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Abstract

Multifractional Brownian motion (mBm) was introduced to overcome
certain limitations of the classical fractional Brownian motion (fBm). The
major difference between the two processes is that, contrarily to fBm,
the almost sure Hdlder exponent of mBm is allowed to vary along the
trajectory, a useful feature when one needs to model processes whose
regularity evolves in time, such as Internet traffic or images. Various
properties of mBm have already been investigated in the literature, related
for instance to its dimensions or the statistical estimation of its pointwise
Holder regularity. However, the covariance structure of mBm has not
been investigated so far. We present in this work an explicit formula
for this covariance. Since mBm is a zero mean Gaussian process, such a
formula provides a full characterization of its stochastic properties. We
briefly report on some applications, including the synthesis problem and
the long term structure : in particular, we show that the increments of
mBm exhibit long range dependence under general conditions.

1 Introduction and background

mBm was introduced in [4] and [11] as the following generalization of {Bm :

Definition 1
(Multifractional Brownian Motion, Moving Average Definition)

Let H : [0,00) = [a,b] C (0,1) be a Hélder function of exponent 3 > 0. For
t > 0, the following random function is called multifractional Brownian motion
with functional parameter H :

WH(t)(t) — /0 [(t_S)H(t)1/2_(_5)H(t)1/2]dw(s)+/0t(t_s)H(t)1/2dW(5),



where W denotes ordinary Brownian motion.

Definition 2

(Multifractional Brownian Motion, Harmonizable Representation)
Let H : [0,00) = [a,b] C (0,1) be a Hélder function of exponent 3 > 0. For

t > 0 the following function is called multifractional Brownian motion:

612&5—1

Wi ® = | i

dw (§)

The equivalence, up to a multiplicative deterministic function, between these
two formulations has been proved in [6]. From these definitions, it is easy to
see that mBm is a zero mean Gaussian process whose increments are in general
neither independent nor stationary (recall that fBm has stationary correlated
increments for H # 1/2). When H(t) = H for all ¢, mBm is of course just fBm
of exponent H.

The main feature of this process is that its Holder regularity varies in time
and is equal to H(t). This is in sharp contrast with fBm, where the almost
sure Holder exponent is constant and equal to H. More precisely, the following
properties of mBm are known:

Proposition 1 Assume 3 > sup,~q H(t). With probability one, for each to, the
Holder exponent at point tq > 0 of multifractional Brownian motion is H (o).

. X(s+hw) — X(s,w)
as: ax(s,w) = sup{a,}lllgh e =
means that X is smooth at s, while irregular behaviour of X at s translates into

« close to 0.)

(Recall that the Holder exponent of a process X (t) at point s is defined
0

. A “large” ax(s,w)

Proposition 2 Assume 3 > sup,s, H(t). With probability one, for each in-
terval [c,d] C RT, the graph of the mBm (W) (t))ec[c,a) verifies the following
property :

dim{Wi s (®),t € [c,d)} = dimp{Wy ) (t),t € [c,d]} = 2—min{H(t),t € [c,d]}

In addition, mBm is asymptotically locally self-similar, in the following
sense :

Proposition 3

{ W (to4pu) (fo + pu) — Wirzy)(to) }
uwERT

lim Law pH(to)

p—0t+

= Law {Cto BH(to) (“) }u€R+

where Bry(4,)(u) is an fBm of exponent H(to) and Ct, is a deterministic function
Of t() .



Thus, while all the properties of fBm are governed by the unique number
H, a whole function H(t) is available in the case of mBm. This is useful in
many situations where one needs a fine modeling of real world signals. Let
us give two examples. It is well known that the long term correlations of the
increments of fBm decay as j2#~2) where j is the time lag, resulting in long
range dependence when H > 1/2 and antipersistent behavior when H < 1/2.
In this respect, fBm is “degenerated” in some sense : since H rules both ends of
the Fourier spectrum, i.e. the high frequencies related to the Holder regularity
and the low frequencies related to the long term dependence structure, it is not
possible to have at the same time e.g. a very irregular local behavior (implying
H close to 0) and long range memory (implying H > 1/2). {Bm is thus not
adapted to model processes which displays both those features, such as Internet
traffic. Another example is in the field of image synthesis: fBm has frequently
been used for generating artificial mountains. Such a modeling assumes that
the irregularity of the mountain is everywhere the same. It thus does not allow
to take into account erosion or other meteorological phenomena which smooth
some parts of the mountains more than others. To model these and other fine
features of natural landscapes (such as faults), mBm is a good candidate.

