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Elastic Formation Control Based on Affine Transformations

Lara Briñón Arranz, Alexandre Seuret and Carlos Canudas de Wit

Abstract—This paper deals with the control of a fleet of non-
linear systems representing AUVs (autonomous underwater
vehicles). The purpose is here to design a control law to
stabilize the fleet to time-varying formations which are not only
circular. A novel framework is proposed to express a general
control law for a large class of formations. This is produced
by applying a sequence of affine transformations such as
translations, rotations and scalings. The paper also includes a
cooperative control to distribute the agents along the formation
which takes into account the communication constraints. The
system was implemented in computer simulation, accessible
through Web1.

I. INTRODUCTION

Cooperative control problems and multi-agent systems

have received much attention in recent years. The field

includes consensus algorithms for multi-agent systems [1],

[2], flocking [3], distributed sensor networks [4], [5], [6],

trajectory tracking and path following [7], [8] and au-

tonomous systems as underwater and unmanned air vehicles

(AUVs and UAVs) [9], [10]. Formation control and motion

coordination have been extensively studied, see [11], [12],

among many others. Control laws have been provided to

make a fleet of agents (vehicles) obtain circular and parallel

formations [4], [13]. Many extensions based on these works

have been developed: three-dimensional formation control

[14], planar circular formation control in a flow-field [15],

translation [16] and scaling [17] of circular formations, and

stabilization of a fleet to other closed forms [18], [19].

The objective of this paper is to design a general control

law for a class of non-linear multi-agent systems to reach

many class of formations including non-circular and time-

varying formations. Based on [4], new results have been

already proposed in [16] and [17] to deal with time-varying

formations resulting from translating and contracting a cir-

cular formation. Nevertheless, generalization of these ideas

to the called here elastic formation is pertinent to some

applications where the agents should perform collaborative

tasks requiring the formation to move towards an a priori

unknown direction and to adapt to some particular form.

For instance, in source seeking applications, the formation

should displace in the source gradient direction and contract

its size to adapt to the level curves of the source plume, [20].

Translation, scaling and rotation are the three funda-

mental transformations of a formation [21]. These three
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main affine transformations, usually used in the fields of

geometric and robotic control, are pertinent to express many

class of closed curves in a matrix representation. A closed

curve can be expressed as a sequence of transformations

applied to the unit circle. In [18], a general framework

based on affine transformations is presented. This idea

allows to control the agents to different trajectories which

results from the application of these three affine transfor-

mations. The contribution of this paper is to stabilize the

agents to the same elastic formation, not only to the same

velocity reference, independently of initial conditions. A

time-varying closed curve defined by a sequence of affine

transformations is considered as an elastic formation. Our

approach considers that this closed curve is know for all

the agents (i.e. the sequence of transformations is a given

reference).

In the context of the source seeking for underwater

vehicles, it is relevant to constrain the agents in an appro-

priate shape to avoid unnecessary energy waste. Moreover,

ensuring that the agents are uniformly distributed along

the formation might be more adequate to produce efficient

search motions, [20]. Therefore, an additional component

of the control law is also added to distribute of the agents

along the elastic formation. This is achieved by taking

into account the communication graph between the agents.

The collaborative control law stands for the case of range-

dependent graph.

The following section presents the problem formulation

introducing the affine transformation and the model of the

agents. Section III exposes the main contribution of the

article which deals with the control law to stabilize the

agents to an elastic formation and a cooperative control

law to distribute the agents along the formation. Section V

presents some particular closed formations and the simula-

tion results.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Model of agents and Problem Formulation

Consider the standard agent model commonly used in

the literature to model AUVs restricted kinematics [4],

[13], [19]. It corresponds to a kinematic unicycle fitting

with model properties subject to a simple non-holonomic

constraint, adequate for the underwater vehicles. Consider

a set of N agents, in which each agent k = 1, ..., N has the

following constrained dynamics:

ẋk =vk cos θk (1a)

ẏk =vk sin θk (1b)

θ̇k =uk (1c)

where (xk, yk)
T is the position vector of agent k, θk

is the heading angle and vk, uk are the control inputs.



