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Université de Bordeaux, Laboratoire Bordelais de Recherche en Informatique

INRIA Bordeaux Sud-Ouest

Abstract—We consider a generalization of a classical op-
timization problem related to server and replica location
problems in networks. More precisely, we suppose that a
set of users distributed over a network wish to have access
to a particular service proposed by a set of providers. The
aim is then to distinguish a set of service providers able to
offer a sufficient amount of resources in order to satisfy the
requests of the clients. Moreover, a quality of service following
some requirements in terms of latencies is desirable. A smart
repartition of the servers in the network may also ensure good
fault tolerance properties. We model this problem as a variant
of Bin Packing, namely Bin Packing under Distance Constraint
(BPDC) where the goal is to build a minimal number of bins
(i.e. to choose a minimal number of servers) so that (i) each
client is associated to exactly one server, (ii) the capacity of
the server is large enough to satisfy the requests of its clients
and (iii) the distance between two clients associated to the
same server is minimized. We prove that this problem is
hard to approximate even when using resource augmentation
techniques : we compare the number of obtained bins when
using polynomial time algorithms allowed to build bins of
diameter at most βdmax, for β > 1, to the optimal number
of bins of diameter at most dmax. On the one hand, we prove
that (i) if β = (2−ǫ), BPDC is hard to approximate within any
constant approximation ratio, for any ǫ > 0; and that (ii) BPDC
is hard to approximate at a ratio lower than 3

2
even if resource

augmentation is used. On the other hand, if β = 2, we propose
a polynomial time approximation algorithm for BPDC with
approximation ratio 7

3
in the general case. We show how to turn

an approximation algorithm for BPDC into an approximation
algorithm for the non-uniform capacitated K-center problem
and vice-versa. Then, we present a comparison of the quality
of results for BPDC in the context of several Internet latency
embedding tools such as Sequoia and Vivaldi, using datasets
based on PlanetLab latency measurements.

I. INTRODUCTION

A. Problem definition and motivations

Bin Packing is a classical problem that has been studied

under many variants (see [14] for a survey). In this paper, we

study the generalization where elements belong to a metric

space and the maximal distance between two elements

belonging to the same bin has to be smaller than a given

threshold dmax. A given weight threshold W must not be

overtaken for each bin and all the elements must belong to

exactly one bin. Then, the goal is to minimize the number

of bins of diameter at most dmax and weighting no more

than W .

The motivation for studying BPDC is inspired by our pre-

vious works on Bin Covering under Distance Constraint [4],

[5], the distance constrained version of the Bin Covering

problem [2].

BPDC is closely related to some classical problems in

the area of replica and server location problems in large

scale networks such as the Internet. Many variants of server

location problems can be found in [26], [29], [7], [21],

[19], [8], [22], [28]. Most of these problems consider that a

set of users in a network want to have access to a given

service. The aim is then to distinguish a set of service

providers able to offer a sufficient amount of resources in

order to satisfy the requests of the clients. Moreover, a

quality of service following some requirements in terms of

latencies is desirable. A smart repartition of the servers in

the network may enable to minimize the latencies between

any client and its associated server, and also to ensure good

fault tolerance properties. Moreover, we assume that the

frequency of requests issued by the clients is heterogeneous

(i.e. depends on the client), and that the servers come with

a maximal capacity.

The study of BPDC is also motivated by other practical

problems such as the one presented in [25], where Lupton

et al. aim at creating a two-dimensional map of the sky

composed of quasars and galaxies. In order to gather data

on those galaxies, they make multiple snapshots with a

telescope, each capturing data for galaxies in the circular

portion of the sky visible through the telescope. In this

context, they introduce the Euclidean Capacitated Covering

by Disks (ECCD) problem, where the aim is to cover points

in a Euclidean plane with a minimum number of disks

having a fixed diameter, without violating the maximum

capacity of any disk (where the capacity corresponds to the

maximum number of galaxies for which spectral data can

be gathered in a single snapshot). Heuristics for ECCD have

been proposed in [25] and are validated through simulations

only. It is worth noting that ECCD is simpler than BPDC, in

the sense that the approximation algorithm we propose does

not require the underlying metric space to be Euclidean.

B. Related Works

Bin Packing and K-center problems: An APTAS
(Asymptotic PTAS) has been proposed for Bin Pack-



ing [13]. Simple algorithms have also been proposed with

approximation ratios slightly larger than 1.15 (see [14] for

a survey). The First-Fit-Decreasing algorithm used in this

paper is one of the simplest : it consists in sorting the items

to be packed in decreasing order of their weights. Then,

elements are inserted in this order into the first bin with

enough remaining capacity. If no such bin is available, a new

one is created. This algorithm has been proved to achieve a
11
9 -approximation ratio in [30].

BPDC is equivalent to Bin Packing with Conflicts [15].

An instance of BPDC can be transformed into an instance of

Bin Packing with Conflicts where 2 items are in conflict iff

their distance is larger than dmax in the instance of BPDC.

