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WET PAPER CODES AND THE DUAL DISTANCE IN
STEGANOGRAPHY

C. MUNUERA AND M. BARBIER

Abstract. In 1998 Crandall introduced a method based on coding theory to secretly

embed a message in a digital support such as an image. Later Fridrich et al. improved

this method to minimize the distortion introduced by the embedding; a process called wet

paper. However, as previously emphasized in the literature, this method can fail during

the embedding step. Here we find sufficient and necessary conditions to guarantee a

successful embedding by studying the dual distance of a linear code. Since these results

are essentially of combinatorial nature, they can be generalized to systematic codes, a

large family containing all linear codes. We also compute the exact number of solutions

and point out the relationship between wet paper codes and orthogonal arrays.

1. Introduction

Steganography is the science of transmitting messages in secret, so that no one other

than the sender and receiver may detect the existence of hidden data. It is realized by

embedding the information into innocuous cover objects, as digital images. To carry out

this process, the sender first extracts a sequence c1, . . . , cn, of n bits from the image,

e.g. the least significant bits of n pixels gray values. The cover vector c = (c1, . . . , cn) is

modified according to a certain algorithm for storing a secret message m1, . . . , mr. Then

c1, . . . , cn are replaced by modified x1, . . . , xn in the cover image which is sent through

the channel. By using the modified vector x the receiver is able to recover the hidden

information. The embedding and recovering algorithms form the steganographic scheme

of this system. Formally, a steganographic scheme (or stegoscheme) S of type [n, r] over

the binary alphabet F2 is a pair of functions (emb, rec). By using the embedding function

emb : Fn
2 × F

r
2 → F

n
2 the secret message m ∈ F

r
2 is hidden in the cover vector c ∈ F

n
2 as

x = emb(c,m) and subsequently recovered by the receiver with the recovering function

rec : Fn
2 → F

r
2 as rec(x) whenever these functions verify that rec(emb(c,m)) = m for all

c ∈ F
n
2 and m ∈ F

r
2.
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Steganographic schemes are closely related to error correcting codes. Given a [n, r] stego-

scheme S, for each m ∈ F
r
2 we consider the code Cm = {x ∈ F

n
2 : rec(x) = m}. Then

the family {Cm : m ∈ F
r
2} gives a partition on F

n
2 and for all m ∈ F

r
2 the mapping

decm : Fn
2 → Cm defined by decm(c) = emb(c,m) is a decoding map for the code Cm.

Conversely let {Cm : m ∈ F
r
2} be a partition of Fn

2 and for each m ∈ F
r
2 let decm be a

minimum distance decoding map of Cm. Consider emb : Fn
2 × F

r
2 → F

n
2 and rec : Fn

2 → F
r
2

defined by emb(c,m) = decm(c) and rec(x) = m if x ∈ Cm. Then S = (emb, rec) is a

[n, r] stegoscheme. As a consequence, the following objects are equivalent

• a [n, r] stegoscheme S = (emb, rec);

• a family {(Cm, decm) : m ∈ F
r
2} where {Cm : m ∈ F

r
2} gives a partition of Fn

2 and

for every m, decm is a minimum distance decoding map for Cm.

Since all vectors c and m are in principle equiprobable, it is desirable that all codes Cm
have the same cardinality. The above equivalence has been extensively exploited to make

stegoschemes that minimize the embedding distortion caused in the cover. Crandall [5]

proposed the use of linear codes C and the partition of Fn
2 into cosets {x+ C : x ∈ F

n
2}.

The obtained method is currently known as matrix encoding. If H is a parity check ma-

trix for C and dec is syndrome decoding (see [24] as a general reference for all facts

concerning error correcting codes), the obtained embedding and recovering maps are

emb(c,m) = c− cl(cHT −m) and rec(x) = xHT , where cl(z) denotes the leader of the

coset whose syndrome is z, that is the element of smallest Hamming weight whose syn-

drome is z . Matrix encoding has proved to be very efficient to minimize the embedding

distortion in the cover, see [3, 6, 18, 19, 26].

To reduce the chance of being detected by third parties, the changeable pixels in the cover

image should be selected according to the characteristics of the image and the message

to hide. In this case the recovering of the hidden data is more difficult, since the receiver

does not know what pixels store information. Wet paper codes are designed to lock some

components of the cover vector, preventing its modification in the embedding process.

