
HAL Id: inria-00580116
https://hal.inria.fr/inria-00580116

Submitted on 26 Mar 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Community Detection to Mentor Selection in
Rating-Free Collaborative Filtering
Armelle Brun, Sylvain Castagnos, Anne Boyer

To cite this version:
Armelle Brun, Sylvain Castagnos, Anne Boyer. From Community Detection to Mentor Selection in
Rating-Free Collaborative Filtering. Advances in Multimedia Journal, Hindawi Publishing Corpora-
tion, 2011, 2011, pp.1–19. �10.1155/2011/852518�. �inria-00580116�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50000605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00580116
https://hal.archives-ouvertes.fr

From Community Detection to Mentor Selection in
Rating-Free Collaborative Filtering

Armelle Brun
LORIA - Nancy Universit́e
615, rue du jardin botanique
54506 Vandoeuvre-lès-Nancy
Email: Armelle.Brun@loria.fr

Sylvain Castagnos
LORIA - Nancy Universit́e
615, rue du jardin botanique
54506 Vandoeuvre-lès-Nancy

Email: Sylvain.Castagnos@loria.fr

Anne Boyer
LORIA - Nancy Universit́e
615, rue du jardin botanique
54506 Vandoeuvre-lès-Nancy
Email: Anne.Boyer@loria.fr

Abstract—The number of resources or items that users can
now access when navigating on the Web or using e-services, is so
huge that these might feel lost due to the presence of too much
information. Recommender systems are a way to cope with this
profusion of data by suggesting items that fit the users’ needs.

One of the most popular techniques for recommender systems
is the collaborative filtering approach that does not use any a
priori information about the users, nor any data about the con-
tent of the items. Collaborative filtering relies on the preferences
of items expressed by users. These are usually recorded under
the form of ratings and the recommendation technique exploits
these ratings. However, in many e-services, it is inappropriate
to ask to rate items; it may indeed interrupt users’ activity. In
the absence of ratings, classical collaborative filtering techniques
cannot be applied; especially the selection of like-minded users for
a given user, also called his mentor users, cannot be performed.
Fortunately, the behavior of users, such as their consultations,
can be collected; this collection is transparent for users. In this
paper, we focus on rating-free collaborative filtering: we present
a new approach to perform collaborative filtering when no rating
is available but when user consultations are known.

We propose to take inspiration from local community detection
algorithms to form communities of users and deduce the set of
mentor users of a given user. These algorithms have the advan-
tage of not only being less complex than community detection
algorithms, but also of discovering overlapping communities. We
adapt one state of the art algorithm so as to fit the characteristics
of collaborative filtering. Experiments conducted on the two
datasets show that the precision achieved by this community
detection algorithm is higher then the baseline that does not
perform any mentor selection. In addition, our model almost
offsets the absence of ratings by exploiting a set of mentors
reduced by 71% and 99% compared to the baseline.

I. I NTRODUCTION

The democratization of Internet and network technologies
has resulted in a large increase of information, readily acces-
sible to everybody. This growth had been an advantage during
its first years as the access to information became generalized.
However, the volume of information is now so enormous that
users cannot easily get the information they search for, and
are drowned in the mass of resources. This overabundance
has very often the effect of leading to unsatisfied users.

As a consequence, a critical issue of the current Web
applications is the incorporation of mechanisms for delivering
information that fits users’ needs, whilst increasing their
satisfaction.

Recommender systems (RS) provide users with personalized
recommendations of resources or items, based on the knowl-
edge they have about users. A recent observation showed that
users are now aware of their need to be assisted [24], and are
prepared to adopt recommender systems [21]. The increasing
popularity of these systems in information seeking or commer-
cial e-services has meant that the need for quality, accuracy
and reliability of recommendations has become tremendous.
Recommender systems generally fall into three categories:
content-based systems which compute recommendations from
the semantic content of items [56]; knowledge-based systems
where recommendations rely on knowledge about the domain,
the users and pre-established heuristics [13]; and at last col-
laborative filtering systems which compute recommendations
by examining either users’ preferences on items, or their past
interactions with the system, called traces ofusage[33].

The general principle behind collaborative filtering (CF) can
be summarized into one sentence: an active user will probably
be keen on the items that his like-minded users (also called
neighbors or mentors) have previously liked, and that he or
she has not yet consulted. Users usually express if they have
liked an item or not under the form of ratings [77]. Based on
this piece of information, CF identifies the users which have
similar ratings with the active user: his mentors. The system
then exploits the collective knowledge of mentors’ preferences,
and estimates the rating that this active user would assign to
each item he or she has not rated yet. This way, the system
is able to determine which item(s) to recommend to a user:
those with the highest estimated ratings.

CF has been adopted these last few years mainly due to
the fact that no explicit information about users is required a
priori: users do not have to fill any questionnaire or forms to
get some recommendations. Moreover, no explicit information
about items is required either: the tedious and time-consuming
indexing task is avoided [12]. In addition, the accuracy of
the CF-based recommendations provided to users is high in
comparison with the content-based approach [43], as soon as
the system gets a sufficient (and high) number of ratings. CF
also has the advantage to recommend items not directly linked
to those the active user has already liked. This feature is called
novelty or serendipity [37].

One drawback of CF is the requirement of user provided

ratings. Relying on ratings may be penalizing since users
often provide few ratings, not to say no ratings at all. Indeed,
assigning a rating to an item is a complex and time consuming
task, and users are not aware of the benefit they can get
when rating items. Moreover, user provided ratings may not be
reliable [11]: on a predefined and usually small scale, which
rating should be assigned to an item? For example, let suppose
that a user has liked a given movie, on a scale of 1 (he did
not like it) to 5 (he did really like it). Which rating should
he/she assign to this movie? a 4 or a 5? In addition, in many
application domains, the system cannot ask users to rate items.
For example, when users navigate on a Web site or consult
news, it is inappropriate to ask them voting, since it interrupts
their information seeking process.

Standard CF relies on the computation of similarities of
ratings (or preferences) between users to perform mentor
selection. When no rating is available, no similarity of prefer-
ences can be precisely estimated and classical CF techniques
cannot be used. Then, the question is: how to select mentors
when no information about user preferences (ratings) and
about users’ similarities are known?

To answer this question, we propose to represent the infor-
mation about users collected by the system in an unweighted
graph. The nodes correspond to users. In the graph, we
simply consider that two users are connected if they have
common consultation behaviors. This connection does not
reflect a similarity in preferences, but the fact that they have
some commonly consulted items. Based on this representation,
we investigate ways to identify mentors by using the only
information available: the structure of the graph (as no weight
is associated with the links).
Community detection algorithms are efficient in detecting
communities or classes of nodes in graphs, focusing on the
topology of the graph [30]. We thus take inspiration from com-
munity detection algorithms, specifically one local community
detection algorithm from the state of the art [23], to solve the
problem of mentor selection in collaborative filtering. To the
best of our knowledge, the structure of the graph, community
detection and local community detection algorithms have never
been exploited in the frame of CF, in particular to perform
mentor selection.

The section II focuses on CF and the way mentors are
usually selected. In section III, community detection and local
community detection algorithms are presented. Section IV
introduces our model that exploits local community detection
algorithms to detect mentors in the frame of CF. Section V
and VI are respectively dedicated to the evaluation of this
new approach and to the discussion of the results. Last, we
conclude this work.

II. COLLABORATIVE FILTERING

A. Collaborative Filtering in General

Given a set of itemsI, and a set of usersU , the input
data of a CF system is the set of ratingsr(u, i) that users
u ∈ U have assigned to itemsi ∈ I, most of the time on a
non binary rating scale (for example, from 1 to 5). This set is

stored under the form of a rating matrix= UxI. Let a be the
active user. To make recommendations toa, the CF system
first estimates the ratingsr(a, i) thata would assign to all the
items i he has not rated yet. Second, given this set of ratings,
the system recommends the items with the highest estimated
rating values. In the literature, “making recommendations”is
equivalent to estimating the user’s ratings for unrated items.

To estimater(a, i), the system adopts either an item-based
or a user-based approach. The item-based approach supposes
that a user will more likely appreciate items that are similar or
related to the items he has already liked. At the opposite, the
user-based approach exploits similarities between users and
recommends a user the items that his like-minded users, or
mentors, have appreciated. In this paper, we are interestedin
the user-based approach.

There are basically two approaches to implement a
user-based collaborative filtering algorithm: respectively the
memory-based and the model-based approaches. The memory-
based approach, also known as “lazy learning”, simply exploits
the user-item rating matrix without any transformation when
the system is asked for a recommendation. We can say that the
learning phase is skipped. On the contrary, the model-based
approach first builds a model of the user-item rating matrix
and then uses this model to make recommendations.

B. Memory-Based Collaborative Filtering

One classical way to estimate a rating in a memory-based
approach is presented in Equation (1):

r(a, i) = r(a) +
∑

u∈Ui

sim(a, u) ∗ (r(u, i) − r(u)) (1)

whereUi is the set of users that rated itemi, r(u, i) is the
rating that useru has assigned to itemi, r(u) is the average
rating of useru andsim(a, u) is the similarity between users
a and u. The estimated rating is the weighted average of
the absolute difference between the ratings the other users
assigned to the itemi and their average rating, added to the
average rating of usera. The more a user is similar toa, the
higher his weight in the estimation ofr(a, i) is.

The similarity between two users is a similarity of ratings,
which measures if both users rated (i.e. appreciated) itemsin
the same way. This similarity is classically computed with the
Pearson correlation coefficient, presented in Equation (2).

corr(a, u) =
∑

j∈Ia∩u
(r(a, j) − r(a)) ∗ (r(u, j) − r(u))

√

∑

j∈Ia∩u
(r(a, j) − r(a))2 ∗

√

∑

j∈Ia∩u
(r(u, j) − r(u))2

(2)

whereIa∩u is the set of commonly rated items by usersa and
u and r(a) is the average rating of usera. This correlation
measure has been proved to be the most adequate measure in
user-based approaches [9].

The cosine measure can also be used to compute the
similarity between two users. The corresponding Equation (3)
presents the way the cosine measure is computed.

sim(a, u) =

∑

j∈Ia∩u
r(a, j) ∗ r(u, j)

√

∑

j∈Ia
r(a, j)2 ∗

√

∑

j∈Iu
r(u, j)2

(3)

whereIa is the set of items rated bya. The cosine measure
has proved to be more efficient in the item-based approach, to
compute the similarity between items [63].

The similarity values in Equation (1) are instantiated by
either the correlation or the similarity value in Equations(2)
and (3) above. [16] presents an overview of equations that
compute user similarities or estimate ratings.

Although accurate, memory-based approaches suffer from
combinatory complexity problem, since it requires to compute
the similarity between each pair of items or users.