Similarly, an instance of Bin Packing with Conflicts can be

transformed into an instance of BPDC by setting the distance

between two elements to 1 if they are not in conflict and 2

otherwise. However, the notion of resource augmentation,

although being natural in the context of distances, has no

clear counterpart in the case of Bin Packing with Conflicts.

The (uniform) capacitated K−center problem [3] has

been introduced by Bar-Ilan et al.. This problem involves

a set of elements in a metric space and a fixed number K,

corresponding to the number of centers to be placed in the

metric space. Each element has to be assigned to one of the

K centers, with the additional constraint that each center can

only handle a maximal number L of elements. Then, the goal

is to minimize the maximal distance between a node and its

associated center, for a fixed number K of centers and a

fixed capacity L for each center.

In both problems (K-center and BPDC), the goal is

to build a small number of groups with bounded weight.

In BPDC, the maximum diameter of a bin is fixed and

the number of groups has to be minimized whereas in

the K-center problem, the number of bins is fixed and

the maximal distance between a client and its associated

server (which is different from the diameter) has to be

minimized. In [20], approximation algorithms for the uni-

form (weights) capacitated K-center problem are provided.

BPDC is also closely related to variants of the original K-

center problem [18] where intra-cluster distances are to be

minimized [17] instead of the distance to the center of the

cluster.

Internet Latency Embedding tools: In order to assess

the practical performance of our algorithm, we consider

two embedding tools for Internet latencies. Internet embed-

ding tools are used to map distributed resources connected

through the Internet into a simple (usually metric) space.

Among the most widely encountered embedding tools in

the literature are Vivaldi [10], [12] and Sequoia [27], [1].

These tools assign to each resource a position in a simple

space, such that the distance between any two nodes (the

latency between them) can be approximated by their distance

in the simple space. Of course, another possibility would

consist in computing and using the whole latency matrix L,

where Li,j denotes the measured latency between resources i
and j. Nevertheless, this approach has two main drawbacks.

First, in the context of large scale distributed networks, it is

unrealistic to assume that all Li,j values can be determined

accurately due to the cost of performing all measurements.

Then, when using the latency matrix as input, we work

in the most general space without any specific topological

property. Designing efficient (i.e. with good approximation

ratios) algorithms in this context turns out to be extremely

difficult. On the other hand, embedding tools induce a

(small) distortion of latencies, but they enable to work in

simpler spaces and therefore to design more efficient approx-

imation algorithms. In the context of a given application,

such as resource clustering, only the performance of the pair

embedding/clustering algorithm is meaningful. In this paper,

we consider 3 embeddings: no embedding (direct use of the

latency matrix), Vivaldi [10], [12] and Sequoia [27], [1].

Since the Internet latencies space contains a lot of tri-

angular inequality violations [24], it can be described as

a semi-metric space (a space where the distance function

does not satisfy the triangular inequality). Thus, it cannot

be embedded in a metric space without encountering a

loss of accuracy. In fact, the Internet latencies space seems

to be close to an infra-metric [23], i.e. a space in which

the triangular inequality is relaxed in the following way :

d(u, v) ≤ ρ max(d(u, w), d(v, w)) for any triple of nodes

(u, v, w). Results presented in [23] show that most triples

satisfy above inequality with ρ = 2, and almost every triples

satisfy it with ρ = 10. In this paper, we will consider semi-

metric spaces in which most of triples satisfy this inequality

for a small value of ρ and approximation results will be

given as a function of ρ.

C. Contributions

In this paper, we present an approximation algorithm for

BPDC based on resource augmentation. More specifically,

we compare the number of obtained bins when using a

polynomial time algorithm allowed to build bins of diameter

at most βdmax, for β > 1, to the optimal number of bins

of diameter at most dmax. More precisely, we will say that

A is an (α, β)-approximation algorithm based on resource

augmentation [11], [16] for BPDC if (i) it runs in polynomial

time, (ii) the bins returned by A have diameter at most

βdmax and (iii) the number of bins is at most αOPTBPDC,

where OPTBPDC denotes the optimal number of bins with

distance constraint set to dmax.

In the context of large scale distributed platforms, resource

augmentation is both efficient and realistic. Indeed, the

aggregate amount of requests a server can handle really

needs to be lower than the capacity of the server, in order

for the server to be able to process the requests, whereas the

threshold on the maximal latency between a server and one

of its client is somehow weaker, since the server would still



be able to handle its requests if it is violated (it would then

simply do it slowly).

In this context, we prove that if β = (2−ǫ), this problem is

hard to approximate in the general case, within any constant

approximation ratio (even in any function in the number of

elements), and that it is also hard to approximate within

any ratio lower than 3
2 , whatever the resource augmentation.

On the other hand, we propose in this paper a ( 7
3 , ρ)-

approximation algorithm for Bin Packing under Distance

Constraint in a ρ-inframetric.

We also prove that an approximation algorithm for BPDC

can be turned into an approximation algorithm for ca-

pacitated K-center problem and vice-versa. As far as we

know, this provides the first approximation algorithm for

non-uniform (weights) capacitated K-center problem. In

the simpler context of the uniform capacitated K-center

problem, the performance of the adaptation of the algorithm

we propose for BPDC equals the performance of the best

known approximation algorithm [20].