Mathematically wet paper codes can be explained as follows: imagine we want to embed

a message m = (m1, . . . , mr) ∈ F
r
2 into a cover vector c = (c1, . . . , cn) ∈ F

n
2 . However, not

all of coordinates of c can be used for hiding information: there is a set D ⊆ {1, . . . , n} of

δ ≥ r dry coordinates that may be freely modified by the sender, while the other ℓ = n−δ

coordinates are wet (or locked) and can not be altered during the embedding process. Let

W = {1, . . . , n} \ D. The sets D and W are known to the sender but not to the receiver.

Using the matrix encoding method we set emb(c,m) = x ∈ F
n
2 with

[S] :

{

xHT = m,

xi = ci if i ∈ W
where H is a r × n matrix of full rank r. Locking positions minimize the possibility

of detection during transmission but also generates a technical problem, since it is not

guaranteed the existence of solutions for [S]. A natural question is to ask for the minimum
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number of dry coordinates (or equivalently, the maximum number of locked coordinates)

necessary (respectively allowed) to make possible this process. We define the wet threshold

of H as the minimum number τ of dry coordinates such that the system [S] has a solution

for all c ∈ F
n
2 ,m ∈ F

r
2 and W ⊆ {1, . . . , n} with #W ≤ n − τ . The number of extra

dry symbols beyond r, τ − r is the strict overhead of the system. It is also of interest

to compute the average overhead δ − r, where δ is the average minimum number of dry

coordinates such that [S] has a solution over all possible choices of H, c,m and W. In

detail, we want to determine

(1) necessary and sufficient conditions to ensure that the system [S] has a solution;

(2) the probability that [S] has a solution for given n, r and δ;

(3) the average overhead δ − r to have a solution.

These problems have already be treated by several authors. Fridrich, Goljan and Soukal

[7, 9, 8] studied (2) and showed that we can take r = δ + O(2−δ/4) as δ → ∞, which

gives a first answer to (3). Schönfeld and Winkler [18] treated the particular case of BCH

codes, giving detailed computer results. Barbier, Augot and Fontaine [1] gave sufficient

conditions for the existence of solutions by slightly modifying the problem [S] for linear

codes. The case of Reed-Solomon codes has been treated by Fontaine and Galand in [6].

In some of these works the reader may find a study of the embedding efficiency as well as

some implementation issues.

The aim of this article is to take another step in this study. We give exact answers to

the questions (1) in section 2 and (3) in section 3 above, relating the wet threshold and

overhead to well known parameters of the code having H as parity check matrix, and

highlighting the role played by the dual distance. The relation with the weight hierarchy

of codes is studied in section 4. Finally in section 5 we extend the matrix encoding method

to the broad family of systematic codes, showing the relationship between stegoschemes,

resilient functions and orthogonal arrays. We show that wet paper codes arising from

systematic nonlinear codes may behave better than the ones coming from linear codes, in

the sense that they may require less free positions to ensure the existence of solution.

2. A necessary and sufficient condition for the existence of solutions

Let c,m, H and W as defined in the Introduction and let us study the solvability of the

linear equation

[S] :

{

xHT = m,

xi = ci if i ∈ W.

Let C be the [n, n−r] linear code whose parity check matrix is H and let G be a generator

matrix of C. Denote by C⊥ the dual of C and by d⊥ = d(C⊥) the minimum distance of

C⊥. For m ∈ F
r
2, we shall denote by cl(m) a leader of the coset {x ∈ F

n
2 : xHT = m}.

Since xHT can be interpreted as a syndrome, the system [S] has a solution if there exists

x ∈ cl(m)+ C such that πW(x) = πW(c), where πW is the projection over the coordinates
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of W. Equivalently [S] has a solution if and only if πW(c) ∈ πW(cl(m)+C). For a matrix

M with n columns, let MW be the matrix obtained from M by deleting the columns with

indexes in D.

Lemma 2.1. For all cosets y + C, the projections πW(y + C) have the same cardinality,

#πW(y + C) = 2rank(GW ). Thus [S] has a solution for general c and m if and only if the

matrix GW has full rank, rank(GW) = ℓ.

Proof. πW(y + C) = πW(y) + πW(C), hence #πW(y + C) = #πW(C) and πW(C) is a

vector space of dimension rank(GW). For fixed c and m, [S] has a solution if and only if

πW(c) ∈ πW(cl(m) + C). Since #πW(Fn
2 ) = 2ℓ, this occurs for all c and m if and only if

GW has full rank, rank(GW) = ℓ. Note that r ≤ δ. �

Lemma 2.2. GW has full rank if and only if there is no nonzero word of C⊥ with support

contained in W.

