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Context-based Estimation of Driver Intent at Road
Intersections

Stéphanie Lefèvre, Javier Ibañez-Guzmán, Christian Laugier

Abstract—Navigating through a road intersection is a complex
manoeuvre that requires understanding the spatio-temporal re-
lationships that exist between vehicles. Situation understanding
and prediction are therefore fundamental functions for any
computer-controlled safety or navigation system applied to road
intersections. To interpret the situation at an intersection it
is necessary to infer the intended manoeuvre of the relevant
vehicles. Conventional approaches to manoeuvre prediction rely
mainly on vehicle kinematics and dynamics. The contention
of this paper is that contextual information in the form of
topological and geometrical characteristics of the intersection
can provide useful cues to understand the behaviour of a
vehicle. We describe a probabilistic framework that extracts
information from a digital map and uses it along with vehicle
state information to estimate a driver’s intended manoeuvre. The
proposed approach is applicable to different types of intersections
and handles uncertainty on the input information. We evaluate
the performance of our approach on several real life scenarios
using data recorded from real traffic.

I. INTRODUCTION

Intersections are among the most complex environments
encountered in road networks. The large number of geome-
trical configurations, signalisation, traffic rules, and vehicle
interactions results in many different possible scenarios. Ac-
curate situation assessment by human drivers or software is
difficult yet fundamental for the safe traversal of intersections.
Difficult because of the large number of potential scenarios.
Fundamental as misinterpretations could lead to hazardous
situations resulting in accidents. Statistics show that in Europe
(2004) 43% of road accidents resulting in injuries occurred
at intersections [14], hence the interest by vehicle OEMs
to develop Advanced Driver Assistance Systems (ADAS) to
improve safety in these areas. Recent research endeavours
on this topic include [11], [15]. The ability for a system to
understand what is happening at an intersection and then act
accordingly is of great importance if vehicles are to move
autonomously, as was demonstrated at the DARPA Urban
Challenge [4]. In particular, predicting the manoeuvre of ve-
hicles is a crucial task since it helps identifying potential future
collisions. Knowledge about drivers’ manoeuvre intentions
therefore impacts the ability of the system to provide relevant
situation awareness and decision support at intersections.

The key issue for manoeuvre prediction is to be able to
infer driver intent from incomplete models and uncertain data.
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Incompleteness is a consequence of the fact that the underlying
physics of the situation are so complex that it is not possible to
design a model of the environment that can interpret a situation
with no ambiguity from the available data. Uncertainty arises
from the inability of sensors to measure perfectly the true state
of the environment.

Conventionally in the literature the prediction of a vehicle’s
manoeuvre relies mainly on the interpretation of vehicle kine-
matics and dynamics. Map information is occasionally used,
but only as constraints on the reachable positions. In this
work the claim is that the contextual information contained
in the map of the road network (i.e. spatial description of the
intersection) is an important indication to interpret and predict
the behaviour of a vehicle. This paper describes a probabilistic
approach to the problem of driver intention estimation at
intersections that centres on the use of map-based contextual
information and on the handling of uncertainties. The proposed
system exploits information about the layout of the intersection
contained in the map together with observations on the vehicle.
The uncertainty associated with the input information is taken
into account.

The remainder of the paper is organised as follows. Sec-
tion II gives an overview of related work. We describe the
Bayesian Network proposed to model a vehicle negotiating
an intersection in Section III, and we outline our approach
to handle uncertainty on evidence in Section IV. In the last
section we describe the experimental evaluation method and
comment the results obtained by our approach.

II. RELATED WORK

This section gives an overview of approaches in the lite-
rature that have been applied to the manoeuvre prediction
problem. So far, the idea of extracting useful information
from a digital map to improve situation understanding has
not been extensively explored, and very little effort has been
made to take into account uncertainty on lane assignment. The
approaches to manoeuvre prediction can be classified into two
main groups: motion-based approaches and behaviour-based
approaches.

