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Abstract

Over the last decade, the numerical simulation of incompressible fluid-
structure interaction has been a very active research field and the subject
of numerous works. This is due, in particular, to the increasing interest
of the research community in the simulation of blood flows in large
arteries. In this context, the fluid equations have to be solved in a moving
domain and the incompressibility constraint makes the coupling sensitive
to the added-mass effect. As a result, the solution procedure has to be
designed carefully in order to guarantee efficiency without compromising
numerical stability. In this paper, we review some of the coupling schemes
recently proposed in the literature. Some numerical results that show the
effectiveness of the novel approaches are also presented.
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1. Introduction

Computational Fluid-Structure Dynamics (CFSD) is of great importance
in practically all engineering fields, from aeroelasticity to biomechanics (see,
e.g., [40, 93, 99, 85, 92, 113, 59, 118, 14, 70, 28, 42, 114, 8, 120, 33]). The
work summarized in this review stems from the numerical simulation of the
(mechanical) interaction between blood flow and the vessel wall in large arteries.
Over the last decade, this topic has been a very active field of research and the
subject of numerous works (see, e.g., [96, 59, 118, 87, 51, 121, 76, 77, 53]). The
underlying motivation is that computer based simulations of blood flows, in
patient-specific geometries, can provide valuable information to physicians (e.g.,
in order to enhance diagnosis and therapy planing). Moreover, such simulations
can also be a major ingredient in the design/optimization of medical devices.

The numerical simulation of the fluid-structure phenomena involved in blood
flows raises many issues. Among them, the displacement of the wall cannot be
supposed to be infinitesimal, geometrical nonlinearities are therefore present
in the structure and the fluid has to be solved in a moving domain. On the
other hand, since blood is an incompressible fluid, the arteries are slender and
the vessel and blood densities close, the coupling has to be tackled carefully in
order to avoid numerical instabilities.

In large (or medium size) arteries, blood is commonly modeled as a
homogeneous, viscous, Newtonian and incompressible fluid (see, e.g., [115, 53]).
Although the artery wall has a viscoelastic behavior (see, e.g., [56]), we limit
the presentation to the case of a non-linear elastic solid. Yet, the coupling
strategies discussed below are not restricted to this structural behavior. As
a mathematical model, we consider therefore the system of partial differential
equations involving the Navier-Stokes equation (in a moving domain), the non-
linear elastodynamics equation and the following coupling conditions on the
interface Σ:

continuity of displacements (fluid domain and structure):

df = ds on Σ; (1)

continuity of velocity (fluid and structure):

uf = us on Σ; (2)

equilibrium of stresses (structure and fluid):

σsns = −σfnf on Σ. (3)

This paper concerns the numerical resolution of this coupled problem.
The time semi-discretizations of this system exploit, in general, the

heterogeneous structure of the coupled problem. That is, the fluid and the
solid are time semi-discretized by different time-marching schemes, tailored by
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their different mathematical properties. On the other hand, the time semi-
discretization of the interface coupling conditions (1)–(3) defines the coupling
scheme.

One of the most elementary coupling schemes (perhaps the most popular in
the aeroelastic community) is based on the following explicit treatment of (1)
and (2): 

df,n+1 = ds,n on Σ,

uf,n+1 = us,n on Σ,

σs,n+1ns = σf,n+1nf on Σ.

(4)

This yields the procedure reported in Algorithm 1. This algorithm is known
as conventional serial staggered scheme (see, e.g., [100, 86, 102, 42]). Note that
Algorithm 1 is very appealing in terms of computational cost, since it allows a
fully uncoupled (sequential) solution of the discrete problem.

Algorithm 1 Explicit coupling (weakly or loosely coupled) scheme.

1. Update the fluid domain configuration (mesh) and velocities via (4)1;

2. Advance in time the fluid with the interface Dirichlet condition (4)2;

3. Advance in time the structure with the interface Neumann condition (4)3;

4. Go to next time-step.

Explicit coupling (weakly or loosely coupled) schemes are those in which (2)
or (3) are explicitly treated. A spurious numerical power is therefore generated
at the interface (energy is not exactly balanced due to the explicit treatment),
which has to be controlled in order to guarantee stability. Algorithm 1 is
an explicit coupling scheme, since it treats (2) explicitly. Although explicit
coupling algorithms are widely and successfully used in aeroelasticity (see, e.g.,
[101, 102, 55, 42]), a number of numerical studies (see, e.g., [91, 85, 105, 96, 59])
have shown that Algorithm 1 is unstable under certain choices of the physical
parameters. Typically, this happens when the fluid is incompressible, the fluid
and solid densities are comparable or when the domain has a slender shape,
irrespectively of the choice of the time-step size. Blood flows are a popular
example of such a situation.

Theoretical explanations of this issue have been reported in [25] (see also
[54]). In particular, the following instability condition is established in [25] for
a simplified framework:

ρsε

ρfλadd
< 1, (5)

where ε and λadd are pure geometrical quantities. The former is related to
the thickness of the structure, whereas the latter increases with the length of
the domain (it is the largest eigenvalue of the so-called added-mass interface
operator). Note that the left hand-side of (5) is a pure physical quantity, it
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measures the amount of added-mass effect in the system. In particular, since
(5) is independent of the time-step size, reducing it does not cure the instabilities
(as mentioned above).

Implicit coupling schemes are those that time semi-discretize (1)–(3)
implicitly. The schemes that treat (2) and (3) in an implicit fashion are also
known as strongly coupled. The implicit coupling schemes are therefore strongly
coupled. These schemes have been, for years, the unique way of circumventing
the above mentioned numerical instabilities. Somehow, this explains why the
development of efficient methods for the resolution of the coupled non-linear
systems, arising in implicit coupling, has been (and still is) a very active field
of research.

Some of these implicit coupling procedures are described in §3. In particular,
we present the Newton algorithm proposed in [49]. The rest of the paper is
devoted to the problem of avoiding strong coupling, without compromising
stability. This issue is addressed from two different perspectives. In §4, we
present the semi-implicit coupling paradigm proposed in [48]. A different point
of view is considered in §5, where we review the schemes recently proposed in
[22, 5], that are based on the weak treatment of the interface conditions at the
(space) discrete level. Some final remarks and lines of future work are drawn in
§6.

The next section contains introductory material. We review there the main
ingredients of the general mathematical model used to describe the interaction
of a viscous incompressible Newtonian fluid and an elastic structure.

2. Preliminaries

The modeling of fluid-structure interaction systems under large displace-
ments involves, in a general way, the coupling of two formulations: the solid
classically treated in Lagrangian formulation, and the fluid described by an ar-
bitrary Lagrangian-Eulerian (ALE) formulation (see, e.g., [40, 98, 90, 85, 45]).

Ωs(t)Σ(t)ΣΩs

Ωf
Ωf(t)

Γin
A(·, t)

ΓinΓout
Γout

Γn

Γd

Figure 1: Geometrical fluid-structure configurations.

We consider a mechanical system occupying a moving domain which consists
of a deformable structure Ωs(t) (e.g., the vessel wall) interacting with a fluid
under motion (e.g, the blood) in the complement Ωf(t) of Ωs(t), see Figure 1.
We denote by Σ(t) the current configuration of the fluid-structure interface,

that is, Σ(t)
def
= ∂Ωf(t) ∩ ∂Ωs(t). Let Ωf ∪ Ωs be a reference configuration of
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the system (e.g., the initial configuration). We denote by Σ
def
= ∂Ωf ∩ ∂Ωs the

reference fluid-solid interface and ∂Ωf = Γin ∪ Γout ∪ Σ, ∂Ωs = Γd ∪ Γn ∪ Σ,
are given partitions of the fluid and solid boundaries respectively. The fluid
external boundaries Γin and Γout are supposed to be fixed. The corresponding
outward normal vectors to the fluid and solid boundaries are denoted by n
and ns, respectively (the same notation is used for their reference and current
configurations).

2.1. Fluid equations

The dynamics of the (moving) control volume Ωf(t) are parametrized in
terms of a smooth injective map A : Ωf × R+ → Rd, the so-called ALE-map,
such that

Ωf(t) = At(Ω
f),

with the notation At
def
= A(·, t). The corresponding deformation gradient

and Jacobian are denoted by F
def
= ∇At and J

def
= detF , respectively.

Moreover, we shall use the notation w
def
= ∂tA for the fluid domain velocity,

and df(x̂, t)
def
= At(x̂)− x̂, x̂ ∈ Ωf , for the fluid domain displacement.

Remark 1 Thanks to the invertibility of At, we can define all the physical
quantities on the reference or on the current configuration, the choice being a
matter of convenience. When the same field is evaluated in both the current
and the reference configurations, we adopt the superscript ̂ to indicate that it
is defined in Ωf × R+ and we have the relations

q̂(x̂, t)
def
= q(At(x̂), t) ∀x̂ ∈ Ωf ,

q(x, t)
def
= q̂(A−1

t (x), t) ∀x ∈ Ωf(t).

In the rest of situations (i.e., a field is only used in one of the configurations),
the superscript ̂ is not used.

We assume the fluid to be homogeneous, Newtonian and incompressible. Its
behavior is described in terms of its velocity û : Ωf × R+ → Rd and pressure
p̂ : Ωf × R+ → R fields, which are governed by the following Navier-Stokes
equations (written in ALE form):{

ρf∂tu|A + ρf(u−w) ·∇u− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),
(6)

where ρf stands for the fluid density, ∂tu|A for the ALE time derivative and

σ(u, p)
def
= −pI + 2µε(u) for the fluid Cauchy stress tensor, with µ the fluid

dynamic viscosity and ε(u)
def
= 1

2

(∇u+ ∇uT
)

the strain rate tensor.
System (6) has to be supplemented with boundary conditions, for instance,{

u = uin on Γin,

σ(u, p)n = −poutn on Γout,
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and initial condition u|t=0 = u0. Here, uin, pout and u0 are given boundary
and initial data. The conditions to be enforced on the fluid-structure interface
Σ(t) are discussed in §2.3.

Remark 2 Note that the importance of the presence of the ALE time-derivative
∂tu|A in (6) emerges in the context of the numerical discretisation (we recall

that ∂̂tu|A def
= ∂tû). Indeed, when computing numerically a solution in a moving

domain we are usually interested in the time variation of quantities collocated
at the nodes of a computational mesh (not at a particular fixed position), and
the latter necessarily follows the evolution of the computational domain.

2.2. Solid equations

The dynamics of the structure are parametrized in terms of its displacement
d : Ωs × R+ → Rd. Its evolution is generally governed by the non-linear
elastodynamics equations{

ρs∂tḋ− div
(
Π(d)

)
= 0 in Ωs,

ḋ = ∂td in Ωs,
(7)

where ρs represents the solid density, ḋ the velocity and Π(d) the first Piola-
Kirchhoff stress tensor of the structure. The latter being related to d through
an appropriate constitutive law (see, e.g., [66, 30, 82]). For instance, for an
hyper-elastic material, we have

Π(d) = F s ∂W

∂E

(
Es
)
,

where F s def
= I+∇dt stands for the gradient of deformation, Es def

= 1
2

(
(F s)TF s−

I
)

for the Green-Lagrange strain tensor and W : Rd×d → R+ is a given density
of elastic energy.

The solid equation (7) has to be supplemented also with boundary
conditions, for instance, {

d = 0 on Γd,

Π(d)ns = 0 on Γn,

and initial conditions d|t=0 = d0, ∂td|t=0 = ḋ
0
. The boundary conditions to be

enforced on Σ are discussed in the next subsection.

2.3. Interface coupling conditions

In order to ensure a correct energy balance, both the kinematic and the
kinetic continuity need to be enforced across the fluid-structure interface at
all times (see, e.g., [85] and [45]). The equilibrium of stresses is given (in the
reference configuration) by

Π(d)ns = −Jσ̂(u, p)F−Tn on Σ.
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The continuity of the velocity is enforced by setting

û = ∂td on Σ. (8)

The fluid domain displacement is taken such that

df = d on Σ,

that is, the fluid and solid domains remain sticked at all times. This last equality
with (8) yields u = w on Σ(t).