C. Model-Based Collaborative Filtering

Model-based collaborative filtering techniques constitute a
good alternative to reduce the time complexity of memory-
based collaborative filtering [9]. These algorithms consist
in creating descriptive models correlating users, items and
associated ratings via a learning process. These models can
take several forms, such as bayesian networks, classes of items
and/or users, etc. The basic idea is that a partial knowledgeof
data may be sufficient to provide accurate recommendations.
As an example, in Equation (1), only a subset of users is actu-
ally useful to estimater(a, i). This subset of users is referred
to as mentors or the community of usera. In CF, a mentor
is a like-minded user who is used as a representative user for
computing estimated ratings. The choice of the mentors (and
their number) highly influences three main features in a CF
system: the computation time, the accuracy of the estimated
ratings and the coverage. More concretely:

• mentor selection has the advantage to speed up the rating
estimation process as only a subset of users is used to
estimate ratings [18];

• mentor selection increases the accuracy of recommen-
dations as lowly related users may lower the accuracy
of the estimation [19]. Additionally, the accuracy of the
rating estimation highly depends on the adequacy of the
mentors;

• mentor selection influences the coverage [45]. The cov-
erage reflects the ability of the recommender system to
estimate a rating value for a given usera and a given item
i. When no rating can be estimated, no recommendation
can be performed. The lower the number of mentors, the
lower the coverage, since the probability that a mentor
has already rated the item is low. At the opposite, the
larger the number of mentors, the higher the coverage.
However, this increases the computation time.

Given these features, we can conclude that the choice
of mentors is a tricky and important task that may highly
influence the recommendations.

Two main approaches of mentor selection are often used in
CF: direct neighbor selection and clustering.

1) Direct Neighbor Selection:Given a set of users that have
a non-null similarity value witha, direct neighbor selection
consists in keeping the users that comply with a given crite-
rion.

This criterion can be a threshold value [3], [38]. A similarity
threshold is fixed a priori and all users that have a similarity
with the active usera above this threshold are selected as
mentors ofa. The resulting community is user-centered.

The criterion can also be an integer valueK. The K

nearest neighbors (KNN) ofa are retained,K being fixed a
priori [38]. TheK neighbors with the highest similarity values
are considered as the mentors of the active user (if less than
K neighbors exist, all the neighbors are kept).

One main drawback of direct neighbor selection is scala-
bility. Mentors are detected at runtime since the profile of all
users has to be kept in memory; similarities between users are
recomputed each time mentor selection and recommendations
have to be performed. In addition, the choice of theK value
or of the threshold value is tricky. At last, KNN is not robust
to data sparsity: it is unable to form reliable neighborhoods
in case of high sparsity level [34]. However, as similarities
are up-to-date when recommendations are made and as the
communities are user-centered, this direct neighbor selection
approach is accurate.

2) Clustering: The second approach classically used to se-
lect mentors performs clustering. These clusters are computed
offline and constitute the model that is periodically reused
to generate recommendations. Depending on if an item-based
or a user-based approach is chosen, the system builds either
classes of items [63], or classes of users [18]. Item-based CF
is known to be very accurate and for highly improving the
scalability, as long as the relationships between items remain
relatively static. Item-based approaches are widely deployed
in industry and commonly studied in research settings. In this
paper however and as mentioned previously, we focus on the
user-based approach, as it is known to be more adapted for
web applications where items are greatly volatile [18]: theset
of items often change, since some items are deleted, new items
constantly appear, and some others are modified.

Concretely, user-based clustering identifies groups of users
with similar preferences,i.e. who appear to have similar
ratings [9]. Once the clusters are created, recommendations for
the active usera can be made by exploiting the preferences
(here ratings) of all users belonging to the cluster ofa.

There are typically three kinds of clustering methods: par-
titioning [51], hierarchical [18], and fuzzy techniques [72].
Most of the time, CF relies on a partitioning techniques. In
this case, users are grouped into separated clusters: each user
belongs to exactly one cluster.

Many partitioning algorithms have been studied in the frame
of CF, such as [54], [75]. Some of these algorithms require
either an a priori number of clusters, or a fixed-size for
clusters, others a similarity threshold, etc. These algorithms
are parametric. For example, the K-means algorithm [51],
computesK clusters so that the average pairwise similarity
between users within clusters is maximized. Most of non-

parametric algorithms aim at maximizing a given criterion
(that usually represents the quality of the classification),with-
out any parameter chosen by hand [48].

Partitioning algorithms provide a good recommendation
accuracy among clustering techniques. When recommending
items, exploiting clusters of users is robust to scalability
problem as it reduces the memory requirements, and classes
are computed offline. However, partitioning algorithms often
suffer from convergence problems, as they are highly sensitive
to initial starting conditions [7]. Moreover, the computation
time require to execute such algorithms is high.

Hierarchical clustering deals with these issues by lowering
the complexity, speeding up the convergence time, and allow-
ing the distribution of computations. Castagnoset al.proposed
in particular a recursive model that simplifies the selection
of optimal initial points, by splitting the population intotwo
subsets at each step [18]. Nevertheless, the quality is dependent
of the expected number of clusters. If the number of clusters
is low, the system will provide inaccurate recommendations.If
this number is too large, there is a risk of overgeneralization.

An interesting way to avoid bias due to bad clusterization
consists in relaxing the constraint of belonging to one and only
one class. This is the principle of fuzzy collaborative filtering,
in which allocation of data points to clusters is not hard [57].

Let us observe that whatever the approach adopted, a
similarity value is exploited; for example it may be the one
presented in Equation 2 or Equation 3.

In some approaches, the similarity value is used in combi-
nation with another criterion. For example, [41] has proposed
a clustering algorithm based on the information about the
shared nearest neighbors, in addition to their similarity.In this
approach, two elements are grouped if they share many of their
nearest neighbors, and if they are themselves nearest neighbors
of the other element. This algorithm has been re-used in many
domains such as information retrieval [27], databases [36]and
recently in data traffic [82].

D. Discussion

In this section we have presented the main approaches used
in CF to select mentors. The direct neighbor selection method
leads to accurate recommendations. However this approach
is neither scalable nor robust to data sparsity. Clusteringof
users is one way to solve these two problems [80]. First,
it has the advantage to only compute similarities between
users and to select the mentors periodically, and not each time
recommendations are needed. Second, two users may belong
to the same class even if they have a null similarity value
(due to a null number of co-rated items). Third, the size of
the clusters does not have to be defined a priori, contrary to
the KNN approach and the resulting clusters may have very
different sizes.

These clustering algorithms have however several draw-
backs:

• In most of the clustering methods, users belong to only
one cluster. However, in some cases, users may need
to belong to several groups of users. Some clustering

techniques thus allow users to belong to several clus-
ters [70]. The estimated rating is then an average across
the clusters, weighted by degree of participation of the
user in each cluster.

• Some users may be border nodes (at the limit of the
class they belong to). Thus, their mentors (those in the
same class) may be really different of their actual near-
est neighbors, which may decrease the recommendation
performance. We can notice that this drawback does not
occur when using the direct neighbor selection, as the
community formed is user-centered.

• Despite its ability to cope with the scalability problem,
clustering is known to generate less-personal thus less
accurate recommendations [65], [42].

• Few works focused on user-centered clustering. [19]
proposed a decentralized algorithm to build user-centered
clusters. However, the complexity remains high if compu-
tations are not distributed on a high number of processors.

Whatever the mentor selection method is, a similarity mea-
sure between users is required. As a consequence, they can
thus not be used in the case no similarity value is available.

Based on the above statements, we can deduce that devel-
oping user-centered communities or clusters, where each user
may belong to several communities (clusters), would lead to
a high accuracy of recommendations and a solution to the
sparsity and scalability problems.

E. Managing Unary Ratings

Most of the works on CF exploit user preferences under the
form of ratings. As previously mentioned, in many application
cases, ratings cannot be collected. Only the information about
the user consultations may be known. These consultations can
be viewed as unary ratings (has consulted/has not consulted).

When unary ratings are available, three main approaches
may be used:

The first approachaims at estimating the ratings that users
would have assigned to the items if they had rated them.
The user preferences are estimated from implicit feedback.
In [53], Oard and Kim question whether it might be possible to
substitute implicit feedback for explicit ratings. They propose
three types of implicit feedback (Examination, Retention,and
Reference) and a set of observable behaviors. Castagnoset
al. have extended this work by defining a generic implicit
modeling function to transform implicit feedback into esti-
mated ratings [17], [20]. This approach relies on usage mining
techniques, and infer preferences from usages. The generic
function first collects every possible implicit feedback. It
then groups user consultations per item and per user, and
synthetizes data under the form of criteria. These criteriamay
be the duration or/and the frequency of consultation of the
items. Finally, these criteria are used to provide an estimation
of the ratings. This approach alleviates the sparsity problem
and offers the advantage of providing estimated ratings that
can be reused by collaborative filtering techniques.

However, rating estimation is also very intrusive into privacy
of users and is quite imprecise due to the inference process

under uncertainty. As an example, the active user can be on
phone, which explains a long consultation duration but a low
interest for an item. He can also save a document to read
it later without having any opinion on it, or delete it by
accident. Thus, implicit modeling functions generally lead to
poor performance in term of accuracy.

The second approachskips the rating estimation step
and directly applies similarity measures on unary ratings.
Karypis [44], Linden et al. [46], and Mirandaet al. [49]
adopt an item-based point of view. They compute the sim-
ilarities between pairs of items, using adapted versions of
the cosine-based or conditional probability-based measures.
As mentioned previously, item-based models are known to be
accurate; for these reasons, the unary model presented in [44]
will be evaluated in our experiment framework.

Recently, Redpathet al. have extended these works to user-
based CF, where similarities between users are also computed
with either the adapted cosine similarity measure or the
Jaccard coefficient [61]. This approach assumes that the larger
the number of items two users co-consult, the more similar
they are. However, as no information about their preferences is
known, this assumption may not always be true. This approach
will also be evaluated in our experiment framework.

The third approachproposes to use one additional infor-
mation about the user consultations, which is the order of
consultation of the items. Sequences of consultations of items
are mined [52], [5]. However, this approach may be quite
unprecise, since it is extremely hard and time-consuming to
identify typical robust usage patterns under uncertainty.

In the following section, we focus on community detec-
tion methods from the literature, to determine the adequacy
between our unary rating framework and the literature.

III. C OMMUNITY AND LOCAL COMMUNITY DETECTION

A. Community Detection

As presented in the previous section, a clustering process
requires the information about the links existing between
elements to be clustered, and the weights associated to these
links. These elements and their links can also be represented
under the form of weighted graphs, where the nodes are the
elements to be clustered and the edges are their links (for
example, the link value may be the similarity between the
elements) [29]. In our case, nodes of the graph represent users
that have to be clustered.

Graph clustering has recently received much attention
[83], [74], [15], especially due to the numerous domains
where data can be represented under the form of graphs.
The best known graph clustering algorithms attempt to
optimize specific criteria related to the graph, such as
k-median, minimum sum, minimum diameter, etc. [64]. Other
algorithms are application-specific and may take advantage
of known characteristics of the application data or of the
application domain. In general, the approaches proposed to
perform clustering in graphs cannot easily scale up to large
problems due to their high time complexity [30].