Proof. Since G is a parity check matrix of C⊥, a nonzero word in C⊥ with support contained

in W imposes a linear condition on the columns of GW and conversely. �

More generally, if there exist w independent words of C⊥ with support in W then we have

rank(GW) = ℓ− w. This suggests that the weight hierarchy of C also plays a role in the

study of the solvability of [S]. This study will be conducted later in section 4.

Theorem 2.3. The system [S] has a solution for arbitrary c ∈ F
n
2 ,m ∈ F

r
2 and

W ⊆ {1, . . . , n} with #W = n − δ, if and only if δ ≥ n − d⊥ + 1. In this case [S]

has exactly 2δ−r solutions.

Proof. If δ ≥ n − d⊥ + 1 then #W < d⊥ and no nonzero codeword of C⊥ has support

contained in W. Conversely, take a codeword of weight d⊥ and a set W of cardinality n−δ

containing its support. Then rank(GW) < n − δ and the homogeneous system Hxt = 0

has no solution for c such that πW(c) is not in the subspace πW(C) spanned by the rows of

GW . When rank(GW) = n− δ, then the number of solutions is #C/#πW(C) = 2δ−r. �

Then when using a parity check matrix of a [n, n−r] code C, at most n−d⊥+1 dry symbols

are needed to embed r information symbols. The wet threshold of C is τ = n − d⊥ + 1

and its strict overhead is n− d⊥ + 1− r. Remark that according to the Singleton bound

applied to C⊥ we have n − d⊥ + 1 ≥ r. The difference n − d⊥ + 1 − r is known as the

Singleton defect of C⊥. Thus, when using a parity check matrix of C to embed information

via wet paper codes, the strict overhead is just the Singleton defect of the dual code C⊥.

Example 2.4. (1) Consider the binary Hamming code of redundancy s and length

n = 2s − 1. The dual distance is d⊥ = 2s−1, hence we can embed s information bits

into a cover vector of length n with 2s−1 ≈ n/2 dry positions. To see that less dry sym-

bols are not enough to have solution with certainty, consider a parity-check matrix whose
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rows are the binary representations of integers 1, . . . , 2s − 1. When deleting the last 2s−1

columns of H we obtain a matrix whose last row is 0. Note also that the method proposed

in [1] allows to embed one information bit for n/2 dry positions modifying one bit of the

cover vector. (2) In general it is not simple to construct codes with bounded Singleton

defect. An exception are algebraic geometry codes, built from an algebraic curve and two

rational divisors, see [16]. It is known that the Singleton defect of a code comming from

a curve X is bounded by the genus of X . Therefore it is possible to construct wet paper

codes with strict overhead as small as desired.

3. Computing the overhead

Our second task is to compute the average overhead m̃ = δ − r to have a solution for

random C,W, c and m (according with previous notations). Also we obtain an estimate

on the probability of having solution. Let us denote by avrank(t, s) the average rank of a

random t× s matrix M .

Proposition 3.1. For random C,W, c and m as above, the probability that δ dry symbols

are enough to transmit r ≤ δ message symbols is

p = 2avrank(n−r,n−δ)−(n−δ).

Proof. The probability that the corresponding system [S] have a solution is

p = prob (πW(c) ∈ πW(cl(m) + C)) = #πW(C)
2n−δ

=
2avrank(GW )

2n−δ
.

�

The function avrank(t, s) can be computed using theorem 3.2 below. The rank properties

of random matrices have been investigated in coding theory, among other fields, related

to codes for the erasure channel, see e.g. [22]. As shown in [7, 9], these results allow us

to give an estimate on the average overhead. Since GW is a (n− r)× (n− δ) matrix and

(n − r) − (n − δ) = δ − r, then m̃ can be seen as the minimum number of extra rows

beyond n− δ required to obtain a matrix of full rank. Let t,m be non negative integers

and Mt+m,t be a random (t +m)× t matrix with m ≥ 0.

Theorem 3.2. Let Mt+m,t be a matrix where the elements of F2 are equally likely. Then

lim
t→∞

prob (rank(Mt+m,t) = t− s) =

∞
∏

j=s+m+1

(

1− 2−j
)

/2s(s+m)

s
∏

j=1

(

1− 2−j
)

.

See [4, 13, 22]. It is known that this formula is very accurate even for small t and m.