Then we present a comparison of the performance of the

proposed algorithm for BPDC in the context of several em-

bedding tools for the latencies over Internet. Using different

embedding tools, together with the same algorithm and ac-

tual latency measures, we can decide which embedding tool

offers in practice for realistic datasets the best embedding

for the specific optimization problem we consider.

The rest of this paper is organized as follows. In Sec-

tion II, we present the definitions and the notations used

throughout this paper. In Section III we prove that BPDC

cannot be approximated even by using a (2 − ǫ) resource

augmentation on the diameter, and that it is also hard

to approximate at any ratio lower than 3
2 whatever the

resource augmentation. In Section IV, we propose a ( 7
3 , ρ)-

approximation algorithm in ρ-inframetric, therefore achiev-

ing the best possible resource augmentation ratio in classical

metric spaces. We also present a (2, ρ)-approximation algo-

rithm for the uniform version of BPDC. Section V is devoted

to the relationships between BPDC and K-center problems

and how to turn an approximation algorithm of one problem

into an approximation algorithm for the other. Eventually, in

Section VI, we present the comparison, on actual datasets,

of the performance of the ( 7
3 , ρ)-approximation algorithm

for BPDC using different embedding tools for the latencies

over Internet.

II. NOTATIONS AND DEFINITIONS

In this section, we present the definitions and notations

that will be used throughout this paper.

An instance I of BPDC can be described as a 5-tuple

I = (S, d, w, W, dmax), where S is a set S = {e1, . . . en}
of elements, (S, d) is a semi-metric space, w is a weight

function, W is a weight threshold and dmax is the distance

threshold.

Throughout this paper, for the sake of simplicity, we set

W = 1 and we normalize the weights of the elements

accordingly (i.e. divide them by W ). Moreover, we do not

deal with elements whose weight is larger than 1, since such

elements cannot be packed in any bin. Thus, an instance of

BPDC can be described by a 4-tuple I = (S, d, w, dmax),
where w : S → [0; 1[, hence the following definition.

Definition 2.1 (BPDC: Distance Constrained Bin Packing):

Given an instance

I = (S, d, w, dmax), find a collection of pairwise

disjoint subsets S1, . . . SK of S of minimal cardinality

K such that ∀i ≤ K,
∑

e∈Si
w(e) ≤ 1,

∀(eu, ev) ∈ Si, d(eu, ev) ≤ dmax.

We denote by OPTBPDC(I) (or simply OPTBPDC) the mini-

mum value of K for a given instance I.

In order to work on graphs, we will rely on the following

tool that builds a graph from a set of points in a metric

space.

Definition 2.2 (Compatibility Graph): The compatibility

graph Comp(I, d) associated to an instance I is the graph

G = (S;E) such that ∀(u, v) ∈ S2, (u, v) ∈ E ⇔ d(u, v) ≤
d.

Observe that (ei, ej) ∈ E and (ej , ek) ∈ E ⇒ d(ei, ek) ≤
ρd in a ρ-inframetric space (ρ ≤ 2 in a metric space). Note

that if S are points in a Euclidean space, and L2 norm is used

to define distances, Comp(I, 1) is the unit-disk graph [9].

III. INAPPROXIMABILITY WITH SMALL RESOURCE

AUGMENTATION

As stated in the introduction, BPDC is equivalent to Bin

Packing with Conflicts [15]. Hence BPDC is NP-Complete

and hard to approximate. In what follows, we present

Theorem 3.1 and Theorem 3.2 that both provide insights

on the difficulty of approximating BPDC, even when using

resource augmentation.

Theorem 3.1: ∀ǫ > 0, and ∀ 0 < α ≤ |S|1/7−δ , there

is no polynomial time (α, (2− ǫ))-approximation algorithm

for BPDC unless P = NP .

Proof: Since Bin Packing with Conflicts is itself a

generalization of the graph coloring problem, and that it has

been shown to be hard to approximate within |V |1/7−δ for

any δ > 0 [6], so is BPDC. Moreover, consider a reduction

from Bin Packing with Conflicts to BPDC. In a conflict

graph, distances between elements have integer values, so

that the diameter of any set of elements in a corresponding

instance of BPDC is an integer. Thus, for every bin B built

on such an instance of BPDC, if the diameter of B is less

or equal than (2− ǫ) then it is at most 1. Thus, the use of

a resource augmentation ratio smaller than (2− ǫ) does not

help to approximate BPDC.

Theorem 3.2: ∀ β ≥ 1 and ∀ 1 ≤ α < 3/2, there is no

polynomial time (α, β)-approximation algorithm for BPDC

unless P = NP , whatever the metric space used to define

distances.



Proof: Ignoring the distance constraint brings us back

to classical Bin Packing. Thus a (α, β)-approximation al-

gorithm for BPDC, with α ≤ 3/2, could be used as

an approximation algorithm for Bin Packing, ensuring an

approximation ratio of α, which is impossible since it is well

known that Bin Packing is hard to approximate within such

a ratio (otherwise the 2-partition problem could be solved).