The concept of community detection is linked to the concept
of clustering objects in graphs. The notion of community
can be seen in a broad sense: depending on the context, it
can be synonymous of module, class, group, cluster, etc. The
aim of community detection in graphs is to identify groups
of objects, by only analyzing the topology. As a result a
community in a graph is a set of nodes between which the
interactions are (relatively) frequent. We assume that thenodes
in a community probably share common properties or play
similar roles within the graph. For example, communities of
users in the blogspace often correspond to users sharing topics
of interests. The community detection task may be defined as
following: “Community detection involves the analysis of the
network structure with the goal of identifying communities,
i.e. groups of objects (which are represented as nodes in the
network) that are more densely connected (on the network) to
each other than with the rest of the objects” [55].

Community detection methods have been applied in a wide
range of scientific problems, e.g. social networks to identify
groups of friends [32], [50], citation networks to study the
centrality and the significance of scientific disciplines and their
inter-relations [79], [62], the World Wide Web to identify and
manage web page topics [28], biology and epidemiology to
detect the diffusion of viruses [78], [59].

In the frame of social networks, Tang [71] asked for
the actual difference between graph clustering and commu-
nity detection, and makes a clear comparative presentation
of what distinguishes the two processes. Clustering works
on a distance or similarity matrix whereas community de-
tection works on discrete data and manages an adjacency
matrix. The community detection algorithms thus use the
graph properties and exploit notions such as: k-clique, quasi-
clique [2], node-betweenness, edge-betweeness [31], [32],etc.
As a consequence, the majority of the community detection
algorithms proposed in the literature have been designed for
undirected and unweighted graphs. However, some of them
have been proposed for directed [28], weighted [40] or signed
graphs [81].

The algorithms used to detect communities can be clas-
sified in similar categories with clustering: fuzzy-community-
detection [35], hierarchical community detection [67] andpar-
titioning [22]. For example, a hierarchical community detec-
tion algorithm either groups highly connected nodes into larger
and larger communities, or divides the graph progressively
into smaller and smaller disconnected sub-graphs, identified
as the communities. One example of hierarchical commu-
nity detection algorithm is the one proposed by Girvan and
Newman, called the GN algorithm [32]. This algorithm uses
the edge betweenness measure, that expresses the importance
of the edges when transmitting across the graph following
paths of minimal length. An edge has a high betweenness
value if (almost) all shortest paths connecting nodes of two
communities run through it. The GN algorithm splits the graph
into disconnected sub-graphs, by removing the edges with
the highest betweenness score. Sub-graphs then undergo the
same procedure, until the whole graph is divided into a set of

Fig. 1. An example of simple graph

isolated nodes.
Partitioning algorithms frequently use another kind of in-

formation: the number of links within a set of nodes, and the
number of links between nodes of this set and the rest of the
graph. A community is thus a set of nodes highly connected
to each other, but not much connected to nodes outside the
community. Thus the problem consists in dividing the nodes
in groups, such that the number of edges between the groups is
minimal. The number of groups has to be defined beforehand.
A description of partitioning algorithms can be found in [58].

Let G be a graph, with an adjacency matrixAj,l making
links within the graph explicit. Letj be a node of the graph
and kj =

∑

l∈G Aj,l the degree ofj. Let us considerD a
subgraph ofG, to which nodej belongs.kj , the degree ofj,
can be split in two elements, with regard toD:

kj(D) = kin
j (D) + kout

j (D) (4)

where kin
j (D) =

∑

l∈D Aj,l is the number of edges
connecting nodej to other nodes insideD and kout

j (D) =
∑

l/∈D Ajl is the number of connections toward nodes in the
rest of the graph.

Radicchi et al. [60] proposed two definitions of commu-
nities: strong communities and weak communities. A strong
community is defined as follows:

kin
j (D) > kout

j (D), ∀j ∈ D (5)

D is a strong community if each node has more connections
within the community than with the rest of the graph.

A weak community is defined as follows:
∑

j∈D

kin
j (D) >

∑

j∈D

kout
j (D) (6)

D is a weak community if the sum of all degrees withinD is
larger than the sum of all degrees toward the rest of the graph.

We can notice here that the definition of a strong community
is more constraining than a weak community, as the connec-
tivity measure applies to each node. Moreover, each strong
community is also a weak community. Figure 1 presents an
example of a graph. The latter is split into two communities
(respectively in red and in blue) in Figure 2.

B. Local Community Detection

In the context of large-scale graphs, two problems may
arise: first, the complete graph may not be known; second

Fig. 2. An example of two communities

the graph may be too huge to be stored. For example, the
Web is a so large and evolving structure that no graph can
be easily constructed. In addition, as the Web is stored in
a decentralized way, building such a graph is difficult. On
the same principle, in social networks such as the Facebook
application1, the number of users is so huge that the network
cannot easily be stored.

In recommender system applications, specifically those
based on collaborative filtering, graphs of items (item-based
approach) or graphs of users (user-based approach) are man-
aged; the corresponding graphs are huge and their storage
is a complex task. Specifically, the stage of finding the set
of nearest neighbors of a given user (his community) in the
graphs of users is not tractable in the frame of large graphs.

In such cases, community detection algorithms cannot be
used, thus it is not feasible to determine the globally optimal
community structure. Instead, the search may be limited to
determining the local community structure in the neighbor-
hood of a query node. The complexity of the search is thus
reduced. Local-community detection algorithms are a way to
detect communities when the graph is really huge, i.e. not
tractable.

At the opposite of community detection algorithms that have
a global view of the whole graph, local community detection
algorithms have the characteristic to rely on a local point of
view and allow to detect communities when focusing on a
specific node rather than on the whole graph.

Local community detection algorithms start from a query
node (also called seed node) and iteratively add nodes to the
community being discovered, based on the local view of the
graph. At each step of the iteration process, the nodes actually
added to the local community are the nodes that are highly
connected to all the nodes of this community, i.e. nodes thatact
as a bridge with another community (with a high betweenness
value), and are connected to the whole community.

Local community detection algorithms have the advantage
of decreasing the complexity of the process, compared to
standard community detection algorithms, as only a subset
of nodes are managed at a time. Local community detection
algorithms have been mostly used in the frame of social
networks [25], [47], [8].

In comparison with traditional graph clustering algorithms

1http://www.facebook.com

and community detection algorithms, that perform partitioning
of edges, local community detection algorithms result in
overlapping communities.

Some algorithms have been proposed to detect local com-
munities. For example, Tianet al. [73] proposes an algorithm
designed for both unweighted and weighted graphs.

The local community detection algorithms have thus the par-
ticularity of being iterative and of having a local point of view.
We can remark that in graph clustering, some iterative or/and
local algorithms have also been proposed. For example, Song
et al. [69] has presented a fast iterative one-pass algorithm for
dynamic clustering. In [6], a local clustering algorithm has
been proposed based on a stochastic approach.

Most of the local community detection algorithms manage
three sets of nodes [8]:

• D the community under construction, which is typically
initialized with the query node;

• N the Neighboring nodes not inD but sharing an edge
with at least one element ofD;

• U the Unexplored nodes, i.e. those not adjacent toD.

In some algorithms, the setD is divided into the core set
C and the boundary setB. The core setC has no edge with
a node inN , while the boundary setB has at least one edge
with one node inN .

Any implementation of a local community detection algo-
rithm requires:

• the instantiation of the selection of the next node to add
to the community;

• the termination criterion (when to stop adding nodes);
• the filtering (which nodes, if any, have to be removed

from the community).

Most of the local community detection algorithms follow the
scheme presented in Algorithm 1.

Algorithm 1 Scheme of traditional local-community detection
algorithms

1: D ← {queryNode}
2: N ← neighbors(queryNode)
3: repeat
4: select the ’best’ noden ∈ N

5: D ← D ∪ {n}
6: N ← (N − n) ∪ neighbors(n) − D

7: until termination Criterion
8: return filter(D)

Recently, Chenet al. [23] proposed an improvement of
classical local-community detection algorithms to cope with
the problem of outliers that tend to be included in the com-
munities. The information about the number of connections
considered to form the communities is replaced by the average
number of nodes. TheL(D) metric represents the “quality” of
a communityD. It is computed with the following two terms.
The first termLin(D) measures the average internal degree
of nodes inD and is computed as follows:

Lin(D) =

∑

j∈D kin
j (D)

|D|
(7)

wherekin
j (D) represents the number of edges between the

nodej and the nodes inD, and |D| is the number of nodes
in D.

The second termLex(B) measures the average external
degree of nodes inB.

Lex(D) =

∑

j∈B kout
j (B)

|B|
(8)

wherekout
j (B) is the number of connections between node

j and external nodes. AsC is a subset ofD that has no link
with nodes out ofD, Lex(D) is strictly equivalent toLex(B).

The L(D) metric is defined as:

L(D) =
Lin(D)

Lex(D)
(9)

The higher theL(D) metric, the better the communityD.
In this algorithm, the resulting communities are weak com-
munities, according to the definitions of Racchidiet al. [60].

This algorithm has the same scheme than the one described
in Algorithm 1:

• The algorithm starts withB = D, made up of a single
node, a query nodeq andC = ∅;

• At a given iteration step, the selection of the next node to
be inserted in the community is made as following: the
node that maximizesL is added toD;

• The termination criterion is the evolution of the value of
L, the algorithm stops when the value ofL decreases.

The advantage of this algorithm is that no lower bound
about the connectivity has to be fixed a priori. The algorithm
automatically determines the bound, based on the value ofL.

IV. COMMUNITY DETECTION ALGORITHMS FOR

COLLABORATIVE FILTERING

Noting that community detection algorithms seem appro-
priate for our research framework, we chose to model Col-
laborative Filtering under the form of a graph: the nodes (the
vertices) are the users, and the edges represent the existence of
a link between two users. Using graph-theoretic approachesin
collaborative filtering has been initially proposed by Aggarwal
et al. in [1]. They rely on the same graph structure and the
twin notions of horting and predictability to address the scala-
bility problem. Exploring the graph allows to quickly identify
neighbors and users with valuable experience. Additionally,
Ekstrand et al. [26] use a graph structure with collaborative
filtering to recommend research papers. In our case, this graph
structure will be of high value to detect communities in a unary
rating context.

As explained in introduction, the challenge we address
is that of not being able to collect ratings, rendering the
traditional CF approach powerless. Thus, the only information
available in those cases is whether a given user has consulted
an item (for example a Web page) or not. Although this data

is less informative than ratings, a huge quantity of such data
is available.

One major problem appearing in this case is that selecting
nearest neighbors or clustering users is not an easy task, since
no similarity value can be computed precisely enough. As seen
before, one way to compute similarities between users relies
on the use of the cosine similarity measure, adapted to unary
values or the Jaccard coefficient [61].

