algorithm UC-LCD 99 1 30 190 based on the rate of co-consulted items does not seem to be a
Algorithm F-LCD 48 1 2 80 good choice on a user-based approach. We can conclude that
(with 6 = 0.5)

users who tend to consult the same items do not necessarly
tend to share the same opinions.
Let us notice that, in both previous experiments, a demo-

significant decrease of the precision: onlp% compared to Cri_t'c V(:te arrjl_c;]ng mentors. has been usc(ajd dm thti [ﬁcohmnr:ent—
the exploitation of users’ ratings and KNN to select mentorga ion stage. Thus the movies recommended (wi € highes

At the opposite, on the Jester dataset, a large decreasécgres) may tend to be popular items. To verify thgt this
achieved:14%. democratic vote does not come down to recommending the
most popular items, all users taken together, we propose to

. . . evaluate the precision of recommendations when the most
We performed an additional experiment to study if the large . . .
. o pular items are recommended. The corresponding prasisio
decrease on the Jester dataset is due to the exploitatior of . . X N .
are presented in the third bar “ Most Pop. Items* of Figures 4

consultations (loss of the rat|.ng |nformat|on), or to theywaanol 5. For both corpora, the resulting precisions are lota t
the mentors are chosen. In this experiment, the set of mentgrs . .
" . o 0se obtained when exploiting the whole set of connected
has been selected by exploiting the ratings, it is the same :
i ) ; sers. As a consequence, we can say that the democratic vote

set than the one used in Section V-E1. A democratic vo

has then been used to compute the recommendations. gs not come down to recommend the most popular items.

resulting precision isl7.32, which corresponds to a decreasg. The Item-based Approach
of 12% compared to the precision obtained with the use of

ratings for training and_ for test. We can concluqle that, an ﬂz:%nsulted items to compute the similarity between users
Jester dataset, the rating values have a large mfluenceeonh}f

recision of the recommendations. This may be explained wers the precision in user-based approaches. Howevsr, th
P ' y P ormation has often been used in item-based approaches

[44], [46]. We thus used this item-based metric and evathate

As shown in Section V-E, exploiting the number of co-

TABLE II the corresponding precisions and, as suggested by [44], the

SETTING-UP OF THE COMMUNITIES OF THEJESTER DATASET vectors have been normalized. The fourth bar “Item-based”
Way of selecting Avg number [ Tower | median | upper of Figures 4 and 5 represent the corresponding precisions.
mentors of mentors | quartile quartile On the MovieLens dataset, the resulting precision is dijght
Whole set of 15644 17178 | 17646 | 18062 .
connected neigh. lower than the one of the user-based approach; this decrease
Algorithm LCD 18376 17645 | 19564 | 20098 is about2.5%. At the opposite, on the Jester dataset, the
Algorithm UC-LCD 5037 7 7122 | 7663 precision has been increased h$%. These differences may
Algorithm F-LCD 172 5 18 155 . 7
(with 6 = 1.0) be explained by the characteristics of the two datasets. The

MovielLens dataset has much more items than users, the user-



based approach leads to more accurate recommendationscekitered communities, only made up of users connected the
the opposite, the item-based approach performs bettereon &letive usera. The recommendation stage remains the same
Jester dataset as the number of items is smaller than than the one used in the previous experiments (Equation 10).
number of users. Details about the resulting communities are presentedén th
The highest precision values reached the previous expdhird line of Tables | and Il. These communities are a subset
ments are those related to use of the whole set of connectddhe communities used in Section V-E1. The corresponding
users as mentors. These precision values will now be viewgekcisions are presented in the sixth bar “UC-LCD” of Fig-

as the baseline values when ratings are not available. ures 4 and 5.
_ _ _ On both corpora, the precision reached by the UC-LCD
G. Community Detection Algorithms algorithm exceeds the precision of the LCD algorithm, while
We now focus on the use of community detection algorithmreaching a similar precision to that of the baseline one fwhe
to detect mentors. using the whole set of neighbors). It is even slightly higber