IV. A GREEDY ( 7
3 , ρ)-APPROXIMATION ALGORITHM FOR

BPDC

In this section, we present Algorithm 1, which is an

adaptation of the algorithm proposed by Epstein and Levin

in [15] for Bin Packing with Conflicts, using First-Fit-

Decreasing algorithm to build bins (see Section I-B for a

brief description of First-Fit-Decreasing algorithm).

As for the number of built bins, Algorithm 1 ensures an

approximation ratio of 7
3 in any semi-metric space. When

this semi-metric space is a ρ-inframetric, Algorithm 1 is a

( 7
3 , ρ)-approximation algorithm for BPDC. When the space

is metric, it is a ( 7
3 , 2)-approximation algorithm for BPDC.

In order to adapt the algorithm presented in [15] to

BPDC, we rely on the definition of the extended weight

e(x) of an element x. If w(x) > 1
2 , then e(x) = 1, and

if w(x) ∈ Ij = ( 1
j+1 , 1

j ] for some integer j > 1, then

e(x) = w(x) + 1
j(j+1) . Moreover, let us denote by OPTBPC

the cardinality of an optimal solution for the Bin Packing

with Conflicts problem, and by OPTGRAPHCOL the cardinality

of an optimal solution for the precoloring extension problem

used in [15] to approximate Bin Packing with Conflicts. This

precoloring extension problem is a simple extension of the

classical coloring problem with the additional constraint that

some nodes are already assigned colors in the input.

Algorithm 1 Greedy ( 7
3 , ρ)-approximation algorithm for

BPDC

1: U ← S // elements not grouped yet

2: C = Comp(I, dmax)
3: while there is a set of three connected items {a, b, c}

that can fit into one bin, i.e.

w(a)+w(b)+w(c) ≤ 1, such that e(a)+e(b)+e(c) > 1
and w(c) ≤ w(b) ≤ w(a) ≤ 1

2 , or a pair of connected

items (a, b) that can fit into one bin, i.e. w(a)+w(b) ≤
1, such that e(a) + e(b) > 1 do

4: choose such a set of maximum overall extended

weight, and put all the elements of this set into a

new bin

5: remove from U this set of elements

6: end while

7: build a partition M of U
8: apply First-Fit-Decreasing on each set of the M parts

induced by the previous partition.

Theorem 4.1 (Reformulation of Theorem 12 of [15]):

In Algorithm 1, if |M | ≤ OPTBPDC and each set of M
is of diameter at most ρdmax, then the number of bins

returned by Algorithm 1 is ( 7
3 , ρ)-approximation algorithm

for BPDC is at most 7
3 OPTBPDC and each bin is of diameter

at most ρdmax.

In [15] the authors work on a particular class of graphs

where computing a coloring (more precisely, solve the

precoloring extension problem) of the nodes can be done op-

timally in polynomial time. Thus, they can build a partition

M such that |M | ≤ OPTGRAPHCOL on line 7 of Algorithm 1

and each set of M is of diameter at most dmax. Since,

from [15], Bin Packing with Conflicts is a generalization

of the graph coloring problem, OPTGRAPHCOL ≤ OPTBPC.

Eventually, since Bin Packing with Conflicts and BPDC

are equivalent, then |M | ≤ OPTBPC = OPTBPDC and

Theorem 4.1 can be used.

Indeed, each of the |M | built sets corresponds to a

color class, and bins can be built ”locally”, without taking

into account any conflicts within each color class, using a

classical Bin Packing algorithm.

Taking advantage of resource augmentation, we can ob-

tain a general result for any compatibility graph on a ρ-

inframetric. Indeed, Algorithm 2 describes how to build a

partition M of U into sets of diameter ρdmax, such that

|M | ≤ OPTBPDC. Then, in each set, bins can be built without

taking into account any distance constraint, using the same

classical Bin Packing algorithm. On the other hand, some

bins may have diameter ρdmax instead of dmax, thus the

resource augmentation ratio.

Algorithm 2 Building a partition M of U into sets of

diameter at most ρdmax

1: build Comp’(I, dmax), the graph Comp(I, dmax) where

the edges between two elements of weight larger than
1
2 have been removed

2: build a Maximal Independent Set (MIS) M such that

elements of weight larger than 1
2 belong to M .

3: arbitrarily associate each node 6∈ M to one of its

neighbors in M so that |M | packs of elements are

returned.

Lemma 4.2: The partition M of U built by Algorithm 2

satisfies |M | ≤ OPTBPDC.

Proof: Two elements of M cannot belong to the

same bin in an optimal packing. Indeed, since they belong

to the MIS of Comp’(I, dmax), either their distance in

Comp(I, dmax) is at least 2 (and thus they are too far away

to belong to the same bin) or both elements have weight

larger than 1
2 and in this case, the bin would be too heavy.

Hence, |M | ≤ OPTBPDC.