However, computing similarities between all pairs of users
is time consuming. It takes O(M) time, between two users,
where M is the huge number of items.2 In addition, such
metrics assume that users who co-consult a high number of
items, tend to be similar users. However, these users may have
opposite preferences and may actually not be similar.

We thus decide to not compute such a similarity value, by
simplifying its computation stage. We consider that if two
users have co-consulted more thann (to be fixed) items,
these users are similar, this similarity measure being fixed
to a constant value1. The resulting graph has the distinctive
feature of having unweighted edges. Let us notice that the
computation of this similarity value is not complex. First,it
is a single count. Second, in the counting process, as soon as
the count reachesn, the process stops and an edge is created.
Besides, as the input data constantly evolves, the update of
the edges is facilitated as the existing edges do not have to be
reexamined.

As a result, the challenge we face is the selection of mentors
of a given user, when no information about the similarity
between users is available.

The first statement that can be made is that too many users
are connected to the active usera. Moreover, as the edges are
unweighted, the system cannot select nearest neighbors. How-
ever, one additional information may be used: the structureof
the graph.

We thus propose to exploit a local community detection
algorithm to detect mentors of the active user. Such an
algorithm mainly exploits the structure (the topology) of the
graph by finding sets of users (communities) highly connected
with users within the community and not much connected with
users out of the community. As previously noticed, the nodes
within a community probably share common properties and/or
play similar roles within the graph. As a consequence, in the
frame of collaborative filtering, we can assume that users in
a community have similar consultation behaviors and maybe
similar preferences.

More specifically, we aim at exploiting a local community
detection algorithm. A local community detection is preferred
over a community detection algorithm for several reasons:

• The local community detection algorithm copes with the
scalability problem of community detection algorithms;

• Once a query nodea is chosen, the users of the resulting
community can be considered as the mentors of that
starting nodea;

2http://www.eecs.berkeley.edu/˜pliang/cs294-spring08/lectures/
collaborative/slides.pdf

• The concept of mentor is local and asymmetric: a mentor
is specific to a given user. For example a userb may
be a mentor ofa, but a may not be a mentor ofb.
A local community detection algorithm deals with such
constraints, which is not the case of community detection
algorithms;

• When executing the algorithm for each possiblea, the
resulting communities overlap. Some nodes can thus
belong to several (even many) communities. Each node
can thus be a mentor of several users;

• The size of each community is not fixed a priori and the
number of communities is equal to the number of users.

We propose to use an adapted and improved version of the
local community detection algorithm proposed by Chenet al.
in [23], as it has been designed to efficiently manages outliers,
resulting in high-quality classes. The algorithm in [23] will be
called LCD in the rest of the paper, and will serve as our
baseline.

A. Selecting Only Direct Neighbors

Let us remind that our goal is to detect the appropriate set
of mentors for each active usera. TheLCD algorithm has the
characteristic of building communities with elements thatmay
not be directly connected to the query usera. The resulting
communities may not be centered ona. As a result,a may
be at a limit border of his community and many users in his
community may not be connected toa, resulting in a decrease
of the recommendation accuracy.

We propose to apply some modifications on this algorithm,
so as to be properly used in the frame of collaborative filtering.

In the recommendation stage of standard CF, the estimated
rating (or score) of an itemi is computed as the weighted
average of the neighbors’ ratings on this itemi. Weights are
instantiated by the similarity values between the active user
and his mentors. Therefore if the active usera’s community
is made up of users not connected toa (with a null similarity
value), these users will not be useful in the recommendation
stage. The consequence of this observation is that communities
have to be strictly made up of users connected toa, meaning
that theLCD algorithm in [23] is thus not an optimal local
community detection algorithm.

During the iteration step of the LCD algorithm, all the
neighbors of the current communityD (the candidate nodes)
are tested (the metricL is evaluated). The node maximizing
L is then included inD. We propose to relax this constraint
by reducing the set of candidate nodes to the set of users
connected toa. As a result, the mentors that belong to the
community are not only all connected toa, but are also highly
connected with the users of the community and not so much
connected with other nodes.

The resulting community will be directly comparable to the
set of mentors used by a standard KNN approach.

This adapted version ofLCD will be called “User-Centered
LCD” or UC − LCD.

B. Filtering out Sub-connected Nodes

Despite the fact thatLCD has been designed to cope with
the unexpected inclusion of outliers in communities, some
outliers may all the same be included in certain configurations
of the graph. As an example, when focusing on the first
iterations of theLCD and UC − LCD algorithms, we can
notice that the node that maximizesL is the node that
minimizesLex. In the worst case, this node may be connected
to only one node out of the community. However, once this
sub-connected node is included in the community, it remainsin
the community till the end of the process. Nevertheless, as this
node is sub-connected, it will be sub-connected to the nodes
within the community. Thus, the quality of the community
is lowered. In addition, such a node can be also integrated
in further iterations, resulting in the integration of additional
nodes potentially sub-connected to the community.

To improve the quality of the resulting community, we
propose to filter out the sub-connected nodes from the com-
munity. At each iteration step, the connectivity of each node
in the communityD is computed and each node with a
connection value below a predefined thresholdθ is filtered
out from the community. The filtering procedure is presented
in Algorithm 2. The resulting communities will thus be only
made up of nodes highly connected with the other nodes of
the community. The new local community detection algorithm
is presented in Algorithm 3.

Algorithm 2 Procedure FilterSubConnected(θ)
Require: D: a community

1: N ← ∅
2: for all (j ∈ D) do
3: if (kin

j (D) < θ · |D|) then
4: N ← N ∪ {j}
5: end if
6: end for
7: for all j ∈ N do
8: V ← V ∪ {j}
9: end for

10: return (D)

Algorithm 3 Scheme of the F-LCD Algorithm

1: D ← {queryNode}
2: N ← neighbors(queryNode)
3: θ ← Initialize Connectivity Thresold V alue

4: repeat
5: select the ’best’ noden ∈ N

6: D ← D ∪ {n}
7: N ← (N − n) ∪ neighbors(n) − D

8: FilterSubConnected(θ)
9: until termination Criterion

10: return (D)

At the opposite of the filtering step presented in Algo-
rithm 1, the filtering in this algorithm is made within the

iterations. In addition, the nodes that can be filtered are all the
nodes of the community, and not only the last node inserted
in the community. Indeed, a given node may be connected to
most of the nodes in the community at one iteration step, and
this connectivity may decrease as the community increases.Of
course, the connectivity thresholdθ has to be fixed a priori.

This refined version ofUC − LCD, that filters out sub-
connected nodes will be calledF − LCD.

C. Recommending

Once the communities have been computed, the recommen-
dation process can be performed. In classical approaches, the
set of mentors is used, likewise their similarities with theactive
user. Here, no information about the similarity between the
active user and his mentors is known. Thus, the classical rating
estimation step of Equation (1) cannot be used.
We propose to adapt this rating estimation step so as to be
used when no similarity value is available. Assuming that the
highest the number ofa’s mentors having consulted an item,
the highest the probabilitya will like this item. We propose a
recommendation equation that computes the score of an item
by applying democratic voting rules among the mentors ofa.
The mostly consulted items among the mentors will be those
recommended. The resulting equation is presented in Equation
(10).

score(a, i) =
∑

u∈Da,i

1 (10)

Da,i is the set of users in the community ofa that have
consulted the itemi. We can notice that, as in traditional
selection of neighbors with clustering algorithms, the exact
number of mentors that will be used is not known a priori. It
is a subset of the community, but their number will depend
on the item of interest in the estimation of the score.

V. EXPERIMENTS

A. Experimental Data

The experiments conducted in this paper aim at evaluating
the adequacy of community detection algorithms to identify
mentors in CF. These experiments also aim at quantifying
the recommended items’ loss of accuracy when no rating is
available,i.e. when classical approaches cannot be used.

We choose to conduct our experiments on two corpora from
the state of the art, that contain ratings. In these corpora,we
substitute consultations for ratings. The experimental datasets
we have chosen are the well-known MovieLens and Jester
datasets.
The MovieLens dataset3 contains100, 000 explicit ratings, on
1682 movies (items) from943 anonymous users. Each rating
varies in the range from1 (dislike) to 5 (like). Each user has
rated at least20 movies. The data sparsity on this dataset is
93.7%.
The Jester dataset4 is made up of1.8 Million explicit ratings,

3http://movielens.org
4http://goldberg.berkeley.edu/jester-data/

on 100 jokes (items) from24, 983 anonymous users. Each
rating varies in the continuous range from−10 to +10. Each
user has rated at least36 jokes. The data sparsity on this
dataset is only27.5%.

We used these two datasets in order to validate the al-
gorithms we proposed, in different conditions. MovieLens
allowed us to evaluate the robustness of the algorithms in a
context of high sparsity, with a high number of items, and
in a situation where ratings are mainly highly positive (the
average rating value is3.53 on a scale ranging from1 and
5). However, this dataset suffers from a drawback: there is
no direct mapping between the presence of a rating and an
observable user action. On one hand, users have likely viewed
other movies that they did not rate. On the other hand, ratings
are frequently given directly on search result pages and not
necessarily on item detail pages. In addition, users may rate
a movie they have not actually watched, or that they watched
a long time ago. Thus, we chose to validate the algorithms
on an additional dataset. The Netflix dataset suffers from the
same deficiency than MovieLens. In Jester on the contrary,
users necessarily have to read a joke before being able to rate
it, and they are able to read any of them at any moment.
Moreover, at the opposite of MovieLens, the Jester dataset
does not face any sparsity problem, the distribution of ratings
is more homogeneous than MovieLens and the rating scale
is quite larger. At last, there are many more users than items
in Jester, which is complementary to MovieLens, where the
number of items is almost twice the number of users.

Following commonly used test procedures5, we divided
these corpora into five parts, in order to perform a five-fold
cross-validation; training is made up of 4 parts and test of the
last part, repeated five-times by alternating the test part.On the
MovieLens dataset, this division was provided along with the
dataset; each part contains 20% of the ratings. On the Jester
dataset, we performed this division; we randomly divided the
dataset into 5 parts. Similarly to the MovieLens dataset, each
part contains 20% of the ratings.

For both corpora, the ratings are transformed under the form
of consultations; the value 1 is assigned if a user has rated an
item (whatever is the rating value), and 0 else. As a result,
1 means that the user has consulted the item, and 0 means
he/she has not.

To build the graph of users, and determine if an edge exists
between two users, we choose to fix a minimum number of
co-consulted items. On the MovieLens dataset, this value has
been set to 20, as suggested by [76]. On the Jester dataset, it
has been set to 36, as it is the minimum number of jokes each
user has rated. Thus, if two users have co-consulted more than
20 movies or 36 jokes, a link between them is created, and
the value of this link is equal to 1; else no link between these
two users is created.

