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Abstract: We present a high performance computing methodology for the simulation of electromagnetic
wave propagation in biological tissues and its application to the numerical evaluation of radio frequency
absorption in head tissues as they are exposed to radiation from a cellular phone. For this purpose,
the system of time-domain Maxwell equations is discretized in space by a discontinuous Galerkin method
which is formulated on a tetrahedral mesh and which relies on a high order interpolation of the electromag-
netic field components within a mesh element. The semi-discretized equations are then time integrated
by a second order leap-frog scheme. The resulting numerical methodology is adapted to modern parallel
computing systems with multiple GPU acceleration cards by adopting a hybrid strategy that combines
a coarse grain SPMD programming model for inter-GPU parallelization and a fine grain SIMD pro-
gramming model for intra-GPU parallelization. The performance improvement thanks to multiple-GPU
acceleration is demonstrated through large-scale simulations that are performed on a cluster of GPUs
using realistic heterogeneous models of head tissues built from medical images.

Key-words: computational electromagnetics, time-domain Maxwell equations, discontinuous Galerkin
method, biological tissues, mobile phone radiation.



Accélération multi-GPU d’une méthode DGTD

pour la modélisation de l’exposition des personnes

aux ondes électromagnétiques

Résumé : On présente une méthodologie numérique adaptée au calcul haute performance pour la
simulation de la propagation d’ondes électromagnétiques dans des tissus biologiques et son application
à la dosimétrie numérique de l’exposition des tissus de la tête lorsqu’ils sont exposés au rayonnement
d’un téléphone mobile. Pour ce faire, le système des équations de Maxwell est discrétisé par une
méthode Galerkin discontinue formulée en maillages tétraédriques et reposant sur une approximation
polynomiale d’ordre élevé des composantes du champ électromagnétique au sein d’un élément. Les
équations semi-discrétisées sont intégrées en temps au moyen d’un schéma saute-mouton du second ordre.
La méthodologie numérique ainsi développée est adaptée aux architectures de calcul haute performance
modernes comprenant des cartes accélératices de type GPU, en adoptant une stratégie hybride combinant
un modèle de programmation SPMD gros grain pour la parallélisation inter-GPU et un modèle SIMD grain

fin pour la parallélisation intra-GPU. Les bénéfices en termes de performance résultant de l’accélération
multi-GPU sont démontrés par la réalisation de simulations sur un système multi-GPU en utilisant des
modèles géométriques réalistes des tissus de la tête construits à partir d’images médicales.

Mots-clés : électromagnétisme numérique, équations de Maxwell en domaine temporel, méthode
Galerkin discontinue, tissus biologiques, téléphione mobile.
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1 Introduction

Nowadays, numerical modeling is increasingly used and progressively becoming a mandatory path for the
study of the interaction of electromagnetic fields with biological tissues. This is in particular the case for
the evaluation of the SAR (Specific Absorption Rate) which is a measure of the rate at which electric
energy is absorbed by the tissues when exposed to a radio-frequency electromagnetic field. The SAR is
defined as the power absorbed per mass of tissue and has units of watts per kilogram. Numerical SAR
calculations are intensively considered for dosimetry studies of the exposure of human tissues to microwave
radiations from wireless communication systems [1]-[10]-[6] to cite but a few of many examples. These
studies are useful for assessing the possible thermal effects (temperature rise in tissues resulting from
electric energy dissipation) as well as for compliance testing to regulatory limits. SAR calculations are
also relevant for certain medical applications such as for the design of microwave hyperthermia systems
[3]-[7]-[19], and for the design of micro-antennas to be implanted inside the human body [14].

Despite the high complexity both in terms of heterogeneity and geometrical features of tissues, the
great majority of numerical dosimetry studies have been conducted using the widely known Finite Differ-
ence Time Domain (FDTD) method due to Yee [22]. In this method, the whole computational domain
is discretized using a structured (Cartesian) grid. Due to the possible straightforward implementation
of the algorithm and the availability of computational power, FDTD is currently the leading method for
numerical assessment of human exposure to electromagnetic waves. In the particular case of mobile phone
radiation, the FDTD method is applied to heterogeneous discretized models of human head tissues built
from medical images. Thus, the grid generation process is highly simplified since the voxel based image
can be used at a minimal effort as the computational grid for the FDTD method. However it is well
known that albeit being highly flexible and second-order accurate in a homogeneous medium, the Yee
scheme suffers from serious accuracy degradation when used to model curved objects or when treating
material interfaces.