Theorem 4.3: Algorithm 1 together with Algorithm 2 is

a ( 7
3 , ρ)-approximation algorithm for BPDC when d is a ρ-

inframetric.



Theorem 4.3 is directly obtained using Theorem 4.1 and

Lemma 4.2. Thus, Algorithm 1 is optimal with respect to

resource augmentation, in the sense that no constant approx-

imation ratio can be achieved using a resource augmentation

strictly smaller than 2 in the metric case (cf Section III).

Remark concerning a uniform weights version: Let us

consider the following ”uniform weights” version of BPDC,

where all items have the same weight x. Since the weight

of each bin is at most 1, the goal is to build bins containing

at most ⌊ 1
x⌋ elements from S (still valid for the distance

constraint). In this case, lines 2-6 of Algorithm 1 are useless

and we obtain Corollary 4.4.

Corollary 4.4: Algorithm 1 together with Algorithm 2 is

a is a (2, ρ)-approximation algorithm for the uniform version

of BPDC.

Proof: Note that in the uniform case, First-Fit-

Decreasing algorithm (or any greedy algorithm) will create

bins of ⌊ 1
x⌋ elements (thus, only optimal ones) except for at

most one bin in each of the |M | packs built by Algorithm 2.

Thus, the number of non optimal bins is smaller than |M |
and, by Lemma 4.2, |M | ≤ OPTBPDC. Combined with the

other optimal bins, this provides the claimed approximation

ratio.

V. COMPARISON WITH THE CAPACITATED K-CENTER

PROBLEM

In this section, we present how to build an approximation

algorithm for the capacitated (uniform or non-uniform) K-

center problem (CapKcenter for short) from an approxima-

tion algorithm for BPDC.

Definition 5.1 (Non-uniform Capacitated K-center):

Given an instance K = (S, d, w, K), i.e. a set

S = {e1, . . . en} of elements, a metric space (S, d), a

weight function w : S → [0; 1) and an integer K, find the

smallest value rmax and a subset X ⊆ S of centers whose

size is at most K and an assignment of the elements to

the centers in X such that the overall weight of elements

assigned to any center is smaller than 1, and every element

is assigned to a center at distance less than rmax from

itself.

We denote by OPTCAPKCENTER(K) (or simply

OPTCAPKCENTER) the optimal value of rmax for a given

instance K. The usual formulation of the capacitated

K-center (see [20]) deals with uniform weights :

∀x ∈ S, w(x) = w. Thus, the weight condition corresponds

to assign no more than 1/w elements to any center. Usually,

for the K-center problem, K is given and rmax is to be

minimized.

To use resource augmentation for this problem, let us say

that A is an (α, γ, β)-approximation algorithm for (non-

uniform) capacitated K-center if it runs in polynomial time

and builds a solution using at most αK centers (instead of

K), with an assignment of nodes to centers such that the

overall weight of nodes assigned to any center is smaller

than γ (instead of 1), and such that every node is assigned

to a center at distance at most βOPTCAPKCENTER (instead of

OPTCAPKCENTER).

Theorem 5.1: An (α, β)-approximation algorithm for

BPDC can be turned into an (α, 1, 2β)-algorithm for Cap-

Kcenter. Conversely, an (α, 1, β)-approximation algorithm

for CapKcenter can be turned into an (α, 2β)-approximation

algorithm for BPDC.

Proof: Given (S, d, w), a set of weighted elements in

a metric space, we consider two natural transformations, T
and T ′, between packings and assignments:

Transformation T :

• takes as input a set of bins, solution of instance

I = (S, d, w, dmax) of BPDC, for a fixed value

of dmax,

• in each bin, an element is arbitrary chosen to

become the center of the bin,

• all other elements are assigned to it;

the radius of the obtained assignment is at most

the maximal diameter among the input bins.

Transformation T ′:

• takes an assignment as input, solution of in-

stance K = (S, d, w, K) of CapKcenter, for a

fixed value of K,

• for each center, T ′ builds a bin composed of

the center and all elements assigned it;

the diameter of the obtained bin is at most twice

the radius of the corresponding assignment.

Let us now describe how a (α, β)-approximation al-

gorithm A for BPDC can be turned into a (α, 1, 2β)-
approximation algorithm for the non-uniform capacitated K-

center problem. Let

K = (S, d, w, K) be an instance of the non-uniform capac-

itated K-center problem. Let

I(D) = (S, d, w, D) be an instance of BPDC, based on the

same set of weighted elements, for any positive value D.

Let dα denote the smallest value such that algorithm

A computes a solution of BPDC with at most αK bins

on the instance I(dα). Let d1, d2, . . . , dn(n+1)/2 denote

the distances between each pair of elements of S in non

decreasing order (d1 is the distance between the two closest

elements and dn(n+1)/2 is the diameter of S). Since for any

di ≤ D < di+1, Comp(I(D), D) = Comp(I(di), di) , there

is only a polynomial number of values to be considered to

compute dα.