1) The Original Algorithm (LCD): Although the original the Jester dataset. In addition, this similar precisioriseved
algorithm proposed in [23] has the drawback of discoveringith a smaller set of mentors. On the MovieLens dataset, the
communities that include users not directly connected & tlbommunities are on averag)?% smaller than the baseline
active usera, we are all the same interested in studyingnes ands8% smaller on the Jester dataset.
the precision associated with the resulting communities. A 3) Filtering Sub-connected Users in the Communities (Al-
in the previous experiments, a democratic vote among therithm F-LCD): In section IV-B, we put forward that the
users of the community is computed to estimate the scorelofal community detection algorithm proposed by [23] has
each item (Equation 10) and perform recommendations. ltee drawback of inserting in the communities some users with
us remark that the users in the resulting communities wii@v connections in the graph. These users are mainly irserte
are not connected to the active user cannot be used in thahe communities in the first iterations. As a result, these
recommendation stage. Despite the possible large numbelusérs lower the quality of the communities. Thus, we progose
users in the communities, the number of users actually lsefor add one constraint to the composition of the communi-
for the recommendation may thus be reduced. In addition, #es, related to the connectivity of each element within the
the LCD algorithm forms non user-centered communities, tt®@mmunity. At a given step, one user is removed from
active user may be on the border of his/lher own communithe community if his/her connectivity is below a threshold
which may result in a low precision. value# fixed a priori. This threshold is called the connectivity

The characteristics of the resulting communities are prétreshold.
sented in the second line of Tables | and Il. As expected,We performed several experiments, with the connectivity
the size of the communities is larger than the baseline (whtmesholdé ranging from0.0 (no removal, i.eUC — LCD)
considering all users directly connected to the active uség to 1.0 (a node is removed if it is not connected to all the
average size is actually increased 4/ for the MovieLens nodes of the community). The resulting precisions, acogydi
dataset and 7% for the Jester dataset. The smaller increase this threshold, are presented in Figures 6 and 7. Figures 8
on the Jester dataset is due to the high percentage of ugard 9 present the evolution of the size of the communities,
connected to each active user. depending on this threshold.

The corresponding precision values are presented in tlie fift In addition to these experiments, we evaluated the precisio
bar “LCD” of Figures 4 and 5. The precision values are lowalues with weighted edges. The weights associated with the
63.55 on the MovieLens dataset add.9 on the Jester, which links are those used in Section V-E2. The computation of the
corresponds to a decrease of respectively’ and 3.2%, L;, and L., measures are thus adapted to take these weights
compared to the use of the whole set of connected useérdo account. The number of links is no more used. It is
This decrease may be due to the reasons presented herealveptaced by the sum of the values of the edges. The resulting
The lower variation of the size of the communities in Jest@recisions are also presented in Figures 6 and 7. The evolutio
compared to those in MovieLens may explain the smallef the size of the corresponding communities, accordingpéo t
decrease of the precision. threshold, are presented in Figures 8 and 9.

To study the influence of the mentors not directly connectedFigures 6 and 7 show that, on both corpora, the use
to the active usenr, we conducted an additional experimentof weighted links does not lead to a significant increase
The community detection algorithm was initialized with thef the precision, compared to not filtering the communities
whole set of direct neighbors (i.d2 was initially made up (UC — LCD). At the opposite, when using F-LCD with
of the active usern and his connected users). The algorithmnweighted links, an improvement of the precision is olgdin
was then executed to discover additional neighborBirmhe On the MovieLens dataset, the precision increases along with
resulting precision was below the baseline precision. We cthe threshold value, till a valué = 0.5. Above this value,
conclude that indirect neighbors in this case are not usefhk precision decreases. The maximal valu&i$7 which
mentors. corresponds to an increase tft compare to the UC-LCD

2) The User-Centered Algorithm UC-LCOn this paper, algorithm. This small increase is reached with a number of
we propose to adapt the LCD algorithm so as to detect userentorss2% lower thanUC—LC D. Compared to the mentors



Fig. 6. Precision values on MovielLens according to the cotivigy threshold
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from the baseline (All connected users), this decreasehesa
71%.