This theorem directly allows us to obtain numerical estimates on the function avrank

and consequently on the probability that [S] admits a solution for random C,W, c and

m. These estimates can be found in the literature (see [18] and the references therein)
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and we will not repeat them here. Also theorem 3.2 can be used to compute the average

number of extra rows needed to have full rank. Following [22], for any positive m, let

Qm =

∞
∏

j=m+1

(

1− 2−j
)

.

According to the theorem, the probability that exactly m extra rows beyond t are

needed to obtain a (t + m) × t random matrix of full rank is Qm − Qm−1. Since

Qm−1 = ((2m − 1)/2m)Qm we have Qm − Qm−1 = Qm/2
m, so the average number of

extra rows is

m̃ =
∞
∑

m=1

m(Qm −Qm−1) =
∞
∑

m=1

m

2m
Qm.

This series is convergent as it is upper-bounded by a convergent arithmetic-geometric

series. Let us remember that from elementary calculus we have
∑∞

m=1mxm = x/(1− x)2

when |x| < 1. Then

m̃ =

∞
∑

m=1

m

2m
Qm <

∞
∑

m=1

m

2m
= 2.

A direct computation shows that m̃ = 1.6067... Then the average overhead is 1.6067 and,

for n large enough, δ dry bits are enough to transmit r ≈ δ − 1.6 information bits.

4. Solvability and the generalized Hamming weights

Let C be a linear [n, n − r] code and let C⊥ be its dual. The dual distance d⊥ can be

expressed in terms of C via its weight hierarchy. Let us remember that for 1 ≤ t ≤ n− r,

the t-th generalized Hamming weight of C is defined as (see [25])

dt(C) = min{#supp(L) : L is a t-dimensional linear subspace of C}

where supp(L) = ∪x∈Lsupp(x). The sequence d1(C), . . . , dn−r(C) is the

weight hierarchy of C. Two important properties of the weight hierar-

chy are the monotonicity d1(C) < d2(C) < · · · < dn−r(C) and the duality

{d1(C), . . . , dn−r(C)} ∪ {n+ 1− d1(C⊥), . . . , n+ 1− dr(C⊥) = {1, . . . , n}. For sim-

plicity we shall write d1, . . . , dn−r and d⊥1 , . . . , d
⊥
r . If dn−r = n, we define the MDS rank

of C as the least integer t such that dt = r+ t (and consequently ds = r+ s for all s ≥ t).

Note that classical MDS codes are first rank MDS codes.

Proposition 4.1. If C has MDS rank t and δ ≥ t+ r− 1, then the corresponding system

[S] has a solution for arbitrary c ∈ F
n
2 ,m ∈ F

r
2 and W ⊆ {1, . . . , n} with #W = n− δ.

Proof. By the duality property C has MDS rank t = n−r−d⊥+2 hence n−d⊥+1 = t+r−1

and proposition 2.3 implies the result. �



WET PAPER CODES AND THE DUAL DISTANCE IN STEGANOGRAPHY 7

This proposition leads us to consider codes with low MDS rank. MDS codes, and Reed-

Solomon codes in particular, were proposed as good candidates in [6]. The main drawback

of MDS codes is its small length. So, we may consider codes of higher rank, reaching a

balance between length and security in the existence of solutions. In this sense, algebraic

geometry codes (defined in example 2.4) can be a good option. It is known that an

AG code coming from a curve of genus g has MDS rank at most g + 1 − a, where a

is its abundance, more details in [16]. Yet we find again the problem of the length of

obtained codes. For example, it has been conjectured that Near MDS codes (codes for

which d+ d⊥ = n) over Fq have length upper bounded by q+1+2
√
q (observe that codes

arising from elliptic curves are either MDS or NMDS). Another option is to extend the

ground alphabet. Several strategies have been proposed. One of the more interesting is

to consider the Justensen construction with algebraic geometric codes [20]. The following

result extends proposition 2.3 to all generalized Hamming weights.

Proposition 4.2. If dt > δ ≥ r for some t ≥ δ − r, then rank(GW) ≥ n − r − t + 1 for

every set W ⊆ {1, . . . , n} with #W = n− δ.

Proof. Consider the code C⊥
W obtained from C⊥ by shortening at the positions in D. Since

GW is a parity-check matrix for C⊥
W , we have rank(GW) = n−δ−dim(C⊥

W). If d⊥t ≥ n−δ+1

then it holds that dim(C⊥
W) ≤ t − 1, hence rank(GW) ≥ n − δ − t + 1. Assume dt > δ.