5See Section “Cross-Validation Subset Generation Scripts”,
http://www.grouplens.org/system/files/README10M100K.html

B. Evaluation

In classical collaborative filtering, the system relies on the
set of ratings the users have assigned to items (in the training
dataset). These ratings are exploited to estimate unknown
preferences on the items the users have not rated yet. These
missing ratings are then compared to the ratings from the
test dataset to evaluate the accuracy of these estimations.
This accuracy is often computed under the form of the Mean
Average Error (MAE), that computes the mean difference
between the estimated ratings and the actual ratings [63].

Herlockeret al. [37] demonstrate that this metric is in fact
not very accurate when considering users’ ratings, as a user
is usually interested to know if he is going to like the item
or not. As a consequence, several papers propose to use other
classical information retrieval metrics, such as precision and
recall [37], [66].

In our experiments, as no rating is available during training
and test, no rating can be estimated. Thus, the MAE measure
cannot be used in this context.

We propose to evaluate the performance of the various
approaches presented in this paper in terms of precision. The
precision reflects the ability of a system to recommend items
that users will actually like.
During the recommendation process, the system computes a
score for each item the active user has not consulted yet. This
set of items is then sorted according to this score, and the top
of the list is the set of recommended items. Obviously, the
number of recommended items has to be fixed.
Concretely, the precision is defined as the percentage of items,
among those recommended by the system, that the user has
actually liked; it is defined as follows:

Precision = Number of liked recommended items
Number of recommended items (11)

The highest the precision value, the most accurate the
system.

However, this evaluation requires the information about
which items have been actually liked by users. In the test
datasets we exploit, the users’ ratings are actually known,thus
the items liked by the users are also known. On the MovieLens
dataset, we follow the work presented in [4]: a rating greater
or equal to 4 reflects that a user has liked an item. On the
Jester dataset, we consider that a rating greater or equal to6
means that the user liked the item. Of course, this information
about the interest of users on items will not be used to compute
recommendations, it will be used only to evaluate the accuracy
of the approaches.

In the experiments below, we fixed the number of items
recommended by the system to10 (size of the top-n list) ,
which is a usual size for recommendation lists [84], [10].

C. Description of the Datasets

We present here some statistics about the datasets used to
train and evaluate the approaches.

As told previously, on the MovieLens dataset, the number
of users is943. Each user in this dataset has rated at least

20 movies. On the 5 training datasets, on average739 users
have co-consulted/co-rated more than20 items with at least
one other user. The average number of connected users among
these users is165 (22.3%); the maximum number of neighbors
is 612 (82.8%) and the minimum is1.

On the Jester dataset, the number of users is24, 983. Each
user in the dataset has rated at least36 jokes. On the 5 training
datasets,20, 145 users have co-consulted/co-voted at least36
jokes with at least one other user.
The average number of connections among these users is on
average15, 644 (77.6%), the maximum number is18, 697
(92.8%) and the minimum is1.

D. Baseline Models with Rating Values

In this section, we are interested in the accuracy of recom-
mendations when the ratings are available. We focus on the
user-based collaborative filtering. Two classical collaborative
filtering approaches (see section II-C) will give us the refer-
ence precision values. We will then test our approaches that
do not use ratings, with the aim of getting as close as possible
to these reference precisions.

1) Classical Collaborative Filtering with KNN:We first
evaluate the precision when mentor selection is performed
by selecting direct neighbors (KNN) [38]. We relied on the
Pearson Correlation Coefficient (Equation 2) to estimate the
similarity value between users, since literature shows it works
well [68]. The number of neighborsK has been set to50,
for both corpora; this value represents the best compromise
between precision and neighborhood size according to the
experiments we conducted and is in accordance with what has
been suggested in [39]. The resulting precision is presented in
Figure 3. We can first notice that the precision on the Jester
dataset is roughly20% lower than the one on the MovieLens
dataset.

2) Classical Collaborative Filtering with Clustering:We
also evaluate the precision when mentors are selected with
a user-based clustering technique [51]. A K-means algorithm
has been used and the number of classes has been set to20.
The resulting precisions are also presented in Figure 3.

When comparing the precisions of the two approaches, we
can notice that the KNN-based collaborative filtering performs
slightly better than the clustering-based collaborative filtering;
an improvement of around1% is achieved on both corpora,
which is not statistically significant. This conclusion is in
accordance with the state of the art.

The following sections are dedicated to the evaluation of
the precision when only the information about consultations
is available.

E. Classical Approaches when Ratings are not Available

In this section, we present two classical approaches when
no rating is available.

1) Exploiting the Whole set of Connected Users:When
users’ ratings are not available, no quantitative link can be
easily computed. Thus, two users are either connected or not;
this link is unweighted. As explained in section V-A, we decide

Fig. 3. Precision values on MovieLens and Jester when using KNN and
clustering approaches for neighbors selection, when ratings are available.

 50

 55

 60

 65

 70

 KNN Clustering KNN Clustering

P
re

ci
si

on
 (

n=
10

)

MovieLens Jester

Fig. 4. Precision values on MovieLens dataset for classicalapproaches for
neighbors selection when ratings are not available

 62

 63

 64

 65

 66

 67

 68

 69

 70

All Conn.Users # Co-cons.Items Most Pop.Items Item-based LCD UC-LCD

P
re

ci
si

on
 (

n=
10

)

to connect two users if they have co-consulted more than a
fixed number of items. As a result, as all connected users
have the same similarity value, neighbor selection cannot be
easily made.

One way to build the set of mentors of the active user
is to keep all users that are connected to him. In the rec-
ommendation stage, a democratic vote among the mentors is
performed to estimate the score of a given item: the more
the users connected to the active user have consulted an item,
the more the active user should like this item. The minimum
number of co-consulted items has been set to 20 for the
MovieLens dataset and 36 for the Jester dataset. The resulting
precisions for both datasets are presented in the first bar “All
Conn. Users” of Figures 4 and 5. In addition, the average size,
the median and the quartiles of the resulting communities are
presented in the first line of Tables I and II.

On the MovieLens dataset, exploiting users’ consultations,
using the whole set of connected users as mentors, and a
democratic vote among these mentors does not lead to a

Fig. 5. Precision values on Jester dataset for classical approaches for
neighbors selection when ratings are not available

 42

 43

 44

 45

 46

 47

 48

 49

 50

All Conn.Users # Co-cons.Items Most Pop.Items Item-based LCD UC-LCD

P
re

ci
si

on
 (

n=
10

)

TABLE I
SETTING-UP OF THE COMMUNITIES OF THEMOVIELENS DATASET

Way of selecting Avg number lower median upper
mentors of mentors quartile quartile
Whole set of 165 7 89 313
connected neigh.
Algorithm LCD 240 12 387 434
Algorithm UC-LCD 99 1 30 190
Algorithm F-LCD 48 1 2 80
(with θ = 0.5)

significant decrease of the precision: only1.5% compared to
the exploitation of users’ ratings and KNN to select mentors.
At the opposite, on the Jester dataset, a large decrease is
achieved:14%.

We performed an additional experiment to study if the large
decrease on the Jester dataset is due to the exploitation of the
consultations (loss of the rating information), or to the way
the mentors are chosen. In this experiment, the set of mentors
has been selected by exploiting the ratings, it is the same
set than the one used in Section V-E1. A democratic vote
has then been used to compute the recommendations. The
resulting precision is47.32, which corresponds to a decrease
of 12% compared to the precision obtained with the use of
ratings for training and for test. We can conclude that, on the
Jester dataset, the rating values have a large influence on the
precision of the recommendations. This may be explained by

TABLE II
SETTING-UP OF THE COMMUNITIES OF THEJESTER DATASET

Way of selecting Avg number lower median upper
mentors of mentors quartile quartile
Whole set of 15644 17178 17646 18062
connected neigh.
Algorithm LCD 18376 17645 19564 20098
Algorithm UC-LCD 5037 7 7122 7663
Algorithm F-LCD 172 5 18 155
(with θ = 1.0)

the rating scale used in Jester, which is not only continuous,
but also larger than the one used on the MovieLens dataset.

2) Taking into Account the Number of Co-consulted Items:
When no rating is available, the similarity between users can
even so be computed. The number of items co-consulted by
two users can be used as a basis to compute this similarity:
one can assume that users with a high number of co-consulted
items tend to be similar. The similarity measure we use is the
one presented in [49].

The mentors of the active user are selected according to
their similarity measure with the active user. The number of
users kept is has been chosen experimentally as the number
leadings to the highest precision value; it has been set to50 on
the MovieLens dataset and to450 on the Jester dataset. The
resulting precisions are presented in the second bar “# Co-
cons. Items” of Figures 4 and 5. On both corpora, when the set
of mentors is selected based on their number of co-consulted
items with the active user, the precision decreases compared
to the use of the whole set of connected users. This decrease
is particularly large on the Jester dataset:6% compared to the
use of the whole set of connected users. This decrease is only
2% on the MovieLens dataset. Thus, the choice of the mentors
based on the rate of co-consulted items does not seem to be a
good choice on a user-based approach. We can conclude that
users who tend to consult the same items do not necessarly
tend to share the same opinions.

Let us notice that, in both previous experiments, a demo-
cratic vote among mentors has been used in the recommen-
dation stage. Thus the movies recommended (with the highest
scores) may tend to be popular items. To verify that this
democratic vote does not come down to recommending the
most popular items, all users taken together, we propose to
evaluate the precision of recommendations when the most
popular items are recommended. The corresponding precisions
are presented in the third bar “ Most Pop. Items“ of Figures 4
and 5. For both corpora, the resulting precisions are lower than
those obtained when exploiting the whole set of connected
users. As a consequence, we can say that the democratic vote
does not come down to recommend the most popular items.

F. The Item-based Approach

As shown in Section V-E, exploiting the number of co-
consulted items to compute the similarity between users
lowers the precision in user-based approaches. However, this
information has often been used in item-based approaches
[44], [46]. We thus used this item-based metric and evaluated
the corresponding precisions and, as suggested by [44], the
vectors have been normalized. The fourth bar “Item-based”
of Figures 4 and 5 represent the corresponding precisions.
On the MovieLens dataset, the resulting precision is slightly
lower than the one of the user-based approach; this decrease
is about 2.5%. At the opposite, on the Jester dataset, the
precision has been increased by1.6%. These differences may
be explained by the characteristics of the two datasets. The
MovieLens dataset has much more items than users, the user-

based approach leads to more accurate recommendations. At
the opposite, the item-based approach performs better on the
Jester dataset as the number of items is smaller than the
number of users.

The highest precision values reached the previous experi-
ments are those related to use of the whole set of connected
users as mentors. These precision values will now be viewed
as the baseline values when ratings are not available.

G. Community Detection Algorithms

We now focus on the use of community detection algorithms
to detect mentors.

1) The Original Algorithm (LCD): Although the original
algorithm proposed in [23] has the drawback of discovering
communities that include users not directly connected to the
active usera, we are all the same interested in studying
the precision associated with the resulting communities. As
in the previous experiments, a democratic vote among the
users of the community is computed to estimate the score of
each item (Equation 10) and perform recommendations. Let
us remark that the users in the resulting communities who
are not connected to the active user cannot be used in the
recommendation stage. Despite the possible large number of
users in the communities, the number of users actually useful
for the recommendation may thus be reduced. In addition, as
the LCD algorithm forms non user-centered communities, the
active user may be on the border of his/her own community,
which may result in a low precision.