A crucial question for applications is of course that of the estimation of
the functional parameter H(t). Obviously, this is a much harder task that
in the case of {Bm, and one could fear that the added flexibility gained in
the modeling thanks to the use of a varying H might be seriously impaired in
practice. Fortunately, robust estimators have been proposed in [3], which allow
reasonable accuracy on real signals.

As said above, an attractive property of fBm which has been invoked in many
applications is the long range dependence of its increments when H > 1/2.
This property was the main motivation for the use of fBm for instance in fi-
nancial engineering, traffic modeling, geophysical and physiological time series
analysis ... A natural question is to ask whether mBm may also exhibit this fea-
ture, depending on the values of the function H(t). This would allow to fulfill
our program above, i.e. have a natural generalization of fBm that permits to
control independently the Holder regularity and the low frequency part of the
Fourier spectrum.

A natural way to check for the possible occurrence of long range dependence
in a process is to look at the autocovariance. More generally, mBm being
a Gaussian process, all of its stochastic properties can be obtained from its
autocovariance. It is thus important to dispose of an explicit formula for it.
Although this may seem surprising, such a formula does not seem to have been
derived so far. Indeed, most of the efforts in the study of mBm have been
directed towards the investigation of its local regularity (e.g. which functions
H(t) are allowed), the dimensional properties of its graph and the estimation of
H(t).

The main motivation of this paper is to provide, in section 2, explicit for-
mulae for the autocovariance and autocorrelation of mBm. Section 3 presents
some applications of these formulae, mainly for the synthesis of mBm and for
the study of its long range dependence properties.



Note finally that mBm was generalized in [2] to allow for a discontinuous
H(t). The study of the autocovariance for this generalized mBm will be pre-
sented elsewhere.

2 Computation of the covariance of mBm

Our aim in this section is to obtain explicit expressions for the autocovariance
and autocorrelation of mBm.

Proposition 4 Let X (t) be a standard mBm (i.e. such that the variance a time
1 is 1) with functional parameter H(t). Then, E denoting expectation,

covx (t,s) = E(X ()X (s)) = D(H(t), H(s))(tTOHT () f HOFH ) _ 3 g HO)+H(5))

where

~ /T(2z + 1)I'(2y + 1) sin(7z) sin(7y)
D(,y) = 20(x +y + V)sin(n(z +y)/2)

Proof
By definition,

1 et —1 1 e — 1
EX@X(6) = B (C<H<t>> A eror T WOy A |g|H<s>+%dW(5)>

_ 1 (ezft _ 1)(6—i£s _ 1)
C(H(#))C(H(s)) /R || HO+HG+T ds (1)

1
* is deduced from the re-

where the value of C(H (t)) = (

quirement that E(X2(1)) = 1.
Fix t,s, and let By be a standard fBm with fractional parameter H =
H(t)+H(s)
2

H(OT(2H(t)) sin nH(7) )

. It is well known that:

1 (et —1)(e %5 — 1)
E(Bg(t)Bu(s)) = @/R HEES dg
1
— 5(t2H + S2H _ |t _ S|2H)
Where C = (WM) )
Thus:

(€5~ e 1)
[ e e = P EBao B

2

— % (t2H +S2H _ |t— 5|2H)



Substituting in (1):

BQX(0)X(9) = QC(H(t)C;C(H(s)) (TR 4 HOTHE — Jf — g HOHH)

H(t)+ H(s)
2

Replacing H by in C and using the identity zI'(z) = ['(z + 1)

yields the announced equality. m

Note that because H takes values in [a,b], D(H(t), H(s)) is positive and
stays bounded away from 0 and co. mBm being non stationary, it is often more
pertinent to consider the autocorrelation corx (t,s) :

Proposition 5 Let X (t) be a standard mBm with functional parameter H(t).
Then,

D(H(t),H(s))(tH(t)+H(s) + gH(H)+H(s) _ |t _ S|H(t)+H(s))

corx (t, ) = £H 0 SH(3)
Proof
By definition, corx(t,s) = covx (¢, 5) . Since D(H(t),H(t)) = 3,

— VEX(£)E(X2(s))

we get that E(X2(t)) = t>"(®) and the result follows. m

Recall that one of our main motivation is to study, by analogy with what is
done for fBm, the long range dependence of the increments of mBm. We will
thus be also interested in the autocovariance of the increments of mBm, or, more
precisely, their autocorrelation, the increments being also non stationary. While
Proposition 4 allows to write explicit forms, these do not give much insight, so
we will not give them here.