On the Jester dataset, the precision decreases with the
threshold value untib = 0.7 and then increases. The optimal
threshold value i¢ = 1.0. Tthe corresponding precision value
is 47.76, which corresponds to a increase3gt in comparison
with the UC-LCD algorithm, while reducing the number of
mentors by96%. This decrease i99% when comparing to
the set of mentors from the baseline.

The precision off' — LC'D remains naturally lower than the
one achieved when managing ratings. However- LC'D
reaches a precision value very close to that objective. The
differences betweeR' — LC D and the rating-based algorithms
are even not statistically significant on the MovielLens sktta

Figures 8 and 9 show that the size of the communities
decreases in accordance with the value of the connectivity
threshold. On the unweighted graph, this downtrend is espe-
cially strong on the MovieLens corpus: when the threshold
value is fixed tod 0.5, the size of the community is
divided by 2, and made up on average 62 users. This
number is similar to the size of the communities used in the
experiments we conducted with the KNN approach. At the
opposite, when using the weighted graph, it decreases more
slowly. For example, when the connectivity threshold is set
to # = 0.9, the size of the community is only decreased by
35%, whereas it decreased by more tHHY¥% when using the
unweighted graph. The reason of this small decrease is that,
when managing weighted edges, the algorithm tends to insert
in the communities users with high-valued links. Users with
high-valued links are users who tend to have consulted a lot
of items, thus users highly connected.

A similar conclusion can be drawn on the Jester dataset.
However, whery is fixed to 0.5, the decrease of the size of
the communities is lower, which is due to the high connettivi
of the nodes. An important decrease is obtained when the
threshold value exceeds?, which corresponds to the thresh-
old value above which the precision increases.



H. Similarities Between Rating-based and Community-basta precision by2% and6% on MovieLens and Jester respec-
Mentors tively. We can thus deduce that the number of co-consuitatio

In the previous section, the experiments showed that, on figfween two users does not reliably reflect their similavity
MovieLens dataset, th& — LCD algorithm, with an average preferences. This comes to disprove the optimality of egst
community size ofi8 users, leads to a precision value whicfiPProaches. _ _
is not very different to the one obtained when exploiting the Following this observation, we decided to not manage
KNN approach with ratings an& — 50. Thus we can ask in & similarity information between users, and made several

what measure the two sets of communities, that have simif{ePosals and refinements to improve the mentor selection
average sizes, are formed by the same users. process through a graph-theoretic approach. We reprekente

We can first say that the maximal size of communities whdfi€ Set Of users under the form of an unweighted graph, where
using KNN is 50, whereas it is80 for the F-LCD algorithm USers are linked if they have co-consulted a sufficient numbe
(Table 1). To furt’her analyze the communities, we propose items. This number of co-consulted items was first used to
evaluate the average number of communities a user belong¥g filter mentors. Subsequently, we exploited the corvigct
for each approach. As the sizes of the communities are eqdftin this graph to include the most relevant candidates
on average, the average number of communities a user belofg&® set of mentors. OUF_ investigations led us to propose
to is equivalent. However, the repartition, in terms of madid e new modeUC —LOD ms_pl_red from local community
and quartile numbers may be different. Table Il preseris iHletection algorithms. The precision reached by this mocsl w
repartition similar to the one obtained when all connected users aretake

The distribution of the number of communities the usef8t© account (our baseling), while managing a set of mentors
belong to are different. When focusing on the maximal numb@Featb;, smallr(]a'r (a redluck:)tlon. 010(73, andd68% IS r?bserved). .
of communities users belong to, both algorithms have aa'rmiIWe re m_ed this n_10de y discarding, during the process o
value: about 260, which represents 28% of the communiti&@Mmmunity detection, the mentors sub-connected W't_h'mme
This means that each user belongs to less than 28% of mgercrj"ner;]tors émod_eﬂ«“— ch)j The reSL_JIUngW[;{ﬁ’ems%ns of
communities. Nevertheless, when using the- LC' D algo- #—LCD have been increased in comparison —LCD,

rithm, half of the users belong to less than 10 communitie‘é’Gh('yle_ decreasing the set of mentorsiaf/ in MovieLens and
whereas they belong to less than 35 communities Wiy, 207 In Jester. _ _