In an attempt to offer an alternative numerical dosimetry methodology which allows for a realistic
modeling of geometrical features and tissue interfaces, we consider here the use of a discontinuous Galerkin
method formulated on non-uniform tetrahedral meshes. So-called DGTD (Discontinuous Galerkin Time
Domain) methods for solving the time-domain Maxwell equations have been proposed by several authors
[13]-[9]-[5]. DGTD methods based on discontinuous finite element spaces, easily handle elements of various
types and shapes, irregular non-conforming meshes [8], and even locally varying polynomial degree, and
hence offer great flexibility in the mesh design. They also lead to (block-) diagonal mass matrices
and therefore yield fully explicit, inherently parallel methods when coupled with explicit time stepping.
Moreover, continuity is weakly enforced across mesh interfaces by adding suitable bilinear forms (often
referred as numerical fluxes) to the standard variational formulations. Despite the achievements so far,
it seems that a major limitation to a wider adoption of DGTD methods for large-scale applications in
various physical domains and especially for electromagnetic wave propagation problems, is their excessive
overhead in terms of computational time and memory occupancy. Not surprisingly, several ongoing
research efforts on discontinuous Galerkin methods aim at improving their efficiency both from the
numerical and computational point of view. The present work is a contribution to this problematic
and we concentrate here on the exploitation of massively parallel computing systems based on graphical
processing unit (GPU) acceleration cards.
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For more than two decades, the computer industry has witnessed an ever increasing drive of perfor-
mance improvement. Speeding up processor frequency has considerably improved the processing capabil-
ities given in giga floating point operations per second (GFlops), until physical limits of semiconductor
based microelectronics have become a major design concern. In the recent years, design issues for more
capable microprocessors have evolved towards the development of multi-core CPUs effectively multiplying
the potential performance with several separate processing cores on the same chip, used concurrently.
One other particularly noteworthy approach is the use of many-core devices such as Graphical Process-
ing Units (GPUs), accelerating computations orchestrated by a conventional CPU program. Efforts to
exploit GPUs, for non-graphical applications has been underway since 2003 and has evolved into pro-
grammable and massively parallel computational units with very high memory bandwidth. From this
time to the present days a review of research works aiming at harnessing GPUs for the acceleration of
partial differential equations solvers would hardly fit into one page. In particular, the development of
GPU enabled high order methods is a rapidly growing field especially for what concern computational
fluid dynamics applications. Focusing on contributions that are dealing with wave propagation problems,
GPUs have been considered for the first time for computational electromagnetics and computational
geoseismics applications respectively by Klöckner et al. [15] and by Komatitsch al. [18]-[17]-[16]. The
present work shares several concerns with [15] which describes the development of a GPU enabled DG
method formulated on an unstructured tetrahedral mesh for the discretization of hyperbolic systems of
conservation laws. Computational results are presented for the solution of the system of 3D time-domain
Maxwell equations. As it is the case with the DGTD method at the heart of our study, the one disussed
in [15], the local approximation of the unknown field relies on a high order nodal interpolation method
which is a key feature in view of exploiting the processing capabilities of the GPU architecture. The main
design differences are found in the adopted numerical flux (Klöckner et al. consider an upwind flux while
we make use of a centered flux) and time-stepping scheme (a 4 steps Runge-Kutta scheme is considered
in [15] while we rely on a second order leap-frog scheme). In [15], the CUDA adaptation of the numerical
kernels of the studied DG method is detailed, emphasizing the data and computation layout leading to
highly tuned implementations of these kernels. Single precision performance on a Nvidia GTX 280 GPU
exceeds 250 GFlops for a 9th order interpolation while the speedup relatively to a CPU calculation is
maximized for a 4th order interpolation (the observed speedup is 65 in this case). A recent evolution
of this work is presented in Gödel et al. [12] where the authors discuss the adaptation of a multirate
time stepping based DG method for solving the time-domain Maxwell equations on a multiple GPU
system. Load balancing issues linked to the local time stepping scheme are treated by a weighted graph
partitioning. Performance results are presented for simulations conducted on a system with 4 GPUs but
the weak and strong scalability of the resulting hybrid CPU-GPU DG method are not studied. Another
widely adopted high order method, namely the spectral element method, is considered in [18]-[17]-[16]
for the simulation of seismic wave propagation. In [16], the authors discuss the implementation of the
SPECFEM3D software on a large cluster of Nvidia GT200 GPUs using the CUDA environment and
non-blocking message-passing using MPI. A similar hybrid SIMD-MIMD parallelization strategy is con-
sidered in the present study. Speedups as high as 20 are obtained between the CUDA+MPI version and
the highly optimized C+MPI original version of the SPECFEM3D software.

The sequel of the paper is organized as follows: in section 2 we state the initial and boundary value
problem to be solved; in section 3 the DGTD method is briefly outlined; the algorithmic adaptation
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for obtaining a GPU enabled implementation of this method based on CUDA is discussed in section 4;
section 5 is devoted to the application of the resulting numerical methodology to the calculation of the
SAR distribution in head tissues, as well as to the analysis of the weak and strong scalability properties
on a cluster of GPUs; finally, section 6 concludes this work.

2 The continuous problem

We consider the Maxwell equations in three space dimensions for heterogeneous linear isotropic media.
The electric field ~E(~x, t) = t(Ex, Ey, Ez) and the magnetic field ~H(~x, t) = t(Hx, Hy, Hz) verify:

ǫ∂t ~E − curl ~H = − ~J , µ∂t ~H + curl~E = 0, (1)

where the symbol ∂t denotes a time derivative and ~J(~x, t) is a current source term. These equations
are set on a bounded polyhedral domain Ω of R

3. The electric permittivity ǫ(~x) and the magnetic
permeability coefficients µ(~x) are varying in space, time-invariant and both positive functions. The

current source term ~J is the sum of the conductive current ~Jσ = σ ~E (where σ(~x) denotes the electric

conductivity of the media) and of an applied current ~Js associated to a localized source for the incident
electromagnetic field. Our goal is to solve system (1) in a domain Ω with boundary ∂Ω = Γa∪Γm, where

we impose the following boundary conditions: ~n × ~E = 0 on Γm, and L( ~E, ~H) = L( ~Einc, ~Hinc) on Γa

where L( ~E, ~H) = ~n × ~E −

√

µ

ε
~n × ( ~H × ~n). Here ~n denotes the unit outward normal to ∂Ω and

( ~Einc, ~Hinc) is a given incident field. The first boundary condition is called metallic (referring to a
perfectly conducting surface) while the second condition is called absorbing and takes here the form of
the Silver-Müller condition which is a first order approximation of the exact absorbing boundary condition.
This absorbing condition is applied on Γa which represents an artificial truncation of the computational
domain.

