archives-ouvertes

A Distributed Workflow Platform for High-Performance
Simulation

Toan Nguyen, Laurentiu Trifan

» To cite this version:

Toan Nguyen, Laurentiu Trifan. A Distributed Workflow Platform for High-Performance Simulation.
[Research Report] RR-7600, INRIA. 2011, pp.29. inria-00585541

HAL 1d: inria-00585541
https://hal.inria.fr /inria-00585541

Submitted on 13 Apr 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00585541
https://hal.archives-ouvertes.fr

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET B AUTOMATIQUE

A Distributed Workflow Platform for High-Performance
Simulation

Toan Nguyén, Laurentiu Trifan
N° 7600

Avril 2011

THEME 1

apport
derecherche

INSTITUT NATIONAL

DE RECHERCHE
e INRIA
ET EN AUTOMATIQUE

centre de recharche GRENOBLE - RHANE.-ALPES

A Distributed Workflow Platform for
High-Performance Simulation

Toan Nguyéh Laurentiu TrifaA

Théme 1 — Modélisation et Simulation
Projet OPALE

Rapport de recherche n° 7600 — Avril 2011 - 27 page

Abstract: This report presents an approach to design, impieraad deploy a simulation

platform based on distributed workflows. It supgdte smooth integration of existing software,
e.g. Matlab, Scilab, Python, OpenFOAM, Paraview asér-defined programs. Additional

features include the support for application-lefallt-tolerance and exception-handling, i.e.
resiliency, and the orchestrated execution of iisted codes on remote high-performance
clusters.

Keywords: workflows; fault-tolerance; resiliency; simulatiordistributed systems; high-
performance computing

L INRIA Grenoble Rhéne-Alpes — Toan.Nguyen@inrialpes.f
2 INRIA Grenoble Rhone-Alpes — trifan@inrialpes.fr

Centre de recherche INRIA Grenoble - Rhéne-Alpes
655, Avenue de I'Europe, Montbonnot, 38334 -Sasntier (France)
Téléphone : +33 4 76 61 52 00 — Télécopie : +38 87752 52

Une plateforme de workflow distribuée pour la
simulation a haute-performance

Résumé:Ce rapport présente une approche pour la concepéioéalisation et le déploiement

d’'une plateforme de simulation basée sur les wonkdl Elle permet l'intégration de logiciels

existants comme MatLab, Scilab, Python, OpenFOANP@&aView et de programmes utilisa-
teurs. Elle permet également la tolérance aux paenk traitement d’exceptions, c-a-d la rési-
lience, ainsi que I'exécution de codes distribugsdes clusters distants.

Mots clés: workflow ; tolérance aux pannes; résilience ;t&ayes distribués ; calcul haute-
performance

INRIA

A Distributed Workflow Platform for High-Performam&imulation 3

1 Introduction

Large-scale simulation applications are becomimaaddrd in research laboratories and in the
industry [1][2]. Because they involve a large vayief existing software and terabytes of data,
moving around calculations and data files is nsinaple avenue. Further, software and data are
often stored in proprietary locations and cannotnoged. Distributed computing infrastructures
are therefore necessary [6, 8].

This article explores the design, implementatiod ase of a distributed simulation platform. It
is based on a workflow system and a wide-areailolig&d network. This infrastructure includes
heterogeneous hardware and software componentheFuthe application codes must interact
in a timely, secure and effective manner. Additlhndnecause the coupling of remote hardware
and software components is prone to run-time ersmghisticated mechanisms are necessary to
handle unexpected failures at the infrastructue system levels [19]. This is also true for the
coupled software that contribute to large simulatapplications [35]. Consequently, specific
management software is required to handle unexpeagelication and software behavior [9,
11, 12, 15].

This report addresses these issues. Section 2dseamiew of related work. Section 3 is a gen-
eral description of a sample application, infrastinee, systems and application software. Sec-
tion 4 addresses fault-tolerance and resilienayessSection 5 gives an overview of the imple-
mentation using the YAWL workflow management sysfdinSection 6 is a conclusion.

2 Related work

Simulation is nowadays a prerequisite for prodwetigh and scientific breakthrough in many
application areas ranging from pharmacy, biologgltmate modeling that also require exten-
sive simulation testing. This implements often é&sgale experiments, including the manage-
ment of petabytes volumes of data and large maté-supercomputers [10].

In such application environments, various teamallysgollaborate on several projects or part
of projects. Computerized tools are often shared tightly or loosely coupled [23]. Some
codes may be remotely located and non-movable. rEjgires distributed code and data man-
agement facilities [29]. And unfortunately, thispgone to a large variety of unexpected errors
and breakdowns [30].