Whit appropriate limits on the control inputs, this model

can provide a reasonable approximation for many air and

underwater vehicles.

The objective is to stabilize the fleet of agents into a

richer class of formations, i.e. non-circular and time-varying

formations. In [4], a complex notation was introduced to

formulate in an simple manner the circular formation control

law using the previous kinematic model with unit velocity

vk = 1 ∀k. Here, the vectorial notation (1) is now

employed and a simple formulation of the control law is

obtained.

Moreover, an additional objective is to distribute the

agents along the formation in a cooperative way, taking into

account the communication constraints.

B. Preliminaries on Affine Transformations

A circular formation in the plane can be defined by three

basic parameters, the center of the circle, its radius and

the angular velocity of the agents along the circle. In order

to modify these parameters, the affine transformations are

introduced.

The three main transformations are the translation, the

rotation and the scaling. To express these affine transforma-

tions the homogeneous coordinates are defined, [22]. The

homogeneous coordinates of a vector z ∈ R
2 can simply

be defined as the new vector zh = (zx, zy, 1)T . Let the
vectors e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T be

a canonic base of the space R
2 expressed in homogeneous

coordinates. In the sequel, the basic affine transformations

and some of their properties are presented.

a) Translation: The translation T of a point z by a

vector c corresponds to the following operation T (z) =
z + c. This can be expressed in a matrix multiplication of

the form z′ = Tcz
h where

Tc =





1 0 cx
0 1 cy
0 0 1





and z′ is expressed in homogeneous coordinates. Its inverse

exists and satisfies T−1
c = T−c. Note that c can be time-

varying. This translation is pertinent to move the center of

the formation, see Fig. 1.

b) Scaling: A non-uniform scaling expressed in homo-

geneous coordinates is a transformation such that z′ = Szh

where

S =





sx 0 0
0 sy 0
0 0 1





and sx > 0, sy > 0. Its inverse matrix contains the inverse

of its elements. The parameters of the scaling can be time-

varying. Some examples of scalings can even lead to ellipses

or other closed curves as shown in Fig. 1.

c) Rotation: A rotation through an angle α counter-

clockwise around the origin can be written in a matrix form

as previously z′ = Rαz
h where

Rα =





cosα − sinα 0
sinα cosα 0

0 0 1





ω0
ω0

ω0 ω0

ω0 ω0

ω0

cd(t) cd(t, ω0)

Rd(t)
Rd(rk)

α̇

Rα(t)

α

Rα SRd(rk)

TRANSLATION

SCALING

ROTATION

Tcd(t) Tcd(t,ω0)

SRd(t) SRd(rk)

Fig. 1. Affine transformations applied to the circular formation

Its inverse exists and satisfies R−1
α = RTα . The angle α

can be time-varying. A rotation applied to a formation can

change its orientation with respect to the frame origin or,

in the case of a circular formation, it affects the angular

velocity of the agents around the circle as shown in Fig. 1.

The objective is to find a general framework to stabilize

the fleet of agents to an elastic formation using these

affine transformations. An elastic formation is defined as a

closed curve which results of applying a sequence of affine

transformations to the unit circle (i.e. a circle centered at

the origin with unit radius). This elastic formation can be

time-varying if at least one element of the transformation

matrices is time-varying. In the sequel, a sequence of affine

transformations, which are generated by a combination of

the previous ones, is defined as follows:

G =

I
∏

i

J
∏

j

K
∏

k

SiRαj
Tck

(2)

where the subscripts denote the different transformations of

the same type which are applied. For instance, the matrix

G = S1S2RαTc is a combination of one translation, one

rotation and two different scalings. Note that the matrix

multiplication is not commutative. However, the general

transformation G considered here, is a sequence of the three

affine transformations and the order defined in (2) can be

changed, for instance, to G = RαS1TcS2, which defines an

other elastic formation.