Motion-based approaches use kinematic and/or dynamic
models to describe a vehicle’s motion and try to predict its
state evolution (e.g. position, speed and orientation) over time
when a control input (e.g. acceleration) is applied. The authors
of [5] propose to rely on an occupancy grid and a Bayesian
Occupancy Filter (BOF) [3] for estimating and predicting a
vehicle’s position. They restrict in a probabilistic way the



reachable positions to the cells of the grid that are part of
the road network.

Behaviour-based approaches exploit the fact that in a given
context, vehicles often exhibit typical motion patterns. If one
can identify the behaviour that a vehicle is following, the
motion pattern can be used to predict motion. Behaviour-based
approaches can be further classified into discriminative and
generative methods.

Discriminative approaches can be used to classify driver
intention without modelling explicitly the underlying distri-
bution of variables and features. For trajectory classification,
a popular method is to cluster trajectories into prototype
trajectories [2]. At a higher level, the work described in [1]
uses Support Vector Machines (SVMs) coupled with Bayesian
filtering to infer agent intentions at intersections (harmless v.s.
dangerous agent classification). The challenge with this kind
of approaches is to be able to build a generic system that
is applicable to every intersection. Because the geometry of
intersections varies significantly, it is difficult to select a set
of meaningful generic features to work with, and the training
process requires a large amount of data from many different
types of intersections.

Generative methods explicitly model the process that leads
to assessing driver intention. A popular approach is to decom-
pose complex manoeuvres into sequences of simpler events.
Hidden Markov Models (HMMs) are a powerful tool to do this
and are used in several works [9], [8]. Typical motion patterns
can be learned and then used to predict motion on the basis
of sensor data using the Growing HMM (GHMM) paradigm
[16]. The author of [13] proposes to apply Hierarchical HMMs
(HHMMs) to manoeuvre recognition and to use Gaussian
Processes to represent the uncertainty on the realisation of
a manoeuvre. Fuzzy logic is used in combination with a
Probabilistic Finite State Machine (PFSM) in [6], while the
authors of [7] propose to model driver behaviour using a PFSM
where the transition probabilities are set dynamically using the
output of a continuous vehicle state tracker.

These approaches either assume lane-level positioning or
can only be applied to one specific type of intersection or do
not use information about the layout of the intersection. As
an alternative, the next two sections describes a behaviour-
based generative approach that we propose as a generic
solution to the problem of predicting a vehicle’s manoeuvre
at an intersection. The focus is on exploiting the contextual
information provided by the digital map, and on the handling
of uncertainties.

III. A CONTEXT-BASED BAYESIAN NETWORK TO MODEL
INTERSECTION NEGOTIATION

The first part of this section describes the information
that is available for our system to infer a driver’s intended
manoeuvre. In the second part the Bayesian Network (BN) that
was designed to model a vehicle negotiating an intersection is
introduced.

Figure 1. This intersection (satellite imagery on the left, RNDF representation
on the right) has 4 roads, 8 entrance lanes, 4 exit lanes and 12 crossing
connections. The blue arrows represent the centre of lanes and the dotted
arrows inside the intersection area are the exemplar paths generated for each
crossing connection. The green lines show the position of crosswalks. The red
dots are the delimiters between the inside and the outside of the intersection.

A. Input information

1) Digital map of the road network: The map of the road
network used in this work is in the Route Network Definition
File (RNDF) format, a representation that was defined for the
DARPA Urban Challenge [4]. Intersections are represented
using topological and geometrical information: they consist
of a list of roads, lanes, and authorised crossing connections.
Adjacent lanes are part of the same road. In addition to this
information, exemplar paths are generated. They correspond
to the generic possible paths that a vehicle can take inside the
intersection; a path is generated for each authorised crossing
connection. This representation is illustrated in Fig. 1. Our
map was built manually using a tool to annotate satellite
images, and the resulting accuracy is approximately 0.5 m.