Most notably, data replication and redundant comiputs have been proposed to prevent from
random hardware and communication failures, as agetleadline-dependent scheduling [12].
System level fault-tolerance in specific programgnanvironments are proposed, e.g., CIFTS
[20]. Also, middleware usually support mechanism$iandle fault-tolerance in distributed job
execution, usually calling upon data replicatiod aadundant code execution [9, 15, 22, 24].
Also, erratic application behavior needs to be sujga. This implies evolution of the simula-
tion process in the event of such occurrencedelliis been done in this area [33]. The primary
concerns of the application designers and users haen so far efficiency and performance.
Therefore, application unexpected behavior is Ugubbndled by re-designing and re-
programming pieces of code and adjusting paranvatees and bounds. This usually requires
the simulations to be stopped or aborted.

A dynamic approach is presented in the followingfisas. It support the evolution of the appli-
cation behavior using the introduction of new eximephandling rules at run-time by the users,
based on occurring (and possibly unexpected) evmmdsdata values. The running workflows
do not need to be suspended in this approach,agules can be added at run-time without
stopping the executing workflows.

This allows on-the-fly management of unexpectedchtseThis approach also allows a perma-
nent evolution of the applications supporting tr@ntinuous adaptation to the occurrence of
unforeseen situations. As new situations arisedad values appear, new rules can be added to

RR n° 7600

4 Toan Nguyén, Laurentiu Trifan

the workflows that will permanently take them irtocount in the future. These evolutions are
dynamically hooked onto the workflows without theed to stop the running applications. The
overall application logics is therefore maintainetthanged. This guarantees a constant adapta-
tion to new situations without the need to redesignexisting workflows. Further, because ex-
ception-handling codes are themselves defined by a-hoc workflows, the user interface
remains unchanged [14].

3 Testcase application

3.1 Example

This work is performed for the OMD2 projed@timisation Multi-Discipline Distribuéei.e.,
Distributed Multi-Discipline Optimization) suppodey the French National Research Agency
ANR.

An overview of two running testcases is present@ Ht deals with the optimization of an auto
air-conditioning system [36]. The goal of this fi@slar testcase is to optimize the geometry of
an air conditioner pipe in order to avoid air floeviations in both pressure and speed concern-
ing the pipe output (Figure 1). Several optimizatinethods are used, based on current research
by public and industry laboratories.

Figure 1. Flow pressure (left) and speed (right) imn air-conditionerpipe.

This example is provided by a car manufacturer iandlves several industry partners, e.g.,
software vendors, and academic labs, e.g., opttioizeesearch teams (Figure 1).

The testcases are a dual faceted 2D and 3D exaHgté. facet involves different software for
CAD modeling, e.g. CATIA and STAR-CCM+, numeric gomtations, e.g., Matlab and Scilab,
and flow computation, e.g., Open FOAM and visuditrg e.g., ParaView (Figure 12).

The testcases are deployed on the YAWL workflow ag@ment system [4]. The goal is to dis-
tribute the testcases on various partners locatidese the software are running (Figure 2). In
order to support this distributed computing apphp@n open source middleware is used [17].
A first step is implemented using extensively thdualization technologies (Figure 3), i.e.,
Oracle VM VirtualBox, formerly SUN’s VirtualBox [7] This allows hands-on experiments
connecting several virtual guest computers runhieggrogeneous software (Figure 10). These
include Linux Fedora Core 12, Windows 7 and Windd#srunning on a range of local work-
stations and laptops (Figure 11).

INRIA

A Distributed Workflow Platform for High-Performam&imulation 5

3.2 Application workflow

In order to provide a simple and easy-to-use iat&rfto the computing software, a workflow
management system is used (Figure 2). It suppagtslével graphic specification for applica-
tion design, deployment, execution and monitorih@lso supports interactions among hetero-
geneous software components. Indeed, the 2D exateglease described in Section 3.1 in-
volves several codes written in Matlab, OpenFOAM displayed using ParaView (Figure 7).
The 3D testcase involves CAD files generated u§iAJ 1A and STAR-CCM+, flow calcula-
tions using OpenFOAM, Python scripts and visualiratvith ParaView. Extensions allow also
the use of the Scilab toolbox.

Because proprietary software are used, as welpas-source and in-house research codes, a
secured network of connected computers is maddéablaito the users, based on existing mid-
dleware (Figure 8).

This network is deployed on the various partnecaitions throughout France. Web servers ac-
cessed through the SSH protocol are used for thpriptary software running on dedicated
servers, e.g., CATIA v5 and STAR-CCM+.

@ YAWLEditor - C\Program Files\YAWL4Study-2.0.1\Exsmples)\distributed _codelet.yawl :_JEJﬂ
Specification Net Edt Elements Jools View belp
-] > 2 (@)
ol ‘ O (&) distribnated_codede:
o
a ®—(] i 7} L@
= Task

vallurs_Tmi les Ihs_design run_ocbservations get_data jteri results_visualization

pcu{rm @ python

Figure 2. The YAWL workflow interface to the 2D tegcase.