3 Discretization by a discontinuous Galerkin method

3.1 Space discretization

The domain Ω is triangulated into a set Th of tetrahedra τi of size hi with boundary ∂τi such that
h = maxτi∈Th

hi. To each τi ∈ Th, we assign a non-negative integer pi that is the local interpolation
degree. For each τi, the parameters ǫi and µi are respectively the local electric permittivity and magnetic
permeability of the medium, which are assumed constant inside the element τi. For two distinct tetrahedra
τi and τk in Th, the intersection τi ∩ τk is a convex polyhedron aik which we will call interface. For each
internal interface aik, we denote by ~nik the unitary normal vector, oriented from τi to τk. For the
boundary interfaces, the index k corresponds to a fictitious element outside the domain. We denote
by FI

h the union of all interior interfaces of Th and by FB
h the union of all boundary interfaces of Th.

Finally, we denote by Vi the set of indices of the elements which are neighbors of τi (having an interface

in common). In the following, to simplify the presentation, we set ~J = 0. For a given partition Th, we
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seek approximate solutions to (1) in the finite element space:

Vpi
(Th) = {~v ∈ L2(Ω)3 : ~v|τi ∈ (Ppi

[τi])
3, ∀τi ∈ Th}, (2)

where Ppi
[τi] denotes the space of nodal polynomial functions of degree at most pi inside τi. Follow-

ing the discontinuous Galerkin approach, the local electric and magnetic fields (~Ei, ~Hi) are defined as
combinations of linearly independent basis vector fields ~ϕij . Let Pi = Span(~ϕij , 1 ≤ j ≤ di) where

di denotes the number of degrees of freedom inside τi. The approximate fields (~Eh, ~Hh), defined by

(∀i, ~Eh|τi = ~Ei, ~Hh|τi = ~Hi) are allowed to be completely discontinuous across element boundaries.

For such a discontinuous field ~Uh, we define its average {~Uh}ik through any internal interface aik, as

{~Uh}ik = (~Ui|aik
+ ~Uk|aik

)/2. Note that for any internal interface aik, {~Uh}ki = {~Uh}ik. Because of
this discontinuity, a global variational formulation cannot be obtained. However, dot-multiplying (1) by
~ϕ ∈ Pi, integrating over each single element τi and integrating by parts, yields:















∫

τi

~ϕ · ǫi∂t~E =

∫

τi

curl~ϕ · ~H−

∫

∂τi

~ϕ · (~H× ~n),
∫

τi

~ϕ · µi∂t ~H = −

∫

τi

curl~ϕ · ~E+

∫

∂τi

~ϕ · (~E× ~n).
(3)

In Eq. (3), we now replace the exact fields ~E and ~H by the approximate fields ~Eh and ~Hh in order
to evaluate volume integrals. For integrals over ∂τi, a specific treatment must be introduced since the
approximate fields are discontinuous through element faces, leading to the definition of a numerical flux.
We choose to use a fully centered numerical flux, i.e., ∀i, ∀k ∈ Vi, ~E|aik

≃ {~Eh}ik, ~H|aik
≃ {~Hh}ik.

The metallic boundary condition on a boundary interface aik ∈ Γm (k in the element index of the

fictitious neighboring element) is dealt with weakly, in the sense that traces of fictitious fields ~Ek and
~Hk are used for the computation of numerical fluxes for the boundary element τi. More precisely, we set
~Ek|aik

= −~Ei|aik
and ~Hk|aik

= ~Hi|aik
. Similarly, the absorbing boundary condition is taken into account

through the use of a fully upwind numerical flux for the evaluation of the corresponding boundary integral
over aik ∈ Γa (see [9] for more details). Evaluating the surface integrals in (3) using the centered numerical
flux, and re-integrating by parts yields:































































∫

τi

~ϕ · ǫi∂t~Ei =
1

2

∫

τi

(curl~ϕ · ~Hi + curl~Hi · ~ϕ)

−
1

2

∑

k∈Vi

∫

aik

~ϕ · (~Hk × ~nik),

∫

τi

~ϕ · µi∂t ~Hi=−
1

2

∫

τi

(curl~ϕ · ~Ei + curl~Ei · ~ϕ)

+
1

2

∑

k∈Vi

∫

aik

~ϕ · (~Ek × ~nik).

(4)

Eq. (4) can be rewritten in terms of scalar unknowns. Inside each element, the fields are re-composed

according to ~Ei =
∑

1≤j≤d

Eij ~ϕij and ~Hi =
∑

1≤j≤d

Hij ~ϕij and let us now denote by Ei and Hi respectively
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the column vectors (Eil)1≤l≤di
and (Hil)1≤l≤di

. Then, (4) is equivalent to:



















M ǫ
i

dEi

dt
= KiHi −

∑

k∈Vi

SikHk,

Mµ
i

dHi

dt
= −KiEi +

∑

k∈Vi

SikEk,
(5)

where the symmetric positive definite mass matrices Mη
i (η stands for ǫ or µ), the symmetric stiffness

matrix Ki (both of size di × di) and the symmetric interface matrix Sik (of size di × dk) are given by:

(Mη
i )jl = ηi

∫

τi

t~ϕij · ~ϕil,

(Ki)jl =
1

2

∫

τi

t~ϕij · curl~ϕil +
t~ϕil · curl~ϕij ,

(Sik)jl =
1

2

∫

aik

t~ϕij · (~ϕkl × ~nik).

3.2 Time discretization

The set of local system of ordinary differential equations for each τi (5) can be formally transformed in
a global system. To this end, we suppose that all electric (resp. magnetic) unknowns are gathered in a

column vector E (resp. H) of size dg =

Nt
∑

i=1

di where Nt stands for the number of elements in Th. Then

system (5) can be rewritten as:











Mǫ dE

dt
= KH− AH− BH + CEE,

Mµ dH

dt
= −KE+ AE− BE+ CHH,

(6)

where we have the following definitions and properties:

• Mǫ,Mµ and K are dg × dg block diagonal matrices with diagonal blocks equal to M ǫ
i ,M

µ
i and Ki

respectively. Mǫ and M
µ are symmetric positive definite matrices, and K is a symmetric matrix.