2) Vehicle state information: The observations consist of
the successive turn signal states, positions and orientations of
the vehicle. There is no constraint on how this information
should be obtained; it can be either from proprioceptive
sensors of the ego-vehicle (if one is interested in predicting
the ego-vehicle’s manoeuvre), from exteroceptive sensors or
from V2X communication (if one is interested in predicting
the manoeuvre of other vehicles).

B. Model description

We model a vehicle approaching and traversing an inter-
section by the Bayesian Network represented in Fig. 2. The
variables are defined below:
• R ∈ {ri}NR

1 : the road through which the vehicle reaches
the intersection

• L ∈ {li}NL
1 : the entrance lane through which the vehicle

reaches the intersection
• T ∈ {left, right, none}: the turn signal that is on
• P ∈ {pi}NP

1 : the exemplar path that the vehicle follows
in the intersection

• M ∈ {mi}NM
1 : the exit lane through which the driver in-

tends to exit the intersection, i.e. the intended manoeuvre
The edges of the BN represent the causal dependencies bet-
ween the variables. They can be interpreted as follows. When



Figure 2. Bayesian Network model of a vehicle negotiating an intersection. The values x in the CPTs are calculated as described in Section III-B.

a driver approaches an intersection he intends to perform a
specific manoeuvre (i.e. to reach a specific exit lane). To
reach the intersection he will select an entrance road based
on the intended manoeuvre, and an entrance lane based on
the entrance road and the intended manoeuvre. He will also
decide whether to put on a turn signal or not depending on
the entrance lane and the intended manoeuvre. Once inside the
intersection he will follow a path that is in accordance with
the entrance lane and the intended manoeuvre.

The prior distribution on M (i.e. P(M)) is set as uniform over
all the possible exit lanes since there is no prior knowledge
on the driver’s intent. The values in the conditional probability
tables (CPTs) are set by a rule-based algorithm that automa-
tically computes them from the topological and geometrical
characteristics of the intersection. This allows the system to be
generic to any type and shape of intersection. The parameters
that are taken into account by the rule-based algorithm are
described in what follows.

1) P (ri|mi) is a function of:
• whether or not entrance road ri has a lane that leads to

exit lane mi

• the number of roads that have a lane that leads to exit
lane mi

• a constant variable α that represents the probability that
the driver will do a forbidden manoeuvre (in terms of
allowed ’entrance road - exit lane’ pairs)

2) P (li|ri,mi) is a function of:
• whether or not entrance lane li belongs to entrance road
ri

• whether or not entrance lane li leads to exit lane mi

• the number of lanes in entrance road ri that lead to exit
lane mi

• a constant variable β that represents the probability that
the driver will do a forbidden manoeuvre (in terms of
allowed ’entrance road - entrance lane - exit lane’ triplets)

3) P (ti|li,mi) is a function of:
• whether or not exit lane mi is reachable from entrance

lane li
• whether or not there exists an entrance lane that 1) leads

to exit lane mi and 2) is different from entrance lane li
but belongs to the same road. If it is the case, P(ti | li,
mi) will be a function of the position of that entrance

lane with respect to entrance lane li (left or right). This
accounts for the fact that a vehicle driving on the left
lane that puts its right turn signal on probably intends to
reach an exit lane that is reachable from the right lane
only.

• the angle formed by entrance lane li and exit lane mi

• whether or not exit lane mi is an extreme exit lane
(extreme left or right) with respect to entrance lane li

• whether or not there exists exit lanes that are located on
the same side (left or right) as exit lane mi with respect
to entrance lane li

4) P (pi|li,mi) is a function of:
• whether or not path pi originates from entrance lane li
• whether or not path pi leads to exit lane mi

• the distance between the current position of the vehicle
and entrance lane li. The idea is that when a vehicle
is beginning its manoeuvre inside the intersection, it is
likely to be on a path that originates from entrance lane
li.

• the distance between the current position of the vehicle
and exit lane mi. The idea is that when a vehicle is
finishing its manoeuvre inside the intersection, it is likely
to be on a path that leads to exit lane mi.