The characteristics of the resulting communities are pre-
sented in the second line of Tables I and II. As expected,
the size of the communities is larger than the baseline (when
considering all users directly connected to the active user). The
average size is actually increased by45% for the MovieLens
dataset and17% for the Jester dataset. The smaller increase
on the Jester dataset is due to the high percentage of users
connected to each active user.
The corresponding precision values are presented in the fifth
bar “LCD” of Figures 4 and 5. The precision values are low:
63.55 on the MovieLens dataset and44.9 on the Jester, which
corresponds to a decrease of respectively5.5% and 3.2%,
compared to the use of the whole set of connected users.
This decrease may be due to the reasons presented hereabove.
The lower variation of the size of the communities in Jester
compared to those in MovieLens may explain the smaller
decrease of the precision.

To study the influence of the mentors not directly connected
to the active usera, we conducted an additional experiment.
The community detection algorithm was initialized with the
whole set of direct neighbors (i.e.D was initially made up
of the active usera and his connected users). The algorithm
was then executed to discover additional neighbors inD. The
resulting precision was below the baseline precision. We can
conclude that indirect neighbors in this case are not useful
mentors.

2) The User-Centered Algorithm UC-LCD:In this paper,
we propose to adapt the LCD algorithm so as to detect user-

centered communities, only made up of users connected the
active usera. The recommendation stage remains the same
than the one used in the previous experiments (Equation 10).
Details about the resulting communities are presented in the
third line of Tables I and II. These communities are a subset
of the communities used in Section V-E1. The corresponding
precisions are presented in the sixth bar “UC-LCD” of Fig-
ures 4 and 5.

On both corpora, the precision reached by the UC-LCD
algorithm exceeds the precision of the LCD algorithm, while
reaching a similar precision to that of the baseline one (when
using the whole set of neighbors). It is even slightly higheron
the Jester dataset. In addition, this similar precision is achieved
with a smaller set of mentors. On the MovieLens dataset, the
communities are on average40% smaller than the baseline
ones and68% smaller on the Jester dataset.

3) Filtering Sub-connected Users in the Communities (Al-
gorithm F-LCD): In section IV-B, we put forward that the
local community detection algorithm proposed by [23] has
the drawback of inserting in the communities some users with
few connections in the graph. These users are mainly inserted
in the communities in the first iterations. As a result, these
users lower the quality of the communities. Thus, we proposed
to add one constraint to the composition of the communi-
ties, related to the connectivity of each element within the
community. At a given steps, one user is removed from
the community if his/her connectivity is below a threshold
valueθ fixed a priori. This threshold is called the connectivity
threshold.

We performed several experiments, with the connectivity
thresholdθ ranging from0.0 (no removal, i.e.UC − LCD)
to 1.0 (a node is removed if it is not connected to all the
nodes of the community). The resulting precisions, according
to this threshold, are presented in Figures 6 and 7. Figures 8
and 9 present the evolution of the size of the communities,
depending on this threshold.

In addition to these experiments, we evaluated the precision
values with weighted edges. The weights associated with the
links are those used in Section V-E2. The computation of the
Lin andLex measures are thus adapted to take these weights
into account. The number of links is no more used. It is
replaced by the sum of the values of the edges. The resulting
precisions are also presented in Figures 6 and 7. The evolution
of the size of the corresponding communities, according to the
threshold, are presented in Figures 8 and 9.

Figures 6 and 7 show that, on both corpora, the use
of weighted links does not lead to a significant increase
of the precision, compared to not filtering the communities
(UC − LCD). At the opposite, when using F-LCD with
unweighted links, an improvement of the precision is obtained.
On the MovieLens dataset, the precision increases along with
the threshold value, till a valueθ = 0.5. Above this value,
the precision decreases. The maximal value is67.57 which
corresponds to an increase of1% compare to the UC-LCD
algorithm. This small increase is reached with a number of
mentors52% lower thanUC−LCD. Compared to the mentors

Fig. 6. Precision values on MovieLens according to the connectivity threshold
θ

 62

 63

 64

 65

 66

 67

 68

 69

 70

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 (

n=
10

)

Connection threshold

Unweighted graph
Weighted graph

Fig. 7. Precision values on Jester according to the connectivity thresholdθ

 42

 43

 44

 45

 46

 47

 48

 49

 50

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 (

n=
10

)

Connection threshold

Unweighted graph
Weighted graph

Fig. 8. Size of communities on the MovieLens dataset, according to the
connectivity thresholdθ

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

S
iz

e
of

 C
om

m
un

iti
es

Connection threshold

Unweighted graph
Weighted graph

Fig. 9. Size of communities on the Jester dataset, according tothe
connectivity thresholdθ

 0

 2000

 4000

 6000

 8000

 10000

 0 0.2 0.4 0.6 0.8 1

S
iz

e
of

 C
om

m
un

iti
es

Connection threshold

Unweighted graph
Weighted graph

from the baseline (All connected users), this decreases reaches
71%.

On the Jester dataset, the precision decreases with the
threshold value untilθ = 0.7 and then increases. The optimal
threshold value isθ = 1.0. Tthe corresponding precision value
is 47.76, which corresponds to a increase of3% in comparison
with the UC-LCD algorithm, while reducing the number of
mentors by96%. This decrease is99% when comparing to
the set of mentors from the baseline.

The precision ofF −LCD remains naturally lower than the
one achieved when managing ratings. However,F − LCD

reaches a precision value very close to that objective. The
differences betweenF−LCD and the rating-based algorithms
are even not statistically significant on the MovieLens dataset.

Figures 8 and 9 show that the size of the communities
decreases in accordance with the value of the connectivity
threshold. On the unweighted graph, this downtrend is espe-
cially strong on the MovieLens corpus: when the threshold
value is fixed toθ = 0.5, the size of the community is
divided by 2, and made up on average of52 users. This
number is similar to the size of the communities used in the
experiments we conducted with the KNN approach. At the
opposite, when using the weighted graph, it decreases more
slowly. For example, when the connectivity threshold is set
to θ = 0.9, the size of the community is only decreased by
35%, whereas it decreased by more than90% when using the
unweighted graph. The reason of this small decrease is that,
when managing weighted edges, the algorithm tends to insert
in the communities users with high-valued links. Users with
high-valued links are users who tend to have consulted a lot
of items, thus users highly connected.

A similar conclusion can be drawn on the Jester dataset.
However, whenθ is fixed to 0.5, the decrease of the size of
the communities is lower, which is due to the high connectivity
of the nodes. An important decrease is obtained when the
threshold value exceeds0.7, which corresponds to the thresh-
old value above which the precision increases.

H. Similarities Between Rating-based and Community-based
Mentors

In the previous section, the experiments showed that, on the
MovieLens dataset, theF −LCD algorithm, with an average
community size of48 users, leads to a precision value which
is not very different to the one obtained when exploiting the
KNN approach with ratings andK = 50. Thus we can ask in
what measure the two sets of communities, that have similar
average sizes, are formed by the same users.

We can first say that the maximal size of communities when
using KNN is 50, whereas it is80 for the F-LCD algorithm
(Table I). To further analyze the communities, we propose to
evaluate the average number of communities a user belongs to,
for each approach. As the sizes of the communities are equal
on average, the average number of communities a user belongs
to is equivalent. However, the repartition, in terms of median
and quartile numbers may be different. Table III presents this
repartition.

The distribution of the number of communities the users
belong to are different. When focusing on the maximal number
of communities users belong to, both algorithms have a similar
value: about 260, which represents 28% of the communities.
This means that each user belongs to less than 28% of the
communities. Nevertheless, when using theF − LCD algo-
rithm, half of the users belong to less than 10 communities,
whereas they belong to less than 35 communities withKNN .
Thus, with F − LCD, users tend to belong to either few
communities, or many communities, whereas the repartition
seems to be more homogeneous withKNN .

On the Jester dataset, a similar experiment has been con-
ducted. With KNN, we built communities withK = 172 (to
have similar average sizes of communities than the optimal
precision of F-LCD). The distribution of the number of users
in the communities also differ. Specifically, the first quartile
and the median are twice smaller with F-LCD compared to
those with KNN.

VI. D ISCUSSION

This paper was dedicated to the identification of a good
way to detect mentors in a rating-free collaborative filtering
system.

As presented in Section II-E, in the absence of ratings,
existing algorithms of the literature usually consider that
the more two users have co-consulted two items, the more
they are likely to have similar preferences [46], [49]. So as
to confirm or invalidate this hypothesis, we compared the
precision measures of two different mentor selection strategies:

1) our baseline consists in defining the mentors as the
whole set of connected users (referred to as “All con-
nected users” in Figures 4 and 5);

2) K nearest mentors have been selected on the basis of
their number of co-consulted items with the active user
(see label “# Co-consulted Items” in Figures 4 and 5).

The resulting precisions of the second strategy are not
increased in comparison with our baseline. They even decrease

the precision by2% and6% on MovieLens and Jester respec-
tively. We can thus deduce that the number of co-consultations
between two users does not reliably reflect their similarityof
preferences. This comes to disprove the optimality of existing
approaches.

Following this observation, we decided to not manage
any similarity information between users, and made several
proposals and refinements to improve the mentor selection
process through a graph-theoretic approach. We represented
the set of users under the form of an unweighted graph, where
users are linked if they have co-consulted a sufficient number
of items. This number of co-consulted items was first used to
pre-filter mentors. Subsequently, we exploited the connectivity
within this graph to include the most relevant candidates
in the set of mentors. Our investigations led us to propose
the new modelUC − LCD inspired from local community
detection algorithms. The precision reached by this model was
similar to the one obtained when all connected users are taken
into account (our baseline), while managing a set of mentors
greatly smaller (a reduction of40% and 68% is observed).
We refined this model by discarding, during the process of
community detection, the mentors sub-connected within theset
other mentors (modelF −LCD). The resulting precisions of
F−LCD have been increased in comparison withUC−LCD,
while decreasing the set of mentors of52% in MovieLens and
96% in Jester.

As presented in Section II-E, the item-based approach
is often used to compute recommendations in a rating-free
context [44]. Thus, we also compared the previous precision
measures (UC − LCD and F − LCD) to the one of an
item-based approach (see label “Item-based” in Figures 4
and 5). Results show thatUC − LCD and F − LCD are
on average respectively 4.25% and 6.2% better than the item-
based approach.

As a conclusion, if the number of co-consulted items did
not appear to be a reliable measure to detect mentors, the
connectivity (both between the active user and his/her mentors,
and between each pair of mentors) has been proven to be
much more adequate within the frame of these experiments.
An improvement of the precision is obtained while requiring
a small set of mentors.