• A is also a dg×dg block sparse matrix, whose non-zero blocks are equal to Sik when aik ∈ FI
h . Since

~nki = −~nik, it can be checked that (Sik)jl = (Ski)lj and then Ski =
tSik; thus A is a symmetric

matrix.

• B is a dg × dg block diagonal matrix, whose non-zero blocks are equal to Sik when aik ∈ FB
h ∩ Γm.

In that case, (Sik)jl = −(Sik)lj ; thus B is a skew-symmetric matrix.

• CE and CH are dg × dg block diagonal matrices associated to boundary integral terms for aik ∈
FB

h ∩ Γa.
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Consequently, if we set S = K− A− B, the system (6) rewrites as:

M
ǫ dE

dt
= SH+ CEE , M

µ dH

dt
= − t

SE+ CHH. (7)

The semi-discrete system (7) is time integrated using a second-order leap-frog scheme as:



















Mǫ

(

En+1 − En

∆t

)

= SHn+ 1

2 + CEE
n,

Mµ

(

Hn+ 3

2 −Hn+ 1

2

∆t

)

= − tSEn+1 + CHHn+ 1

2 .

(8)

The resulting fully explicit DGTD-Ppi
method is analyzed in [9] where it is shown that, when Γa = ∅, the

method is non-dissipative, conserves a discrete form of the electromagnetic energy and is stable under
the CFL-like condition:

∆t ≤
2

α
, with α =‖ (M−µ)

1

2
t
S (M−ǫ)

1

2 ‖, (9)

where ‖.‖ denotes the canonical matrix norm and the matrix (M−η)
1

2 is the inverse square root of Mη.

3.3 Numerical treatment of biological propagation media

Human tissues are dispersive materials and thus require a specific treatment when modeling time-domain
problems. However, in this study, we do not take into aacount the dispersive characteristic of the
propagation media and simply consider them as conductive as it is done in the great majority of numerical
dosumetry studies. Then, a conductive current ~Jσ = σ ~E has to be taken into account in (1). It is
straightforward to verify that the space discretization of this current term in the framework of the
discontinuous Galerkin formulation described in section 3.1 leads to the introduction of the term−M ǫ

iEi in
the right hand side of the first equation of (5). Then this term is time integrated as −M ǫ

i

(

En
i +En+1

i

)

/2
meaning that both the left and right hands side terms of (8) are affected by the discretization of this
conductive current.

4 Implementation on GPU clusters

We discuss in this section the design principles that we have adopted for the implementation of the
DGTD-Ppi

method described in section 3. Prior to do so, we briefly review the main aspects of GPU
computing as well as basic features of the CUDA programming model that are used afterward.

4.1 Generalities about GPUs

Many-core GPUs are currently capable of delivering over 1 TFlops of single precision performance versus
100 GFlops for the multi-core CPUs. This performance gap is mainly due to the architectural differences
between the two types of processors (see Fig. 1). CPU cores continue to be optimized for single threaded
performance at the expense of parallel execution. Large CPU cache memories are provided to reduce
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the instruction and data access latencies of large complex applications; but as additional thread contexts
share the limited resources of cache capacity and external memory bandwidth, throughput and power
efficiency decrease. In contrast, the design philosophy of the GPUs is motivated by the ability to optimize
for the execution throughput of massive numbers of threads. The hardware takes advantage of a large
number of execution threads to find work to do when some of them are waiting for long latency memory
accesses, thus minimizing the control logic required for each execution thread. Small cache memories are
provided to help control the bandwidth requirements of these applications so multiple threads that access
the same memory data do not need to all go to the dynamic random access memory (DRAM).

Figure 1: GPU vs CPU design philosophies.

4.2 CUDA programming model

CUDA (Compute Unified Device Architecture) [20] is a parallel computing architecture developed by
Nvidia, which enables non-graphics computations on GPUs. The typical architecture of GT200 series
GPUs which is considered in this study is built around a scalable array of multithreaded Streaming Multi-
processors (SMs), which consist of eight Scalar Processor (SP) cores, one multithreaded Instruction Unit
(MT), two Special Function Units (SFU) performing floating point functions as well as transcendental
functions, one Double Precision Unit (DP), 16 KB 32-bit on-chip registers and 16 KB on-chip shared
memory (see Fig. 2). The global, constant, texture and local memory are optimized for different memory
usages and reside on the off-chip device memory, accessible by all SPs. A GPU such as the one in the
Tesla C1060 system has 240 cores, processes 933 Gflops in single precision floating point arithmetic, and
can run thousands of threads per application. However dramatic increases in computing performance can
only be achieved after extensive optimization and tuning, by rewriting processing intensive parts with
parallelization techniques. To a CUDA programmer, the computing system consists of a host, which
is a traditional central processing unit (CPU), and one or more devices, viewed as massively parallel
processors equipped with a large number of arithmetic execution units. A CUDA program is a unified
source code encompassing both host and device code. The data parallel functions, called kernels, typically
generate a large number of GPU threads to exploit data parallelism in a Single Instruction Multiple Data
(SIMD) fashion, because all of these threads execute the same code during a parallel phase. Launching a
kernel for GPU execution is similar to calling the kernel function, except that the programmer needs to
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Figure 2: Streaming Multiprocessor architecture and scheduler.

specify the space of GPU threads that execute it, called a grid. A grid contains multiple thread blocks
having the same number of threads, organized in a two-dimensional space, executing the same kernel.
Each thread block is, in turn, organized as a three-dimensional array of threads with a total size up to 512
threads. A unique thread ID is assigned to each thread, computed from both thread indexes, allowing
all threads in a grid to distinguish themselves from each other and to identify the appropriate portion of
the data to process. Threads in the same thread block may coordinate their activities by using shared
memory, and by synchronizing at a barrier using a specific intrinsic function. The programmer needs to
allocate memory on the device and transfer pertinent data from the host memory to the allocated device
memory. Similarly, after device execution, the programmer needs to transfer result data from the device
memory back to the host memory and free up the device memory that is no longer needed.