• the angle between exit lane mi and the tangent to path
pi at the current best matched position of the vehicle on
path pi. This angle indicates where the vehicle might go
if it follows path pi only temporarily.

In this work α and β are arbitrarily set but in the future they
should be learned from data.

IV. INTEGRATION OF UNCERTAIN EVIDENCE AND
INFERENCE

A. Why the need for uncertain evidence?

Using the model described in Section III-B, we wish to infer
a discrete probability distribution on the intended manoeuvre
(M) from observations on the turn signal state (T), the entrance
lane taken by the vehicle (L) and the path taken by the vehicle
(P). If there was no uncertainty on the values of T, L and P
the inference equation to estimate M would be P(M | L, T,
P). However, performing lane assignment (and thus knowing
with certainty the value of L and P) requires that the error on
positioning, object detection and the digital map be less than



0.3 m [11]. This level of accuracy for positioning is not a
reality yet for passenger cars. Therefore hard lane assignment
is not feasible; it is necessary that the system handles uncertain
evidence on L and P. The system should also handle uncertain
information on T since in some cases the detection of turn
signal state will be uncertain (e.g. if the turn signals of other
vehicles are detected from camera images in a probabilistic
manner).

In this work, evidence for the BN takes the form of discrete
probability distributions on T, L and P, denoted by λT , λL
and λP respectively. The manner in which these probability
distributions are generated is explained in the next paragraphs,
as well as the method used to incorporate this uncertain
information into the BN.

B. Generating uncertain evidence

The input information (see Section III-A) needs to be
converted to discrete probability distributions λT , λL and λP .
λT is defined as λT = (λleft, λright, λnone), where λleft =

P (T = left) (and similarly for right and none). It is obtained
directly from the input information.
λL is defined as λL = (λl1 , ..., λlNL

), where λli = P (L =
li). We represent a lane as a bivariate normal distribution on
successive (position, orientation) states, therefore the likeli-
hood λ′li of a vehicle being on lane li is calculated as

λ′li = exp(− 1

2
(
δ2i
σ2
δ

+
θ2i
σ2
θ

)),

where δi is the distance between the vehicle’s position and its
orthogonal projection on lane li, θi is the angle between the
vehicle’s orientation and the orientation of lane li, σδ (resp.
σθ) is the standard deviation set for the distance (resp. the
angle). In this work σδ and σθ are fixed, but a method to take
into account the covariance matrices of the vehicle state and of
the map can be found in [12]. Then the probability distribution
λL is computed by normalising the likelihoods λ′li :

λli =
λ′li∑NL

i=1 λ
′
li

.

λP is defined as λP = (λp1 , ..., λpNP
), where λpi = P (P =

pi). The calculation is similar to the calculation of λL.

C. Integrating uncertain evidence in the BN

1) Addition of virtual nodes to the BN: One advantage
of using probability distributions directly as evidence for
a BN is that it makes the handling of uncertainties very
flexible. Instead of trying to represent explicitly in the BN
the underlying variables that introduce uncertainties, the pro-
bability distributions over the uncertain variables are computed
independently of the BN.

The concept of using a discrete probability distribution as
evidence in a BN is sometimes referred to as virtual evidence
and was introduced as a generalisation of the standard hard
evidence by Pearl [10]. In what follows we describe the
process of incorporating in our BN uncertain evidence on the

Figure 3. The four-way stop intersections at which experimental evaluation
was performed.

value of T. A node VT is added as a child of node T. VT
is called a virtual node and corresponds to a binary variable
always observed to be 1. The conditional probability table
P (VT |T ) is set dynamically using λT as follows:

P (VT = 1|T = left) = λleft

P (VT = 1|T = right) = λright

P (VT = 1|T = none) = λnone

The same process is applied for integrating in the BN
uncertain evidence on L and P: virtual nodes VL and VP are
added as children of L an P respectively, and the conditional
probability tables P (VL|L) and P (VP |P ) are set dynamically
using λL and λP respectively.