As it is shown in the previous paragraph, the affine trans-

formations are invertible, therefore the inverse matrix of

the general transformation G−1 exists. Thanks to previous

definitions, G and G−1 are differentiable, if their param-

eters are differentiable. Note that the operators derivative

and invertible are not commutative, therefore ( ddtG)−1 6=
d
dt(G

−1) = Ġ
−1
.

In this paper a general transformation is applied to the

unit circle to provide different non-circular and time-varying



formations. The final formation depends on the sequence

used to define G. In other words, starting from a circle, a

large class of formations can be obtained.

III. CONTROL DESIGN

In previous section, the basic affine transformations have

been defined. The objective is now to design a control

law such that the fleet of agents reach an elastic formation

defined by any sequence of affine transformations applied

to the unit circle.

A. Control Design: Change of Coordinates

Following the previous section, the problem becomes

a formation control design based on the circular control

law from [4]. The desired elastic formation is defined by

applying the matrix G to unit circle C0. The stabilization of

system (1) to an elastic formation can be expressed as the

stabilization of an adequate transformed system to the unit

circle.

The position vector of the agent k in homogeneous

coordinates is defined as rk = (xk, yk, 1)T . The main

contribution of this paper is to introduce the coordinates

transformation:

r̂k = G−1rk (3)

where r̂k = (x̂k, ŷk, 1)T is the transformed position vector

expressed in homogeneous coordinates. The main idea is

first, to stabilize this new transformed system to a circle

with unit radius R0 = 1, centered at (0, 0) and with angular
velocity ω0 6= 0. Then, to apply the circular control law

from [4]. Finally, to apply the inverse transformation to

express the control law in the original framework.

In order to apply the circular formation control law, the

new transformed system must have constant linear velocity

equal to R0ω0. Therefore the dynamics of the transformed

position vector are defined as:

˙̂xk =ω0 cosψk (4a)

˙̂yk =ω0 sinψk (4b)

where ψk represents the angular orientation of the trans-

formed velocity vector ˙̂rk such that:

ψk = arctan
eT2

˙̂rk

eT1
˙̂rk

+ ǫπ = arctan
eT2

d
dt (G

−1rk)

eT1
d
dt (G

−1rk)
+ ǫπ

where ǫ = 0 if eT1
d
dt(G

−1rk) > 0 and ǫ = 1 otherwise.

The vector of the new control inputs for this transformed

system is ψ̇ = (ψ̇1, . . . , ψ̇N )T .
Applying the circular control law from [4] expressed in

the transformed framework, the system (4) converges to C0.

Now we want to come back to the original framework to

express the control inputs of the original system vk, uk with
respect to the transformed control input ψ̇k. Considering (1),
it is easy to see that vk and θk are given by:

vk = ‖ṙk‖ and tan θk =
ẏk
ẋk

An expression of θ̇k is obtained by computing the derivative
of tan θk as follows:

θ̇k(1 + tan2 θk) =
d

dt

(

ẏk
ẋk

)

=
ÿkẋk − ẏkẍk

ẋ2
k

Using the homogeneous coordinates defined previously, the

following equation holds:

θ̇k =
r̈
T
kRπ

2
ṙk

‖ṙk‖2

The original system is related to the transformed system

through the matrix G. The following equations are obtained

from the change of coordinates (3):

rk = Gr̂k

ṙk = Ġr̂k +G ˙̂rk = GG−1rk + ω0G(cosψk, sinψk, 0)T

r̈k = G̈r̂k + 2Ġ ˙̂rk +G¨̂rk =

= G̈G−1rk + 2ĠĠ
−1
rk

+2ĠG−1ṙk +GRπ
2
(Ġ

−1
rk +G−1ṙk)ψ̇k

Thanks to these relations, the original framework is ex-

pressed with respect to the transformed system and the

circular control law for ψ̇k.