Then n− dt+1 < n− δ+1, and by the duality and monotonicity properties, the interval

[n − δ + 1, n] contains at least δ − t + 1 terms of the weight hierarchy of C⊥. Thus

d⊥r−δ+t ≥ n− δ + 1 and we get the statement. �

5. A generalization to systematic codes

In this section we extend the matrix embedding construction, and the wet paper method in

particular, to the wide family of systematic codes. We show that stegoschemes based on

these codes are handled essentially in the same manner as in the case of linear codes.

The use of systematic codes was suggested by Brierbauer and Fridrich in [3], where

stegoschemes arising from the Nordstrom-Robinson codes are treated in some detail. Here

we go deeper into this study, showing the relationships between stegoschemes, orthogonal

arrays and resilient functions. We pay special attention to the analogue of proposition

2.3, showing its combinatorial nature.

5.1. Systematic codes. Let us remember that for a set U ⊆ {1, . . . , n} with u = #U , we
denote by πU : F2

n → F2
u the projection on the coordinates of U . If V = {1, . . . , n} \ U ,

we shall write a vector x ∈ F
n
2 as x = (u,v), where u = πU(x) ∈ F

u
2 and v = πV(x) ∈ F

v
2,

v = n − u. A code C of length n is systematic if there exist u positions that carry the

information. More formally, given a set U ⊆ {1, . . . , n}, we say that C is systematic at

the positions of U (or simply systematic when the set U is understood) if for every u ∈ F
u
2
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there exists one and only one codeword x ∈ C such that πU(x) = u. Up to reordering of

coordinates we can always assume that U = {1, . . . , u} and V = {u+ 1, . . . , n}.

If C is systematic then #C = #F
u
2 = 2u. We say that C is a [n, u] code. Clearly every [n, u]

linear code is systematic of dimension u hence this notation is consistent. Thus systematic

codes generalize linear codes. However the family of systematic codes is much greater than

the family of linear codes (apart from the advantage of being defined over alphabets other

than fields). To see that note that it is fairly simple to construct a systematic code C:
just complete each vector in F

u
2 to a vector in F

n
2 . This completion induces a generator

function σ = σC : Fu
2 → F

n−u
2 defined to C = {(u, σ(u)) : u ∈ F

u
2}. Then C is linear if and

only if so is σ. In this case there exists a u× (n−u) matrix Σ such that σ(u) = uΣ. Then

(Iu,Σ) is a generator matrix for C and consequently H = (−ΣT , In−u) is a parity-check

matrix of C. Since every map F
u
2 → F2 can be written as a reduced polynomial, the

components σ1, . . . , σn−u of σ are square free reduced polynomials in variables x1, . . . , xu.

The family of systematic codes contains some nonlinear codes having excellent parameters.

Among these we can highlight the Preparata, Kerdrock, Nodstrom-Robinson and many

others. Some of them have also efficient decoding systems (which is the main drawback

of nonlinear codes). Other well known example is the following.

Example 5.1. The Nadler code N is a [12, 5] systematic nonlinear code with covering

radius ρ = 4 and minimum distance d = 5, [17]. N contains twice as many codewords as

any linear code with the same length and minimum distance, see [24]. Among the current

practical applications of N we can mention its use for the decoder module of SINCGARS

radio systems [10]. The combinatorial structure of N was shown by van Lint in [23];

following this article, the 32 codewords of N are shown in Table 1.

011 100 100 100

101 010 010 010

110 001 001 001

100 011 100 100

010 101 010 010

001 110 001 001

100 100 011 100

010 010 101 010

001 001 110 001

100 100 100 011

010 010 010 101

001 001 001 110

111 010 100 001

111 001 010 100

111 100 001 010

010 111 001 100

001 111 100 010

100 111 010 001

100 001 111 010

010 100 111 001

001 010 111 100

001 100 010 111

100 010 001 111

010 001 100 111

011 011 011 011

101 101 101 101

110 110 110 110

000 111 111 111

111 000 111 111

111 111 000 111

111 111 111 000

000 000 000 000

Table 1. The 32 codewords of the Nadler code
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It is not hard to check that this code is systematic at positions 1,2,4,7, 10. Besides the

exhaustive enumeration given in Table 1, N can be described by the function σ. Up to

reordering of coordinates so that N is systematic at positions 1, . . . , 5, we have

σ6 = x1 + x2 + x3 + (x1 + x5)(x3 + x4)

σ7 = x1 + x2 + x4 + (x1 + x3)(x4 + x5)

σ8 = x1 + x2 + x5 + (x1 + x4)(x3 + x5)

σ9 = x2 + x3 + x4 + x1x4 + x4x5 + x5x1

σ10 = x2 + x3 + x5 + x1x3 + x3x4 + x4x1

σ11 = x1 + x4 + x5 + x1x3 + x3x5 + x5x1

σ12 = x1 + x2 + x3 + x4 + x5 + x3x4 + x4x5 + x5x3.