2) Inference equation with uncertain evidence: The joint
probability function of the BN of Fig. 2 after the virtual nodes
have been added is:

P (M,R,L, T, P, VT , VL, VP ) = P (M)× P (R|M) (1)
×P (T |M,L)× P (VT |T )
×P (L|M,R)× P (VL|L)
×P (P |M,L)× P (VP |P )

The inference equation to estimate M from uncertain evidence
on L, T and P is P (M |VT = 1, VL = 1, VP = 1). Its
analytical form can be derived from Eq. 1; we then perform
exact inference.

V. EXPERIMENTAL EVALUATION

A. Evaluation data and scenarios

The system is tested on 42 vehicle trajectories recorded from
real traffic at two different intersections (see Fig. 3).

Evidence on L and P is obtained by labelling laser data
(position and orientation of the vehicles) and applying the
method described in Section IV-B.

Evidence on T is automatically generated based on the
scenario we wish to test the system on. We defined 4 sce-
narios; they are illustrated in Table I and use the following
terminology:
• Consistent behaviour: the turn signal T is consistent with

the manoeuvre M (e.g. no turn signal or left turn signal
on for a left turn).



Id Scenario description Example

1

Consistent behaviour

+
High confidence in turn signal

information

2

Consistent behaviour

+
Low confidence in turn signal

information

3

Inconsistent behaviour

+
High confidence in turn signal

information

4

Inconsistent behaviour

+
Low confidence in turn signal

information

Table I
DEFINITION OF THE EVALUATION SCENARIOS

• Inconsistent behaviour: the turn signal T is not consistent
with the manoeuvre M (e.g. right turn signal on for a left
turn).

• High confidence in turn signal information: there is little
uncertainty on the turn signal state.
In this situation the probability distribution on T will be
set to λT = (0.9, 0.05, 0.05) or λT = (0.05, 0.9, 0.05) or
λT = (0.05, 0.05, 0.9).

• Low confidence in turn signal information: there is a high
uncertainty on the turn signal state.
In this situation the probability distribution on T will be
set to λT = (0.4, 0.3, 0.3) or λT = (0.3, 0.4, 0.3) or
λT = (0.3, 0.3, 0.4).

The idea behind the definition of these scenarios is to test our
system on a variety of real life situations. Drivers sometimes
unintentionally misuse turn signals (thus the definition of
consistent and inconsistent behaviours), and the confidence in
the information on turn signal varies significantly depending
on the way it was obtained (see Section III-A2).

B. Evaluation method

The performance is evaluated by measuring how early
the system is capable of making a correct prediction about
the manoeuvre of a vehicle in each of the scenarios. For a
trajectory with ground truth M = mk (i.e. the driver actually
exits the intersection through exit lane mk in the end), an
individual prediction will be considered correct if

argmax
i

(P (M = mi|VT , VL, VP )) = k.

For each tested trajectory we determine the timestep tc such
that all the subsequent predictions are correct and we define
δc ∈ [0, 50] as the distance in meters between the vehicle
and the exit lane mk at timestep tc. The upper bound for

δc delimits the area where evaluation is performed at the
intersection. In this work it is set to 50 m, which corresponds
to the distance until which we are able to label vehicles in our
laser data.

In order to evaluate the performance of the system we
consider the distribution of δc in each of the scenarios de-
fined in Section V-A. This allows us to determine how the
inconsistencies in a driver’s behaviour and the confidence in
the turn signal information impact the ability of the system to
infer the driver’s intention.

C. Results and interpretation

The system is tested on 42 trajectories for each scenario.
The distributions of δc are plotted in Fig. 4 and can be
interpreted as follows.

1) Scenario 1: In this scenarios δc = 50 for all the trajec-
tories, which means that the system makes correct predictions
for every trajectory at every timestep. This is not surprising
since in this scenario strong cues are available to predict the
manoeuvre of a vehicle (high confidence in the turn signal
information) and these cues are never misleading (consistent
behaviour).