B. Formation Control Law

Using the previous definitions of elastic formation and

the general transformation matrix, a new control law is

proposed in the following theorem:

Theorem 1 Let G be a twice differentiable matrix with

bounded derivatives resulting of a sequence of affine trans-

formations as (2) and F = G ◦ C0 be the desired elastic

formation. Let ω0 6= 0, κ > 0 be two control parameters

such that the following condition is satisfied:

|ω0| 6=
∥

∥

∥G
−1
ĠG

−1
rk

∥

∥

∥ (5)

Then the control law:

vk =
∥

∥

∥ĠG
−1
rk + ω0G(cosψk, sinψk, 0)T

∥

∥

∥ (6a)

uk =
1

v2
k

(

G̈G
−1
rk + 2ĠĠ

−1
rk + 2ĠG−1

ṙk

)T

R π
2
ṙk

+
ψ̇k
v2
k

(

Ġ
−1
rk + G−1

ṙk

)T

R
T
π
2

G
T
Rπ

2
ṙk (6b)

with

ψ̇k =ω0

(

1 + κω0(cosψk, sinψk, 0)G−1
rk

)

(7a)

ψk(0) =arctan
eT2

d
dt(G

−1
rk)(0)

eT1
d
dt(G

−1
rk)(0)

+ ǫπ (7b)

makes all the agents defined by (1) converge to the elastic

formation F . The direction of rotation is determined by the

sign of ω0.

Proof: Using the relations between the original sys-

tem and the transformed system detailed in the previous

subsection, starting from (7), the control inputs vk, uk are

straightforwardly given by (6). The convergence of the

transformed system to the circular formation is analyzed

using the following Lyapunov function, based on the anal-

ysis of the circular control law proposed in [4]:

S(r̂, ψ) =
1

2

N
∑

k=1

∥

∥

∥

˙̂rk − ω0Rπ
2
r̂k

∥

∥

∥

2

≥ 0



where the matrix Rπ
2
represents a rotation by π

2 but erasing

the homogeneous coordinate such that Rπ
2
(3, 3) = 0. Note

that when S(r̂, ψ) = 0 the dynamics of the transformed

system (4) satisfy ˙̂rTk r̂k = 0 which is the kinematic relation

for the rotation of the rigid body. Evaluating the derivative

of S(r̂, ψ) along the solutions of the resulting closed-loop

system (4) with the control law (7a) leads to:

Ṡ(r̂, ψ) =

N
∑

k=1

(

˙̂rk − ω0R
∗r̂k

)T (

Rπ
2

˙̂rkψ̇k − ω0Rπ
2

˙̂rk

)

=

N
∑

k=1

ω0r̂
T
k

˙̂rk(ω0 − ψ̇k) = κ

N
∑

k=1

(

ω0r̂
T
k

˙̂rk

)2

≤ 0

Therefore S(r̂, ψ) is a suitable Lyapunov function for this

transformed system. Thus, the solutions converge to the

largest invariant set Λ, for which Ṡ = 0. Then, the

transformed system (4) asymptotically reaches the circular

formation centered at (0, 0)T and of unit radius with fixed

angular velocity ω0. Thanks to the change of coordinates

(3), the dynamic closed-loop equation corresponding to

the transformed formation is time-invariant, hence LaSalle

Principle can be applied. As stated above, this result is an

adaptation of the circular control law in [4] expressed in the

new formulation.

Note that this control law has singular points when vk =
0, such that:

vk =
∥

∥

∥ĠG
−1rk + ω0G(cosψk, sinψk, 0)T

∥

∥

∥ = 0

This singular point occurs if there exists a time tc such that:
{

∥

∥

∥G
−1(tc)Ġ(tc)G

−1(tc)rk(tc)
∥

∥

∥ = |ω0|

∠G−1(tc)Ġ(tc)G
−1(tc)rk(tc) = ψk(tc)

where ∠ represents the argument of a vector. The equation

(5) is a sufficient condition to avoid the singular points.