An interesting feature of the YAWL workflow systeisithat composite workflows can be de-
fined hierarchically [13]. They can also invoke exxtal software, i.e., pieces of code written in
whatever language suits the users. They are chlfedustom YAWL services or local shell
scripts. Remote Web services can also be called.

YAWL thus provides an abstraction layer that helpers design complex applications that may
involve a large number of distributed componenigufe 6). Further, the workflow specifica-
tions involve possible alternative execution paths,well as parallel branches, conditional
branching and loops. Combined with the run-timeitiatd of code with the corresponding dy-
namic selection procedures as well as new excepigomling procedures (Section 4), a very
powerful environment is provided to the users.

4 Resilience

4.1 Rationale

Resilience is defined here as the ability of theliaptions to handle unexpected situations. Usu-
ally, hardware, communication and software failures handled using fault-tolerance mecha-
nisms [15]. This is the case for communicationwafe and for middleware that take into ac-

RR n° 7600

6 Toan Nguyén, Laurentiu Trifan

count possible computer and network breakdownaratime. These mechanisms use for exam-
ple data and packet replication and redundant egdeution to cope with these situations [5].
However, when unexpected situations occur at mestivery few options are usually offered to
the application users: ignore them or abort theeten, reporting the errors and analyze them,
to later modify and restart the applications.

4.2 Exception handling

Another alternative is proposed here. It is basedhe dynamic selection and exception han-
dling mechanism featured by YAWL [13].

It provides the users with the ability to add at-time new rules governing the application be-
havior and new pieces of code that will take cdrta® new situations.

For example, it allows for the selection of altéivencode, based on the current unexpected data
values. The application can therefore evolve owee without being stopped. It can also cope
later with the new situations without being alter&tis refinement process is therefore lasting
over time and the obsolescence of the code grestlyced.

HPC %!u ters Linux
! j-' : Fedora Core 12 irtualBg
|) Network |
r
Files \ YAWL Shell Scripts interface & Custom Senvices |

!

B2 openVroam Illparaview

MATLAB

Figure 3. The virtualized infrastructure.

The new codes are defined and inserted in the Ggijgn workflow using the standard specifi-
cation approach used by YAWL (Figure 7). This iplemented by YAWL so-called exlets that
are in charge of exception and error handling. T¢eay be inserted and invoked at run-time in
cas of task failure.

For example (Figure 24, at the end of this repibrd) workflow is specified as a sequence of
tasks TO, T1 and T2 and that a failure occursdek fT1, an exlet is automatically invoked and
takes the form of a dynamic insertion of a setasks that cope for the error (Error Handler,
Restore and Ignore). It is based on a pre-defimed/oamically provided scenario by the user.
The Error Handler task then triggers the Restosk ta the Ignore task, based on appropriate
decisions made, depending on parameters valueseolinteractions. In case the Restore task is
invoked, the scenario then backtracks the execwfahe workflow to the nearest checkpoint
CHKPT before the failed task T1. In contrast, i ttlecision is made to ignore the error, the
control is passed to the task immediately followirigin the original scenario, i.e., T2.

Because it is important that monitoring long-rumgnagpplications be closely controlled by the
users, this dynamic selection and exception hagdirechanism also requires a user-defined
probing mechanism that provides them with the gbit suspend, evolve and restart the code
dynamically.

INRIA

A Distributed Workflow Platform for High-Performam&imulation 7

For example, if the output pressure of an air-ciimaing pipe is clearly off limits during a
simulation run, the user must be able to suspead #oon as he is aware of that situation. He
can then take corrective actions, e.g., susperttimgimulation, modifying some parameters or
value ranges and restarting the process.

4.3 Fault tolerance

The fault-tolerance mechanism provided by the ugihgy middleware copes with job and
communication failures. Job failures or time-outs laandled by reassignment and re-execution.
Communication failures are handled by re-sendiny@piate messages. Also, hardware break-
downs are handled by re-assigning running jobstteroresources, implying possible data
movements to the corresponding resources. Thtanslard for most middleware [17].

Figure 4. Asymmetric checkpoints

4.4 Asymmetric checkpoints

Asymmetric checkpoints are defined by the usesgaiificant execution locations in the appli-
cation workflows. They are used to avoid the syst#rinsertion of checkpoints at all potential
failure points. They are user-defined at specifitaal locations, depending only on the applica-
tion logic. Clearly, the applications designers asdrs are the only ones that have the expertise
necessary to insert the appropriate checkpointsoimtrast with middleware fault-tolerance
which can re-submit jobs and resend data packetautomatic procedure can be implemented
here. It is therefore based on a dynamically emghget of heuristic rules.
As such, this approach significantly reduces thaler of necessary checkpoints to better con-
centrate on only those that have a critical imjpacthe applications runs.
For example (Figure 4):

* The checkpoints can be chosen by the users amosg that follow long-running com-

ponents and large data transfers.