Simple CUDA kernels generally achieve only a small fraction of the potential speed of the underlying
hardware due to the fact that global memory, which is typically implemented with dynamic random
access memory (DRAM) of a GPU, tends to have long access latencies (hundred of clock cycles) and
finite access bandwidth. Although having many threads available for execution can theoretically tolerate
long memory access latencies, one can easily run into a situation where traffic congestion in the global
memory access paths prevents all but a few threads from making progress, thus rendering some of the
streaming multiprocessors idle. In order to circumvent such congestion, CUDA provides a number of
additional methods for accessing memory that can remove the majority of data requests to the global
memory (see [20] for more details). The constant memory supports short latency, high bandwidth and
read only access by the device. The texture memory supports read only access by the device and offers
different addressing modes, as well as data filtering, for some specific data formats. The constant and
texture memory are also accessible from the host. Registers and shared memory are on-chip memories.
Variables that reside in these types of memory can be accessed at very high speed in a highly parallel
manner. Registers are allocated to individual threads; each thread can read and/or write its own registers
very fast with almost no delay. A kernel function typically uses registers to hold frequently accessed
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variables that are private to each thread. Shared memory is allocated to thread blocks; all threads in a
block can access variables in the shared memory locations allocated to the block but the shared memory
cannot be shared between other blocks.

4.3 CUDA adaptation of the DGTD method

We first note that the main computational kernels of the DGTD-Ppi
method considered in this study

are the volume and surface integrals involved in the weak formulation (4). Moreover, we limit ourselves
to a uniform order method i.e. p ≡ pi is the same for all the elements of the mesh, and we present
experimental results for the values p = 1, 2, 3, 4. At the discrete level, these local computations translate
into the matrix-vector products appearing in (5). The discrete equations for updating the electric and
magnetic fields are composed of the same steps and only differ by the fields they are applied to. They
both involve the same kernels that we will refer to in the sequel as intVolume (computation of volume
integrals), intSurface (computation of surface integrals) and updateField (update of field components).

4.3.1 Common paradigm and definitions

As advised in the section 5.3 of the CUDA programming guide [20], all our kernels follow the following
paradigm:

1. Load data from device memory to shared memory

2. Synchronize with all the other threads of the block so that each thread can safely read shared
memory locations that were populated by different threads

3. Process the data in shared memory

4. Synchronize again to make sure that shared memory has been updated with the results

5. Write the results back to device memory

In our implementation, some useful elementary matrices, such as the mass matrix computed on the
reference element, are stored in constant memory because they are small and are accessed following
constant memory patterns. For the sequel, we introduce the following notations:

NBTET is the number of tetrahedra that are treated by a block of threads. It depends of the chosen
interpolation order and it is taken to be a multiple of 16 because of the way one load and write
data to and from device memory.

NDL is the number of degrees of freedom (d.o.f) in an element τi for each field component, for a given
interpolation order.

NDF is the number of d.o.f on a face aik for each field component, for a given interpolation order.
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4.3.2 Volume integral kernel : intVolume

This kernel operates on each d.o.f of a tetrahedron. Since the number of d.o.f increases with the interpo-
lation order, resources needed by this kernel (registers and shared memory) also raise. Consequently, we
wrote two versions of this kernel: one kernel for p = 1 and 2, and the other one for p = 3 and 4. However,
these two versions have some common features. First, each thread computes one d.o.f of one tetrahedron.
The second common feature is the data stored in shared memory, which are some geometrical quantities
associated to a tetrahedron, and the field and the flux balance components. The last common feature
is the number of tetrahedra operated by a block (i.e.NBTET). The main difference is that when in the
low order version a block computes all the d.o.f (NDL) of the NBTET tetrahedra, the high order volume
kernel only computes a certain number of d.o.f of the NBTET tetrahedra. Consequently, in the latter
case, two or three instances of the kernel are necessary to compute all the d.o.f of all the tetrahedra. This
approach induces a drawback because we have to load field data in two or three kernels instead of one.
Indeed, the dimension of a block is NBTET*NDL which leads to blocks of more than 512 threads for high
interpolation orders which is not possible in CUDA. However, there is also a benefit because computing
a lower number of d.o.f in a kernel allows us to use less shared memory in the buffer storing field data
and less registers in a kernel. Consequently, the occupation of the graphic card increases.

4.3.3 Surface Integral kernel : intSurface

For this kernel, one thread works on one surface d.o.f of one tetrahedron. Similarly to the intVolume

kernel, two versions of this kernel have been implemented. For the low order version, a thread will apply
the influence of its d.o.f to the four faces of its tetrahedron whereas for the high order version of this
kernel, a thread will only work on one face of its tetrahedron. So, for the low order version, a block will
compute four faces of NBTET tetrahedra instead of one face of NBTET tetrahedra for the high order
version. Therefore, the high order version needs to launch four kernels instead of one for the low order
version. Here, we work on the surface d.o.f (NDF) but fields components are store using the volume
d.o.f (NDL) so we need to use a permutation matrix to link these different local numberings of these
d.o.f. Moreover, a face of a tetrahedron is also shared by another tetrahedron and the corresponding
field values are needed in the computation of the elementary flux. Consequently, we cannot load field
data in a coalesced way and we have to use texture memory. Field values are loaded before each face
computation. Nevertheless, the high order version has a memory drawback compared to the lower one.
Indeed, because there are four launches of the function (one for each face), data are written four times
to the flux table instead of one in the low order version.