Remark 1 Note that the equation (5) is a condition im-

posed to the transformation matrix G to restrict the vari-

ation of its time-varying parameters with respect to the

angular velocity ω0. In each particular case, it can be

expressed in a simple manner and corresponds to an ini-

tialization protocol or a physical limitation. For instance,

to avoid vk = 0 in the case of a time-varying translation

Tc, the velocity of the moving circle cannot be equal to the

linear velocity of the agents in the circle. The condition (5)

becomes R|ω0| > ‖ċ‖ where R is the radius of the circle

and ċ the velocity of its center, see [16].

Theorem 1 presents a general control law expressed in

the new framework, to stabilize a group of agents to an

elastic formation. The term elastic denote the capability of

the formation to move and change its shape in order, for

instance, to avoid an obstacle (see Fig. 2), to achieve the

source seeking problem, to delimit a polluted region, or to

avoid unnecessary energy waste. This elastic formation is

defined by a sequence of affine transformations G applied

to the unit circle. The matrix G is a given reference for all

the agents. Note that each agent converges to the formation

independently of the rest of the fleet. Following section

presents a collaborative control to distribute the agents along

the formation defined by G.

C. Cooperative Control: Symmetric Balanced Patterns

This section is dedicated to the problem of homogenizing

the distribution of the agents along the formation. In the

unit circle C0, the agents are uniformly distributed when

the angular difference between adjacent vehicles is 2π/N .

The distribution of the agents along an elastic formation F
depends on the transformation matrix G applied to C0.

All-to-all communication topology and some cases of

limited communication have been studied in [4], [13] for the

circular formation problem. The translation or contraction

control laws including this consideration are straightforward

obtained, as shown in [16], [17]. The solution proposed in

these previous works deals with the addition of a potential

function depending on the heading angles of which the

minimum corresponds to a symmetric pattern. For instance,

the symmetric pattern in which all of the particles are uni-

formly spaced around the circle is called a splay formation.

This potential function contains information of the com-

munication links between the agents. The communication

topology for the group of agents is represented by means of

a communication graph G. L denotes the Laplacian matrix

of G, see [23].
This paragraph presents the notation included in the

corollary. The new Laplacian matrix considered is L̄ =
L ⊗ I2 where ⊗ is the classical Kronecker product and

IN ∈ R
N×N is the identity matrix and the matrix

Bm = (cosmψ1, sinmψ1, ..., cosmψN , sinmψN )T con-

tains all the orientation angles of the transformed sys-

tem. Considering this notation and applying the previous

mentioned works to our new formulation, the following

corollary holds:

Corollary 1 Let G be a twice differentiable matrix with

bounded derivatives resulting of a sequence of affine trans-

formations as (2) and F = G ◦ C0 be the desired elastic

formation. Let ω0 6= 0, κ > 0 and K > 0 be three

control parameters and the condition (5) be satisfied. Let

G be the communication graph and L be the corresponding

Laplacian matrix. Then the previous control law (6) with:
{

ψ̇k = ω0

(

1 + κω0(cosψk, sinψk, 0)G−1
rk

)

− ∂U
∂ψk

U(ψ) = −K
N

∑⌊N/2⌋
m=1

1
2m2B

T
mL̄Bm

(8)

where ⌊N/2⌋ is the largest integer less than or equal to

N/2 and the initial conditions ψ(0) satisfy (7b), makes

all the agents defined by (1) converge to the formation F .

The direction of rotation is determined by the sign of ω0.

Moreover, the splay pattern is an extremum point of the po-

tential U(ψ). If the communication graph is complete (all-

to-all communication) the splay pattern is asymptotically

stable and the uniform distribution of the angles ψk along

C0 is achieved. Therefore the agents are distributed in the

formation F , taking into account the transformation G.

Proof: The stability is analyzed by the composed

Lyapunov function V (r̂, ψ) = κS(r̂, ψ) + U(ψ) of which

the derivative is expressed as V̇ (r̂, ψ) = κṠ(r̂, ψ)+∇U(ψ).