In order to construct a stegoscheme from a systematic code, we need a partition of Fn
2

and a family of decoding maps, one map for each element of the partition.

Proposition 5.2. Let C be a [n, u] systematic code. Then the sets (0,v) + C, v ∈ F
n−u
2 ,

are pairwise disjoint and hence the family ((0,v) + C : v ∈ F
n−u
2 ) is a partition of Fn

2 .

Proof. If (0,v1) + c1 = (0,v2) + c2 for some v1,v2 ∈ F
n−u
2 and c1, c2 ∈ F

n
2 , then

πU(c1) = πU((0,v1) + c1) = πU ((0,v2) + c2) = πU(c2). Then c1 = c2 and consequently

v1 = v2. �

In general the translates x+C are not pairwise disjoint when x runs over the whole space

F
n
2 . In that case these sets do not give a partition of Fn

2 and they are not useful for

decoding purposes. Anyway the partition given by proposition 5.2 allows us to define

a syndrome map s : F
n
2 → F

n−u
2 as follows: define s(x) = v if x ∈ (0,v) + C. The

systematic property leads us to compute s(x) efficiently: if x = (u,w) then we can write

(u,w) = (u, σ(u))+ (0, s(x)) and hence s(x) = w−σ(u). If σ is a linear map, and hence

the code C is linear, then s(x) = xHT is the usual syndrome for linear codes.

A decoding map for a general code C ⊆ F
n
2 is a mapping dec : Fn

2 → C such that for every

x ∈ F
n
2 , dec(x) is the closest word to x in C. If more than one of such words exists, simply

choose one of them at random.

Proposition 5.3. Let C ⊆ F
n
2 be a systematic code and z ∈ F

n
2 . If dec is a decoding map

for C then decz(x) = z+ dec(x− z) is a decoding map for the code z+ C.

Proof. Clearly decz(x) ∈ z + C. If there exists z + c ∈ z + C such that

d(x, z+ c) < d(x, decz(x)), then d(x − z, c) < d(x − z, dec(x − z)), which contradicts

that dec is a decoding map for C. �
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5.2. Stegoschemes from systematic codes. Let C be a [n, n−u] systematic code and let dec

be a decoding map for C. According to propositions 5.2 and 5.3, we obtain a stegoscheme

S = S(C) from C, whose embedding and recovering maps are

emb : Fn
2 × F

u
2 → F

n
2 , emb(c,m) = dec(0,m)(c) = (0,m) + dec(c− (0,m))

rec : Fn
2 → F

u
2 , rec(x) = s(x).

By definition of syndrome it holds that rec(emb(c,m)) = s(dec(0,m)(c)) = m for all c ∈ F
n
2

and m ∈ F
u
2 . Compare this with the usual expression emb(c,m) = c− cl(cHT −m) for

linear codes. We note that to perform this embedding it is necessary to have a table with

all syndromes and cosets leaders, even if the decoding map used does not require them.

Therefore, the systematic formulation can be useful even using linear codes.

Let us study the parameters of S(C) in relation with those of C. The cover length is n and

the embedding capacity r = u. To compute its embedding radius and average number

of embedding changes we first need to recall some concepts from coding theory. Given

a general code D, its covering radius is defined as the maximum distance from a vector

x ∈ F
n
2 to D, ρ(D) = max{d(x,D) : x ∈ F

n
2}, where d(x,D) = min{d(x, c) : c ∈ D}. The

average radius of D, ρ̃(D) is the average distance from a vector x ∈ F
n
2 to D

ρ̃(D) =
1

2n

∑

x∈Fn

2

d(x,D).

If D is linear then both parameters can be obtained from the coset leader distribution of

D, that is the sequence α0, . . . , αn, where αi is the number of coset leaders of weight i.