2) Scenario 2: When the turn signals are used correctly
by the drivers but the uncertainty on turn signal information
is high, the system occasionally makes incorrect predictions
over the course of a trajectory. In our dataset these incorrect
predictions all happened in the following situation: a driver
intends to make a left turn but starts steering left particularly
late in the intersection. In this situation the system makes
correct predictions until the vehicle reaches the centre of
the intersection. Then during a few timesteps just before the
driver starts steering left, the system interprets the absence of
steering as an intention to go straight. As a result the system’s
prediction becomes incorrect for a brief period. This explains
why 10 < δc < 20 for 5% of the trajectories.

These events, even if rare, uncover one limitation of our
approach: our exemplar paths do not account for the fact that
there are variations in the way people execute a manoeuvre in
an intersection. In such situations, a reliable information on
turn signal state compensates for the inaccuracy of exemplar
paths (Scenario 1) but a high uncertainty on turn signal state
sometimes does not (Scenario 2).

3) Scenario 3: When the confidence in the turn signal
information is high and the driver misuses the turn signals, the
system’s predictions will be incorrect until there are enough
clues (position, orientation of the vehicle) that contradict the
turn signal clue. The distance δc will therefore vary depending
on how early in the manoeuvre the different clues conflict with
each other.

If at the beginning of the manoeuvre the clues are not
conflicting (e.g. the vehicle has its left turn signal on and
is located on a lane from which left turn manoeuvres are
allowed), the misuse of the turn signal will becomes obvious
only close the end of the manoeuvre, when the exit lanes
indicated by the turn signal are no longer reachable. In our
dataset 41% of the trajectories fit this case, i.e. the manoeuvre



Figure 4. Histogram representation of the distribution of δc ∈ [0, 50] for
each of the scenarios defined in Section V-A.

is not identified correctly until the vehicle is located between
10 and 20 m from its exit lane.

If the clues are conflicting starting from the beginning of
the manoeuvre (e.g. the vehicle has its left turn signal on and
is located on a lane from which left turn manoeuvres are not
allowed), the misuse of the turn signal will becomes obvious
much earlier. 28% of the tested trajectories fit this case, i.e.
the manoeuvre is identified correctly when the vehicle is more
than 40 m away from its exit lane.

In all cases δc is higher than 10 m.
4) Scenario 4: When the information on the turn signal

state is misleading but uncertain, the system is able to make
correct predictions much earlier (in comparison with Scena-
rio 3): δc is less than 20 m in only 7% of the cases (against
41% in Scenario 3), and in 50% of the cases the system makes
correct predictions when the vehicle is more than 40 m away
from its exit lane (against 28% in Scenario 3).

The differences in the results between the two scenarios
can be explained as follows. In Scenario 3 there is only one
correct interpretation of the conflicting data, which is that the
driver is misusing the turn signals. A driver misusing the turn
signals is a rare event, it is therefore unlikely and the system
will prefer another interpretation until late in the manoeuvre.
In Scenario 4 there are two possible correct interpretations for
the conflicting data, which are that the driver is misusing the
turn signals or that the true turn signal state is not the one
presented as the most likely by the input information. Since
the confidence in the input information on turn signals is low,
the system will favour this (correct) interpretation over the
other ones early in the manoeuvre.

VI. CONCLUSIONS

In this paper a novel approach for predicting the manoeuvre
of a vehicle at an intersection was introduced. The proposed
method extracts contextual information from a digital map and
integrates it in a Bayesian Network that models a vehicle
negotiating a road intersection. The system is generic to
any intersection layout and is capable of handling uncertain
information. The performance of the system was evaluated in

four scenarios including cases where the driver misuses turn
signals.

Future work will integrate vehicle dynamics to allow for
more complex manoeuvre recognition. The variability on the
execution of a manoeuvre in an intersection should be accoun-
ted for in the exemplar paths. The idea of using contextual
information will be investigated further: priority rules will
be taken into account to improve situation assessment at an
intersection.
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