4.3.4 Update kernel : updateField

There are four update kernels. First of all, update kernels are a bit different according to the field they
are working on (electric or magnetic). Since in this case a thread works on one d.o.f of a tetrahedron,
the dimension of a block is NBTET*NDL. Consequently, as for the intVolume kernel, we need a special
version for the higher interpolation orders in order to avoid exceeding the maximum number of threads
per block. In the high order version, we adopt an approach where a thread deals with two different d.o.f
of a tetrahedron which allows a block to compute all the d.o.f for NBTET tetrahedra. This approach is
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less efficient for the lower interpolation orders. The two versions of the electric field update kernels need
only one shared memory table. Indeed, in the first step, the flux computed by the previous kernels is
loaded in this table, used to do some computations and then stored in a register. Therefore, the shared
memory table is no longer used at the end of this part. In the second step, we load the previous values
of the electric field in it in a coalesced way. In a third step, we update the value of the field in the shared
memory, and in the last step, we write the new value of the field in the global memory.

The update of the magnetic field follows essentially the same pattern as the update of the electric field,
except for the computation of the discrete energy. Indeed, to compute the discrete energy, values of
updated electric field and magnetic field are needed. Thus, it is reasonable to compute the energy simul-
taneously with the update of the magnetic field. However, this works fine only for the lower interpolation
orders because this solution needs another shared memory table to store electric field values and some
additional registers. For the high order version, there are two kernels, one that only performs the update
of the magnetic field and one that computes the energy. When we want to compute the energy, the kernel
updating the magnetic field writes the new value of the field in the flux table instead of the magnetic
field table. This allows us to have the magnetic field value of the current (in the flux table) and of the
previous time step (in the magnetic field table) and when the energy is computed, the energy kernel
updates the magnetic field table. Finally, we use the reduction algorithm presented in the CUDA SDK
3.0 to computes energy.

5 Numerical and performance results

5.1 Tetrahedral mesh based geometric models of head tissues

The DGTD-Ppi
method described previously assumes that the computational domain is discretized using

tetrahedral elements. In this study, we aim at exploiting this numerical method for the calculation of the
SAR induced in head tissues. A first step is thus to construct compatible geometrical models of the head
tissues. Starting from magnetic resonance images of the Visible Human 2.0 project [21], head tissues are
segmented and surface triangulations of a selected number of tissues are obtained. Different strategies can
be used in order to obtain a smooth and accurate segmentation of head tissues and interface triangulations
as well. The strategy adopted in this work consists in using a variant of Chew’s algorithm [4], based on
Delaunay triangulation restricted to the interface, which allows to control the size and aspect ratio of
interface triangles [2]. Example of triangulations of the skin, skull and brain are shown on Fig. 3. In a
second step, these triangulated surfaces together with a triangulation of the artificial boundary (absorbing
boundary) of the overall computational domain are used as inputs for the generation of volume meshes.
The GHS3D tetrahedral mesh generator [11] is used to mesh the volume domains between the various
interfaces. The exterior of the head must also be meshed, up to a certain distance and the computational
domain is artificially bounded by a sphere surface corresponding to the boundary Γa on which the Silver-
Müller absorbing boundary condition is imposed. Moreover, a simplified mobile phone model (metallic
box with a quarter-wave length mounted on the top surface) is included and placed in vertical position
close to the right ear (see Fig. 4). The surface of this metallic box defines the boundary Γm. Overall, the
geometrical models considered here consist of four tissues (skin, skull, CSF - Cerebro Spinal Fluid and
brain).
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Figure 3: Surface meshes of the skin, skll and brain.
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Figure 4: Simplified mobile phone model and its positioning.

5.2 Numerical results

All the numerical experiments reported here are concerned with the propagation of an electromagnetic
wave emitted by a dipolar source localized (and centered) between the lower tip of the antenna and the
top surface of the metallic box defining the mobile phone, and is modeled by a current of the form (~xd is
the localization point of the source):

~Js(~x, t) = δ(~x − ~xd)f(t)~ez, (10)

where f(t) is a sinusoidally varying temporal signal. This source current is easily introduced and dis-
cretized according to the discontinuous Galerkin formulation discussed in subsection 3.1. The physical
simulation time has been fixed to 5 periods of the temporal signal of (10). A discrete Fourier transform of
the components of the electric field is computed during the last period of the simulation. The character-
istics of the tissues are summarized in Table 1 where the values of the electrical permittivity correspond
to a frequency F=1800 MHz. We consider a sequence of three unstructured tetrahedral meshes whose

Table 1: Exposure of head tissues to a localized source radiation: electromagnetic characteristics of
tissues.

Tissue εr λ (mm) σ (S/m) ρ (Kg/m3)

Skin 43.85 26.73 1.23 1100.0
Skull 15.56 42.25 0.43 1200.0
CSF 67.20 20.33 2.92 1000.0
Brain 43.55 25.26 1.15 1050.0

characteristics are summarized in Table 2. For these meshes, the artificial boundary Γa is a spherical
surface approximately located one wavelength away from the skin. The tetrahedral meshes are glob-
ally non-uniform and the quantities Lmin, Lmax and Lavg in Table 2 respectively denote the minimum,
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maximum and average lengths of mesh edges. Fig. 5 shows the contour lines of the amplitude of the

Table 2: Characteristics of the fully unstructured tetrahedral meshes of head tissues.