Note that, since we have assumed (for simplicity) that the inlet and outlet
boundaries (Γin, Γout) remain fixed, we have

df = 0 on Γin ∪ Γout. (9)

Therefore equations (2.3) and (9) constrain the value of df on the whole
boundary ∂Ωf . Inside Ωf , however, the displacement df(and hence the map
A) is arbitrary: it can be any reasonable extension of d|Σ over Ωf (subjected
to (9)). In the sequel we will denote this operation by

df = Ext (d|Σ) .

For instance, the operator Ext can be given in terms of an harmonic extension,
by solving: 

−∆df = 0 in Ωf ,

df = 0 on Γin ∪ Γout,

df = d on Σ.

In summary, the interface coupling conditions are given by:
df = Ext (d|Σ) , ŵ = ∂td

f in Ωf ,

û = ∂td on Σ,

Π(d)ns = −Jσ̂(u, p)F−Tn on Σ.

(10)

Remark 3 The main ingredients of the ALE (arbitrary Lagrangian-Eulerian)
formalism can be inferred from (10). Indeed, the conditions (10)1,2 impose that
the interface points must follow the same displacement as the fluid, thus the
Lagrangian terminology. In contrast, the motion of the remaining points is not
necessarily related to the fluid kinematics, so the Eulerian terminology.

2.4. Summary of the equations and global energy balance

As mathematical model, we consider therefore the system of partial
differential equations involving the Navier-Stokes equations (6), the non-linear
elastodynamics equations (7) and the interface coupling conditions (10). This
yields the following problem: find the fluid domain displacement df : Ωf×R+ →
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Rd, the fluid velocity û : Ωf × R+ → Rd, the fluid pressure p̂ : Ωf × R+ → R
and the structure displacement d : Ωs × R+ → Rd such that

ρf∂tu|A + ρf(u−w) ·∇u− divσ(u, p) = 0 in Ωf(t),

divu = 0 in Ωf(t),

u = uin on Γin,

σ(u, p)n = −poutn on Γout,

(11)


ρs∂tḋ− div

(
Π(d)

)
= 0 in Ωs,

ḋ = ∂td in Ωs,

d = 0 on Γd,

Π(d)ns = 0 on Γn,

(12)


df = Ext (d|Σ) , ŵ = ∂td

f in Ωf ,

û = ∂td on Σ,

Π(d)ns = −Jσ̂(u, p)F−Tn on Σ,

(13)

with the initial conditions u|t=0 = u0, d|t=0 = d0 and ∂td|t=0 = ḋ
0
. We refer

to [88] for a recent review on the mathematical analysis of this type of coupled
problems. This review paper is devoted to the numerical resolution of (11)-(13).

The next result (see, e.g., [94] and [46] for a proof) shows that the coupled
system (11)-(13) ensures a correct balance of the mechanical energy.

Lemma 1 Assume that the structure is hyper-elastic (with energy density
function W ) and that the coupled fluid-structure system is isolated, i.e., u = 0
on Γin ∪ Γout. Let

E(t)
def
=

∫
Ωf (t)

ρf

2
|u|2 +

∫
Ωs

ρs

2
|ḋ|2︸ ︷︷ ︸

Kinetic
energy

+

∫
Ωs

W
(
Es(d)

)
︸ ︷︷ ︸

Elastic
potential energy

be the total mechanical energy of the fluid-structure system described by (11)-
(13). Then, the following energy identity holds:

E(t) = E(0)−
∫ t

0

∫
Ωf (t)

2µ|ε(u)|2︸ ︷︷ ︸
Viscous work

.

As expected, dissipation only comes from the fluid viscous effects and the power
exchanged by the fluid and the structure exactly balance at the interface. This
balance is a direct consequence of the interface coupling conditions (13).
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3. Implicit coupling

In what follows, τ > 0 denotes a given time-step size and xn an

approximation of a given time-dependent field x at time tn
def
= nτ , with n ∈ N.

Moreover, ∂τx
n+1 def

= (xn+1−xn)/τ denotes the first order backward difference

and xn+ 1
2

def
= (xn+1 + xn)/2 the mid-point value approximation.

The time semi-discretizations of (11)-(13) exploit, in general, the
heterogeneous structure of the coupled problem. That is, (11) and (12) are time
semi-discretized by different time-marching schemes, tailored by their different
mathematical properties. To fix the ideas, we consider an implicit scheme for
the ALE Navier-Stokes equations (11),

ρf∂τu
n+1|A + ρf(un+1 −wn+1) ·∇un+1

−divσ(un+1, pn+1) = 0
in Ωf,n+1,

divun+1 = 0 in Ωf,n+1,

un+1 = uin(tn+1) on Γin,

σ(un+1, pn+1)n = pout(tn+1) on Γout;

(14)

and a mid-point rule for the structural equation (12),

ρs∂τ ḋ
n+1 − div Πn+ 1

2 = 0 in Ωs,

ḋ
n+ 1

2 = ∂τd
n+1 in Ωs,

dn+1 = 0 on Γd,

Πn+ 1
2ns = 0 on Γn,

(15)

with the notation Πn+ 1
2

def
= 1

2

(
Π(dn+1) + Π(dn)

)
.

As mentioned in the previous section, explicit coupling schemes may lead
to numerical instabilities. These numerical instabilities have been traditionally
circumvented by considering fully implicit time-discretizations of (11)-(13). For
instance, by combining (14) and (15) with the following implicit treatment of
(13):
df,n+1 = Ext(dn+1|Σ), ŵn+1 = ∂τd

f,n+1, Ωf,n+1 = (IΩf + df,n+1)(Ωf),

ûn+1 = ∂τd
n+1 on Σ.

Πn+ 1
2ns = −Jn+1σ̂(un+1, pn+1)(F n+1)−Tn on Σ.

(16)
This yields the time-marching procedure summarized in Algorithm 2.

Note that Algorithm 2 is an implicit coupling (so, strongly coupled) scheme,
since (13) is enforced exactly at each time-step. As a result, the scheme
can be proved to satisfy a discrete counterpart of Lemma 1 and, therefore,
is energy stable (under a GCL condition, see [94, 85, 83] and [46]). The payoff
of this enhanced stability is that the equations (14), (15) and (16) yield a



Coupling schemes for incompressible fluid-structure interaction 11

Algorithm 2 Implicit coupling scheme.

1. Solve the coupled problem (14), (15) and (16);

2. Go to next time-step.

highly nonlinear coupled system at each time-step. As a matter of fact, in
addition to the common nonlinearities of the fluid and solid equations, implicit
coupling induces geometrical nonlinearities within the fluid equations, due to
the dependence of Ωf,n+1 on df,n+1.

The solution procedures for this coupled non-linear problem (and for coupled
problems, in general) are commonly classified into two distinct categories:
monolithic and partitioned (see, e.g., [43]). An ad hoc single solver whose
purpose is to simultaneously solve (14)-(15) and (16) leads to a monolithic
procedure (see, e.g., [105, 113, 70, 14, 72, 51, 15, 11, 77, 58]). A solution method
that couples independent fluid (14) and structure (15) solvers is termed a
partitioned procedure (see, e.g., [104, 92, 85, 89, 59, 38, 80, 36, 78, 9, 73, 32, 33]).

Remark 4 Needless to say that Algorithm 1 is a partitioned procedure.

Monolithic methods are, by construction, less modular than partitioned
approaches and do not allow the use of legacy software. Partitioned methods,
on the contrary, facilitate the reuse of existing code. Moreover, because of their
inherent modularity, new models and numerical schemes can be introduced
while keeping everything else the same (see, e.g., [117, 39, 6]). All these
advantages come, however, with a price: computational efficiency over a
monolithic approach is not necessarily guaranteed (see [71, 11, 77]).

3.1. Variational setting

In variational form, the non-linear coupled system (14), (15) and (16) can be
formulated as the following monolithic problem (see, e.g., [46]): for n ≥ 0, find
df,n+1 ∈ H1

Γin∪Γout(Ωf), ûn+1 ∈ H1(Ωf), p̂n+1 ∈ L2(Ωf) and dn+1 ∈ H1
Γd(Ωd)

with un+1|Γin = uin(tn+1), satisfying (16)1,2 and such that

ρf

τ

(∫
Ωf,n+1

un+1 · vf −
∫

Ωf,n

un · vf

)
+ρf

∫
Ωf,n+1

(
un+1−wn+1

)
·∇un+1 ·vf

−ρf

∫
Ωf,n+1

(
divwn+1

)
u ·vf +

∫
Ωf,n+1

σ(un+1, pn+1) : ∇vf +

∫
Ωf,n+1

q divun+1

+
2ρs

τ2

∫
Ωs

(
dn+1 − dn − τ ḋn

)
· vs +

∫
Ωs

Πn+ 1
2 : ∇vs

= −
∫

Γout

pout(tn+1)vf · n (17)

for all (v̂f ,vs, q̂) ∈H1
Γin(Ωf)×H1

Γd(Ωs)× L2(Ωf) with v̂f |Σ = vs|Σ.
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Partitioned methods for the numerical solution of (17) typically stem from

a domain-decomposition reformulation of this problem. Let L̂f : H
1
2 (Σ) →

H1
Γin∪Γout(Ωf) be a given continuous linear lift operator and consider the

following splitting of the test functions space{
(v̂f ,vs) ∈H1

Γin(Ωf)×H1
Γd(Ωs) : v̂f |Σ = vs|Σ

}
=
{

(v̂f ,0) : v̂f ∈H1
Γin∪Σ(Ωf)

}
⊕
{(
L̂f(vs|Σ),vs

)
: v̂s ∈H1

Γd(Ωs)
}
.

By applying this decomposition to (17) we recover the following equivalent
formulation, involving two coupled subproblems:{

F
(
df,n+1, ûn+1, p̂n+1,γn+1

)
= 0,

S
(
dn+1,µn+1

)
= 0,

(18)

where γn+1 def
= dn+1|Σ is the interface displacement and µn+1 def

=
Rf
(
df,n+1, ûn+1, p̂n+1

)
the variationally consistent representation of the fluid

stress at the interface (whose expression is given below). In short, equation
(18)1 ensures the fluid balance subjected to the interface displacement γn+1,
whereas (18)2 enforces the solid balance subjected to the interface fluid stress
µn+1.

The fluid operator

F : H1
Γin∪Γout(Ωf)×H1(Ωf)× L2(Ωf)×H 1

2 (Σ)

→
(
H1

Γin∪Σ(Ωf)× L2(Ωf)×L2(Γin ∪ Σ)×L2(Ωf)
)′
,

is defined as

〈
F
(
df , û, p̂,γ

)
, (v̂f , q̂, ξ, ζ)

〉 def
=

ρf

τ

(∫
Ωf (df )

u · vf −
∫

Ωf,n

un · vf

)

+ ρf

∫
Ωf (df )

(
u−w(df)

)
·∇u · vf − ρf

∫
Ωf (df )

(
divw(df)

)
u · vf

+

∫
Ωf (df )

σ(u, p) : ∇vf +

∫
Ωf (df )

q div vf +

∫
Γout

pout(tn+1)vf · n

+

∫
Ωf

(
df − Ext(γ)

)
· ζ +

∫
Σ

(
û− ∂τγ

)
· ξ +

∫
Γin

(
u− uin(tn+1)

)
· ξ (19)

for all (v̂f , q̂, ξ, ζ) ∈ H1
Γin∪Σ(Ωf) × L2(Ωf) × L2(Γin ∪ Σ) × L2(Ωf). Here,

we have used the notations ŵ(df)
def
= (df − df,n)/τ , ∂τγ

def
= (γ − γn)/τ and

Ωf(df)
def
= (IΩf + df)(Ωf).

The interface fluid residual operator Rf : H1(Ωf) ×H1(Ωf) × L2(Ωf) →
H−

1
2 (Σ) is then defined by〈

Rf
(
df , û, p̂

)
,λ
〉 def

=
〈
F
(
df , û, p̂,γ

)
, (L̂fλ, 0,0,0)

〉
(20)

for all λ ∈H 1
2 (Σ).
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Remark 5 Note that the test function v̂f in (19) vanishes on the boundary
Γin ∪ Σ, so that Dirichlet boundary conditions are strongly imposed. The last
two terms of (19) are not included in practice in the variational formulation.
They have been incorporated in the definition of the fluid operator in order to
facilitate the presentation. The same observation applies to the third last term.