» Alternatively, those that precede series of sn@tgonents executions.
The base rule set on which the asymmetric checkpaie characterized is the following:

* R1: no output backup for specified join operations

» R2: only one output backup for fork operations

* R3: no intermediate result backup for user-speatifiequences of operations

* R4: no backup for user-specified local operations

* R5: systematic backup for remote inputs
This rule set can be evolved by the user dynanyicall any time during the application life-
time, depending on the specific application requaats.

RR n° 7600

8 Toan Nguyén, Laurentiu Trifan

5 Implementation

5.1 The YAWL workflow management system

Workflows systems are the support for many e-Saeayplications [6, 8, 26]. Among the
most popular systems are Taverna, Kepler, Peg&arsta and many others [11, 15]. They
complement scientific software environments like&kBta, Scilab and Matlab in their ability to
provide complex application factories that can h&red, reused and evolved. Further, they sup-
port the incremental composition of hierarchic cosife applications. Providing a control flow
approach, they also complement the usual dataffgwvo@ch used in programming toolboxes.
Another bonus is that they provide seamless uderfates, masking technicalities of distrib-
uted, programming and administrative layers, thlasving the users and experts to concentrate
on their areas of interest.

http://www. yawlfoundation.org

TP R—

e By
Sttt Rois Pesions | Copsbiiien

8. Apache
Software Foundation

http://www.apache.org/
Figure 5. The user interfaces: the YAWL editor (lef) and the Control Center (right).

Apache Derby y-

The OPALE project at INRIA [40] is investigatingethuse of the YAWL workflow manage-
ment system for distributed multidiscipline optietion [3]. The goal is to develop a resilient
workflow system for large-scale optimization apations. It is based on extensions to the
YAWL system to add resilience and remote compufiaglities for deployment on high-
performance distributed infrastructures. This idelsi large-PC clusters connected to broadband
networks. It also includes interfaces with the &wikcientific computing toolbox [16] and the
middleware [17].

Provided as an open-source software, YAWL is imgeted in Java. It is based on an
Apache server using Tomcat and Apache's Derbyioakit database system for persistence
(Figure 5). YAWL is developed by the University Bfndhoven (NL) and the University of
Brisbane (Australia). It runs on Linux, Windows adiécOS platforms [25]. It allows complex
workflows to be defined and supports high-levelstaicts (e.g., XOR- and OR-splits and joins,
loops, conditional control flow based on applicatiwariables values, composite tasks, parallel
execution of multiple instances of tasks, etc) tigftohigh-level user interfaces (Figure 10).

Formally, it is based on a sound and proven opmratisemantics extending teorkflow
patternsof the Workflow Management Coalition [21, 32].i$timplemented and proved by

INRIA

A Distributed Workflow Platform for High-Performam&imulation 9

colored Petri nets. This allows for sophisticatedifications of workflow specifications at de-
sign time: fairness, termination, completenessdlbe&s, etc (Figure 5-left).

YAWL Engine
Event [-~ 2
Logs t j . . e m————
2 ‘:' rrr { Intéiface E)
Persisted > . it e =8 —
Cala =) ~ = w = =

{ Interface A) { intefaceB intordpce X)

e — o —

B s 5

- P T
B & <
— »\%/ ° ls L]
N S & &
Process Designer Resource Service Web Service Workiet Service
J | lnvo_ke(: |
_E= . L &= ==
Reposiony Logs ==
S
inerfaco R Evamil
Logs
= | | | o
— Intetfaca © T e = torkle
% G J3 5% f
e Usees Agpn & Codelets Viah Servces
1 Intmiface W
——From-YAWL 21 Technical-Manual Julty 201

Figure 6. The YAWL architecture - © 2010 The YAWL Foundation.

In contrast, workflow systems which are based enBhsiness Process Management Notation
(BPMN) [27] and the Business Process Execution Lagg (BPEL) [28] are usually not sup-
ported by a proven formal semantics. Further, t@yally implement only specific and/or pro-
prietary versions of the BPMN and the BPEL speatfans (Figure 17, at the end of this re-
port). There are indeed over 73 (supposedly complimplementations of the BPMN, as of
February 2011, and several others are currentlygbienplemented [27]. In addition, there are
more than 20 existing BPEL engines. However, BP&hpsrts the execution of long running
processes required by simulation applications, witmpensation and undo actions for excep-
tion handling and fault-tolerance, as well as corent flows and advanced synchronization
mechanisms [28].

Designed as an open platform, YAWL supports nagivieeractions with external and exist-
ing software and application codes written in amygpamming languages, through shell scripts
invocations, as well as distributed computing tigfoMVeb Services (Figure 6).

It includes a native Web Services interface, custemvices invocations througlodelets as
well as rules, powerful exception handling faai#j and monitoring of workflow executions
[13].