Clearly αi ≤
(

n
i

)

. When i ≤ t = ⌊(d(D) − 1)/2⌋ then all vectors of weight i are leaders

hence we get equality, αi =
(

n
i

)

. For i > t the computation of αi is a classical problem,

considered difficult. For nonlinear D the coset leader distribution may be generalized to

the distribution of distances to the code, defined as

αi =
1

#D#{x ∈ F
n
2 : d(x,D) = i}

If D is linear then both definitions of αi’s coincide. A similar reasoning as above shows

that the property αi ≤
(

n
i

)

with equality when i ≤ t = ⌊(d(D) − 1)/2⌋ remains true for

all codes. The covering radius of D is the maximum i such that αi 6= 0 and the average

radius is given by

ρ̃(D) =
#D
2n

n
∑

i=0

iαi.

If C is [n, n − u] systematic, then for all v ∈ F
u
2 and x ∈ F

n
2 we have

d(x, (0,v) +D) = d(x− (0,v),D). Thus all the translates ((0,v) +D : v ∈ F
u
2) have the

same distribution of distances to the code and hence the same average radius and cov-

ering radius. As a consequence we have the following result, which is well known for

stegoschemes comming from linear codes.
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Proposition 5.4. Let C be a [n, n−u] systematic code and let S the stegoscheme obtained

from C. Then the embedding radius of S is the covering radius of C and the average number

of embedding changes Ra(S) is the average radius of C.

Proof. By definition of decoding map, the number of changes when embedding a message

m into a vector x is d(x, emb(x,m)) = d(x− (0,m), C) and both statements hold. �

Example 5.5. The Nadler code of Example 5.1 is 2-error correcting, hence α0 = 1,

α1 = 12, α2 = 66. Other values of α are obtained by computer search: α3 = 46, α4 = 3,

and αi = 0 for i = 5, . . . , 12. Then ρ̃(N ) = 2.296875. The stegoscheme derived from N
allows to embed 7 bits of information into a cover vector of 12 bits, by changing 2.296875

of them on average and 4 of them at most.

5.3. Stegoschemes, resilient functions and orthogonal arrays. Systematic codes allows us

to make a connection of stegoschemes with two objects of known importance in informa-

tion theory: resilient functions and orthogonal arrays. A function f : Fn
2 → F

r
2 is called

t-resilient for some integer t ≤ n, if for every T ⊆ {1, . . . , n} such that #T = t and every

t ∈ F
t
2, all possible outputs of f(x) with πT (x) = t are equally likely to occur, that is if

for all y ∈ F
r
2 we have

prob(f(x) = y | πT (x) = t) =
1

2r

(see the relation to recovering maps of stegoschemes). Resilient functions play an impor-

tant role in cryptography, and are closely related to orthogonal arrays [21]. An orthogonal

array OAλ(t, n) is a λ2t × n array over F2, such that in any t columns every one of the

possible 2t vectors of Ft
2 occurs in exactly λ rows. A large set of orthogonal arrays is a set

of 2n−t/λ arrays OAλ(t, n) such that every vector of Fn
2 occurs once as a row of one OA

in the set. Then, by considering the rows of these arrays as vectors of Fn
2 , a large set of

OA gives a partition of Fn
2 , see [21].

There is a fruitful connection between orthogonal arrays and codes, see [14] Chapter 5,

section 5. If C is a linear [n, n − r] code then, according to proposition 2.3, the array

having the codewords of C as rows is an OA2n−r−d⊥+1(d
⊥ − 1, n). Delsarte observed that

a similar result holds also for nonlinear codes. Of course if C is not linear then the dual

code does not exist, but the dual distance can be defined from the distance distribution

of C via the dual transforms as follows [14]: The distance distribution of C is defined to

be the sequence A0, . . . , An, where

Ai =
1

#C#{(x,y) ∈ C2 : d(x,y) = i}

i = 0, . . . , n. The dual distance distribution of C is A⊥
0 , . . . , A

⊥
n , where

A⊥

i =
1

#C
n

∑

j=0

AjKi(j)
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and Ki(x) is the i-th Krautchouk polynomial

Ki(x) =
i

∑

j=0

(−1)j
(

x

j

)(

n− x

i− j

)

.

If C is linear then A⊥
0 , . . . , A

⊥
n is the distance distribution of C⊥. If C is [n, n − u] sys-

tematic, then the array having the codewords of C as rows is an OA2n−u−d⊥+1(d
⊥ − 1, n).

Furthermore in this case all the translates (0,v) + C have the same distance distribution

and hence the same dual distance.