Similarly, the solid operator

S : H1
Γd(Ωs)×H− 1

2 (Σ)→
(
H1

Γd(Ωs)
)′
,

is defined as〈
S
(
d,µ),vs

〉 def
=

2ρs

τ2

∫
Ωs

(
d− dn − τ ḋn

)
· vs +

1

2

∫
Ωs

(
Π(d) + Π(dn)

)
: ∇vs

+
〈
µ,vs|Σ

〉
for all vs ∈H1

Γd(Ωs).
Finally, problem (18) can be reformulated as an interface problem in terms

of the nonlinear fluid and solid Steklov-Poincaré operators (see [36]). The

fluid Steklov-Poincaré operator Sf : H
1
2 (Σ) → H−

1
2 (Σ) (also called Dirichlet-

Neumann map) is defined by

Sf(γ)
def
= Rf

(
df(γ), û(γ), p̂(γ)

)
∀γ ∈H 1

2 (Σ), (21)

where (df(γ), û(γ), p̂(γ)
)

is the solution of the Dirichlet fluid subproblem:

F
(
df(γ), û(γ), p̂(γ),γ

)
= 0. (22)

In other words, Sf(γ) gives the interface fluid stress associated to the
displacement γ of the interface. Analogously, the nonlinear solid inverse Steklov-

Poincaré operator Ss : H−
1
2 (Σ) → H

1
2 (Σ) (also called Neumann-Dirichlet

map) is given by

Ss(µ) = d(µ)|Σ ∀µ ∈H− 1
2 (Σ),

where d(µ) is the solution of the Neumann solid subproblem:

S
(
d(µ),µ

)
= 0.

From the above definitions, it follows that problem (18) (or, equivalently,

(17)) is equivalent to the following interface problem: find γn+1 ∈H 1
2 (Σ) such

that
Ss
(
Sf(γn+1)

)
= γn+1. (23)

This equation is the so-called interface Dirichlet-Neumann formulation of (17).
The composition of (24) with the inverse operator (Ss)−1, gives rise to the
so-called Steklov-Poincaré equation (see [36]):

(Ss)−1(γn+1)− Sf(γn+1) = 0. (24)

Remark 6 For the sake of conciseness, we have limited the presentation to the
time semi-discrete problem (17). Nevertheless, the discussion also applies to
the fully discrete case, for instance, after space discretization of (17) with finite
elements.
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3.2. Partitioned solution methods

These methods are generally based on the application of a particular
nonlinear iterative method to the interface formulations (23) or (24). In this
subsection we discuss some iterative procedures applied to (23). Some solution
methods for the non-linear problem (24) are introduced in [36]. Alternative
partitioned procedures, based on Robin-Neumann transmission conditions, have
been recently introduced in [9, 10].

The formulation (23) reduces problem (18) to the determination of a fixed
point of the Dirichlet-Neumann operator Ss◦Sf . This motivates the use of fixed-
point (e.g., non-linear Richardson) based iterations, as shown in Algorithm 3
(see, e.g., [91, 92, 85, 96, 35, 107, 78]), where ωk ∈ (0, 1] is a given relaxation
parameter which is chosen in order to guarantee convergence. At the fully

Algorithm 3 Relaxed Dirichlet-Neumann fixed-point iterations.

1. Initialize γ0

2. For k ≥ 0 until convergence of γk

a) Solve fluid (including domain update):

µk = Sf(γk);

b) Solve solid:
γ̃k+1 = Ss

(
µk);

c) Relaxation:
γk+1 = ωkγ̃k+1 + (1− ωk)γk.

discrete level (i.e., after discretization in space), an expression for this parameter
(which significantly improves the convergence) is given by the following multi-
dimensional Aitken’s formula (see [92, 35, 78]):

ωk =

(
γk − γk−1

)
·
(
γ̃k+1 − γk + γ̃k − γk−1

)
|γ̃k+1 − γk + γ̃k − γk−1|2

, k ≥ 1. (25)

Algorithm 3 can be considered as the simplest way of solving implicit
coupling in a partitioned fashion: existing fluid and solid solvers (possibly
black-box ) can be straightforwardly coupled, without significant modifications
of the two solvers. The method, however, may suffer from a poor convergence
behavior, which is dictated by the amount of added-mass effect in the system.
Indeed, increased relaxation is required when the solid density decreases or the
domain length increases, which can compromise efficiency in real applications.
Theoretical explanations of this issue have been reported in [25] using a
simplified model (see also [85, 34, 74, 31]). The limitations of Algorithm 3
have led to the development of new variants: for instance, based on the use of
transpiration techniques [37], reduced order models [116], vector extrapolation
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[79], interface artificial compressibility [104, 73, 33], and Robin-Neumann
coupling [9]. It is worth noticing that these last two variants achieve convergence
without the need of relaxation and have a low sensitivity to the added-mass
effect.

Alternatively, one can apply a Newton based method to (23), for a fast
convergence towards the solution (see, e.g., [59, 60, 32, 49]). This yields
Algorithm 4, which involves the Jacobian DγR of the coupled operator

Algorithm 4 Interface Dirichlet-Neumann Newton’s method.

1. Initialize γ0

2. For k ≥ 0 until convergence of γk

a) Solve fluid (including domain update):

µk = Sf(γk);

b) Solve solid:
γ̃k+1 = Ss

(
µk);

c) Evaluate residual:
R(γk) = γ̃k+1 − γk;

d) Solve tangent problem:

DγR(γk)δγk = −R(γk); (26)

e) Update rule:
γk+1 = γk + δγk.

R(γ)
def
= Ss

(
Sf(γ)

)
− γ. (27)

In practice, the linearized fluid-structure problem (26) is solved using an
operator-free (Krylov) iterative method, as GMRES, which only requires
repeated evaluations of DγR(γ) against given interface displacements λ. In
other words, the Jacobian operator DγR(γ) is not explicitly needed.

Approximate evaluations of DγR(γ)λ (or resolutions of (26)) lead to the so-
called inexact (or quasi-) Newton methods (see, e.g., [59, 78, 32]). For instance,
we can use as an approximation the difference quotient

DγR(γ)λ ≈ 1

ε

(
R(γ + ελ)−R(γ)

)
, (28)

with ε > 0 a given small enough parameter (see, e.g., [19]). Note that this
approach facilitates the use of black-box solvers (as Algorithm 3), since (28)
only requires residual evaluations. Nevertheless, as noticed in [59, Remark 5.1]
(see also [78]), such a strategy may lead to inefficient Newton iterations.
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Using the chain rule, we have

DγR(γ)λ = DµS
s(Sf(γ))DγS

f(γ)λ− λ, (29)

so that the exact evaluation of DγR(γ)λ can be split into the following three
sequential steps:

(i) Solve the linearized fluid subproblem:

ζ = DγS
f(γ)λ;

(ii) Solve the linearized solid subproblem:

η = DµS
s(Sf(γ))ζ; (30)

(iii) Update: DγR(γ)λ = η − λ.

Steps (i) and (ii) require the linearized versions of the fluid and solid solvers.
Note that step (ii) is standard in solid solvers. Step (i), on the contrary, is
non-standard and usually not available in most fluid solvers. For this reason,
this step is usually approximated (see, e.g., [59, 60]).

In the rest of this subsection, we present the procedure proposed in [49] for
the evaluation of DγR(γ)λ, based on shape-derivative calculus (see [108, 1]).
By derivation of (21) with respect to γ in the direction λ, we have

〈
DγS

f(γ)λ,θ
〉 def

= −
〈
DdfF

(
df(γ), û(γ), p̂(γ),γ

)
δd̂

f
, (L̂fθ, 0,0,0)

〉
−
〈
D(û,p̂,γ)F

(
df(γ), û(γ), p̂(γ),γ

)
(δû, δp̂,λ), (L̂fθ, 0,0,0)

〉
, (31)

for all θ ∈ H 1
2 (Σ) and with the notations δd̂

f def
= Dγd

f(γ)λ, δû
def
= Dγû(γ)λ

and δp̂
def
= Dγ p̂(γ)λ. While the second derivative in the right hand-side of

(31) is standard (e.g., a classical Fréchet derivative), the cross-Jacobian DdfF
requires shape-derivative calculus, since it involves the derivation with respect
to df of Eulerian integrals over Ω(df). This yields the following expression (see
[49] for details):

〈
DdfF(df , û, p̂,γ)δd̂

f
, (v̂, q̂, ξ, ζ)

〉
=

1

τ

∫
Ω(df )

ρf(div δdf)u · v

+

∫
Ω(df )

ρf(div δdf)
(
u−w(df)

)
·∇u · v −

∫
Ω(df )

ρf
[∇u∇δdf

(
u−w(df)

)]
· v

− 1

τ

∫
Ω(df )

ρfδdf ·∇u · v +

∫
Ω(df )

σ(u, p)
[
I div δdf − (∇δdf)T

]
: ∇v

−
∫

Ω(df )

µ
[∇u∇δdf + (∇δdf)T(∇u)T

]
: ∇v

−
∫

Ω(df )

q div
{
u
[
I div δdf − (∇δdf)T

]}
+

∫
Ω

δd̂
f · ζ, (32)
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for all (v̂, q̂, ξ, ζ) ∈H1
Γin∪Σ(Ωf)×L2(Ωf)×L2(Γin∪Σ)×L2(Ωf). Note that the

above terms (see also (see [38, 15]) are not standard in a fluid research code,
which explains why these terms have been usually neglected, or approximated
by finite differences (see, e.g., [113, 89, 70]).

On the other hand, δd̂
f
, δû and δp̂ can be obtained by implicit derivation

of (22). This yields

δd̂
f

= DγExt(γ)λ, (33)

and (δû, δp̂) solve the linearized fluid subproblem:〈
D(û,p̂)F

(
df(γ), û(γ), p̂(γ),γ

)
(δû, δp̂), (v̂, q̂,0,0)

〉
= −

〈
DdfF

(
df(γ), û(γ), p̂(γ),γ

)
δd̂

f
, (v̂, q̂,0,0)

〉
(34)

for all (v̂, q̂) ∈H1
Γin∪Σ(Ωf)×L2(Ωf), with the boundary conditions δû|Σ = λ/τ ,

δû|Γin = 0.
In summary, for each interface displacement λ, the sensitivity DγSf(γ)λ

can be evaluated as follows:

(i) Compute the fluid domain displacement sensitivity δd̂
f

from (33);

(ii) Compute the fluid sensitivities (δû, δp̂) from (34) and (32);

(iii) Evaluate DγS
f(γ)λ from (31) and (32).

Remark 7 Note that each operator-free evaluation (29) (one per GMRES
iteration in (26)) requires the resolution of the linearized fluid subproblem (34)
and the linearized solid sub-problem (30).

We conclude this subsection with a few numerical illustrations from [49],
involving the coupling of the ALE Navier-Stokes equations with the linear
elasticity equations. The reported results correspond to the simulation of a
pressure wave propagation in a compliant straight vessel (see [52, 59]). The
following procedures are compared:

FP-Aitken: Algorithm 3 with Aitken’s dynamic relaxation (25);

Newton: Algorithm 4 with exact Jacobian evaluation described above;

Inexact-Newton: Algorithm 4 with the inexact Jacobian evaluation
obtained by neglecting the cross-Jacobian DdfF (shape terms) in (34)
and (32).

Figure 2 (left) reports the number of iterations per time-step, performed by
each procedure. The superior convergence behavior of both Newton algorithms
is clearly visible. Figure 2 (right) shows that both Newton algorithms are about
2 times faster than the fixed-point algorithm (see [49] for a detailed discussion).
Note that the cost of each Newton iteration is higher than the cost of a fixed-
point iteration (see Remark 7).
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Figure 2: Left : number of non-linear iterations per time-step. Right :
dimensionless elapsed CPU time (τ = 10−4 s). From [49].