Mesh # elements Lmin (mm) Lmax (mm) Lavg (mm)

M1 815,405 1.00 28.14 10.69
M2 1,862,136 0.65 23.81 6.89
M3 7,894,172 0.77 22.75 3.21

electric field on the skin, skull and brain surfaces for a numerical solution computed with mesh M2 using
the DGTD-P2 method. Contour lines of the local SAR normalized to the maximum value of the local
SAR and of the local SAR normalized to the total emitted power, plotted in selected XoZ and XoY
planes, are shown on Fig. 6 and Fig. 7 for calculations based on the coarsest mesh (i.e.mesh M1), and
on Fig. 8 and Fig. 9 for calculations based on the finest mesh (i.e.mesh M3). In order to discuss these
results, we consider that the numerical solution computed with mesh M3 using the DGTD-P1 method
defines a reference solution. Patterns of the contour lines for calculations respectively performed with
mesh M1 using the DGTD-P3 method and with mesh M3 using the DGTD-P1 method are very similar.
However variations certainly exist locally since the ranges of the plotted values differ (especially for the
local SAR normalized to the total emitted power). In Table 3, the quantity given parenthetically is the
difference with the reference value (i.e., the one associated to mesh M3 and the DGTD-P1 method) and
the corresponding error level. We note here that the relative error tends to increase when switching from
p = 1 to p = 2 for a given discretization mesh. Again, this should not be interpreted as a counter effect
of an increase of the approximation order since this relative error is evaluated on the basis of a solution
computed on the finest mesh which is constructed from high resolution triangulations of the tissue inter-
faces (see the figures in section 5.1). Rather, we can conclude that the discretization of the geometrical
features of tissues has a greater impact on accuracy than the interpolation order in the DGTD-Pp method
(first column of Table 3).

Table 3: Calculations with the DGTD-Pp method. Maximum value of the normalized local SAR.

Mesh Method

- DGTD-P1

M1 3.365 W/Kg (0.463, 12.1 %)
M2 3.734 W/Kg (0.094, 2.4 %)
M3 3.828 W/Kg (reference value)

- DGTD-P2

M1 3.269 W/Kg (0.559, 14.6 %)
M2 3.586 W/Kg (0.242, 6.3 %)

- DGTD-P3

M1 3.283 W/Kg (0.545, 12.3 %)
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Figure 5: Calculations with the DGTD-P2 method. Mesh M2: contour lines of the amplitude of the
electric field in log scale.
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Figure 6: Calculations with the DGTD-P1 (top), DGTD-P2 (middle) and DGTD-P3 (bottom) methods.
Mesh M1: contour lines of local SAR over maximum local SAR in log scale (selected cut planes).
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Figure 7: Calculations with the DGTD-P1 (top), DGTD-P2 (middle) and DGTD-P3 (bottom) methods.
Mesh M1: contour lines of normalized local SAR (selected cut planes).
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Figure 8: Calculations with the DGTD-P1 method. Mesh M3: contour lines of local SAR over maximum
local SAR in log scale (selected cut planes).
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Figure 9: Calculations with the DGTD-P1 method. Mesh M3: contour lines of normalized local SAR
(selected cut planes).
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5.3 Performance results

5.3.1 Hardware configuration

Numerical simulations have been performed on the hybrid CPU-GPU cluster of the CCRT (Centre de
Calcul Recherche et Technologie) in Bruyères-le-Châtel, France. This cluster comprises 1068 Intel CPU
nodes and 48 Tesla S1070 GPU systems. Each Tesla S1070 has four GT200 GPUs and two PCI Express-2
buses (i.e., two GPUs share a PCI Express-2 bus). The GT200 cards have 4 GB of memory, and the
memory bandwidth is 102 GB/s. The Tesla systems are connected to BULL Novascale R422 E1 nodes
with two quad-core Intel Xeon X5570 Nehalem processors operating at 2.93 GHz. Each node has 24 GB
of RAM. The network is a non-blocking, symmetric, full duplex Voltaire InfiniBand double data rate
organized as a fat tree.

5.3.2 Weak scalability

We first present results for the assessment of the weak scalability properties of the GPU enabled DGTD-
Pp method. For that purpose, we consider a model test problem which consists in the propagation of
a standing wave in a perfectly conducting unitary cubic cavity. For this simple geometry, we make use
of regular uniform tetrahedral meshes respectively containing 3,072,000 elements for the DGTD-P1 and
DGTD-P2 methods, 1,296,000 elements for the DGTD-P3 method and 750,000 elements for the DGTD-P4

method for the experiments involving one GPU. As usual in the context of a weak scalability analysis,
the size of each mesh is increased proportionally to the number of computational entities. Moreover,
since these meshes are regular discretizations of the cube, it is possible to construct perfectly balanced
partitions and this is achieved here by constructing the tetrahedral meshes in parallel (i.e.on a subdomain
basis) given a box-wise decomposition of the domain. Timings are given for 1000 iterations of the time
stepping loop. We also emphasize that GPU timings (for all the performance results presented here and
in the following subsections) include the data structures copy operations from the CPU memory to the
GPU device memory prior to the time stepping loop, and vice versa at the end of the time stepping loop.
The graphs of Fig. 10 illustrate the almost perfect weak scalability of the GPU enabled DGTD-Pp method
with p = 1, . . . , 4 for up to 128 GPUs. GFlops rates are plotted on the graphs of Fig. 11 while Table 4
summarizes the measured GFlops rates for 1 and 128 GPUs. We note that the DGTD-P3 method delivers
the best performances and that our current implementation strategy for interpolation order 4 does not
allow higher throughput as demonstrated in [15] (Fig. 8(a) page 7877). Besides, the lower Gflops rates
observed here as compared to those reported in [15] are probably due to the use of a centered numerical
flux function for the computation of the boundary integral terms in (3) which offers a lower computation
to communication ratio than the one characterizing the upwind numerical flux function adopted in [15].