The reason why we chose to conduct the experiments
on both MovieLens and Jester datasets lies in their various
characteristics. These datasets allow us to reliably validate
the robustness and relevancy of our models. The MovieLens
dataset has a high sparsity level (94%) whereas the sparsity
level on Jester is only27%. On the MovieLens dataset, each
user has consulted at least1% of the items whereas on the
Jester dataset each user has consulted at least30% of the
items. This means that the connectivities between users are
very different in MovieLens and in Jester. In addition, the
rating scales are very different, the scale used in Jester isfour
times larger than the one in MovieLens. Among other notewor-
thy differences, we noticed exploiting the users’ ratings,the
precision values of the two corpora differ of roughly 20%. We
also conducted an experiment to compare the precision of the

TABLE III
QUARTILE , MEDIAN AND MAXIMAL VALUES OF THE NUMBER OF COMMUNITIES A USER BELONGS TO, ON THE MOVIELENS DATASET

1st quartile median 3rd quartile maximal
unweighted edges 1 10 183 254
KNN 2 35 123 267

recommendations with and without ratings. We showed that,
on the Jester dataset, exploiting the rating values is of high
importance and largely increases the precision value, compared
to using only consultations. At the opposite, on the MovieLens
dataset, ignoring the rating values has a smaller impact. This
difference may be explained by the difference of the rating
scales.

Despite these differences of characteristics, the improve-
ment of the precision in a rating-free context thank to our
models have been confirmed in these two corpora. Our rating-
free modelF −LCD leads to an increase in precision of1%
on MovieLens, and3% on Jester, compared to the rating-free
baseline, while decreasing the number of mentors by71% and
99% respectively. On MovieLens, the corresponding precision
is even only1% lower compared to the one obtained when
managing ratings. We can conclude that the connectivity is a
good information that better reflects similarity between users
than the number of co-consulted items. Of course, the optimal
connectivity threshold differs according to the graphs.

VII. C ONCLUSION

This paper focused on the mentor selection problem in
the frame of user-based collaborative filtering. Classicalap-
proaches of mentor selection rely on a similarity value between
users. This similarity is computed on the basis of user-provided
ratings, that reflect their preferences on the items. Two main
approaches of mentor selection are used in the literature. The
first approach defines mentors of a usera as the users with the
highest similarity value. The second approach clusters users
thanks to their similarity value, and users are considered as
mentors of each other within a cluster.

In this work, we have addressed the problem of mentor
selection when no user-provided ratings are available. In that
case, no similarity value between users can be precisely
computed; thus no mentor selection can be easily made
either. Nevertheless, the set of user consultations is available.
Exploiting the number of co-consulted items is a way to
estimate the similarity between users. We proposed to not
exploit this information to deduce the similarity between users.
The approach we proposed if made up of two stages. First, we
considered that two users who have co-consulted more than
a predefined number of items are potentially similar users;
their similarity value is fixed to1. This approach has the
advantage to make the design of the similarity matrix easier
than the classical approach. Indeed, for each pair of users,
the computation of the value of the similarity (0 or 1) comes
down to a simple count that can be stopped when the minimum
number of co-consulted items has been reached.

Second, we represent the set of users under the form of an
unweighted graph and we exploit local community detection

algorithms to form communities of users, and deduce the
mentors, within this context. Such algorithms exploit the
structure of the graph and do not pay attention to the value
of the edges. In addition, they have a local view of the graph,
which allows to design a community for each user, resulting in
overlapping communities. Used in the context of collaborative
filtering, these algorithms have the advantage of both the
direct neighbor selection and classification of users of classical
approaches.

We adapted a state-of-the-art local community detection
algorithm so as to discover communities that fit the char-
acteristics of collaborative filtering: the communities have to
be user-centered and have to be strictly made up of directly
connected users. The users that belong to the community of a
given usera are his mentors.

We then proposed to further refine the set of mentors by
filtering out subconnected mentors in the communities so as
to have communities made up of only highly connected users.
We assumed that the more the set of mentors of a user are
connected, the more the quality of the set of mentors is high.

To the best of our knowledge, the exploitation of the
structure of the graph has been rarely studied in the frame of
collaborative filtering, especially to perform mentor detection.

This approach has been tested on two datasets with various
characteristics: rating scale, number of users and items, con-
nectivity of the graph, etc. Experimental results have shown
that our local community detection algorithmF − LCD

improves the precision compared to the baseline model that
uses the whole set of connected users (from1% to 3%). In
addition, the number of mentors used is dramatically decreased
(up to 99%).

Thus, we have shown that, when the user-provided ratings
are not available, mentor selection can however be performed
by exploiting the connectivity between mentors in place of
their similarity values, while reaching a good precision value.

As a future work, we plan to study the use of local
community detection algorithms when ratings are available.
The challenge is thus how to accurately exploit similarities of
ratings in these algorithms.

Among perspectives, we also propose to extend our model
to security issues. Collaborative Filtering is well-knownfor
being very vulnerable to malicious attacks [14], since it uses
the opinion of a community of similar users to predict the
opinion of a current user. Thus, the problem consists in
automatically making the difference – among the global set
of users – between the leaders who helps building relevant
recommendations, and attackers who aims at degrading the
service or influencing users. Analyzing connectivity between
users will help to reach this objective.

REFERENCES

[1] Aggarwal, C.C., Wolf, J.L., lung Wu, K., Yu, P.S.: Horting hatches an
egg: A new graph-theoretic approach to collaborative filtering. In: In
Proceedings of the Fifth ACM SIGKDD International Conference on
Knowledge discovery and data mining. pp. 201–212. ACM Press (1999)

[2] Alba, R.: A graph-theoretic definition of a sociometric clique. Journal
of Mathematical Sociology pp. 112–126 (1973)

[3] Amati, G., Carpineto, C., Romano, G.: An effective threshold-based
neighbor selection in collaborative filtering. In: European Conference
on Information Retrieval (ECIR 2007). pp. 712–715 (2007)

[4] Baltrunas, L., Ricci, F.: Dynamic item weighting and selection for
collaborative filtering. In: Web mining 2.0 Workshop, ECML-PKDD
2007. Springer-Verlag (2007)

[5] Bonnin, G., Brun, A., Boyer, A.: Web Intelligence and Intelligent
Agents, chap. Skipping-Based Collaborative Recommendations inspired
from Statistical Language Modeling. Zeeshan-ul-hassan Usmani (March
2010), http://sciyo.com/articles/show/title/skipping-based-collaborative-
recommendations-inspired-from-statistical-language-modeling

[6] Booth, J., Casella, G., Hobert, J.: Clustering using objective functions
and stochastic search. Journal of the Royal Statistical Society (2007)

[7] Bradley, P.S., Fayyad, U.M.: Refining initial points fork-means cluster-
ing. In: Proceedings of the 15th International Conference on Machine
Learning (ICML98). pp. 91–99. Morgan Kaufmann, San Francisco, USA
(May 1998)

[8] Branting, L.: Incremental detection of local community structure. In:
2010 International Conference on Advances in Social Networks Analysis
and Mining. pp. 80–87 (2010)

[9] Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive
algorithms for collaborative filtering. In: Proc. of UAI-98 (1998)

[10] Brun, A., Bonnin, G., Boyer, A.: History dependent recommender sys-
tems based on partial matching. In: Proceedings of the 17th International
Conference on User Modeling, Adaptation and Personalization (UMAP
2009). pp. 343–348 (2009)

[11] Brun, A., Hamad, A., Buffet, O., Boyer, A.: Towards preference rela-
tions in recommender systems. In: Workshop on Preference Learning,
European Conference on Machine Learning and Principle and Practice
of Knowledge Discovery in Databases (ECML-PKDD 2010) (2010)

[12] Brüninghaus, S., Ashley, K.: Toward adding knowledge to learning algo-
rithms for indexing legal cases. In: Proceedings of the 7th international
conference on Artificial intelligence and law. pp. 9–17 (1999)

[13] Burke, R., Hammond, K., Cooper, E.: Knowledge-based navigation of
complex information spaces. In: Proc. of the 13th National Conference
on Artificial Intelligence. pp. 462–468. Menlo Park, Canada(1996)

[14] Burke, R., Mobasher, B.: Trust and bias in multi-agent recommender
systems. In: Workshop on Multi-Agent Information Retrieval and Rec-
ommender Systems, in conjunction with the 19th International Joint
Conference on Artificial Intelligence (IJCAI 2005). Edinburgh, Scotland
(2005)

[15] Callut, J., Franoisse, K., Saerens, M., Dupont, P.: Semi-supervised
classification in graphs using bounded random walks. In: Proceedings
of the 17th Annual Machine Learning Conference of Belgium and the
Netherlands (Benelearn). pp. 67–68 (2008)

[16] Candillier, L., Meyer, F., Boulĺe, M.: Comparing state-of-the-art collab-
orative filtering systems. In: Proc. of 5th International Conference on
Machine Learning and Data Mining in Pattern Recognition, MLMD’07.
pp. 548–562 (2007)

[17] Castagnos, S.: Modélisation de comportements et apprentissage stochas-
tique non superviśe de strat́egies d’interactions sociales au sein de
syst̀emes temps réel de recherche et d’accèsà l’information. Ph.D. thesis,
Nancy University (2008)

[18] Castagnos, S., Boyer, A.: A client/server user-based collaborative filter-
ing algorithm: Model and implementation. In: Proc. of the 17th European
Conference on Artificial Intelligence (ECAI 2006). pp. 617–621 (2006)

[19] Castagnos, S., Boyer, A.: Personalized communities in a distributed rec-
ommender system. In: Proc. of the European Conference on Information
Retrieval. pp. 343–355 (2007)

[20] Castagnos, S., Boyer, A.: Privacy concerns when modelingusers in
collaborative filtering recommender systems. Book chapter in “Social
and Human Elements of Information Security: Emerging Trends and
Countermeasures” (2008)

[21] Castagnos, S., Jones, N., Pu, P.: Eye-tracking productrecommenders’
usage. In: In proceedings of the 4th ACM Conference on Recommender
Systems (RecSys 2010) (2010)

[22] Chakrabarti, D.: Autopart: Parameter-free graph partitioning and outlier
detection. In: Proc. of the Principles and Practice of Knowledge Dis-
covery in Databases Conference (PKDD (2004)

[23] Chen, J., Zaane, R., Goebel, R.: Local community identification in social
networks. In: Proc. of the 2009 Advances in Social Network Analysis
and Mining. pp. 237–242 (2009)

[24] ChoiceStream, I.: Choicestream personalization survey (2006)
[25] Clauset, A., Newmann, M., Moore, C.: Finding community structure in

very large networks. Physical Review 72 (2005)
[26] Ekstrand, M.D., Kannan, P., Stemper, J.A., Butler, J.T., Konstan, J.A.,

Riedl, J.T.: Automatically building research reading lists. In: Proceedings
of the fourth ACM conference on Recommender systems. pp. 159–166.
RecSys ’10 (2010)