The impact of the exact Jacobian evaluations in Algorithm 4 can be
highlighted by increasing the time-step size. Figure 3 (left), reports the number
of iterations per time-step obtained with τ = 10−3 s. The fixed-point and
inexact-Newton algorithms fail to converge after two time steps (the allowed
maximum number of iterations is reached) whereas the exact Newton method
converges and requires a low number of iterations. Figure 3 (right) shows the
evolution of the residual during the iteration process in both Newton algorithms
at the third time step. While the exact Newton only requires 3 iterations to
reach the convergence threshold, the inexact-Newton algorithm is unable to
reduce the residual.
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residuals (τ = 10−3 s). From [49].

Remark 8 Numerical evidence shows that the convergence of the GMRES
iterations involved in (26) is sensitive to the amount of added-mass effect in
the system (see [11]), whereas the number of Newton iterations is practically
unaffected. The overall sensitivity is, however, remarkably lower than that
of Algorithm 3 (see [11, §6.1]). Note that, for linear fluid and solid solvers,
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Algorithms 3 and 4 can be viewed as, Dirichlet-Neumann preconditioned,
Richardson and GMRES iterations, respectively. Hence, the superiority of
Algorithms 4. At last, let us mention that the added-mass sensitivity of the
GMRES iterations can be reduced by using Robin-Neumann preconditioners, as
proposed in [10].

4. Semi-implicit coupling

A first approach to reduce the computational complexity of implicit
coupling consists in treating the fluid domain geometry explicitly (see, e.g.,
[96, 110, 97, 111]). This corresponds to the following explicit-implicit treatment
of (13):

df,n+1 = Ext(dn|Σ), ŵn+1 = ∂τd
f,n+1, Ωf,n+1 = (IΩf + df,n+1)(Ωf), (35){

ûn+1 = ∂τd
n+1 on Σ,

Πn+ 1
2ns = −Jn+1σ̂(un+1, pn+1)(F n+1)−Tn on Σ,

(36)

which, combined with (14) and (15), yields the time-marching scheme detailed
in Algorithm 5. Although not fully implicit, this scheme is strongly coupled
since the transmission conditions (13)2 and (13)3 are treated implicitly via (36).
As a result, the stability of Algorithm 5 is not compromised by the amount of
added-mass effect in the system (see [110, 97, 111]).

Algorithm 5 Semi-implicit coupling scheme via explicit geometry treatment.

1. Update the fluid domain configuration (mesh) and velocities via (35);

2. Solve the coupled problem (14), (15) and (36);

3. Go to next time-step.

At each time-step, Algorithm 5 involves the resolution of the non-linear
system (14), (15) and (36). This coupled problem enters the abstract framework
of the previous section (by simply removing the unknown df,n+1 in (18)) and,
therefore, can be solved by means of the partitioned procedures discussed
therein. Note however that, due to the explicit treatment of the fluid geometry,
the corresponding fluid operator Sf does not involve the computation of the
displacement df . Hence, the shape terms, involved in the cross-derivative DdfF ,
are no longer needed for the exact evaluation of DγS

f in the tangent problem
(26) of Algorithm 4.

4.1. Projection-based semi-implicit coupling

As mentioned above, Algorithm 5 is still a strongly coupled scheme, in
the sense that (13)2 and (13)3 are exactly enforced at each time-step. In this
subsection we present the alternative semi-implicit coupling scheme proposed in
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Algorithm 6 Semi-implicit coupling projection scheme ([48]).

1. Implicit step (pressure-structure coupling):

Fluid projection sub-step:

ρf

τ

(
un+1 − ũn

)
+ ∇pn+1 = 0 in Ωf,n,

divun+1 = 0 in Ωf,n,

un+1 · n = uin(tn+1) · n on Γin,

pn+1 = pout(tn+1) on Γout,

ûn+1 · n = ∂τd
n+1 · n on Σ.

(37)

Solid: 

ρs∂τ ḋ
n+1 − div Πn+ 1

2 = 0 in Ωs,

∂τd
n+1 = ḋ

n+ 1
2 in Ωs,

dn+1 = 0 on Γd,

Πn+ 1
2ns = 0 on Γn,

Πn+ 1
2ns = −Jnσ̂(ũn, pn+1)(F n)−Tn on Σ.

(38)

2. Explicit step (viscous-structure coupling):

Update fluid domain:

df,n+1 = Ext(dn|Σ), ŵn+1 = ∂τd
f,n+1,

Ωf,n+1 = (IΩf + df,n+1)(Ωf).
(39)

Fluid viscous sub-step:

ρf ũ
n+1 − un+1

τ

∣∣∣∣
A

+ ρf(ũn −wn+1) ·∇ũn+1

−2µdiv ε(ũn+1) = 0

in Ωf,n+1,

ũn+1 = uin(tn+1) on Γin,

2µε(ũn+1)nf = 0 on Γout,̂̃un+1
= ∂τd

n+1 on Σ.
(40)

3. Go to next time-step.
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[47, 48]. Though not strongly coupled, this scheme exhibits very good stability
properties. Basically this scheme relies upon the three following ideas:

the pressure-structure coupling is treated implicitly in order to avoid
instabilities. This observation is motivated by the analysis reported in
[25], which shows that explicit pressure-structure coupling yields a scheme
whose stability is dictated by the amount of added-mass effect in the
system;

the remaining terms of the fluid equations (dissipation, convection and
geometrical non-linearities) are explicitly coupled to the structure. This
drastically reduces the cost of the coupling without compromising the
overall stability of the scheme;

this implicit-explicit coupling can be conveniently performed using a
Chorin-Temam projection scheme (see, e.g, [112, 29, 63]) in the fluid.
Indeed, at each time step we propose to couple implicitly the projection
sub-step (carried out in a known fluid domain) with the structure, so
accounting for the added-mass effect in an implicit way, while the ALE-
advection-viscous sub-step is explicitly coupled.

The detailed steps of the semi-implicit coupling scheme proposed in [48]
are given in Algorithm 6. Here, the scheme is presented in its (non-
incremental) velocity-correction version and with a pressure-Darcy formulation
of the projection step (see [63, Section 4.1]).

Remark 9 Alternatively, the projection step (37) can be formulated as the
pressure-Poisson problem:

−∆pn+1 = −ρ
f

τ
div ũn in Ωf,n,

∂np
n+1 = −ρf∂tuin(tn+1) · n on Γin,

pn+1 = pout(tn+1) on Γout,

∂np
n+1 = −ρ

f

τ

(
∂τd

n+1 − ũn
)
· n on Σn.

(41)

Moreover, the divergence free velocity unknown un+1 can then be eliminated in
(40) via the relation

ρf

τ
un+1 =

ρf

τ
ũn −∇pn+1 in Ωf,n.

Note that step 2 of Algorithm 6 is performed only once per time-step. Step 1
involves the resolution of a coupled problem ((37)-(38) or (41)-(38)) of reduced
computational complexity (compared with step 1 of Algorithm 2 or with step 2
of Algorithm 5). This coupled problem can be solved, in a partitioned fashion,
with simplified versions of the procedures discussed in §3. As a matter of
fact, the main advantages of Algorithm 6 are its simplicity of implementation
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(specially compared to sophisticated Newton-like methods) and its efficiency
compared to the solution procedures presented so far. Obviously, its main
limitation is that it assumes the fluid to be solved with a projection-based
scheme.

Remark 10 The ideas presented here can be generalized to other fractional step
schemes in the fluid. For instance, extensions in the framework of algebraic
factorization methods have been reported in [103, 12].

Algorithm 6 is based on the following implicit-explicit time discretization of
the coupling conditions (13):{

Πn+ 1
2ns = −Jnσ̂(ũn, pn+1)(F n)−Tn on Σ,

ûn+1 · n = ∂τd
n+1 · n on Σ,{

df,n+1 = Ext(dn|Σ), ŵn+1 = ∂τd
f,n+1, Ωf,n+1 = (IΩf + df,n+1)(Ωf),̂̃un+1

= ∂τd
n+1 on Σ.

Note that (13)3 is not exactly enforced at each time-step and, therefore,
Algorithm 6 is not a strongly coupled scheme. Yet, this scheme is also not loosely
coupled since (13)3 is not treated explicitly (namely, the solid displacement and
the fluid pressure are implicitly coupled).

Stability analysis (linear case)

In [48], the stability of Algorithm 6 has been analyzed in the framework of
the following linear model problem, coupling the Stokes equations with a linear
elastic solid model: 

ρf∂tu− divσ(u, p) = 0 in Ωf ,

divu = 0 in Ωf ,

u = uin on Γin,

σ(u, p)n = poutn on Γout,

(42)


ρs∂ttd− divσ(d) = 0 in Ωs,

d = 0 on Γd,

σ(d)ns = 0 on Γn,

(43)

{
u = ∂td on Σ,

σ(d)ns = −σ(u, p)n on Σ.
(44)

Though simplified, the linear coupled problem (42)-(44) contains the key
features of more complex fluid-structure problems involving an incompressible
fluid, as regards the stability of the coupling schemes (see, e.g., [25]).

Since the analysis is carried out in the fully discrete case, we need to
introduce some notation for the discretization in space. We define Qf

h as an
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internal continuous Lagrange finite element approximation of L2(Ωf). Similarly,
V f
h (resp. V f

ω,h, with ω ⊂ ∂Ωf , and V s
H) is an internal continuous Lagrange

finite element approximation of H1(Ωf) (resp. H1
ω(Ωf) and H1

Γd(Ωs)). Since
the fluid and solid space discretizations do not necessarily match at the interface
Σ, we introduce an interface matching operator Πh : V s

H(Σ) → V f
h(Σ), where

V s
H(Σ) (resp. V f

h(Σ)) stands for the trace finite element space associated to
V s
H (resp. V f

h). The operator Πh can be, for instance, the standard Lagrange
interpolant (nodal-wise matching) or a projection based operator (see, e.g.,
[41, 61, 7]).

The fully discretized problem writes as follows: for n ≥ 0,

1. Implicit step (pressure-structure coupling): find (un+1
h , pn+1

h ,dn+1
H ) ∈

V f
h ×Qf

h × V s
H such that

un+1
h = uin(tn+1), on Γin,

un+1
h = Πh

(
∂τd

n+1
H

)
, on Σ,

ρf

τ

∫
Ωf

(
un+1
h − ũnh

)
· vf

h −
∫

Ωf

pn+1
h div vf

h +

∫
Ωf

qh divun+1
h

= −
∫

Γout

poutv
f
h · n ∀(vf

h, qh) ∈ V f
Σ∪Γin,h ×Qf

h,
ρs

τ2

∫
Ωs

(
dn+1
H − 2dnH + dn−1

H

)
· vs

H + as
(
dn+1
H ,vs

H

)
= −

〈
Rµ(ũnh), Lh(vs

H)
〉
−
〈
Rp(un+1

h , pn+1
h ), Lh(vs

H |Σ)
〉
∀vs

H ∈ V s
H ;

(45)

2. Explicit step (viscous-structure coupling): find ũn+1
h ∈ V f

h such that

ũn+1
h = uin(tn+1), on Γin,

ũn+1
h = Πh

(
∂τd

n+1
H

)
, on Σ,

ρf

τ

∫
Ωf

(
ũn+1
h − un+1

h

)
· ṽf

h + 2µ

∫
Ωf

ε(ũn+1
h ) : ε(ṽf

h)

= 0

∀ṽf
h ∈ V f

Σ∪Γin,h.

(46)

Here, as(·, ·) stands for a general solid stiffness bilinear form and the fluid stress
at the interface are given in terms of the (variationally consistent) residuals Rµ
and Rp, defined as〈

Rµ(ũn+1), ṽf
〉

def
=

ρf

τ

∫
Ωf

(
ũn+1 − un+1

)
· ṽf + 2µ

∫
Ωf

ε(ũn+1) : ε(ṽf),

〈
Rp(un+1, pn+1),vf

〉 def
=

ρf

τ

∫
Ωf

(
un+1 − ũn

)
· vf −

∫
Ωf

pn+1 div vf ,

and Lh : V s
H(Σ) → V f

h stands for the standard discrete lifting operator,
satisfying Lh(bH)|Σ = Πh(bH |Σ) and Lh(bH)|Γin∪Γout = 0 for all bH ∈ V s

H(Σ).
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Remark 11 Note that, in (45), we impose un+1
h = Πh(∂τd

n+1
H ) on Σ

(instead of (37)5) which is also optimal in the framework of finite element
approximations (see [62]).