Since A is a (α, β)-approximation algorithm for BPDC,

the number of bins created by A on I(D) is at

most αOPTBPDC(I(D)). Hence, for any D < dα,

OPTBPDC(I(D)) > αK
α = K. Applying T ′ to the

optimal solution of K provides a valid solution for

I(2OPTCAPKCENTER(K)) with at most K bins. From the last

observation, we obtain that 2OPTCAPKCENTER(K) ≥ dα.



Applying T to the result of A on I(dα), we obtain

an assignment of size αK, of maximum radius at most

βdα ≤ 2βOPTCAPKCENTER(K) and of maximum weight at

most 1 for instance K. Hence, this adaptation of A provides

a (α, 1, 2β)-approximation algorithm for the non-uniform

capacitated K-center problem.

Let us now prove how to turn an approximation algorithm

for the non-uniform K-center problem into an approxi-

mation algorithm for BPDC. Let us consider a (α, 1, β)-
approximation algorithm A′ for the non-uniform capacitated

K-center problem. Let I = (S, d, w, dmax) be an instance

of BPDC. Let K(K) = (S, d, w, K) be an instance of non-

uniform capacitated K-center, based on the same set of

weighted elements, for any positive value K.

Let Kβ denote the smallest value such that algorithm A′

computes a solution for the non-uniform K-center problem

with radius at most βdmax on the instance K(Kβ). Since

A′ is a (α, 1, β)-approximation algorithm for non-uniform

capacitated K-center, the radius of the assignment built by

A′ on K(K) is at most βOPTCAPKCENTER(K(K)). Hence, for

any K < Kβ , OPTCAPKCENTER(K(K)) > βdmax

β = dmax.

Applying T to the optimal solution of I provides a solution

for K(OPTBPDC(I)) with radius at most dmax. From the last

observation, we obtain that OPTBPDC(I) ≥ Kβ .

Applying T ′ to the result of A′ on K(Kβ) provides a

packing with at most αKβ ≤ αOPTBPDC(I) bins with

diameter at most 2βdmax and with weight at most 1 on the

instance I. Hence this adaptation of A′ provides a (α, 2β)-
approximation algorithm for BPDC.

Note that this result can also be applied on uniform

versions of BPDC and capacitated K-center. In such a

setting, combining Theorem 5.1 with Corollary 4.4, Algo-

rithm 1 provides a (2, 1, 4)-approximation algorithm for the

capacitated K-center problem in the general case. This result

has to be compared to the one presented in [20], where a

polynomial time algorithm is proposed, providing a ( 2
c , c, 4)-

approximation ratio, where c = m+1
m for any m ≥ 1. For

example, if m tends becomes arbitrarily large, this algo-

rithm provides a (2, 1, 4)-approximation algorithm, which is

exactly the same as the one provided by the adaptation of

Algorithm 1. Note that in the other way, this particular case

providing a (2, 1, 4)-approximation algorithm for the ca-

pacitated K-center problem becomes a (2, 8)-approximation

algorithm for uniform BPDC, by Theorem 5.1, whereas

Algorithm 1 is already a (2, 2)-approximation algorithm for

the same problem.

Moreover, combining Theorem 5.1 with Theorem 4.3,

Algorithm 1 provides a ( 7
3 , 1, 4)-approximation algorithm

for CapKcenter. To the best of our knowledge, it is the

first approximation result for a non uniform version of

CapKcenter, since the family of algorithms presented in [20]

cannot easily be adapted to such a non-uniform weights

version. Eventually, one could see the difference between

those approximation ratios (between 7
3 and 2) as the cost of

the non-uniformity of the weights.

VI. EXPERIMENTAL EVALUATION

In this section, we propose a comparison of the most

widely encountered embedding tools for latency extimation,

namely Vivaldi [10], [12] and Sequoia [27], [1], in the

context of the location problems considered in this paper.

For all the embeddings, Algorithm 1 will be used to compute

the solution of BPDC.

Vivaldi associates with each node of a network two

coordinates in the Euclidean plane plus a height. In such

a space, the distance between two nodes having coordinates

(ax, ay, ah) ∈ R
2×R

+ and (bx, by, bh) ∈ R
2×R

+ is given

by d(a, b) =
√

(ax − bx)2 + (ay − by)2 + ah + bh.

Sequoia embeds Internet nodes into one or several

weighted trees in which each node is either a leaf or the root,

and in which internal nodes are virtual nodes. The distance

between two nodes in the original network is approximated

by the distance in the embedding tree (or as the median of

these distances in the case of multiple trees). In [27], it is

claimed that the accuracy of the prediction is higher using

Sequoia as soon as a few trees rooted at different nodes are

used (10 or 15 trees).

The main originality of the approach we propose is

that it is done in the context of a specific application,

i.e. the placement of servers for heterogeneous amounts

of requests. Indeed, the accuracy of embedding tools have

already been compared in [27], but the goal was only to

estimate the closeness between latency predictions returned

by the embeddings and the actual measurements.

In practice, when considering an specific application,

the chain is more complicated and the performance of the

chain embedding+algorithm has to be evaluated as a whole.