[27] Ertöz, L., Steinbach, M., Kumar, V.: Information Retrivial and Clus-
tering, chap. Finding Topics in Collections of Documents: A Shared
Nearest Neighbor Approach. W. Wu, H. Xiong and S. Shekhar (2002)

[28] Flake, G.W., Lawrence, S., Giles, C.: Efficient identification of web
communities. In: Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining. pp. 150–160
(2000)

[29] Flake, G.W., Tarjan, R., Tsioutsiouliklis, K.: Graph clustering and
minimum cut trees. Internet Mathematics 1(4), 385–408 (2004)

[30] Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5),
75–174 (2009)

[31] Freeman, L.: A set of measures of centrality based on betweenness.
Sociometry 40, 35–41 (1977)

[32] Girvan, M., Newman, M.: Community structure in social and biological
networks. National Academy of Sciences of the United States of
America 99(12), 7821–7826 (2002)

[33] Goldberg, D., Nichols, D., Oki, B., Terry, D.: Using collaborative
filtering to weave an information tapestry. Communications of the ACM
35(12), 61–70 (1992)

[34] Grcar, M., Fortuna, B., Mladenic, D.: knn versus svm in the collaborative
filtering framework. In: Proceedings of the WebKDD’05 conference
(2005)

[35] Gregory, S.: An algorithm to find overlapping community structure in
networks. In: Proc. of the 11th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD 2007). pp. 91–
102 (2007)

[36] Guha, S., Rastogi, R., Shim, K.: Cure: An efficient clustering algorithm
for large databases. In: Proc. of the 1998 ACM-SIGMOD International
Conference on Management of Data (SIGMOD’98). pp. 73–84 (1998)

[37] Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl,J.T.: Evaluating
collaborative filtering recommender systems. ACM Transactionson
Information Systems 22(1), 5–53 (2004)

[38] Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: Analgorithmic
framework for performing collaborative filtering. In: Proc. ofthe SIGIR
conference. pp. 230–237 (1999)

[39] Herlocker, J., Konstan, J., Riedl, J.: An empirical analysis of design
choices in neighborhood-based collaborative filtering algorithms. Journal
of Information Retrieval (2002)

[40] Ino, H., Kudo, M., Nakamura, A.: Partitioning of web graphs by com-
munity topology. In: Proceedings of the 14th international conference
on World Wide Web. pp. 661–669 (2005)

[41] Jarvis, R., Patrick, E.: Clustering using a similarity measure based on
shared near neighbors. IEEE TRANSACTIONS ON COMPUTERS C-
22(11) (1973)

[42] Jiang, X., Song, W., Feng, W.: Optimizing collaborativefiltering by
interpolating the individual and group behaviors. In: Proceedings of the
Eighth Asia Pacific Web Conference (APWeb06). pp. 568–578 (2006)

[43] Jung, K., Park, D., Lee, J.: Hybrid collaborative filtering and content-
based filtering for improved recommender system. In: Proc. of the2004
International Conference on Computational Science (ICCS’04). pp. 295–
302 (2004)

[44] Karypis, G.: Evaluation of item-based top-n recommendation algorithms.
In: Proceedings of the tenth international conference on Information and
knowledge management. pp. 247–254. CIKM ’01 (2001)

[45] Lathia, N., Halles, S., Capra, L.: Trust-based collaborative filtering. IFIP
International Federation for Information Processing 263, 119–134 (2008)

[46] Linden, G., Smith, B., York, J.: Amazon.com recommendations: Item-
to-item collaborative filtering. IEEE Internet Computing 7,76–80 (2003)

[47] Luo, F., Wang, J., Promislow, E.: Exploring local community structures
in large networks. In: Proc. of the IEEE/WIC/ACM International Con-
ference on Web Intelligence. pp. 233–239 (2006)

[48] Martinez, A., Mittrapiyanuruk, P., Kak, A.: On combininggraph-
partitioning with non-parametric clustering for image segmentation.
Computer Vision and Image Understanding (95), 72–85 (2004)

[49] Miranda, C., Jorge, A.: Incremental collaborative filtering for binary rat-
ings. In: IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology 2008. pp. 389–392 (2008)

[50] Mishra, N., Schreiber, R., Stanton, I., Tarjan, R.: Clustering social
networks. In: Proceedings of the WAW conference. pp. 56–67 (2007)

[51] Mobasher, B., Burke, R., Sandvig, J.: Model-based collaborative filtering
as a defense against profile injection attacks. In: Conference of the
American Association for Artificial Intelligence (AAAI2006) (2006)

[52] Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Improving the effec-
tiveness of collaborative filtering on anonymous web usage data. In:
Proceedings of the IJCAI 2001 Workshop on Intelligent Techniques for
Web Personalization (ITWP01) (2001)

[53] Oard, D., Kim, J.: Implicit feedback for recommender systems. In: in
Proceedings of the AAAI Workshop on Recommender Systems. pp. 81–
83 (1998)

[54] O’Connor, M., Herlocker, J.: Clustering items for collaborative filtering.
In: Proc. of the SIGIR Conference (SIGIR99) (1999)

[55] Papadopoulos, S., Kompatsiaris, Y., Vakali, A.: Leveraging collective
intelligence through community detection in tag networks. In:Proceed-
ings of CKCaR’09 Workshop on Collective Knowledge Capturing and
Representation (2009)

[56] Pazzani, M., Billsus, D.: The Adaptive Web, chap. Content-Based
Recommendation Systems, pp. 325–341. Springer Berlin / Heidelberg
(2007)

[57] Perny, P., Zucker, J.: Collaborative filtering methods based on fuzzy
preference relations. In: Proceedings of EUROFUSE-SIC’99(1999)

[58] Pother, A.: Graph partitioning algorithms with applications to scientific
computing. Tech. rep., Norfolk, VA, USA (1997)

[59] Qi, Y., Balem, F., Faloutsos, C., Klen-Seertharman, J.: Protein com-
plex identification by supervised graph local clustering. BioInformatics
24(13), 250–268 (2008)

[60] Radicchi, F., Castellano, C., Cecconi, F., Loreto, V.,Parisi, D.: Defining
and identifying communities in networks. National Academy of Sciences
of the United States of America (2004)

[61] Redpath, J., Glass, D., McClean, S., Chen, L.: Collaborative filtering:
The aim of recommender systems and the significance of user ratings.
In: Proceedings of the European Conference On Information Retrieval
(ECIR 2010). pp. 394–406 (2010)

[62] Rosvall, M., Bergstrom, C.: Maps of random walks on complex networks
reveal community structure. National Academy of Sciences of the United
States of America 105(4), 1118–1123 (2008)

[63] Sarwar, B.M., Karypis, G., Konstan, J., Reidl, J.:
Item-based collaborative filtering recommendation al-
gorithms. In: World Wide Web. pp. 285–295 (2001),
citeseer.ist.psu.edu/sarwar01itembased.html

[64] Schaeffer, S.: Graph clustering. Computer Science Review pp. 27–64
(2007)

[65] Schafer, J., Konstan, J., Riedl, J.: E-commerce recommender applica-
tions. Journal of Data Mining and Knowledge Discovery 5(1/2), 115–
152 (2001)

[66] Schickel-Zuber, V., Faltings, B.: Using hierarchicalclustering for learn-
ing the ontologies used in recommendation systems. In: Proc. ofthe
KDD’07 (2007)

[67] Scott, J.: Social Network Analysis: A handbook. Sage, London 2nd
edition (2000)

[68] Shardanand, U., Maes, P.: Social information filtering:Algorithms
for automating “word of mouth”. In: Proceedings of ACM CHI’95
Conference on Human Factors in Computing Systems. vol. 1, pp. 210–
217 (1995)

[69] Song, Q., Kasabov, N.: Foundations of cognitive science, chap. ECM -
A Novel On-line, Evolving Clustering Method and Its Applications, pp.
631–682. M. I. Posner (Ed.) (2001)

[70] Srinivasa, N., Medasani, S.: Active fuzzy clustering for collaborative
filtering. In: Proc. of the FUZZ-IEEE 2004. pp. 1697–1702 (2004)

[71] Tang, L.: Community detection in social networks,
http://www.public.asu.edu/ huanliu/dmmlpresentation/2008/

[72] Teŕan, L., Meier, A.: A fuzzy recommender system for eelections. In:
Proc. of the International Conference on Electronic Government and the
Information Systems Perspective (EGOVIS’10). pp. 62–76 (2010)

[73] Tian, J., Chen, D., Fu, Y.: A new local algorithm for detecting commu-
nities in networks. In: 2009 First International Workshop on Education
Technology and Computer Science. pp. 721–724 (2009)

[74] Tsuda, K., Noble, W.S.: Learning kernels from biological networks by
maximizing entropy. Bioinformatics 20, 326–333 (2004)

[75] Ungar, L., Foster, D.: Clustering methods for collaborative filtering. In:
AAAI Workshop on Recommendation Systems (1998)

[76] Viappiani, P., Faltings, B., Pu, P.: Preference-basedsearch using
example-critiquing with suggestions. Journal of artificialintelligence
Research 27, 465–503 (2006)

[77] Wang, J., de Vries, A., Reinders, M.: Unifying user-based and item-
based collaborative filtering approaches by similarity fusion. In: Proc.
of the ACM SIGIR, Special Interest Group on Information Retrieval
(2006)

[78] Wang, Y., Chakrabarti, D., Wang, I., Faloutsos, C.: Epidemic spreading
in real networks: An eigenvalue viewpoint. In: 22nd Symposium on
Reliable Distributed Computing (2003)

[79] Wanjantuk, P., Keane, J.: Finding related documents viacommunities in
the citation graph. In: Proceedings of the IEEE International Symposium
on Communications and Information Technology (ISCIT 2004). pp.
445–450 (2004)

[80] Xue, G., Lin, C., Yang, Q., Xi, W., Zeng, H., Yong, Y., Chen, Z.:
Scalable collaborative filtering using cluster-based smoothing. In: Proc.
of the 28th annual international ACM SIGIR conference on Research
and development in information retrieval (SIGIR’05) (2005)

[81] Yang, B., Cheung, W., Liu, J.: Community mining from signedsocial
networks. IEEE Transactions on Knowledge and Data Engineering
19(10), 1333–1348 (2007)

[82] Yin, J., Fan, X., Chen, Y., Ren, J.: High-dimensional shared nearest
neighbor clustering algorithm. In: Proc. of the Fuzzy Systemsand
Knowledge Discovery (FSKD05) conference. pp. 494–502 (2005)

[83] Zhou, D., Huang, J., Schölkopf, B.: Learning from labeled and unlabeled
data on a directed graph. In: Proceedings of the 22nd international
conference on Machine learning (ICML’05). pp. 1036–1043 (2005)

[84] Ziegler, C.: Towards Decentralized Recommender Systems.Ph.D. thesis,
Albert-Ludwigs-Universitt Freiburg (2005)