Remark 12 We have considered here a simplified version of the coupling
scheme given by Algorithm 6. The fluid domain being fixed, no ALE terms
appear in the equations. Moreover, we assumed that the solid equations are
discretized in time with a (non-conservative) leap-frog scheme. In spite of
that, the main feature of the coupling scheme is preserved: the diffusion step is
explicitly coupled with the structure. Without these simplifications, the stability
analysis does not seem to be straightforward.

Let

En
def
=

ρf

2
‖unh‖20,Ωf +

ρs

2
‖∂τdnH‖20,Ωs +

1

2
as(dnH ,d

n
H),

be the discrete energy of the system at time-step n. In what follows, the symbol
. indicates an inequality up to a multiplicative constant independent of the
discretization and physical parameters.

The following result (from [48]) provides the conditional stability of the
coupling scheme (45)-(46).

Theorem 2 Assume that pout = 0, uin = 0, Rµ(ũ0
h) = 0 and that the interface

matching operator Πh : V s
H(Σ) −→ V f

h(Σ) is L2-stable. Then, under the
condition (

ρf h

Hα
+ 2

µτ

hHα

)
. ρs, with α

def
=

{
0, if Ωs = Σ,

1, if Ωs 6= Σ,
(47)

there holds,

En + µ

n−1∑
m=0

τ‖ε(ũm+1
h )‖20,Ωf . E0

for n ≥ 1.

Some observations are now in order:

The assumption on the L2-stability of the interface matching operator
is satisfied by the standard finite element interpolation operator, for
example, whenever the fluid interface triangulation is a sub-triangulation
of the solid interface triangulation. This includes, in particular, the case
of interface matching meshes. By construction, a mortar based matching
operator also fulfills that assumption (see [17]).

The sufficient condition (47) can be satisfied by reducing the ratios h/Hα

and τ/(hHα). The later might be thought as a CFL-like condition. Note
that this is a major advantage compared to the (in)stability condition (5)
for the explicit-coupling scheme.
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In the case Ωs = Σ (thin structure model), i.e., α = 0, condition (47)
becomes independent of the solid mesh size H. In particular, we may set
H = h, and stabilize the scheme by reducing h (and τ).

In the case Ωs 6= Σ, i.e., α = 1, the stability of the scheme can be
ensured provided that the fluid mesh size h is small enough compared
to the structure mesh size H. Numerical simulations performed in 2D
and 3D, with h = H, showed however that this condition seems to be not
necessary, when dealing with physiological parameters.

Remark 13 We refer to [7] for an a priori error analysis of (45)-(46) which

ensures an overall O(τ
1
2 + hk + Hm + hl) convergence rate in the energy

norm. Here, k,m are respectively the polynomial degrees of the fluid and solid
discretizations and l depends on the choice of the matching operator Πh.

COUPLING ALGORITHM CPU time
FP-Aitken 24.86

Implicit Inexact-Newton 6.05
Newton 4.77

Semi-Implicit Newton 1

Table 1: Elapsed CPU time (dimensionless): straight cylinder, 50 time steps of
length τ = 2× 10−4 s. From [48].

We conclude this section with a few numerical illustrations, involving the
coupling of the ALE Navier-Stokes equations with a non-linear shell model
(based on MITC4 shell elements [26]). Table 1 shows a comparison of the
elapsed CPU times (dimensionless) obtained in the simulation of a pressure wave
propagation in a compliant straight vessel (see [52, 59]). We can notice that the
semi-implicit coupling is 4.7 times faster than the best implicit coupling. This
performance rises much more when considering a more physiological situation.
In Table 2 we have reported the the elapsed CPU times (dimensionless) obtained
in the simulation of two cardiac cycles of blood flow in a idealized abdominal
aortic aneurysm (see Figure 4 (left)) under physiological conditions (see [106]).
The accuracy of the semi-implicit coupling scheme is highlighted in Figure 4
(right), in terms of the outflow rate.

COUPLING CPU time
Implicit 9.3

Semi-Implicit 1.0

Table 2: Elapsed CPU time (dimensionless): blood flow in a idealized abdominal
aortic aneurysm, 2 cardiac cycles (1000 time-steps of length τ = 1.68× 10−3 s).
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Figure 4: Left : idealized abdominal aortic aneurysm. Right : comparison of
implicit and semi-implicit coupling schemes, outflow rate.

5. Nitsche’s based interface treatment

The coupling schemes described in the previous sections treat the interface
condition (13)2 as a (strongly imposed) Dirichlet boundary condition in the
fluid, and (13)3 as a Neumann boundary condition in the solid, respectively. We
shall see, in this section, that an appropriate weak treatment of these interface
conditions, based on Nitsche’s interface method [16, 67], benefits from:

a specific treatment of the viscous contributions;

further insights on the instability of explicit coupling (Algorithm 1).

These key features motivated the derivation of a stabilized explicit coupling
scheme, in [22], and of a new semi-implicit coupling scheme, in [5], whose
stability properties are independent of the added-mass effect. These schemes
are presented in §5.1 and in §5.2, respectively.

5.1. Stabilized explicit coupling

For the sake of simplicity and without loss of generality (see Remark 21
below), in this subsection we limit the presentation to the case of the linear
coupled problem (42)-(44). We shall also make use of some of the notations
introduced in §4.1 for the discretization in space.

Space semi-discretization: interface Nitsche’s formulation

Originally, Nitsche’s method [95] is a technique for enforcing Dirichlet
boundary conditions in a weak sense (instead of being built into the finite
element space). The method has recently been generalized to other boundary
conditions [75]. The extension of Nitsche’s method to the approximation of
elliptic and parabolic problems with discontinuous piecewise polynomials is
known as discontinuous Galerkin (DG) method (see, e.g., [13, 119, 2, 3]). In [16],
Nitsche’s method was proposed for the approximation of an interface problem
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arising in the framework of domain decomposition with non-matching grids.
Since then, it has been extended to different multi-physics problems (see, e.g.,
[24, 23], and [67] for a review). In the context of fluid-structure interaction, using
implicit coupling, some results are given for vibration problems (acoustics) in
[68] and for transient fluid-structure interaction problems with moving fluid
domains in [69].

The space semi-discrete Nitsche’s interface formulation of (42)-(44) proposed
in [22] is given as follows: find (uh, ph,dh, ḋh) ∈ V f

h×Qh×[V s
h]2, with uh = uin

on Γin, such that

Af
(
(uh, ph), (vf

h, qh)
)

+As
(
(dh, ḋh), (vs

h, rh)
)

−
∫

Σ

σ(uh, ph)n ·
(
vf
h − vs

h

)
−
∫

Σ

(
uh − ∂tdh

)
· σ(vf

h,−qh)n

+
γµ

h

∫
Σ

(
uh − ∂tdh

)
·
(
vf
h − vs

h

)
= −

∫
Γout

poutv
f
h · n (48)

for all (vf
h, qh,v

s
h, rh) ∈ V f

Γin,h × Qh × [V s
h]2. Here, γ > 0 is a

dimensionless penalty parameter (specified below), and the fluid and solid
volume contributions are given by

Af
(
(uh, ph), (vf

h, qh)
) def

= ρf

∫
Ωf

∂tuh · vf
h + 2µ

∫
Ωf

ε(uh) : ε(vf
h)−

∫
Ωf

ph div vf
h

+

∫
Ωf

qh divuh,

As
(
(dh, ḋh), (vs

h, rh)
) def

= ρs

∫
Ωs

∂tḋh · vs
h + as

(
dh,v

s
h

)
+ ρs

∫
Ωf

(
ḋh − ∂tdh

)
· rh.

Remark 14 Note that, in (48), uh and ∂tdh (and vf
h and vs

h) do not
necessarily match at the interface (interface DG formulation). The interface
integrals involving the fluid stress σ(uh, ph)n are computed face-wise, as broken
integrals.

By taking alternatively (vf
h, qh) = 0 and vs

h = rh = 0 in (48), this monolithic
problem can be reformulated (in a partitioned fashion) in terms of two interface
coupled problems:

Solid subproblem: find (dh, ḋh) ∈ [V s
h]2 such that

As
(
(dh, ḋh), (vs

h, rh)
)

+
γµ

h

∫
Σ

∂tdh · vs
h

=
γµ

h

∫
Σ

uh · vs
h −

∫
Σ

σ(uh, ph)n · vs
h (49)

for all (vs
h, rh) ∈ [V s

h]2;
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Fluid subproblem: find (uh, ph) ∈ V f
h × Qh, with uh = uin on Γin, such

that

Af
(
(uh, ph), (vf

h, qh)
)
−
∫

Σ

σ(uh, ph)n · vf
h

−
∫

Σ

uh · σ(vf
h,−qh)n+

γµ

h

∫
Σ

uh · vf
h = −

∫
Σ

∂tdh · σ(vf
h,−qh)n

+
γµ

h

∫
Σ

∂tdh · vh −
∫

Γout

poutv
f
h · n (50)

for all (vh, qh) ∈ V f
Γin,h ×Qh.

Time semi-discretization: implicit and explicit coupling

As in §1, we consider a first order backward difference discretization in the
fluid and a mid-point rule for the structure. The fully discrete fluid and solid
volume terms at time-step n are then given by

Af
τ

(
(un+1

h , pn+1
h ), (vf

h, qh)
) def

= ρf

∫
Ωf

∂τu
n+1
h · vf

h + 2µ

∫
Ωf

ε(un+1
h ) : ε(vf

h)

−
∫

Ωf

pn+1
h div vf

h +

∫
Ωf

qh divun+1
h ,

As
τ

(
(dn+1
h , ḋ

n+1

h ), (vs
h, rh)

) def
= ρs

∫
Ωs

∂τ ḋ
n+1

h · vs
h + as

(
d
n+ 1

2

h ,vs
h

)
+ ρs

∫
Ωs

(
ḋ
n+ 1

2

h − ∂τdn+1
h

)
· rh

and (49)-(50) can be discretized in time as follows: for n ≥ 0,

Solid subproblem: find (dn+1
h , ḋ

n+1

h ) ∈ [V s
h]2 such that

As
τ

(
(dn+1
h , ḋ

n+1

h ), (vs
h, rh)

)
+
γµ

h

∫
Σ

∂τd
n+1
h · vs

h

=
γµ

h

∫
Σ

u?h · vs
h −

∫
Σ

σ(u?h, p
?
h)n · vs

h (51)

for all (vs
h, rh) ∈ [V s

h]2;

Fluid subproblem: find (un+1
h , pn+1

h ) ∈ V f
h ×Qh, with un+1

h = uin(tn+1)
on Γin, such that

Af
τ

(
(un+1

h , p+1
h ), (vf

h, qh)
)
−
∫

Σ

σ(u?h, p
?
h)n · vf

h

−
∫

Σ

un+1
h ·σ(vf

h,−qh)n+
γµ

h

∫
Σ

un+1
h · vf

h = −
∫

Σ

∂τd
n+1
h ·σ(vf

h,−qh)n

+
γµ

h

∫
Σ

∂τd
n+1
h · vf

h −
∫

Γout

poutv
f
h · n (52)

for all (vf
h, qh) ∈ V f

Γin,h ×Qh.
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If (u?h, p
?
h) = (un+1

h , pn+1
h ), the scheme (51)-(52) corresponds to an implicit

coupling scheme. On the contrary, for (u?h, p
?
h) = (unh, p

n
h) the coupling scheme

is explicit (i.e., loosely coupled).
Let En denote the total discrete energy of the system at the time level n,

defined by

En
def
=

ρf

2
‖unh‖20,Ωf

+
ρs

2
‖ḋnh‖20,Ωs

+
1

2
as(dnh,d

n
h).

The next result (from [22]) summarizes the energy based stability of the coupling
schemes given by (51)-(52).

Theorem 3 Assume that the fluid-structure system is isolated (i.e., uin = 0

and pout = 0) and let (un+1
h , pn+1

h ,dn+1
h , ḋ

n+1

h ) be given by (51)-(52).