RR n° 7600

10 Toan Nguyén, Laurentiu Trifan

Further, it supports dynamic evolution of the apgions by extensions to the existing work-
flows throughworklets i.e., on-line inclusion of new workflow componsrduring execution
[14].

It supports automatic and step-by-step executioth@fworkflows, as well as persistence of
(possibly partial) executions of the workflows fater resuming, using its internal database sys-
tem. It also features extensive event logging &ierl analysis, simulation, configuration and
tuning of the application workflows.

Additionally, YAWL supports extensive organizatiommdeling, allowing complex collabo-
rative projects and teams to be defined with sajghi®d privilege management: access rights
and granting capabilities to the various projectsmiers (organized as networked teams of
roles and capabilities owners) on the project work$, down to individual components, e.g.,
edit, launch, pause, restart and abort workitesisyall as processing tools and facilities (Figure
5-right) [25].

-l

Workflow Task WT " ——of |+@)

minales criteria results_visualization

SH EX

CK —+ CP — RE

EXEC

Figure 7. Exception handler associated with a worlkbw task.

Current experiments include industrial testcasegolving the connection of the Matlab,
Scilab, Python, ParaView and OpenFOAM softwareh® YAWL platform [3]. The YAWL
workflow system is used to define the optimizatmocesses, include the testcases and control
their execution: this includes reading the inpubd&tarCCM+ files), the automatic invocation
of the external software and automatic control ipgsbetween the various application compo-
nents, e.g., Matlab scripts, OpenFOAM, ParaView\Fé 11).

5.2 Exception handling

The exception handlers are automatically testethbyY AWL workflow engine when the

corresponding tasks are invoked. This is standardAWL and constraint checking can be
activated and deactivated by the users [4].
For example, if a particular workflow task WT invaxkan external EXEC code through a shell
script SH (Figure 7) using a standard YAWdodelet an exception handler EX can be
implemented to prevent from undesirable situatieng., infinite loops, unresponsive programs,
long network delays, etc. Application variables bartested, allowing for very close monitoring
of the applications behavior, e.g., unexpected egliconvergence rates for optimization
programs, threshold transgressions, etc.

INRIA

A Distributed Workflow Platform for High-Performam&imulation 11

A set of rules (RDR) is defined in a standard YAWXlet attached to the task WT and
defines the exception handler EX. It is composee lté a constraint checker CK, which is
automatically tested when executing the task WTofpensation action CP triggered when a
constraint is violated and a notifier RE warning thser of the exception. This is used to
implement resilience (Section 5.3).

The constraint violations are defined by the usard are part of the standard exception
handling mechanism provided by YAWL. They can dttaophisticated exception handlers in
the form of specificexletsthat are automatically triggered at runtime whemtipular user-
defined constraints are violated. These constrairggart of the RDR attached to the workflow
tasks.

Monitoring

Platform Architecture

Execution

Scriptin
e Construction
Multiple parallel Testing Publication
application -
software. ..

Multiple
middleware &
virtualized
environments...

- -

REMOTE LOCAL
Figure 8. The distributed simulation platform.

Resilience is the ability for applications to handhexpected behavior, e.g., erratic compu-
tations, abnormal result values, etc. It is inheterthe applications logic and programming. It is
therefore different from systems, communicationd hardware errors and failures. The usual
fault-tolerance mechanisms are therefore inappatgriere. They only cope with late symp-
toms, at best.

5.3 Resilience

Resilience is the ability for applications to handinexpected behavior, e.g., erratic computa-
tions, abnormal result values, etc. It lies atlthel of application logic and programming, not
at systems or hardware level. The usual fault-twlee mechanisms are therefore inappropriate
here. They only cope with very late symptoms, at.be

New mechanisms are therefore required to handie kigcrepancies in the applications, most
of which are only discovered at run-time.

It is therefore important to provide the users vattiwerful monitoring features and complement
them with dynamic tools to evolve the applicatiaasording to the erratic behavior observed.

RR n° 7600

12

Toan Nguyén, Laurentiu Trifan

This is supported here using the YAWL workflow gystso called “dynamic selection and ex-
ception handling mechanism”. It supports:

Application update using dynamically added rulesc#fying new codes to be executed,
based on application data values, constraints acepdons.

The persistence of these new rules to allow apphics to handle correctly future
occurrences of the new case.

The dynamic extension of these sets of rules.

The definition of the new codes to be executedgusihe framework provided by the
YAWL application specification tool: the new codm® new workflows included in the
global application workflow specification.

Component workflows invoke external programs writke any programming language
through shell scripts, custom service invocatiamd \&/eb Services.

In order to implement resilience, two particular WA features are used:
Ripple-down-rules (RDR) which are handlers for gt management,

Worklets, which are particular workflow actionstie taken when exceptions or specific

events occur.

The RDR define the decision process which is ruddoide which worklet to use in specific
circumstances.