Proposition 5.6. Let C be a systematic [n, n − u] code with generator function σ and

dual distance d⊥. For any v ∈ F
u
2 let Mv be the array having the words of (0,v) + C as

rows. Then

(a) The set {Mv | v ∈ F
u
2} is a large set of OA2n−u−d⊥+1(d

⊥ − 1, n).

(b) The syndrome map s(u,w) = w − σ(u) is an (d⊥ − 1)-resilient function.

Proof. Let T ⊆ {1, . . . , n} with #T = d⊥ − 1 and t ∈ F
t
2. (a) According to Delsarte’s

theorem, every one of the possible 2t vectors t occurs in exactly 2n−u−d⊥+1 rows of πT (C).
Then the same happens in each of the translates (0,v) + C. (b) As a consequence of (a),

all possible outputs of s(x) with πT (x) = t are equally likely to occur, [21]. �

5.4. Locked positions with systematic codes. Let us return to the problem of embedding

with locked positions. Let c ∈ F
n
2 be a cover vector and m ∈ F

u
2 be the secret we want

to embed into c. There is a set W ⊆ {1, . . . , n} of n− δ locked positions that cannot be

altered during the embedding process. Consider a systematic [n, n− u] code C and let s

be the syndrome of C defined in section 5.1. As in the case of linear codes, the embedding

is obtained as a syndrome, emb(c,m) = x with

[SS] :

{

s(x) = m,

xi = ci if i ∈ W
Also as in the case of linear codes we can ask for the minimum possible number of dry

(free) positions required to ensure a solution of [SS], the wet threshold of C. Such a

solution exists if and only if πW(c + (0,m)) ∈ πW(C). In that case, if y ∈ C verifies

πW(y) = πW(c+ (0,m)), then x = y + (0,m) is a solution.

Proposition 5.7. If δ ≥ n− d⊥ + 1 then the system [SS] has a solution for all c ∈ F
n
2 ,

m ∈ F
u
2 and W ⊆ {1, . . . , n} with #W = n − δ. In this case, [SS] has exactly 2δ−u

solutions.

Proof. There exists a solution all c ∈ F
n
2 , m ∈ F

u
2 and W ⊆ {1, . . . , n} if and only if

πW(C) = F
n−δ
2 . The statement follows from Delsarte’s theorem and proposition 5.6. �
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Thus the threshold verifies τ ≤ n − d⊥ + 1. If we compare this result with theorem 2.3,

we can see a significant difference: in that case the condition δ ≥ n − d⊥ + 1 was also

necessary. This is due to the existence of dual when the code C is linear. If C is systematic

but not linear, then such dual does not exist and it may happen τ < n − d⊥ + 1 so that

we need less free coordinates than the required in the linear case. Let us see an example

of this situation.

Example 5.8. The Nadler code has distance distribution 1, 0, 0, 0, 0, 12, 12, 0, 3, 4, 0, 0, 0

and dual distance distribution 1, 0, 0, 4, 18, 36, 24, 12, 21, 12, 0, 0. In particular d⊥ = 3.

When using this code for wet paper purposes, the corresponding system [SS] has a solution

with certainty when the number of locked coordinates is ≤ d⊥ − 1 = 2, according to

proposition 5.7. A direct inspection shows that for any 4 columns of N , every one of the

possible 24 vectors of F4
2 occurs. According to the Bush bound [11] this is the maximum

possible number of columns for which this can happen. Then the system [SS] has a

solution with certainty when the number of locked coordinates is at most 4. Remark that

the minimum distance of a [12, 7] linear code is 4, see [15], hence the maximum number

of coordinates we can lock using linear codes with the same parameters as N is 3.

The above proposition 5.7 and example 5.8 suggest the use of nonlinear systematic codes

as wet paper codes. The main drawback of using these codes is in the computational

cost of solving [SS]. Solving a system of boolean equations is a classical and important

problem in computational algebra and computer science. There exist several methods

available, some of which are very efficient when the number of variables is not too large,

see [2, 12] and the references therein. Anyway the computational cost of solving [SS] is

always greater than that of solving a system of linear equations. In conclusion, the use of

nonlinear systematic codes can be an interesting option when the added security gained

through a greater number of locked positions offsets the increased computational cost.

6. Conclusion

We have obtained necessary and sufficient conditions to make sure the embedding process

in the wet paper context. These conditions depend on the dual distance of the involved

code. We also gave a sufficient condition in the general case of systematic codes and

provided the exact number of solutions. Finally, we showed that systematic codes can be

good candidates in the design of wet paper stegoschemes.
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