Indeed, our experiments will show that the performance

obtained when running the same algorithm in different

embedding strongly depends on the embedding for server

location problems and that the ranking of the embeddings is

not the same as the one obtained in [27].

To compare the respective performance of the different

embedding tools, we will compare the results obtained using

Algorithm 1 with the following embeddings:

• no embedding (direct use of the latency matrix)

• Vivaldi embedding

• 1-tree Sequoia embedding

• 5-trees Sequoia embedding

• 10-trees Sequoia embedding

• 15-trees Sequoia embedding.

A. Experimental Protocol

In order to perform realistic simulations, we need to

estimate the distance (the latencies) between any pair of re-

sources and we need to estimate the heterogeneous capacity

of the resources.



In order to estimate latencies, we ran simulations on a real

dataset taken from the Meridian project 1 containing all-pairs

latency measurements between 2500 nodes arbitrarily cho-

sen from PlanetLab 2. In this matrix, latency measurements

are symmetric.

This matrix contains a lot of triangular inequality vi-

olations. The study in [24] makes a difference between

triangular inequality violations due to the structure of the

Internet itself or due to the traffic on the Internet, and

violations due to measurements inaccuracy. Considering the

study by Lebhar et al. in [23], for each triple, we consider

that if the value ρ associated with this triple is larger than 10,

then it might be due to the inaccuracy of the measurement.

Thus, in a first step, we compute for each latency mea-

surement between two nodes, the number of times it appears

in a triple for which the ρ value is larger than 10. Figure 1

depicts the repartition function of this number: a point (x, y)
means that y% of the latency values appear in less than x
triples having a ρ value larger than 10.
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Repartition of the appearance of each latency value in distorted triangles

Figure 1. Repartition function of the number of triples having a ρ value
larger than 10.

Using Figure 1, we consider that a latency value is not-

valid if it appears in more than 300 triangles in which

the value of ρ is larger than 10. Each not-valid latency is

replaced by the 2-hop shortest path made of valid latencies.

The resulting latency matrix is call the fixed matrix.

To obtain this ”fixed matrix”, only 0.13% of the latency

values in the original latency matrix have to be modified.

In what follows, we run simulations using both the original

latency matrix, and the ”fixed matrix”.

In order to estimate the heterogeneous amount of requests

of the clients, we choose to rely on two distributions of the

weights of the elements, namely, the uniform distribution

in [0, 1) and the log-normal distribution with parameters 0

1http://www.cs.cornell.edu/People/egs/meridian/data.php
2http://www.planet-lab.org/

and 1, since both seem to arise naturally in many practical

situations (the log-normal distribution can be seen as a

bounded power-law distribution, which seems more realistic

than a classical power-law). We choose, according to those

distributions, two sets of 2500 values.

For each simulation, we rely on the following protocol

• We embed the latency matrix, using either Vivaldi or

Sequoia (using one or multiple trees in the case of

Sequoia).

• We assign to each element a weight according either to

the uniform distribution (in [0, 1)) or to the log-normal

distribution (with parameters 0 and 1).

• We apply Algorithm 1 for BPDC to the resulting

embedding, with the same set of weighted elements but

for different values of dmax, from the minimal distance

previously identified to 200ms (since beyond this value,

no evolution is observed).

As mentioned in the introduction, it is unrealistic in

practice to assume that the whole latency matrix is known.

Indeed, in the context of large scale dynamic platforms, the

time taken to estimate all latencies is much too high with

respect to the dynamics of the system. It is worth noting that

the implementation of Vivaldi does not require a centralized

knowledge of the matrix, what is not the case for Sequoia

to the best of our knowledge.

For each simulation, we plot the total number of bins

built. For each built bin, we also estimate its diameter as

the maximal distance between any two nodes in the bin,

where distances are actual ones, i.e. the one of the latency

matrix, whatever the intermediate distance estimated by the

embedding tool is. For each simulation and for each value

of dmax, we plot the average diameter of built bins, and the

percentage of ”valid” bins, i.e. of bins whose diameter in

the latency matrix used is lower than 2dmax, the maximum

diameter allowed by the corresponding algorithm.

We ran simulations for different values of W (the size

of bins), and choose a different value for each distribution

of the weights. Indeed, we wanted to work with the more

meaningful and representative value. For small values of

W , solutions tend to put fewer and fewer elements in each

bin, since element weights get closer to the threshold. Thus,

the average number of elements per bin tends towards one

for any value of dmax. For large values of W , the distance

constraint becomes the most important and the problem is

close to MINIMUM CLIQUE PARTITION. Thus we chose, for

each distribution, a weight threshold such that bins contain

on average approximately 8 elements.

• In the case of the uniform distribution, we chose W =
4, since the average weight of an element is 0.5,

• In the case of the log-normal distribution, we chose

W = 5.2.

Eventually, since simulation results were highly similar

when using one or the other distribution law to generate



elements’ weights, we only present results obtained using

the log-normal distribution, with W = 5.2.