Application

Application
Workflow

F 3

v

YAWL Engine

Workflow)

Custom Service

h 4

y h . e

A 4

—|

Middleware Scheduler: Middleware Job e Middleware Tasks

[3 F 3

Middleware

Java classes | Java Exec

Figure 9. The YAWL workflow and middleware interface.

5.4 Distributed workflows

The distributed workflow is based on an interfaegneen the YAWL engine and the underly-

ing middleware (Figure 8). At the application levasers provide a specification of the simula-
tion applications using the YAWL Editor. It supp®r high-level abstract description of the
simulation processes. These processes are decampasecomponents which can be other
workflows or basic workitems. The basic workiteimgoke executable tasks, e.g., shell scripts
or custom services. These custom services arefigpegecution units that call user-defined

YAWL services. They support interactions with eredrand remote codes. In this particular
platform, the external services are invoked throtinghmiddleware interface.

This interface delegates the distributed executibthe remote tasks to the middleware [17].
The middleware is in charge of the distributed veses allocation to the individual jobs, their

scheduling, and the coordinated execution and trgstihering of the individual tasks compos-

INRIA

A Distributed Workflow Platform for High-Performam&imulation 13

ing the jobs. It also takes in charge the fauktahce related to hardware, communications and
system failures. The resilience, i.e., the applicatevel fault-tolerance is handled using the
rules described in the previous sections.

The remote executions invoke the middleware funetiities through a Java API. The various
modules invoked are the middleware Scheduler, ¢dhs definition module and the tasks which
compose the jobs. The jobs are allocated to thehdited computing resources based upon the
scheduler policy. The tasks are dispatched basdteojob scheduling and invoke Java execu-
tables, possibly wrapping code written in othergoasnming languages, e.g., Matlab, Scilab,
Python, or calling other programs, e.g., CATIA, SR-€&CM+, ParaView, etc.

Optionally, the workflow can invoke local tasksngishell scripts and remote tasks using Web
Services. These options are standard in YAWL.

Linux Eedora Core 12 host

o @@ e L

Sun Virtualox

Behier Machie dde

\ [I
@ sschine pérphenques aide
warrsan R ——
s Linux CF - [0 o0 hcston St st s 0

g Hafmdl 2 e

WindawzXFI5R or

)2
r’:‘ 3 en farictian

| |
get_data eritarla results_visualization stop?

| 8 v 2 0cion wrece . |[E Tannzemes - e al o e
SOF /A0 D Bcuiasie
[Zumirs: Bscepbon | e EL Windows P50 [en .. (Dewriasss] [] [T5]

Figure 10. The YAWL testcase and workflow editor dployed on a virtual machine: Linux
Fedora Core 12 host running VirtualBox and a Windovs XP guest (Linux screenshot).

5.5 Secured access

In contrast with the use of middleware, there soa need to preserve and comply with the res-
ervation and scheduling policies on the various H&urces and clusters that are used. This is
the case for national, e.g., IDRIS and CINES innEea and transnational HPC centers, e.g.,
PRACE in Europe.

Because some of the software run on proprietaguress and are not publicly accessible, some
privileged connections must also be implementeduthin secured X11 tunnels to remote high-
performance clusters (Figure 13). This also alléovsfast access to software needing almost
real-time answers, avoiding the constraints assetiavith the middleware overhead. It also
allows running parallel optimization software ongla HPC clusters. In this perspective, a both-
ways SSH tunnel infrastructure has been implemefotethe invocation of remote optimization
software running on high-performance clusters and&st result gathering.

Using the specific ports used by the communicagimotocol (5000) and YAWL (8080), a fast
communication infrastructure is implemented for o#¢gninvocation of testcase optimizers be-

RR n° 7600

14 Toan Nguyén, Laurentiu Trifan

tween several different locations on a high-speédGB/s) network at INRIA. This is also ac-
cessible through standard Internet connectiongyubim same secured tunnels.

Current tests have been implemented monitoring f@nenoble in France a set of optimizers
software running on HPC clusters in Sophia-Antipolear Nice. The optimizers are invoked as
custom YAWL services from the application workfloWhe data and results are transparently
transferred through secured SSH tunnels.

In addition t the previous interfaces, direct loaatess to numeric software, e.g., SciLab and
OpenFOAM, is always available through the standédVL custom services using the 8080
communication port and shell script invocationsefdfore, truly heterogeneous and distributed
environments can be built here in a unified wonkfloamework.

1
.

rewaork

YAWL Shell Scripts interface & Web Services & Grid5000 & ProActive

28l OpenVFOAM

AY

4
v =
4

Figure 11. Parameter sweeping and YAWL interface tsemote simulation codes.

5.6 Interfaces

To summarize, the simulation platform which is lthea the YAWL workflow management

system for the application specification, executdma monitoring, provides three complemen-
tary interfaces that suit all potential performgnsecurity, portability and interoperability re-

quirements of the current sophisticated simulagionironments.

