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Abstract

We present a software development approach, whose underly-
ing paradigm goes beyond programming. This approach offers a
language-based design framework, high-level programming sup-
port, a range of verifications, and an abstraction layer over low-
level technologies. Our approach is instantiated with the Sense-
Compute-Control paradigm, and uniformly integrated into a suite
of declarative languages and tools.

Categories and Subject Descriptors D.2.11 [Software Engineer-
ing]: Software Architectures—Domain-specific architectures, Lan-
guages, Patterns; D.3.4 [Programming Languages]: Processors

General Terms Design, Language

Keywords Declarative Languages, Programming Support, Pro-
gram Analysis, Program Generation

Introduction

A software development process inherently relies on some form
of development paradigm to help structure, program and compose
the building blocks of a software system. A development paradigm
is most commonly concretized in the form of a programming lan-
guage (e.g., functional or object-oriented), associated with a range
of techniques and tools to facilitate programming (e.g., editing, ver-
ification, and debugging). However, a development paradigm in-
volves multiple dimensions, besides programming, whose integra-
tion incurs both a conceptual and programming overhead. Further
downstream from programming are dimensions such as middle-
ware, which may impose a specific control flow on the program, as
is done by event-based middlewares. Further upstream from pro-
gramming are architectural styles and patterns [10] that guide the
decomposition of a software system into components and define
their interactions.

Interestingly, the partial evaluation community has been con-
tributing to this multi-dimension approach by promoting the in-
terpreter style [10] and introducing related techniques and tools.
In the interpreter style, a program must implement a processing
driven by the interpretation of a key input argument, whose bind-
ing time is assumed early. The structure of the resulting program
allows a static analysis phase to determine binding-time invariants.
These invariants are used by a transformation phase to specialize

Copyright is held by the author/owner(s).

PEPM’11, January 24–25, 2011, Austin, Texas, USA.

ACM 978-1-4503-0485-6/11/01.

Environment

act on

sensed by

context
data

raw data

orders

Contexts

Controllers

Sources

Actions

Entities

Figure 1. The architecture of an SCC software system

the program, given a value for the key input argument. The static
analysis and the transformation phase form the partial evaluation
process [5]. This process is most commonly used as an optimiza-
tion strategy dedicated to removing the interpretation layer. The in-
terpreter paradigm, coupled with partial evaluation, has been suc-
cessfully applied to a wide range of areas, besides programming
language implementations, including string matching [1], network-
ing [2] and operating systems [7]. Although limited in the dimen-
sions covered, this form of a paradigm-oriented software develop-
ment approach has demonstrated its effectiveness for optimization
purposes.

Realizing that the scope of development paradigm goes beyond
programming is a key to improve the software production process,
and it suggests to integrate the multiple dimensions of software
development into a uniform approach.

This talk. We report on research results showing that a paradigm-
oriented approach covers many more dimensions than program
optimization. We introduce a paradigm-oriented development ap-
proach that offers a language-based design framework, high-level
programming support, a range of verifications, and an abstraction
layer over underlying technologies, going beyond a contemplative
approach. We have developed a paradigm inspired by the Sense-
Compute-Control (SCC) architecture pattern [10]; it is realized by
a suite of languages and tools, named DiaSuite [4].

Our Approach

In our approach, an SCC software system gathers data about an en-
vironment via sensors (whether hardware or software). Sensed data
are used by context components to compute refined, application-
specific values. These values are then provided to control compo-
nents; they define the control logic aimed to issue orders to the
actuators, impacting the environment. The architecture of an SCC
software system is depicted in Figure 1.

The SCC paradigm has a wide spectrum of applicability; we
have used it successfully in the domains of home/building automa-
tion, multimedia, avionics and networking.



Let us now examine how this paradigm guides the design of
a software system, provides dedicated programming support, and
enables verifications.

Software design. Our SCC-oriented development approach relies
on an SCC-specific description language. This language provides
syntax and semantics to define a conceptual framework, and is
supported by processing tools.

Specifically, our approach revolves around a description lan-
guage, named DiaSpec, dedicated to describing an SCC software
system. To do so, DiaSpec consists of two language layers: (1) one
layer is for declaring a software system at the functional level, de-
composing it into context and control components, and defining
how these components are connected to each other; (2) another
layer is for declaring the sensors and actuators to be used by the
SCC software system.

Programming support. A DiaSpec description is processed to
generate a customized programming framework. This framework
provides high-level support to implement sensors, actuators, and
components, abstracting away from the underlying technologies
(e.g., hardware, networking and middleware). Furthermore, the
generated programming support guides and constrains program-
ming, leveraging the underlying programming language. For ex-
ample, DiaSuite generates an abstract class for each DiaSpec dec-
laration. An abstract class implements methods, hiding low-level
mechanisms such as communications, and declares abstract meth-
ods, delimiting where the application logic is to be introduced.

Verification. At declaration time, a DiaSpec description is ver-
ified independently of an implementation for consistency proper-
ties. For example, every component, sensor and actuator must be
connected. At development time, a DiaSpec description is used to
reason about an implementation to check its conformance. For ex-
ample, a component implementation only communicates directly
with another component if they are connected in the DiaSpec de-
scription. In doing so, we ensure the communication integrity prop-
erty [9]. At runtime, the generated programming framework in-
cludes code to preserve this conformance. For example, if a class of
sensors has no running instance, an error can be raised and a repair
strategy performed.

Non-Functional Properties

Beyond offering a conceptual framework, our language-based ap-
proach provides an ideal setting to address non-functional proper-
ties (i.e., performance, reliability, security. . . ). A description lan-
guage can be extended with non-functional declarations, expand-
ing further the type of conformance that can be checked between
the description of a software system and its implementation, and
enabling additional programming support and guidance.

We have investigated this idea by extending DiaSpec with non-
functional declarations to address error handling [8], component
flow behavior [3], and quality of service constraints [6].

Following our approach to paradigm-oriented software develop-
ment, non-functional declarations are verified at declaration time,
they generate support that guides and constrains programming, they
produce a runtime system that preserves invariants.

Let us instantiate our approach with error handling [8].

Software design. First, declarations are introduced to provide a
conceptual framework to express how errors should be treated.
Specifically, declarations specify what errors are raised by sensors
and actuators, and what types of treatment are provided by context
and control components. For example, a declaration may require
a component to fully handle sensor-related errors, shielding client
components from these concerns.

Programming support. A DiaSpec description, extended with
error-handling declarations, is used to generate a programming
framework that guides and supports the implementation of error
handling, besides the application logic. In doing so, the paradigm-
oriented development makes the programming of error handling
more rigorous and systematic.

Verification. Verification at declaration time aims to ensure that
components define appropriate treatment types along the flow of er-
rors. Conformance of the component implementation with respect
to error-handling declarations is checked statically.

Conclusion

Our initial work on the paradigm-oriented software development
approach suggests a number of future research directions. It would
be insightful to go beyond the SCC paradigm. What other style
could cover a range of application domains and give rise to a ded-
icated description language, and dedicated framework generation
and verification phases? Another direction is to explore other non-
functional properties of a software system, such as security and
performance.
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