3 Applications

3.1 Synthesis of mBm

Because mBm is non stationary with non stationary increments in general, care
must be taken when synthesizing its sample paths. Let us first recall a few
facts about the generation of sample paths of fBm. Numerous methods have
been proposed in this context. They include Choleski decomposition, midpoint
displacement and its various improvements [7], spectral synthesis [10], wavelet-
based methods [12], and synthesis based on differential models [9]. The reason
why so many algorithms exist is that synthesizing an fBm is by no means an easy
process, especially if one needs to build large traces. The problem lies mainly in
the non-Markovian nature of fBm, the strong correlations that it displays (for
H < 1/2, each increment is negatively correlated with all the others, while for
H > 1/2 the spectral density of the increments is singular at the origin). As
well, it is a recognized fact that all methods, except the Choleski one, are only



approximate. It is not clear however why the unique exact synthesis, through
Choleski decomposition, is not used systematically. It probably stems from the
wrong impression that this method is greatly time and memory consuming.
While this is true for a plain implementation of the algorithm, several refine-
ments allow to reduce the time and memory requirements to values comparable
to the ones of the “fast” approximate methods. Let us describe in some detail
the principal steps involved in the Choleski decomposition method.

Assume we wish to generate samples of an fBm X with exponent H at
N equidistant points of [0,1]. Let DX denote the discrete increments of X,
that is DX (k/N) = X(k/N) — X((k —1)/N),k = 1,...N. These increments
form a discrete stationary Gaussian process with zero mean, and the statistical
properties of the vector DXy = (DX (1/N),DX(2/N),...,DX(1)) are entirely
determined by the autocovariance matrix Ay = E(DXy(DXy)T), where UT
denotes the transpose of U. It is well known that E(DX (i/N)DX ((i+k)/N)) =
sz ([k 4+ 127 + [k — 1)2H — 2|k[*H). Since Ay is positive definite, it may be
written using its Choleski decomposition as:

Ay =LyL% (2)

where Ly is an invertible lower triangular matrix.

Let DYy = (DY (1/N),DY(2/N),...,DY (1)) be an N-samples realization
of a unit variance centered white Gaussian noise. It is easy to see that the
autocovariance matrix of the random vector Ly DY}y is exactly Ay. Indeed:

E(LNDYn(LyDYN)T) = LNVE(DYN(DYN)D)LE = Ay (3)

We may thus set DXy = LyDYy, and generate a realization of the fBm X
as X(k/N) = ZI;:1 DX (p/N). Since Ay depends only on N and H, it is
entirely determined once we have fixed the exponent and the number of points
we wish to generate. The problem of synthesizing a sample of an fBm is thus
reduced to that of computing Ly from Ax. Note that, so far, we have only
used the fact that Ay is a valid autocovariance matrix, so that it has a Choleski
decomposition. Thus the procedure above may be applied for synthesizing any
discrete Gaussian process. A direct method for general Choleski factorization
has complexity O(N?) and requires O(N?) memory. This precludes the use of
this approach for building large traces, and is the reason usually invoked for
the need of fast approximate methods. However, when the process is stationary
(this is why we work with DX rather than X) and in the common case where the
samples are equi-spaced, the matrix considered is Toeplitz: one can then use fast
algorithms, such as the Schur or Levinson algorithms, which have complexity
O(N?) and need O(N) memory. Furthermore, it is possible to do even better
if one forces N to be a power of 2. Such a requirement is common to many
methods (e.g. FFT or dyadic wavelet-based), and is not generally considered
as a major drawback. In this case the doubling Schur algorithm [1] allows to
reduce the complexity to O(N (log,(N))?). This is very reasonable and permits
the exact synthesis of quite large traces (for comparison, spectral methods based
on the FFT have complexity O(N (log,(N))).