B. Simulation results

Figures 2 and 3 and 4 respectively depict, for each

considered embedding, the number of built bins, the average

value of the diameter of built bins and the percentage of valid

bins built in each case, for several values of dmax and using

the fixed latency matrix. Figures 5 and 6 and 7 also depict,

for each considered embedding, the number of built bins,

the mean diameter of the built bins and the percentage of

valid built bins in each case, for several values of dmax and

using the original latency matrix.

Figures 2 and 5 show that there are three intervals for

the value of dmax in each of which the difficulty of BPDC

appears for different reasons.

• dmax ≤ 10ms. In this case, the weight constraint

is weaker than the distance constraint. The difficulty

comes from the topology and the problem is close to

the MINIMUM CLIQUE PARTITION PROBLEM in the

compatibility graph.

• 10ms < dmax ≤ 60ms. In this case, both constraints

(weight and distance) have to be taken into account.

• 60ms < dmax. The distance constraint is the weakest

one and the topology is not crucial anymore. The

weighted constraint is the most important and BPDC

is close to classical Bin Packing.

Figures 4 and 7 show that Algorithm 1 builds a higher per-

centage of valid bins when using Vivaldi embedding, using

either the original or the fixed matrix as input. By contrast,

when using Sequoia embedding with 1-tree only (either with

the original or the fixed matrix as input) the percentage of

valid bins is much lower. The direct use of the latency matrix

(whatever the latency matrix used) provides performances

between those obtained using Vivaldi embedding and those

obtained using Sequoia 1-tree embedding.

The information provided by the comparison between the

use of the original latency matrix and of the fixed matrix as

input of the embedding tools is related to the robustness of

the behavior of Algorithm 1 with each embedding. In fact,

only a few amount of latency values have been modified

between the original and the fixed matrix (0.13% of the

values). Thus if, for a given embedding, the performance

differences are important when using each of the two matrix

as input, this means that only a few changes in the instance

can deeply modify the result of the execution of the algo-

rithm, meaning that the joint use of the algorithm and the

given embedding is not robust for our application.

Thus, when comparing the figures depicting results ob-

tained using each of the two latency matrices, we observe

almost no difference between both datasets when using

Vivaldi embedding. It is also the case when no embedding

is used (direct use of the latency matrix).
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Figure 2. Number of built bins for BPDC, for different values of dmax,
using different embeddings, using the fixed latency matrix.
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Figure 3. Mean diameter of built bins for BPDC, for different values of
dmax, using different embeddings, using the fixed latency matrix.
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Figure 4. Percentage of valid bins for BPDC, for different values of dmax,
using different embeddings, using the fixed latency matrix.

By contrast, when comparing the results obtained using

the two different latency matrix as input for the different

Sequoia embeddings, we observe major differences.
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Figure 5. Number of built bins for BPDC, for different values of dmax,
using different embeddings, using the original latency matrix.
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Figure 6. Mean value of the diameter of built bins for BPDC, for different
values of dmax, using different embeddings, using the original latency
matrix.
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Figure 7. Percentage of valid bins for BPDC, for different values of dmax,
using different embeddings, using the original latency matrix.

• All four Sequoia embeddings (using 1, 5, 10 or 15 trees)

provide bad performances (in terms of percentage of

valid bins and mean diameter of the bins) when using

the original matrix as input,

• As evoked before, the performance of Sequoia-1-tree

embedding is still poor when using the fixed matrix,

• The Sequoia-5-trees embedding, when working with

the fixed matrix, ensures performance that are compa-

rable to those obtained without using any embedding

on the same matrix,

• both Sequoia-10-trees and Sequoia-15-trees embed-

dings perform better than when no embedding is used,

when using the fixed matrix.

To explain the lack of robustness of Sequoia, it is nec-

essary to go into the details of Sequoia algorithm. In fact,

in some cases, even just one triangular inequality violation

can, in the subtree rooted at the least common ancestor

to the three nodes concerned by this violation, induce

important distance distortions. Distances between nodes in

this subtree can therefore be highly underestimated. This

ends in building bins having a diameter in the original

matrix violating the imposed distance constraint (thus, those

bins are not valid). Therefore, reducing the number of such

Triangular Inequality Violations in the original matrix to

obtain the fixed matrix can highly improve the performance

of Sequoia.

We can conclude from these observations that the joint

use of Algorithm 1 and Sequoia, with any number of trees

used to embed the network, is not robust in the context of

our application. By contrast, the use of Vivaldi embedding,

while offering good performances, is a robust solution for

BPDC.

VII. CONCLUSION

In this paper, we have considered an extension the clas-

sical Bin Packing problem, where the distance between

two elements belonging to the same bin has to be lower

than a given threshold. This problem is closely related to

several servers and replicas location problems that have

been widely studied in the literature. We have provided

both inapproximability results and approximation algorithms

based on resource augmentation for this problem. Another

important contribution of this paper is the comparison, in

the specific context of server location problems, of several

embedding tools for Internet latencies, on an actual dataset

corresponding to PlanetLab nodes. We prove that comparing

Vivaldi and Sequoia embeddings on a specific application

and using an actual dataset enables to discuss their robust-

ness.
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