Implicit coupling: For (u?h, p
?
h) = (un+1

h , pn+1
h ), γ ≥ 16CTI and n ≥ 1,

there holds

En + µ

n−1∑
m=0

τ‖ε(um+1
h )‖20,Ωf

+
γµ

h

n−1∑
m=0

τ‖um+1
h − ∂τdm+1

h ‖20,Σ . E0;

Explicit coupling: For (u?h, p
?
h) = (unh, p

n
h), γ ≥ 256CTI and n ≥ 1, there

holds

En + µ

n−1∑
m=0

τ‖ε(um+1
h )‖20,Ωf

+
γµ

h

n−1∑
m=0

τ‖um+1
h − ∂τdm+1

h ‖20,Σ

+
γµτ

h
‖unh‖20,Σ . E0 +

γµτ

h
‖u0

h‖20,Σ + µ‖ε(u0
h)‖20,Ωf

+
h

γµ

n−1∑
m=0

τ‖pm+1
h − pmh ‖20,Σ. (53)

As expected implicit coupling is unconditionally stable. As regards explicit
coupling, Theorem 3 shows that the Nitsche interface penalty and the viscous
dissipation control the artificial interface viscous perturbation, generated by
the explicit treatment of the coupling. Unfortunately, the artificial interface
pressure contribution cannot be directly controlled by the discrete energy of
the system En, since we not have control on the time pressure fluctuations
at the interface. Somehow this illustrates the already mentioned infamous
numerical instability featured by the explicit coupling scheme, when dealing
with incompressible fluids (see §1 and [25, 54]). Yet, the energy estimate (53)
suggests that the scheme can be stabilized by the addition of perturbations
giving enough control on the time pressure fluctuations at the interface.

Remark 15 The consistency term −
∫

Σ
σ(unh, p

n
h)n · vh in (52) could also be

evaluated at time level n+1, as originally proposed in [21]. However, in this case
the artificial interface viscous perturbation can not be controlled by the viscous
dissipation and the Nitsche’s penalty term.
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Remark 16 The energy estimate (53) still remains valid if we neglect
the viscous contribution of the (symmetrizing) term −

∫
Σ

(un+1
h − ∂τd

n+1
h

)
·

σ(vf
h,−qh)n in (52), giving the consistent term

∫
Σ
qh
(
un+1
h −∂τdn+1

h

)
·n. As a

result, the explicit coupling scheme (and the mentioned variant) can be formally
viewed as a space discrete counterpart of the following Robin-Robin based explicit
treatment of (44):

σ(dn+ 1
2 )ns +

γµ

h
∂τd

n+1 =
γµ

h
un − σ(un, pn)n

σ(un+1, pn+1)n+
γµ

h
un+1 =

γµ

h
∂τd

n+1 + σ(un, pn)n

 on Σ. (54)

We will come back to this observation in §5.2.

Remark 17 Note that the scaling γµ/h of the so-called Robin parameter in (54)
is provided by the Nitsche interface method. This choice differs from the Robin-
Robin scaling proposed in [9], based on simplified models and which aims at
accelerating partitioned iterative solution methods within a fully implicit coupling
framework. At last, it is worth mentioning that (54) also differs from recent
Robin-Robin procedures proposed for time-dependent problems, in the framework
of waveform relaxation methods (see, e.g., [57]).

Stabilized explicit coupling

The spurious oscillations of the fluid pressure at the interface, arising in
the energy estimate (53), can be controlled by the following weakly consistent
penalty term:

S(pn+1
h , qh)

def
=

γ0h

γµ

∫
Σ

(
pn+1
h − pnh

)
qh, (55)

with γ0 > 0 a (dimensionless) parameter to be chosen sufficiently large (see
Theorem 4). Hence, in [22], we propose to add (55) to the fluid subproblem
(52). The resulting stabilized explicit coupling scheme is given in Algorithm 7.

The next theorem (from [22]) provides an energy estimate for the stabilized
explicit coupling scheme (Algorithm 7).

Theorem 4 Assume that the fluid-structure system is isolated (i.e., uin = 0

and pout = 0) and let (un+1
h , pn+1

h ,dn+1
h , ḋ

n+1

h ) be given by Algorithm 7. For
γ ≥ 256CTI, γ0 ≥ 8 and n ≥ 1, the following energy estimate holds

En + µ

n−1∑
m=0

τ‖ε(um+1
h )‖20,Ωf

+
γµ

h

n−1∑
m=0

τ‖um+1
h − ∂τdm+1

h ‖20,Σ +
γµτ

h
‖unh‖20,Σ

+
γ0hτ

γµ
‖pnh‖20,Σ . E0 +

γµτ

h
‖u0

h‖20,Σ + µ‖ε(u0
h)‖20,Ωf +

γ0hτ

γµ
‖p0
h‖20,Σ. (56)

Therefore, Algorithm 7 is energy stable under the (hyperbolic-CFL like)
condition

τ = O(h). (57)



Coupling schemes for incompressible fluid-structure interaction 31

Algorithm 7 Stabilized explicit coupling ([22]).

1. Solid subproblem: find (dn+1
h , ḋ

n+1

h ) ∈ [V s
h]2 such that

As
τ

(
(dn+1
h , ḋ

n+1

h ), (vs
h, rh)

)
+
γµ

h

∫
Σ

∂τd
n+1
h · vs

h

=
γµ

h

∫
Σ

unh · vs
h −

∫
Σ

σ(unh, p
n
h)n · vs

h

for all (vs
h, rh) ∈ [V s

h]2;

2. Fluid subproblem: find (un+1
h , pn+1

h ) ∈ V f
h ×Qh, with un+1

h = uin(tn+1)
on Γin, such that

Af
τ

(
(un+1

h , p+1
h ), (vf

h, qh)
)
−
∫

Σ

un+1
h · σ(vf

h,−qh)n

+
γµ

h

∫
Σ

un+1
h · vf

h + S(pn+1
h , qh) =

∫
Σ

σ(unh, p
n
h)n · vf

h

−
∫

Σ

∂τd
n+1
h · σ(vf

h,−qh)n+
γµ

h

∫
Σ

∂τd
n+1
h · vf

h −
∫

Γout

poutv
f
h · n

for all (vf
h, qh) ∈ V f

Γin,h ×Qh.

3. Go to next time-step.

Two observations are now in order.

According to Theorem 4, the stability of Algorithm 7 is independent of
the added-mass effect: the fluid-solid density ratio ρf/ρs and the length of
the domain do not come into play. This observation is confirmed by the
numerical results reported in Figure 5, corresponding to the simulation
of the pressure wave propagation in a two-dimensional straight channel.
The numerical solution remains stable irrespectively of the amount of
added-mass effect. Note that this is a major advantage compared to
standard explicit-coupling schemes, whose (in)stability is dictated by
these quantities, irrespectively of the discretization parameters (see the
discussion in §1 and [25, 54]).

The proof of Theorem 4 is based, exclusively, on the dissipation due
to the Nitsche coupling and the time pressure penalization term. As a
result, the stability result is independent of the dissipative features of the
fluid and solid time discretization schemes. This is a significant progress
with respect to the stability result stated in Theorem 2, for the semi-
implicit coupling scheme (45)-(46), whose proof depends on the dissipative
properties of the solid time discretization scheme (see Remark 12). On
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the other hand, as regards the fluid time-discretization, one could use, for
instance, a neutrally stable second order scheme.

Remark 18 The discrete continuity equation in step 2 of Algorithm 7 is given
by

γ0hτ

γµ

∫
Σ

∂τp
n+1
h qh +

∫
Ωf

qh divun+1
h =

∫
Σ

(un+1
h − ∂τdn+1

h ) · nqh. (58)

The right hand-side being a consistent term, we can interpret the stabilization
term (55) as a weakly-consistent interface artificial compressibility. The
proposed approach has therefore clear connexions with the already mentioned
interface artificial compressibility methods [104, 73, 33] for solving implicit
coupling in a partitioned fashion. In these iterative procedures, the
compressibility term vanishes at convergence and the artificial compressibility
parameter is chosen so as to optimize efficiency and not for consistency or
stability purposes.

Remark 19 From Remarks 16 and 18, we can conclude that the main
ingredients in the stability of Algorithm 7 are:

the Robin-Robin based explicit treatment of the interface coupling
conditions (54);

the interface artificial compressibility perturbation of the continuity
equation (58).

Remark 20 In the framework of a simplified structural behavior, given in
terms of a (d − 1)-dimensional model (e.g., plates, membranes, shells or
inertial-algebraic models), alternative explicit coupling schemes have recently
been reported in [65, 64, 44] (see also [97, §4.1.1]). Since in this case Σ = Ωs,
the coupling condition (44) can be embedded into the fluid equations (as a
Robin boundary condition) and, hence, treated implicitly through a specific
(inertial/elastic) time-splitting of the solid equation. A generalization of these
schemes to the case of thick structures can be found in [50].

In [22], a formal error estimate for the stabilized explicit coupling scheme

is obtained from the energy estimate provided by Theorem 4. Let θnh
def
=

unh − πhu(tn), ynh
def
= pnh − πhp(tn), ξnh

def
= dnh − πhd(tn) and ξ̇

n

h
def
= ḋ

n

h − πhḋ(tn)
be the discrete errors, where πh denotes a suitable interpolation operator. We
can derive the following error estimate

En . E0 + r1 + r2, (59)

where

En def
=

(
ρf

2
‖θnh‖20,Ωf +

ρs

2
‖ξ̇nh‖20,Ωs +

1

2
as(ξnh, ξ

n
h) + µ

n−1∑
m=0

τ‖ε(θm+1
h )‖20,Ωf

+
γµτ

h
‖θnh‖20,Σ +

γ0hτ

γµ
‖ynh‖20,Σ +

γµτ

h

n−1∑
m=0

‖θm+1
h − ∂τξm+1

h ‖20,Σ
) 1

2

.
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Figure 5: Stabilized explicit coupling (Algorithm 7). Left : interface mid-point
y-displacement for different values of the fluid-solid density ratio ρf/ρs. Right :
out-flow rate for different values of the vessel length L. From [22].

(a) t = 0.0025 s

(b) t = 0.01 s

Figure 6: Stabilized explicit coupling without correction: snapshots of the
pressure and solid deformation (exaggerated) at two time instants. From [22].

The terms on the right hand side of (59) consists of E0, which measures the error
in the initial data, r1, which consists of the terms related to the consistency of
the fluid and solid discretizations, and r2, which contains the explicit coupling
consistency error and the weak-consistency introduced by the time penalty
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Algorithm 8 Stabilized explicit coupling with K ≥ 0 corrections ([22]).

1. Set un+1,0
h

def
= unh and pn+1,0

h
def
= pnh;

2. Correction loop: for k = 0, . . . ,K solve

a) Solid subproblem: find (dn+1,k+1
h , ḋ

n+1,k+1

h ) ∈ [V s
h]2 such that

As
τ

(
(dn+1,k+1
h , ḋ

n+1,k+1

h ), (vs
h, rh)

)
+
γµ

h

∫
Σ

∂τd
n+1,k+1
h · vs

h

=
γµ

h

∫
Σ

un+1,k
h · vs

h −
∫

Σ

σ(un+1,k
h , pn+1,k

h )n · vs
h

for all (vs
h, rh) ∈ [V s

h]2;

b) Fluid subproblem: find (un+1,k+1
h , pn+1,k+1

h ) ∈ V f
h × Qh, with

un+1,k+1
h = uin(tn+1) on Γin, such that

Af
τ

(
(un+1,k+1

h , pn+1,k+1
h ), (vf

h, qh)
)
−
∫

Σ

un+1,k+1
h · σ(vf

h,−qh)n

+
γµ

h

∫
Σ

un+1,k+1
h · vf

h +
γ0h

γµ

∫
Σ

(
pn+1,k+1
h − pn+1,k

h

)
qh

=

∫
Σ

σ(un+1,k
h , pn+1,k

h )n · vf
h −

∫
Σ

∂τd
n+1,k+1
h · σ(vf

h,−qh)n

+
γµ

h

∫
Σ

∂τd
n+1,k+1
h · vf

h −
∫

Γout

pout(tn+1)vf
h · n

for all (vf
h, qh) ∈ V f

h ×Qh;

3. Set un+1
h

def
= un+1,K+1

h , pn+1
h

def
= pn+1,K+1

h , dn+1
h

def
= dn+1,K+1

h and

ḋ
n+1

h
def
= ḋ

n+1,K+1

h ;

4. Go to next time-step.

stabilization operator S. For the latter term we have

r2 = O
(

(γµ)
1
2
τ

h
1
2

+ γµ
1
2
τ

h
+

γ
1
2
0

(γµ)
1
2

(hτ)
1
2

)
.