Thus, with F — LCD, users tend to belong to either few As presented in Section II-E, the |te_>m-bgsed approach
communities, or many communities, whereas the repartitib% often used to compute recommendations In a ratlng.-free
seems to be more homogeneous WiV N context [44]. Thus, we also compared the previous precision

On the Jester dataset, a similar experiment has been cOIF2SUres YC - LCD and F — L?D) to the"o'ne O.f an
ducted. With KNN, we built communities wittk = 172 (to item-based approach (see label “Item-based” in Figures 4

have similar average sizes of communities than the optin?aﬁd 2). Resuits sh_owl thfl;g(y_ Lglg ;;de - LSD ire_
precision of F-LCD). The distribution of the number of usergn average respectively 4.25% and 6.2% better than the item-

in the communities also differ. Specifically, the first quarti ased approach.

and the median are twice smaller with F-LCD compared to As a conclusion, if the number of co-consulted items did
those with KNN not appear to be a reliable measure to detect mentors, the

connectivity (both between the active user and his/her mgnto
V1. DISCUSSION and between each pair of mentors) has been proven to be

Thi r was dedicated to the identification of Z]uch more adequate within the frame of these experiments.
S paper was dedicated 1o he identiiication of a goog, improvement of the precision is obtained while requiring
way to detect mentors in a rating-free collaborative fittgri

svstem a small set of mentors.

yA ) ted in Section I-E. in the ab ¢ rati The reason why we chose to conduct the experiments
AS presented In section 1I-E, In the absence of ralingg,, 1,1, \jovieLens and Jester datasets lies in their various

existing algorithms of the literature usuaIIy. COnSIdertth%haracteristics. These datasets allow us to reliably atdid

the more .tWO USers havg po-consulted two items, the m e robustness and relevancy of our models. The MovieLens

they are likely to have similar preferences [46], [49]. So

) . . . . RFataset has a high sparsity leveli%) whereas the sparsity
to confirm or invalidate this hypothesis, we compared ﬂ]Svel on Jester is onl7%. On the MovieLens dataset, each

precision measures of two different mentor selection sirese user has consulted at leak¥; of the items whereas on the
1) our baseline consists in defining the mentors as thester dataset each user has consulted at #8&6tof the
whole set of connected users (referred to as "All cofems. This means that the connectivities between users are
nected users” in Figures 4 and 5); very different in MovieLens and in Jester. In addition, the
2) K nearest mentors have been selected on the basisgfng scales are very different, the scale used in Jesfeuis
their number of co-consulted items with the active USgfmes larger than the one in MovieLens. Among other notewor-
(see label “# Co-consulted Items” in Figures 4 and S)thy differences, we noticed exploiting the users’ ratinge
The resulting precisions of the second strategy are matecision values of the two corpora differ of roughly 20%. We
increased in comparison with our baseline. They even dserealso conducted an experiment to compare the precision of the



TABLE Il
QUARTILE, MEDIAN AND MAXIMAL VALUES OF THE NUMBER OF COMMUNITIES A USER BELONGS TO, ON THE MOVIELENS DATASET

1st quartile | median | 3rd quartile | maximal
unweighted edges 1 10 183 254
KNN 2 35 123 267