Table 4: Weak scalability assessment: sustained performance figures.

# GPU DGTD-P1 DGTD-P2 DGTD-P3 DGTD-P4

1 63 GFlops 92 GFlops 106 GFlops 94 GFlops
128 8072 GFlops 11844 GFlops 13676 GFlops 12009 GFlops
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Figure 10: Weak scalability assessment: evolution of the computing time with the number of GPUs.

5.3.3 Strong scalability

We now come back to the wave propagation problems discussed in subsection 5.2 and present strong
scalability results for simulations with the DGTD-P1 and DGTD-P2 methods using the teatrahedral
meshes of Table 2. Performances results are presented in Tables 5 to 7. For the coarsest mesh (i.e. mesh
M1), the parallel speedup is evaluated for 16 GPUs relatively to the simulation time using one GPU.
Although the number of elements of this mesh is well below the size of the mesh considered for the
weak scalability analysis (i.e. 3,072,000 elements for the DGTD-P1 and DGTD-P2 methods), superlinear
speedups are obtained. However, not surprisingly, the single GPU GFlops rates are lower than the
corresponding ones reported in Table 4 (32 instead of 63 for the DGTD-P1 method, and 60 instead of
92 for the DGTD-P2 method). For the two other meshes (i.e. M2 and M3), as expected the DGTD-P2

method is always more scalable than the DGTD-P1 method because of a more favorable computation
to communication ratio. We can reasonably predict that the strong scalability figures will be better
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Figure 11: Weak scalability assessment: evolution of the GFlops figure with the number of GPUs.
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for higher order methods (i.e. for p ≥ 3) however at the expense of a noticeable increase in the overall
simulation time due to a reduced time step to insure stability of the time stepping process.

Table 5: Head tissues exposure to an electromagnetic wave emitted by a mobile phone. Strong scalability
assessment: mesh M1. Elapsed time on 16 CPUs: 715 sec (DGTD-P1 method) and 3824 sec (DGTD-P2

method).

# GPU DGTD-P1 DGTD-P2

Time GFlops Speedup Time GFlops Speedup

1 620 sec 32 - 2683 sec 60 -
16 35 sec 566 17.8 145 sec 1110 18.5

Table 6: Head tissues exposure to an electromagnetic wave emitted by a mobile phone. Strong scalability
assessment: mesh M2. Elapsed time on 64 CPUs: 519 sec (DGTD-P1 method) and 2869 sec (DGTD-P2

method).

# GPU DGTD-P1 DGTD-P2

Time GFlops Speedup Time GFlops Speedup

16 82 sec 699 - 407 sec 1137 -
32 46 sec 1239 1.8 201 sec 2299 2.0
64 33 sec 1747 2.5 116 sec 4007 3.5

Table 7: Head tissues exposure to an electromagnetic wave emitted by a mobile phone. Strong scalability
assessment: mesh M3. Elapsed time on 64 CPUs: 2786 sec (DGTD-P1 method) and 6057 sec (DGTD-P2

method).

# GPU DGTD-P1 DGTD-P2

Time GFlops Speedup Time GFlops Speedup

32 162 sec 146 - 816 sec 2370 -
64 97 sec 2470 1.7 416 sec 4657 2.0
128 69 sec 3469 2.4 257 sec 7522 3.2

6 Conclusion

In this paper we have presented a high performance numerical methodology to simulate electromagnetic
wave interaction with biological tissues. This methodology combines a high order discontinuous Galerkin
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time domain (DGTD) method for solving the system of Maxwell equations with realistic geometrical
models of human organs based on unstructured tetrahedral meshes. It has been applied here to the
numerical evaluation of the SAR induced in head tissues when the latter are exposed to an electromagnetic
wave emitted by a mobile phone antenna. The underlying electromagnetic wave propagation problems
are particularly challenging because of the heterogeneity of the propagation media and the complexity
of the shapes of the head tissues. Unstructured mesh based solvers are attractive in this context since
they allow for an accurate discretization of the interfaces between tissues where discontinuities of the
field components occur. Noteworthy, a complete picture of the assessment of the potential adverse
effects of head tissues exposure to mobile phone radiation requires to consider several factors such as
the variations of the morphology and the electromagnetic characteristics of the tissues with the age, as
well as the the type and positioning of the source (i.e. the mobile phone antenna). Whether such a
study is conducted by a multi-parametric analysis or by relying on a strategy for uncertainty analysis,
reducing the computational time of a single 3D simulation is highly desirable if not mandatory. In this
work, this improvement of the computational performances of the simulation tool has been achieved by
adapting the DGTD method to modern parallel computing systems with multiple GPU acceleration units.
Acceleration factors ranging from 15 to 25 have been observed between the multiple CPU and multiple
GPU simulations. For instance, a simulation using the DGTD-P2 method acting on a geometrical model
consisting of 7,894,172 tetrahedral elements (i.e. involving 473,650,320 degrees of freedom) runs in a
about 4 mn on 128 GPUs instead of 1 h 40 mn on a cluster of 128 CPUs. Although the measured floating
point rates are only 10% of the theoretical performances of the considered generation of GPU systems
and further optimization of our CUDA adaptation is certainly possible, the achieved reduction in the
total simulation time will make it possible to tackle more challenging situations such a the exposure of
heterogeneous models of the full body (e.g. for studying SAR levels induced in pregnant women), and
more complex propagation models such as those characterizing dispersive media which is actually the
case with biological tissues.
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