Let us now turn to the synthesis of mBm. The usual technique is based on
the following theorem ([11]):

Theorem 1 Let (Br(t))i>0 be an fBm of index H. Then for any interval
[a,b] C (0,1) and K > 0 we have almost surely

lim sup sup |Bg(t) — By ()] = 0.
h=0 < H,H' <b t€0.K]
|H' — H|<h

This result allows to generate a sample path of an mBm X (¢) with t € [to, 1]
through the following procedure :

e Denote H; = H(t;) for t; = to + (t, — to)%,i = 0...N, where N + 1 is
the number of sample points to be generated.

e For a fixed w, synthesize all {Bm-s By, with parameter H; on [to,t;]. More
precisely, we generate one realization of a white noise DYy and compute
all the matrices Ly (H;) corresponding to the increments of fBm-s with
exponent H;, as defined in (2). We then set DX x = Ly(H;)DYy and
add these increments to obtain By, .

e X is then obtained by setting X (t;) = By, (t;).

This procedure has complexity IV times the complexity of generating a single
fBm, and needs N times the memory required for the synthesis of an fBm.
Thus, if one uses the Schur algorithm, the time complexity is O(N?3) and O(N?)
memory is needed. In the case the doubling Schur algorithm is used, the time
complexity falls to O(N?(log,(N))?).

Now that we dispose of a formula for the autocovariance of mBm, an al-
ternate method may be proposed : one can use the Choleski decomposition
to generate directly the samples of an mBm, without synthesizing first all the
“tangent” fBm-s. Indeed, as said above, the Choleski method may be applied
for building traces of any discrete Gaussian process. The new method thus uses
as a starting point the matrix Ay deduced from Proposition 4, and computes
the corresponding matrix Ly. Note that, in the case of mBm, there is no point
in working with the increments : since they are not stationary, it is not simpler
to obtain Ly for the increments than for the original process. In turn, this
imply that one cannot make use of fast algorithms for the decomposition, so
that the time (resp. memory) complexity will be O(N?) (resp. O(N?)). We
thus obtain exactly the same values as in the previous synthesis method when
the Schur algorithm is used. In particular, the new method is worse than the
old one when N may be chosen to be a power of 2. Note however that it is
exact, as the previous one was only approximate.

3.2 Long range dependence

Let us first recall what is usually meant by “long range dependence”. Let Y (t)
be a stationary process with E(Y?(¢t)) = 1. The correlation function of Y (¢),



denoted p, depends only on the lag :
p(k) = E(Y ()Y (t + k)
One possible definition of long range dependence is the following [5] :

Definition 3
Let Y (t) be a stationary process. Y (t) is said to have long range dependence if
there ezxists a number a € (—1,0) and a constant ¢ such that :

lim p(k)

=1
k—oo ck®

Some authors use a less stringent definition, based on the summability of
the correlation function :

Definition 4
Let Y (t) be a stationary process. Y (t) is said to have long range dependence if

+o0
> lo(R)| = +o0

The increments of fBm yield the most well known example of long range
dependenceé: it is classical that, for H # %, p(j) is equivalent to H (2H —1)j2H 2
when j tends to infinity. In addition,

+o0
1
e 0<HK 3" Zp(k) =0and V k # 0, p(k) < 0 (antipersistant behavior)

1
e H= 3 p(k) = 0,V k # 0 (independents increments of Brownian motion).

“+o0
1
°5 <H<1: Zp(k) = 400 (long range dependence)
— 00

An alternative definition is based on the behavior of the spectral density at
the origin : long range dependence manifests itself through a divergence at low
frequencies.

Definition 5
Let Y (t) be a stationary process. Y (t) is said to have long range dependence if
there exists a number § € (—1,0) and a constant d such that :

f)

Aty
A0 dNB

where [ denotes the spectral density of Y.



Again in the case of the increments of fBm, it is well known that the spectral
density reads :

+o0
fO) =2¢(1—cosA) Y @2mj+ X" A€ [-m,7]
j=—o00
with
7 in(rH)TQH + 1
c= %sm(ﬂ' )(2H + 1)

As a consequence,
fA) = C|/\|172H + O(|/\|min(3*2H’2)) when A — 0
and :

e H>1:f(A) y=o + .