recommendations with and without ratings. We showed thafgorithms to form communities of users, and deduce the
on the Jester dataset, exploiting the rating values is dfl hignentors, within this context. Such algorithms exploit the
importance and largely increases the precision value, aoadp structure of the graph and do not pay attention to the value
to using only consultations. At the opposite, on the Movigd e of the edges. In addition, they have a local view of the graph,
dataset, ignoring the rating values has a smaller impads Thhich allows to design a community for each user, resulting in
difference may be explained by the difference of the ratirmyverlapping communities. Used in the context of collabieeat
scales. filtering, these algorithms have the advantage of both the
Despite these differences of characteristics, the improwdirect neighbor selection and classification of users afsital
ment of the precision in a rating-free context thank to owpproaches.
models have been confirmed in these two corpora. Our rating\we adapted a state-of-the-art local community detection
free modelF’ — LC'D leads to an increase in precision 6 algorithm so as to discover communities that fit the char-
on MovieLens, and% on Jester, compared to the rating-fre@cteristics of collaborative filtering: the communities/éao
baseline, while decreasing the number of mentor§19y and be user-centered and have to be strictly made up of directly
99% respectively. On MovielLens, the corresponding precisiafbnnected users. The users that belong to the community of a
is even only1% lower compared to the one obtained whegiven usera are his mentors.
managing ratings. We can conclude that the connectivity is awe then proposed to further refine the set of mentors by
good information that better reflects similarity betweeerss fijtering out subconnected mentors in the communities so as
than the number of co-consulted items. Of course, the optimg have communities made up of only highly connected users.
connectivity threshold differs according to the graphs. We assumed that the more the set of mentors of a user are
VIl. CONCLUSION connected, the more the quality of the set of mentors is high.

This paper focused on the mentor selection problem inTO the best of our knowledge, the ex.pI0|Fat|on of the
the frame of user-based collaborative filtering. Classagal structure c.)f th.e gfaph has peen rarely studied in the f rame of
proaches of mentor selection rely on a similarity value leemv coIIaporatwe filtering, especially to perform mentor dmtezn )
users. This similarity is computed on the basis of useripeny ' NiS @pproach has been tested on two datasets with various
ratings, that reflect their preferences on the items. Two médiRaracteristics: rating scale, number of users and iteors, c
approaches of mentor selection are used in the literature. T'€ctivity of the graph, etc. Experimental results have show
first approach defines mentors of a uses the users with the that our local community detection algorithii — LCD
highest similarity value. The second approach clusterssusProves the precision compared to the baseline model that

thanks to their similarity value, and users are considered 4&5€S the whole set of connected users (frti to 3%). In
mentors of each other within a cluster. addition, the number of mentors used is dramatically deea

In this work, we have addressed the problem of ment@fP t099%).
selection when no user-provided ratings are availablehan t Thus, we have shown that, when the user-provided ratings
case, no similarity value between users can be precis@kg not available, mentor selection can however be perfiirme
computed; thus no mentor selection can be easily mallé exploiting the connectivity between mentors in place of
either. Nevertheless, the set of user consultations isateil their similarity values, while reaching a good precisiofuea
Exploiting the number of co-consulted items is a way to As a future work, we plan to study the use of local
estimate the similarity between users. We proposed to restmmunity detection algorithms when ratings are available
exploit this information to deduce the similarity betweesers. The challenge is thus how to accurately exploit similasitis
The approach we proposed if made up of two stages. First, t@ings in these algorithms.
considered that two users who have co-consulted more thaimong perspectives, we also propose to extend our model
a predefined number of items are potentially similar userts; security issues. Collaborative Filtering is well-knovior
their similarity value is fixed tol. This approach has thebeing very vulnerable to malicious attacks [14], since i&sus
advantage to make the design of the similarity matrix easidve opinion of a community of similar users to predict the
than the classical approach. Indeed, for each pair of usaspjnion of a current user. Thus, the problem consists in
the computation of the value of the similarity (0 or 1) comegutomatically making the difference — among the global set
down to a simple count that can be stopped when the minimwh users — between the leaders who helps building relevant
number of co-consulted items has been reached. recommendations, and attackers who aims at degrading the

Second, we represent the set of users under the form ofsamvice or influencing users. Analyzing connectivity bedwe
unweighted graph and we exploit local community detectiamsers will help to reach this objective.
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