Elastic Formation Transformation

Circular formation ((0, 0),R = 1) G = I
Circular formation (c,R) G = TcS

Translation of circular formation G = Tc(t)S

Contraction of circular formation G = TcSR(t)

Combined motion G = Tc(t)SR(t)

Elliptic formation G = Sa,b

Rotating elliptic formation G = RαSa,b

TABLE I

ELASTIC FORMATIONS AND THEIR CORRESPONDING

TRANSFORMATIONS

Based on the previous works [4], [13], the potential function

U(ψ) is invariant to rigid rotations. Therefore, using (8),

the derivative of the Lyapunov function satisfies V̇ (r̂, ψ) =

−
∑N
k=1

(

κω0r̂
T
k

˙̂rk −
∂U
∂ψk

)2

≤ 0. Thanks to LaSalle Prin-

ciple, the system converges asymptotically to the elastic

formation and the agents are distributed along F taking

into account the transformation matrix G.

Remark 2 An extension of this result can be proposed

for the case of limited communication preserving the same

formulation and considering the connectivity properties for

the Laplacian matrix which correspond to several commu-

nication graphs. See [2], [13], [17], [23].

The cooperative control law (8) is an extension of the

previous formation control law to stabilize elastic forma-

tions. The splay pattern is an extremum of the potential

function U(ψ) which is added to the transformed control

variable ψ̇k. In the case of limited communication range, a
communication area ρ is introduced. This means each agent
can only receive information from its close neighbors, i.e if

the distance between two agents k and j is smaller than ρ,
these agents are able to communicate, see [17]. In this case,

the function U(ψ) can be also considered as a repulsion

potential which is able to avoid the collisions between the

agents.

IV. SIMULATION RESULTS AND PARTICULAR CASES

The previous section shows the general control law to

stabilize the agents modeled by (1) to a formation defined

by the transformationG. The objective of this generalization

is to express the previous formation control laws presented

in the literature with the new formulation and to propose

a solution to control new class of formations. In order to

validate this result, some particular cases are presented in

this section. First of all, we show that the works on circular

formation [4], [13], [16], [17] can be expressed through

this formulation. Next, some new formations are proposed.

Some exemples are described in Table I.

A. Circular Formation

The more simple case when G = I3 is analyzed. The

control law becomes:

vk =|ω0|

uk =ψ̇k = ω0

(

1 + κṙTk rk

)
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Fig. 2. Simulation of five agents governed by the control law (6) where
G(t) = SR(t)Tc(t). The circular formation with time-varying radius tracks
the time-varying center reference in order to avoid the obstacles (black
blocks).

This control law makes all the agents defined by (1) con-

verge to the circular formation C0. This result is equivalent

to the circular control law from [4].

In order to stabilize a circular formation with a desired

radius R > 0 and centered at c = (cx, cy) the general

transformation G is a sequence of a translation and a

uniform scaling (sx = sy = R), such that G = TcSR.

In this case the control law is expressed as:

vk =R|ω0|

uk =ψ̇k = ω0

(

1 + κṙTk (rk − c
h)

)

where ch is the position vector of the center in homogeneous

coordinates.

B. Combined Motion of a circle

The new formulation shown in this article makes possible

the combination of several transformations. This is the case

of the combined motion problem in which the circular

formation with time-varying radius tracks a time-varying

center. Consider the transformation G(t) = Tc(t)SR(t)

which represents a combined motion (translation and scal-

ing) of the circular formation where the center of the desired

formation c(t) : R → R
2 and its radius R(t) : R → R

+ are

twice differentiable functions with bounded first and second

time-derivatives. Applying Theorem 1, the agents converge

to a circular formation with time-varying radius and moving

center. This result is the combination of the two previous

works [16], [17] expressed in the new framework.