Of course, these definitions must be adapted in our case, since mBm does
not have stationary increments. In particular, it is not straightforward to de-
fine a spectral density for the increments : in general, there are several, non
equivalent, ways to extend the notion of a Fourier spectrum for non stationary
processes. For instance, [8] proposes to compute first the Wigner-Ville trans-
form, which, for a process X (¢) yields a function (¢, f) — W (t, f), where f rep-
resents frequency. An average spectrum is then defined by integrating W (%, f)
with respect to t. This procedure allows, in the case of {Bm, to obtain in a
satisfactory way the intuitive fact that the spectrum behaves as 1/|f|?#+1. Al-
though it is theoretically possible to follow the same route for mBm, computing
the Wigner-Ville spectrum does not seem to be an easy task when H(t) is an
arbitrary Holder function. We will thus rather study the asymptotic behavior
of the correlation function of the increments, cory (t,s). This function depends
on both time instants, and the best we can do is to fix one “initial” time, say s,
and see what happens when we let ¢ go to infinity. In doing so, we will obtain
an asymptotic behavior conditioned on s, reflecting the fact that the long term
correlation structure will in general be different for different initial times. In
addition, and again because of non stationarity, we cannot hope in general that

cory (s,s + h)

the ratio I~

will have a non degenerate limit ¢ for a certain well

chosen a. Rather, we will content ourselves with the fact that w

stays bounded away from 0 and oo when h tends to infinity. We thus set the
following definitions for long range dependence of non (necessarily) stationary
processes :

Definition 6
Let Y (t) be a second-order process. Y (t) is said to have long range dependence
if there exists a function a(s) taking values in (—1,0) such that :

Vs > 0,cory (s, s + h) ~ h(®)



when h tends to infinity.

(f(h) =~ g(h) when h tends to infinity denotes the property that there exist

0 < ¢ < d < oo such that for all sufficiently large h, ¢ < % <d.)

By analogy with Definition 4, we also consider the weaker condition on the
summability of the autocorrelation :

Definition 7
Let Y (t) be a second-order process. Y (t) is said to have long range dependence

if

“+o0
V§ > 0,Vs > O,Z |cory (s,s + kd)| = +o0

0

Note finally that since the increments are not stationary, it is important
to consider the correlation function rather than the covariance : for station-
ary processes, these differ by a multiplicative constant, but for mBm (or its

increments), the ratio £224riance tonds to infinity when ¢ tends to infinity.
correlation

From now on, we assume that H is a non constant function.

Proposition 6 (asymptotic behavior of the covariance of mBm)

Let X (t) be a standard mBm with functional parameter H(t). Then, when t
tends to infinity, and for all fired s > 0,

H(t)+ H(s) <1 = covx(t,s) =1

H(t)+ H(s) > 1 = covx (t, s) ~ tHOFH() -1

Proof

Recall that, because H(u) varies in [a,b] with 0 < a < b < 1, the renor-
malising function D(H (t), H(s)) takes values in an interval [dyin, dmaz] with
0 < dpmin < dmaz < 00. Since we are only interested in the order of magni-
tude of covx(t,s), we may from now on neglect D(H (t), H(s)) in our compu-

tations. The announced result then follows simply from a Taylor expansion of
(tHM+H(s) 1 gHO+H () _ ¢ — g|HO+H()) where the leading term is

D(H(t), H(s))sTOTHE) if H(t) + H(s) < 1
and
D(H(t), H(s))(H(t) + H(s))stTO+HE=1if H(4) + H(s) > 1.
(recall that H(t) + H(s) is bounded.) m

Proposition 7 (asymptotic behavior of the correlation of mBm)

Let X (t) be a standard mBm with functional parameter H(t). Then, when t
tends to infinity, and for all fired s > 0,

H(t)+ H(s) < 1= corx(t,s) ~t 11

H(t)+ H(s) > 1= corx(t,s) ~ tH()~1

10



Proof

It suffices to recall that the variance at time ¢ of an mBm is O(t?2(*)). m
Since both —H (t) and H (s)—1 belong to (—1,0) for all ¢, s, we have the following

Corollary 1 For all admissible H(t), mBm has long range dependence in the
sense of Definition 7. If, for all s, H(t) + H(s) > 1 for all sufficiently large
t, then the mBm associated to H has long range dependence in the sense of
Definition 6, with functional long range dependence exponent a(s) = H(s) — 1.