For fixed h, the convergence order in time is imposed by the weak-consistency
of the time penalty stabilization, which scales as O(τ

1
2 ). The other two terms

scale as O(τ) but with a constant depends on 1/h. Therefore, when refining
both in τ and in h, the stability condition (57) (i.e., τ = O(h)) is not enough
to ensure convergence. We must take τ = O(h2) in order to keep r2 = O(h).
Such a choice is optimal in the energy norm if piecewise affine approximations
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are used in space.
In practice, the method suffers from a deterioration of the accuracy, due

to the weak consistency of the time penalty stabilization term, which rates
as O(τ

1
2 ) in a fixed mesh. As proposed in [22], accuracy can be improved

by performing one correction iteration (see, e.g., [109]). The stabilized explicit
coupling scheme with K ≥ 0 corrections iterations is given in Algorithm 8. Note
that, for K = 0 (i.e., without corrections) Algorithm 8 reduces to the original
stabilized explicit coupling scheme (Algorithm 7). Conversely, for K →∞ (i.e.,
iterating until convergence) we recover the implicit coupling scheme (51)-(52),
(u?h, p

?
h) = (un+1

h , pn+1
h ).

One of the main features of Algorithm 8 is that, after K ≥ 0 corrections,
estimate (59) is expected to hold with (see, e.g., [81])

r2 = O
(
τK+1

h
K+1

2

+
τK+1

hK+1
+ (hτ)

K+1
2

)
. (60)

Therefore, one correction iteration (i.e., K = 1) is enough to retrieve first order
time accuracy in a fixed mesh, since (60) yields r2 = O(τ2/h + τ2/h2 + hτ).
Note that, in this case, overall r2 = O(h) accuracy can be ensured under the

(weakened) condition τ = O(h
3
2 ).
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Figure 7: Interface mid-point y-displacement: stabilized explicit coupling (with
and without correction) and implicit coupling (strongly enforced kinematic
condition). From [22].

Remark 21 Algorithm 8 can be extended to the non-linear case (i.e., to
problem (11)-(13)) without major difficulty. Roughly, the idea consists in
replacing steps 2 and 3 of Algorithm 1 by the non-linear counterparts of the
fluid and solid correction steps in Algorithm 8. We refer to [22, §5.5] for the
details.

We conclude this subsection with a few numerical illustrations (from [22])
in the framework of the already mentioned straight vessel benchmark. Some
snapshots of the fluid pressure and solid deformation (half a section) obtained
with the non-linear version of Algorithm 8 are reported in Figure 6. The impact
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of the correction iterations is highlighted in Figure 7, where we compare the
results with those obtained with a fully implicit coupling scheme (Algorithm 2).
Figure 7 (left) shows that, without correction, the stabilized explicit scheme is
unable to accurately represent the solution provided by the implicit coupling
scheme. Figure 7 (right) shows that one correction iteration is sufficient to
recover all the local features of the implicit coupling solution (i.e., we recover
first order time accuracy).

5.2. Robin-based semi-implicit coupling

The theoretical and numerical results summarized in §4 show that the
projection semi-implicit coupling scheme drastically improves the stability
properties of conventional explicit coupling and the efficiency of implicit
coupling. In spite of that, the scheme has two flaws. From a theoretical
point of view, a non-convervative solid time discretization (i.e., with numerical
dissipation) is required in the derivation of the energy stability estimate
provided by Theorem 2 (see Remark 12). Secondly, though much less sensitive
to the added-mass effect than explicit coupling, numerical evidence shows that
the stability can be sensitive to changes in fluid-solid density ratio and other
physical parameters (see the results reported in Figure 8 with the linear model
(42)-(44)). As a matter of fact, the stability condition (47) provided by Theorem
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Figure 8: Comparison of the implicit and semi-implicit coupling: interface mid-
point vertical displacement (ρf = 1, ρs = 1.2× 10−2, µ = 10). From [5].

2 depends on the solid and fluid densities. In this subsection we present an
alternative semi-implicit coupling, proposed in [5], that circumvents these two
shortcomings. The key idea consists in treating the explicit part of the coupling
in a full weak sense, by using a specific Robin-Robin coupling derived from
Remark 16 (see also Remark 19).

Let us consider the original semi-implicit coupling scheme (45)-(46) applied
to linear coupled problem (42)-(44). As we have already seen, this coupling
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scheme is based on the following implicit-explicit time discretization of (44):

un+1 · n = ∂τd
n+1 · n

σ(dn+ 1
2 )ns = −σ(ũn, pn+1)n

}
on Σ, (61)

ũn+1 = ∂τd
n+1 on Σ. (62)

Note that, in (46), the kinematic interface conditions (61)1 and (62) are both
strongly imposed (i.e., built in the finite element space). Instead, we now
propose to treat the explicit part of the coupling (i.e., the viscous-structure
coupling) weakly, by using the following explicit Robin-Robin treatment, derived
from (54):

un+1 · n = ∂τd
n+1 · n

σ(dn+ 1
2 )ns +

γµ

h
∂τd

n+1 =
γµ

h
ũn − σ(ũn, pn+1)n

 on Σ,

2µε(ũn+1)n+
γµ

h
ũn+1 =

γµ

h
∂τd

n+1 + 2µε(ũn)n on Σ.

Note that, in contrast to (54), the pressure-structure coupling remains implicit
and the kinematic interface condition (61)1 is strongly enforced (as in the
original semi-implicit coupling scheme).

The proposed Robin based semi-implicit coupling scheme, applied to the
linear coupled problem (42)-(44), reads therefore as follows (compare with (45)-
(46)): for n ≥ 0,

Implicit step (pressure-solid coupling): find (un+1
h , pn+1

h ,dn+1
H , ḋ

n+1

H ) ∈
V f
h ×Qf

h × [V s
H ]2 such that

un+1
h = uin(tn+1) on Γin

un+1
h = Πh(∂τd

n+1
H ) on Σ

ρf

τ

∫
Ωf

(
un+1
h − ũnh

)
· vf

h −
∫

Ωf

pn+1
h div vf

h +

∫
Ωf

qh divun+1
h

= −
∫

Γout

pout(tn+1)vf
h · n ∀(vf

h, qh) ∈ V f
Σ∪Γin,h ×Qf

h,

ρs

τ

∫
Ωs

∂τ ḋ
n+1

H · vs
H + as

(
d
n+ 1

2

H ,vs
H

)
+ ρs

∫
Ωs

(
ḋ
n+ 1

2

H − ∂τdn+1
H

)
· rH

+
γµ

h

∫
Σ

∂τd
n+1
H · vs

H =
γµ

h

∫
Σ

ũnh · vs
H − 2µ

∫
Σ

ε(ũnh)n · vs
H

−
〈
Rp(un+1

h , pn+1
h ), Lh(vs

H |Σ)
〉
∀(vs

H , rH) ∈ [V s
H ]2;

(63)
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Explicit step (viscous-solid coupling): find ũn+1
h ∈ V f

h such that

ũn+1
h = uin(tn+1) on Γin,

ρf

τ

∫
Ωf

(
ũn+1
h − un+1

h

)
· ṽf

h + 2µ

∫
Ωf

ε(ũn+1
h ) : ε(ṽf

h) +
γµ

h

∫
Σ

ũn+1
h · ṽf

h

=
γµ

h

∫
Σ

∂τd
n+1
H · ṽf

h + 2µ

∫
Σ

ε(ũnh)n · ṽf
h ∀ṽf

h ∈ V f
Γin,h.

(64)

Note that in (63) we have considered a conservative time discretization for the
structure.
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Figure 9: Comparison of the implicit, semi-implicit and Robin based semi-
implicit coupling schemes: interface mid-point vertical displacement (ρf = 1,
ρs = 1.2× 10−2, µ = 10). From [5].

Let us define the energy of the discrete coupled system, at time level n, as:

En =
ρf

2
‖ũnh‖20,Ωf +

ρs

2
‖ḋnH‖20,Ωs +

1

2
as(dnH ,d

n
H).

The following result (from [5]) states the energy based stability of the Robin-
based semi-implicit coupling scheme (63)-(64).

Theorem 5 Let (ũn+1
h , pn+1

h ,dn+1
h , ḋ

n+1

h ) be given by (63)-(64) and assume
that the system is isolated (i.e., pout = 0 and uin = 0). For γ ≥ 4CTI and
n ≥ 1, there holds

En + µ

n−1∑
m=0

τ‖ε(ũm+1
h )‖20,Ωf +

γµ

h

n−1∑
m=0

τ‖ũm+1
h − ∂τdm+1

H ‖20,Σ +
γµτ

h
‖ũnh‖20,Σ

. E0 + µτ‖ε(ũ0
h)‖20,Ωf +

γµτ

h
‖ũ0

h‖20,Σ. (69)

Therefore, the semi-implicit coupling scheme (63)-(64) is energy stable under
the condition τ = O(h).
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Algorithm 9 Robin based semi-implicit coupling algorithm ([5]).

1. Explicit step: update fluid domain (mesh){
df,n+1
h = Exth(dnH |Σ), ŵn+1

h = ∂τd
f,n+1
h in Ωf ,

Ωf,n+1 = (IΩf + df,n+1
h )(Ωf).

(65)

2. Implicit step (pressure-structure coupling):

Fluid projection sub-step: find (un+1
h , pn+1

h ) ∈ Vhf ×Qf
h such that

un+1
h = uin(tn+1) on Γin,

ûn+1
h = Πh(∂τd

n+1
H ) on Σ,

ρf

τ

∫
Ωf,n

(
un+1
h − ũnh

)
· vf

h −
∫

Ωf,n

pn+1
h div vf

h +

∫
Ωf,n

qh divun+1
h

= −
∫

Γout

pout(tn+1)vf
h · n ∀(v̂f

h, qh) ∈ V f
Σ∪Γin,h ×Qf

h;

(66)

Solid: find (dn+1
H , ḋ

n+1

H ) ∈ [V s
H ]2 such that

As
τ

(
dn+1
H , ḋ

n+1

H ;vs
H , rH

)
+
γµ

h

∫
Σn+1

∂τd
n+1
H · vs

H

=
γµ

h

∫
Σn+1

ũnh · vs
H − 2µ

∫
Σn+1

ε(ũnh)n · vs
H

+

∫
Σn+1

pn+1
h vs

H · n ∀vs
H , rH ∈ [V s

H ]2;

(67)

3. Explicit step (viscous-structure coupling): find ̂̃un+1

h ∈ V f
h such that

ũn+1
h = uin(tn+1) on Γin,

Ãf
τ

(
ũn+1
h , ṽf

h

)
+
γµ

h

∫
Σn+1

ũn+1
h · ṽf

h =
γµ

h

∫
Σn+1

∂τd
n+1
H · ṽf

h

+2µ

∫
Σn+1

ε(ũnh)n · ṽf
h ∀ṽf

h ∈ V f
Γin,h;

(68)

4. Go to next time step.
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Since the stability condition of Theorem 5 does not depend on the fluid-
solid density ratio neither on the geometry of the domain, the semi-implicit
coupling scheme (63)-(64) remains stable irrespectively of the added-mass
effect. Moreover, thanks to the natural interface dissipation of the Robin-Robin
coupling, a diffusive time marching in the structure is no longer needed to ensure
stability. These observations are confirmed by the numerical results reported
in Figure 9. The numerical instabilities shown in Figure 8, for the original
semi-implicit coupling, are not present in the solution provided by the Robin
based semi-implicit coupling scheme, which accurately predicts the results of
the implicit coupling scheme.