These interfaces run concurrently and are usedpeaently for the parallel execution of the
different parts of the workflows (Figure 14). Thésterfaces are:

e The direct access to numeric software through YA®Wktom services that invoke Java
executables and shell scripts that trigger numsdftware, e.g., OpenFOAM, and
visualization tools, e.g., ParaView (Figure 2)

 The remote access to high-performance clustersingnparallel software, e.g.,
optimizers, through secured SSH tunnels, using terimvocations of custom services
(Figure 13)

e The access to wide-area networks through a griddimicare, e.g., Grid5000, for
distributed resource reservation and job schedykimgure 9)

INRIA

A Distributed Workflow Platform for High-Performam&imulation 15

5.7 Service orchestration

The YAWL system provides a native Web service fates. Thisisa very powerful standard
interface to distributed service execution, althoitgmight impact HPC concerns. This is the
reason why a comprehensive set of interfaces argdmd by the platform (Section 5.6, above).

Combined altogether and offered to the users,ritiisset of functionalities is intended to sup-
port most application requirements, in terms ofgremnance, heterogeneity and standardization.
Basically, an application workflow specifies geresarvices orchestration. General services
include here not only Web services, but also dwlpts, YAWL custom services implemented
by Java class executables and high-level operasrdefined in the workflow control flow pat-

terns of the Workflow Management Coalition [5, 2&]g., AND-joins, XOR-joins, conditional
branchings, etc.

e & TR e & : Be Kadd>DME mem 1 B
‘i]ﬂg f::lﬁiu ‘vH iv| |Su{faceWithE:ige‘v‘ }ﬁ 9] ;_‘j ﬁ:’é @_‘; ‘:‘1!‘ ;ig Q_‘. ‘@ @
E9U0PRETOEL0 G

Pipeline Browser CIEY W[_|T 2) | 165

ﬁ builtin:

[~y cas2.0penFOAM

Object Inspector &)=

Properties [Display | Information | K
[F}‘MJ {@Beset‘ ‘R Delete| ‘E 3

] Extrapolate Patches
%] Include Sets

® Include Zones

ZoneMesh information is
= = used to find
¥/ Ca fcell face point}Zones. The
% UplpolyMeshy/ directory is only
___|checked on startup.
|EMesh Parts
%/ internalMesh
%] Wall - patch
% Outlet - patch
£ Inlet - patch
| nonOrthoFaces - faceSet

‘|I3Vulume Felds H
| cellid | E‘

I
Figure 12. The 3D air-conditioner pipe visualizatio (ParaView screenshot).

The approach implemented here therefore not offijifisound and semantically proved opera-
tors for task specification, deployment, invocatierecution and. synchronization. It also ful-
fills the stringent requirements for heterogenedisibuted and HPC codes to be deployed and
executed in a unified framework. This provides tisers with high-level GUIs and hides the
technicalities of distributed, and HPC software bomation, synchronization and orchestration.
Further, because resilience mechanisms are impteshext the application level (Section 5.3),
on top of the middleware, network and OS faultf@hee features, a secured and fault resilient
HPC environment is provided, based on high-levekticts for complex and large-scale simu-
lations.

The interface between the workflow tasks and thaahsimulation codes can therefore be im-
plemented as Web Services, YAWL custom serviced,saell scripts through secured commu-
nication channels. This is a unique set of possésloffered by our approach (Figure 14).

RR n° 7600

16 Toan Nguyén, Laurentiu Trifan

5.8 Dataflow and control flow

The dual requirements for the dataflow and corftoal properties are preserved. Both aspects
are important and address different requiremeijtsTige control flow aspect addresses the need
for user control over the workflow tasks executidhe dataflow aspect addresses the need for
high-performance and parallel algorithms to be anpnted effectively.

The control flow aspect is required in order toyide the users with control over the synchro-
nization and execution of the various heterogen@odsremote software that run in parallel and
contribute to the application results. This aspeexemplified in the previous sections (Secttion
3) where multiple software contribute to the apgiicn results and visualization. This is
natively supported by YAWL.

The dataflow aspect is also preserved here in tmagptementary ways:

» the workflow data is transparently managed by tB&W._ engine to ensure the proper
synchronization, triggering and stopping of thekéaand complex operators among the
different parallel branches of the workflows, e&AND joins, OR and XOR forks, condi-
tional branchings. This includes a unique YAWL teatcalled “cancellation set” that re-
fers to a subset of a workflow that is frozen whenther designated task is triggered [3]

» the data synchronization and dataflow scheme imptted by the specific numeric
software invoked remain unchanged using a separafi@oncerns policy, as explained

below
Application Optimizers
Workflow
It it |
YAWL Data Custom
Engine Results SELEES

11]t

T Remote HPC
Machine Clusters

Figure 13. High-speed infrastructure for remote clister access.