A simple case where an mBm does not have long range dependence in the
sense of Definition 6 is when there exists a sequence (t,), tending to infinity
such that H(t,)+ H(s) < 1 for all n and H does not have a limit. In this case,
there does not exist an exponent a; such that cory (s, s + h) = O(h*).

Let us now consider the increments of mBm.

Proposition 8 (asymptotic behavior of the covariance of the increments of
mBm)

Let X (t) be a standard mBm with functional parameter H(t) and Y (t) be the
unit time increments of X (t), i.e. Y (t) = X (t+1)—X (t). Then, when t tends to
infinity, and for all fized s > 0 such that the four quantities H(t) + H(s), H(t +
1)+ H(s),H(t)+ H(s+1), and H(t + 1) + H(s + 1) are all different,

max(H(t)+ H(s),Ht+ 1)+ H(s),H{t)+ H(s+1),Ht+1)+ H(s+1)) <1
= covy (t, s) ~

mar(H(t)+ H(s), Ht+ 1)+ H(s),H{t)+ H(s+ 1), Ht+ 1)+ H(s+ 1)) > 1
= covy(t,s) ~ tmax(H(t)+H( )H(t+1)+H(s) H(t)+H(s+1),H(t+1)+H(s+1))—1

Proof

By definition, covy (t,s) = covx(t+ 1,8+ 1) —covx(t +1,5) — covx(t,s+ 1) +
covx (t, s). By Proposition 6, if max(H (¢t)+ H(s), H(t+1)+ H(s),H(t)+ H(s+
1), H{t+1)+ H(s+1)) < 1, all the covariances on the right side above are O(1)
and their sum does not cancel if H(t)+ H(s), H(t+ 1)+ H(s), H(t)+ H(s+1),
and H(t+ 1) + H(s + 1) all differ. If at least one of H(t) + H(s),H(t + 1) +
H(s),H(t)+ H(s+1) and H(t + 1) + H(s + 1)) is greater than one, the order
of covy (t,s) will be the maximum of these values, since they all differ. More
precisely, denoting (%,5) the couple where the maximum of H(t) + H(s), H(t +
1)+ H(s),H(t)+ H(s+1),H(t +1)+ H(s+ 1) is attained, we have that :

covy (t,5) = SD(H (1), H(S))(H(f) + H(E)tHOHHE 1 4 o(HOTHE 1),

Remark

Since interesting cases are when H is a non constant function, the condition
that H(¢t)+ H(s), H{t+1)+ H(s), H(t)+ H(s+1),and H(t+1)+ H(s+1) are
all different is not a strong constraint but rather corresponds to the “generic”
case.

11



Proposition 9 (asymptotic behavior of the correlation of the increments of
mBm)

Let X (t) be a standard mBm with functional parameter H(t) and Y (t) be the
unit time increments of X (t). Let cory (t,s) denote the correlation of Y. Then,
when t tends to infinity, if H(t) and H(t + 1) differ, and for all fized s > 0
such that the four quantities H(t)+ H(s), H(t+1)+ H(s),H(t)+ H(s+1), and
H(t+ 1)+ H(s+ 1) are all different,

maz(H(t)+ H(s), Ht+ 1)+ H(s),H(t)+ H(s+1),H(t+1)+ H(s+1)) <1
= cory t,S) ~t maz(H(t),H(t+1))

mazx(H(t) + H(s), H(t + 1) + H(s ) Ht)+H(s+1),Ht+1)+H(s+1))>1
= cory t,S) ~t maz(H(s) H(s+1))—

A,\A,\

Proof

Again, this is simply obtained using Proposition 8 plus the fact that E(Y2(t)) =
O(t?mee(H®).HE+1)) if H(t) and H(t + 1) differ (otherwise cancellation occur
and the leading term is different). The exponent in the case where maz(H (t) +
H(s),H(t+1)+ H(s),H(t) + H(s+ 1), H(t+ 1) + H(s + 1)) > 1 results from
the identity :

max(H(t)+ H(s),H(t +1)+ H(s), H{t)+ H(s+1),H(t+ 1)+ H(s + 1))
—maz(H(t),H(t + 1)) = max(H(s),H(s+ 1)). m

We are now in position to answer the question raised in the introduction
about the possible long range dependence of the increments of mBm.