Remark 22 Theorem 5 follows by a combination of the arguments involved
in the proofs of Theorems 2 and 3. Let us notice that, here, we do not need
to stabilize pressure fluctuations, that is, to introduce the weakly consistent
artificial compressibility at the interface (55). Indeed, due to the implicit
treatment (63) of the pressure-solid coupling, no artificial interface pressure
perturbations appears in the energy estimate (69).

Remark 23 Theorem 5 can be extended to the case in which, instead of the
pressure-Darcy formulation (63)1, we consider the pressure-Poisson formulation
of the projection step (see Remark 9). We refer to [5, §4.3] for the details.

The non-linear counterpart of the semi-implicit coupling scheme (63)-(64)
(namely, the Robin based counterpart of Algorithm 6) is detailed in Algorithm
9. Here, Exth stands for a discrete version of the lifting operator Ext, the solid
mass and stiffness contribution are given by

As
τ

(
dn+1
H , ḋ

n+1

H ;vs
H , rH

) def
= ρs

∫
Ωs

∂τ ḋ
n+1

H · vs
H

+
1

2

∫
Ωs

(
Π(dn+1

H ) + Π(dnH)
)

: ∇vs
H + ρs

∫
Ωs

(
ḋ
n+ 1

2

H − ∂τdn+1
H

)
· rH ,

while, for the fluid

Ãf
τ

(
ũn+1
h , ṽf

h

) def
=

ρf

τ

∫
Ωf,n+1

ũn+1
h · ṽf

h −
ρf

τ

∫
Ωf,n

un+1
h · ṽf

h

+
ρf

2

∫
Ωf,n+1

(div ũnh)ũn+1
h · ṽf

h − ρf

∫
Ωf,n+1

(divwn+1
h )ũn+1

h · ṽf
h

+ ρf

∫
Ωf,n+1

(ũnh −wn+1
h ) ·∇ũn+1

h · ṽf
h + 2µ

∫
Ωf,n+1

ε(ũn+1
h ) : ε(ṽf

h).

We conclude this subsection with an illustration of the numerical results
obtained (in [5]) with Algorithm 9 (pressure-Poisson version) and the
physiological test case considered in §4. Figure 10 presents some snapshots
of the wall deformation and the fluid velocity fields at two time instants. Figure
11 shows that, even in this complex case, both the original and the Robin based
semi-implicit coupling schemes provide a prediction that compares well to the
reference implicit solution.
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Figure 10: Robin based semi-implicit coupling: snapshots of the solid
deformation and fluid velocity field at two different time instants. From [5].
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Figure 11: Comparison of the implicit, standard semi-implicit and Robin based
semi-implicit coupling schemes: maximal displacement of the structure. From
[5].

6. Conclusion

The work summarized in this review was devoted to the approximation
and numerical resolution of the mechanical interaction between a viscous
incompressible fluid and an elastic structure, with a strong added-mass effect.
In this framework, standard explicit (or loosely coupled) schemes are known to
be unstable, irrespectively of the discretization parameters. In the context of
implicit coupling, we have seen that the exact evaluation of the cross-derivative
of the Jacobian (shape terms) leads to robust Newton iterations. Yet, these
procedures remain computationally expensive in real applications.

We have seen that implicit coupling can be avoided, without compromising
stability, via the semi-implicit and the explicit coupling schemes described in
§4 and §5, respectively. In particular, the explicit Robin-Robin treatment
derived from the Nitsche treatment of the coupling yields added-mass effect
free schemes. The price to pay is a perturbation of the truncation error,
which enforces constraints on the rate of the discretization parameters (e.g.,
parabolic-CFL). Let us emphasize, that for standard loosely coupled schemes,
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these constraints do not cure the instabilities!
Many aspects of the studies presented in this review are open to further

investigations (some of them are in progress). In the context of the numerical
analysis of the schemes, the focus could be put on the convergence analysis
in the linear case, for instance, in the spirit of [84, 7]. Further investigations
could also address the generalization of the stability analysis to the non-linear
case (see, e.g., [83] for implicit coupling). Alternative explicit coupling schemes,
motivated by the explicit Robin-Robin coupling (54), can be devised [20]:

(i) stabilized explicit coupling with a residual based treatment of the fluid
stresses at the interface (instead of face-wise, as in the interface Nitsche’s
method);

(ii) unstabilized explicit Robin-Robin coupling without the consistency term∫
Σ

(un+1
h − ∂τdn+1

h ) · nqh;

(iii) explicit Robin-Robin coupling with (pressure-Poisson) projection scheme.

The variants (i) and (iii) can be proved to be energy stable. In particular,
it is worth noticing that the combination of the Robin-Robin splitting with
the pressure-Poisson treatment of the projection step, in (iii), leads to a
natural stabilization of the time pressure fluctuations. Numerical evidence
suggests that also (ii) is energy stable, but the analysis does not seem to
be straightforward. The incremental displacement and displacement-velocity
correction schemes recently introduced in [44, 50] will also be the topic of
forthcoming investigations. An interesting feature of these loosely coupled
procedures is that they can be interpreted as optimally consistent kinematic
perturbations of an underlying implicit coupling scheme.

Regarding the applications, we plan to incorporate some of the proposed
procedures in the context of the simulation of the fluid-structure interaction
phenomena in the heart (see [118]), using the reduced valves models recently
proposed in [4]. At last, in the context of inverse problems in blood flows (e.g.,
wall parameters estimation), some promising results [18], on the estimation of
the mechanical properties of the vessel wall, have already been obtained by
adapting the filtering techniques recently developed in [27].
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interaction and multi-body contact: application to aortic valves. Comput.
Methods Appl. Mech. Engrg., 198(45-46):3603–3612, 2009.

[7] M. Astorino and C. Grandmont. Convergence analysis of a projection
semi-implicit coupling scheme for fluid-structure interaction problems.
Numer. Math., 116:721–767, 2010.

[8] S. Badia and R. Codina. On some fluid-structure iterative algorithms
using pressure segregation methods. Application to aeroelasticity.
Internat. J. Numer. Methods Engrg., 72(1):46–71, 2007.

[9] S. Badia, F. Nobile, and C. Vergara. Fluid-structure partitioned
procedures based on Robin transmission conditions. J. Comp. Phys.,
227:7027–7051, 2008.

[10] S. Badia, F. Nobile, and C. Vergara. Robin-Robin preconditioned Krylov
methods for fluid-structure interaction problems. Comput. Methods Appl.
Mech. Engrg., 198(33-36):2768–2784, 2009.

[11] S. Badia, A. Quaini, and A. Quarteroni. Modular vs. non-modular
preconditioners for fluid-structure systems with large added-mass effect.
Comput. Methods Appl. Mech. Engrg., 197(49-50):4216–4232, 2008.

[12] S. Badia, A. Quaini, and A. Quarteroni. Splitting methods based
on algebraic factorization for fluid-structure interaction. SIAM J. Sci.
Comput., 30(4):1778–1805, 2008.

[13] G.A. Baker. Finite element methods for elliptic equations using
nonconforming elements. Math. Comp., 31(137):45–59, 1977.



44 M.A. Fernández

[14] K.J. Bathe and H. Zhang. Finite element developments for general fluid
flows with structural interactions. Int. J. Num. Meth. Engng., 2004.

[15] Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang. Isogeometric fluid-
structure interaction: theory, algorithms, and computations. Comput.
Mech., 43(1):3–37, 2008.

[16] R. Becker, P. Hansbo, and R. Stenberg. A finite element method for
domain decomposition with non-matching grids. M2AN Math. Model.
Numer. Anal., 37(2):209–225, 2003.

[17] C. Bernardi, Y. Maday, and A. T. Patera. Domain decomposition by the
mortar element method. In Asymptotic and numerical methods for partial
differential equations with critical parameters (Beaune, 1992), volume 384
of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 269–286. Kluwer
Acad. Publ., Dordrecht, 1993.

[18] C. Bertoglio, D. Chapelle, M.A. Fernández, J.-F. Gerbeau, and
P. Moireau. Filtering-based data assimilation in vascular fluid-structure
interaction through displacement measurements at the interface. In IV
European Congress on Computational Mechanics (ECCM IV): Solids,
Structures and Coupled Problems in Engineering, 2010.

[19] P. N. Brown and Y. Saad. Convergence theory of nonlinear Newton-Krylov
algorithms. SIAM J. Optim., 4(2):297–330, 1994.

[20] E. Burman and M.A. Fernández. Robin-based explicit coupling schemes
in incompressible fluid-structure interaction. In preparation.

[21] E. Burman and M.A. Fernández. Stabilized explicit coupling for fluid-
structure interaction using Nitsche’s method. C. R. Math. Acad. Sci.
Paris, 345(8):467–472, 2007.

[22] E. Burman and M.A. Fernández. Stabilization of explicit coupling in fluid-
structure interaction involving fluid incompressibility. Comput. Methods
Appl. Mech. Engrg., 198(5-8):766–784, 2009.

[23] E. Burman and P. Hansbo. A unified stabilized method for Stokes’ and
Darcy’s equations. J. Comput. Appl. Math., 198:35–51, 2007.

[24] E. Burman and P. Zunino. A domain decomposition method based on
interior penalties for advection–diffusion–reaction problems. Siam Jour.
Num. Anal., 44:1612–1638, 2006.

[25] P. Causin, J.-F. Gerbeau, and F. Nobile. Added-mass effect in the design
of partitioned algorithms for fluid-structure problems. Comput. Methods
Appl. Mech. Engrg., 194(42–44):4506–4527, 2005.

[26] D. Chapelle and K.J. Bathe. The Finite Element Analysis of Shells -
Fundamentals. Springer, 2003.



Coupling schemes for incompressible fluid-structure interaction 45

[27] D. Chapelle, P. Moireau, and P. Le Tallec. Robust filtering for joint state-
parameter estimation in distributed mechanical systems. Discrete Contin.
Dyn. Syst., 23(1-2):65–84, 2009.

[28] Y. Cheng, H. Oertel, and T. Schenkel. Fluid-structure coupled CFD
simulation of the left ventricular flow during filling phase. Ann. Biomed.
Eng., 33(5):567–576, 2005.

[29] A.J. Chorin. On the convergence of discrete approximations to the Navier-
Stokes equations. Math. Comp., 23:341–353, 1969.

[30] P.G. Ciarlet. Mathematical elasticity. Vol. I, volume 20 of Studies in
Mathematics and its Applications. North-Holland, 1988.

[31] J. Degroote, S. Annerel, and J. Vierendeels. Stability analysis of Gauss-
Seidel iterations in a partitioned simulation of fluid-structure interaction.
Comp. & Struct., 88(5-6):263–271, 2010.

[32] J. Degroote, K.-J. Bathe, and J. Vierendeels. Performance of a new
partitioned procedure versus a monolithic procedure in fluid-structure
interaction. Comp. & Struct., 87(11-12):793–801, 2009.

[33] J. Degroote, A. Swillens, P. Bruggeman, R. Haelterman, P. Segers, and
J. Vierendeels. Simulation of fluid-structure interaction with the interface
artificial compressibility method. Int. J. Numer. Meth. Biomed. Engng.,
26(3-4):276–289, 2010.

[34] P. Degroote, J. Bruggeman, R. Haelterman, and J. Vierendeels. Stability
of a coupling technique for partitioned solvers in FSI applications. Comp.
& Struct., 86(23-24):2224–2234, 2008.

[35] S. Deparis. Numerical Analysis of Axisymmetric Flows and Methods for
Fluid-Structure Interaction Arising in Blood Flow Simulation. PhD thesis,
EPFL, Switzerland, 2004.

[36] S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni. Fluid-
structure algorithms based on Steklov-Poincaré operators. Comput.
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[38] W. Dettmer and D. Perić. A computational framework for fluid-rigid
body interaction: finite element formulation and applications. Comput.
Methods Appl. Mech. Engrg., 195(13-16):1633–1666, 2006.

[39] N. Diniz dos Santos, J.-F. Gerbeau, and J.-F. Bourgat. A partitioned
fluid-structure algorithm for elastic thin valves with contact. Comput.
Methods Appl. Mech. Engrg., 197(19-20):1750–1761, 2008.



46 M.A. Fernández
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