Figure 2 shows the simulation of five agents governed by

the control law (6) with (8) where G(t) = Tc(t)SR(t). The

control law parameters are ω0 = 1, κ = 1 and K = 1/10.
The time-varying radius reference is R(t) = 5 + 2 cos 2π

500 t
and c(t) = ( 1

10 t, 3 sin 2π
300 t)

T is the tracked time-varying

center. The agents converge to the moving formation for any

random initial conditions (position and heading of the agent)

represented in the figure by the blue void agents. This is an



t=400s

t=0

Fig. 3. Simulation of five agents stabilized in an elliptic formation. The red
line represents the trajectory of one agent (elliptic formation). The figure
shows two snapshots. The blue agents represent the initial conditions. The
reds ones represent the final state t = 400s.

example of one possible application of the combined motion

control law and a first step to achieve the final objective: to

develop a collaborative control to generate both references

in a distributed way.

Moreover, the communication radius considered here is

ρ = 10 which satisfies the geometrical condition ρ >
2Rmax sin π

N where Rmax is the up-bound of the radius

reference. Therefore the agents are distributed along the

time-varying circular formation, see [17].

C. Elliptic formation

The general formulation presented in this article is perti-

nent also to stabilize the fleet to non-circular formations as

an ellipse. In this case the transformation is a time-invariant

non-uniform scaling G = S where sx 6= sy .
Figure 3 shows a simulation of five agents with the

controller designed in Theorem 1 and all-to-all communi-

cation. The control law parameters are ω0 = 1, κ = 1
and K = 1/10. The agents are stabilized to the elliptic

formation defined by the non-uniform scaling sx = 5, sy =
1. Moreover the agents are distributed along the formation

considering the transformation of the splay pattern which is

stable in the original unit circle.

V. CONCLUSIONS

We have developed a general control law to stabilize a

fleet of agents to an elastic formation, for instance time-

varying or non-circular formation, which is defined by a

sequence of affine transformations (translation, rotation and

scaling) applied to the unit circle. Some particular cases and

simulations have been presented to show the convergence

of this control law and some possible applications. More-

over, this paper proposes a cooperative control algorithm

to distribute the agents along the elastic formation. This

potential function is designed by taking into account the

communication graph between agents.

At this time, it is assumed that all agents have perfect

knowledge of the transformation matrix G and its first and

second derivatives. Further developments would consider a

cooperative algorithm which will relax this assumption, and

the elastic formation will be defined in a collaborative way.

Moreover, an other future research goal is to include the

effect of different disturbances as currents on the formation

control algorithm.
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[5] P. Ögren, E. Fiorelli, and N. E. Leonard, “Cooperative control of
mobile sensor networks: Adaptive gradient climbing in a distributed
environment,” IEEE Transactions on Automatic Control, 2004.

[6] F. Zhang and N. E. Leonard, “Cooperative filters and control for
cooperative exploration,” IEEE Transactions on Automatic Control,
2010.

[7] I. Kaminer, A. Pascoal, E. Hallberg, and C. Silvestre, “Trajectory
tracking for autonomous vehicles: An integrated approach to guid-
ance and control,” Journal of Guidance, Control, and Dynamics,
1998.

[8] E. W. Frew, D. A. Lawrence, and S. Morris, “Coordinated standoff
tracking of moving targets using lyapunov guidance vector fields,”
Journal of Guidance, Control, and Dynamics, 2008.

[9] E. Fiorelli, P. Bhatta, N. E. Leonard, and I. Shulman, “Adaptive
sampling using feedback control of an autonomous underwater glider
fleet,” Proceedings of 13th Int. Symp. on Unmanned Untethered
Submersible Technology (UUST), 2003.

[10] R. L. Raffard, C. J. Tomlin, and S. P. Boyd, “Distributed optimization
for cooperative agents: Application to formation flight,” 43rd IEEE
Conference on Decision and Control, 2004.

[11] S. Martı́nez, J. Cortés, and F. Bullo, “Motion coordination with
distributed information,” IEEE Control Systems Magazine, 2007.
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