Corollary 2 For all admissible H(t), the increments of mBm have long range
dependence in the sense of Definition 7. If, for all s,

max(H(t)+ H(s),H(t+ 1)+ H(s),H(t)+ H(s+1),H(t+ 1)+ H(s+1))>1
for all sufficiently large t, then the increments of the mBm associated to H have
long range dependence in the sense of Definition 6, with functional long range
dependence exponent a(s) = max(H (s), H(s + 1)) — 1.

Proof
Obviously, both maz(H (s), H(s + 1)) — 1 and —max(H(t), H(t + 1)) belong to
(-1,0). m

A simple example is described in the following proposition :

Proposition 10 Let H(t) be an increasing Holder function on RT such that

H([0,00)) = [a,b) with0 <a<b<1landa+b>1 (e.g. H(t) = a+(b—a)1i+t).

Then the increments of the associated mBm displays long range dependence in
the sense of Definition 6, i.e.:

Vs > 0, cory (s, s + h) ~ h(®)
when h tends to infinity, where a(s) = H(s+1) —1 € (—1,0).

Proof
Since a+ b > 1 and H is increasing, H(s) + H(t) > 1 for all sufficiently large ¢.
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The conditions set on H allows to apply Proposition 9 to get that :
cory (s, s+ h) = hH(sHD -1
The exponent oy = H(s + 1) — 1 is indeed independent of h and belongs to
(—-1,0). m
Corollary 2 and Proposition 10 show that mBm is indeed a generalization of
fBm that allows to have at the same time long range dependence in the sense
of Definition 7 and arbitrarily low Hoélder regularity at all times. In addition,
we can choose H so that the associated mBm has long range dependence in
the stronger sense of Definition 6 while having arbitrarily low regularity. More
generally, it is worthwhile to note that, as far as long range dependence is
concerned, the situation is essentially different from the fBm case : long range
dependence is obtained for the full range of admissible values of H, and not just
for H € (3,1).

It is also possible to obtain more “exotic” behaviors : take for instance
H(t) = L + L|sin(Zt)|. Then, for some values of the couple (initial time =
s,lag = k € Z), we shall have that cory (s, s + 2k) satisfies the conditions
of Definition 6, while cory (s,s + 2k 4+ 1) does not. Thus, the occurrence of
long range dependence will also depend on the time step between consecutive
observations, i.e. the unit lag. Using the same kind of ideas, one can design
an H such that the associated mBm has long range dependence on any given
measurable subset of [0, 00), and not on its complementary.

3.3 Other applications

There are of course many other ways to exploit Proposition 4. We do no more
in this section than sketch some of these possible applications.

Financial modeling :

In recent years, there has been a growing interest in modeling financial time
series with fBm rather than Brownian motion. Such a refinement allows to take
into account the strong correlations observed in real traces. Long memory in
this framework is crucial in particular as far as efficiency is concerned, because
it means that prices will fall back to their fundamental value much more slowly
than if the market was without memory. In consequence, it is possible to make
profits using this durable discrepancy. Obviously, the Holder regularity of finan-
cial time series is not constant in time, and this has important consequences :
indeed, one can imagine that periods where the market is “quiet” correspond
to high Holder exponents, while low values of the exponent indicate sudden,
“krach-like” variations. One then needs a process like mBm to model at the
same time the long range dependence and a fluctuating regularity, and it is of
obvious interest to have an expression for its autocovariance.

Traffic modeling :

Many Internet traces have been found to exhibit long range dependence. This
has several consequences, for instance on the behaviors of the queues. Recently,
it has been recognized that Internet traces also display some multifractal fea-
tures, which are not compatible with a modeling by fBm. Among the other
models that have been proposed, mBm has the advantage that it is a simple
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generalization of fBm, and that, thanks to the analysis above, it allows to ex-
plain both the long range dependence and the wildly varying local regularity.
With a right choice of H(t), we can model accurately the multifractal properties
of traffic traces, have the correct long range dependence exponent, and even ac-
commodate the fact that different experiments sometimes give slightly different
such exponents. This can be explained by non stationarity : depending on both
the initial time and the unit lag, one will indeed observe different asymptotic
behaviors. With the simple case investigated in Proposition 10, one can model
a traffic where the long range dependence exponent exists in a generalized sense
at all times and is an increasing function of the instant chosen for the beginning
of the observations.

Finally, Proposition 4 could also serve as a basis for new estimation proce-
dures, and for optimal sampling of mBm.
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