The various software with dataflow dependenciesvaspped in adequate YAWL workflow
tasks, so that the workflow engine does not interfeth the dataflow policies they implement.
This allows high-performance concerns to be takém ¢onsideration along with the users con-
cerns and expectations concerning the sophistiedgedithms associated with these programs.
Also, this preserves the global control flow apmto@ver the applications which is necessary
for heterogeneous software to cooperate in the fleavk

As a bonus, it allows user interactions duringwlekflow execution in order to cope with un-
expected situations (Section 4). This would othsewhe very difficult to implement because
when unexpected situations occur while using a pataflow approach, it requires stopping the
running processes or threads in the midst of plyspidrallel and remote running calculations,
while (possibly remote) running processes are akiting for incoming data produced by (pos-
sibly parallel and remote) erratic predecessorthénworkflow. This might cause intractable

INRIA

A Distributed Workflow Platform for High-Performam&imulation 17

situations even if the errors are due to rathep&ravents, e.g., network data transfers or execu-
tion time-outs.

Note that so far, because basic tasks cannot lediinto remote components in the workflow,
the dataflow control is not supported between refgdbcated software. This also avoids large
uncontrolled data transfers on the underlying netwbhus, only collocated software, i.e., using
the same computing resources or running on the stuster, can use dataflow control on the
platform. They are wrapped by workflow tasks wharte controlled by the YAWL engine as
standard workflow tasks.

5.9 Other experiments

This distributed and heterogeneous platform is tdsted with the FAMOSA optimization suite
developed at INRIA by project OPALE [34]. It is deped on a HPC cluster and invoked from
a remote workflow running on a Linux workstationgite 18, at the end of this report).
FAMOSA is an acronym for “Fully Adaptive MultilevéDptimization Shape Algorithms” and
includes C++ components for:

» CAD generation,

* mesh generation,

» domain partitioning,

e parallel CFD solvers using MPI, and

* post-processors

2l

Composite Task CT

Service Service Script

Figure 14. External services interfaces.

The input is a design vector and the output ist@fssimulation results (Figure 19, at the end of
this report). The components also include othemso€ for mesh generation, e.g., Gmsh [37],
partitioning, e.g., Metis [38] and solvers, e.gymBsis [39]. They are remotely invoked from

the YAWL application workflow by shell scripts (Rige 18).

FAMOSA is currently tested by an automotive industompany (Figure 21, at the end of this
report) and ONERA (the French National AerospacseBech Office) for aerodynamics prob-

lem solving (Figure 25 and 26, at the end of tajsort).

The various errors that are taken into accounhbyrésilience algorithm include run-time errors
in the solvers, inconsistent CAD and mesh generdilies, and execution time-outs.

The FAMOSA components are here triggered by rerabédl scripts running PBS invocations

for each one on the HPC cluster. The shell sceptscalled by YAWL custom service invoca-

tions from the user workflow running on the workita (Figure 18).

Additionally, another experiment described by Feg0 (at the end of this report) illustrates the
distributed simulation platform used for testing theterogeneity of the application codes run-

RR n° 7600

18 Toan Nguyén, Laurentiu Trifan

ning on various hardware and software environmdhtscludes four remote computing re-
sources that are connected by a high-speed net®oik site is a HPC cluster (Site 4). Another
site is a standard Linux server (Site 1). The twleeosites are remote virtualized computing
resources running Windows and Linux operating systen different VirtualBox virtual ma-
chines that interface the underlying middlewaraeSB8 an 4). This platform has been tested
against the testcases described in Section 3.

6 Conclusion

The requirements for large-scale simulation make&essary to deploy various software com-
ponents on heterogeneous distributed computingstrirctures [10]. These environments are
often required to be distributed among a numbesrofect partners for administrative and col-

laborative purposes.

This report presents an experiment for deployindiséributed simulation platform. It uses a

network of high-performance computers connecteda byiddleware layer. Users interact dy-

namically with the applications using a workflow magement system. It allows them to define,
deploy and control the application executions mtévely.

Composite Task CT

Figure 15. Dataflow task wrapped by a composite YAW task.

In contrast with choreography of services, wher®m@amous software interact in a controlled
manner, but where resilience and fault-toleraneedifficult to implement, the approach used
here is an orchestration of heterogeneous andhdittd software components that interact in a
dynamic way under the user control, in order totibate to the application results [29]. This
allows the dynamic interaction with the users isecaf errors and erratic application behavior.
This approach is also fully compatible with botte tHataflow and control flow approaches
which are often described as poorly compatible 30,32] and are extensively used in numeric
software platforms.

The underlying interface to the distributed compugaés a middleware providing resource allo-
cation and job scheduling [17]. Because of therbgneity of the software and resources used,
the platform also combines secured access to reHBE clusters and local software in a uni-
fied workflow framework (Figure 20, at the end bilstreport).

This approach is also proved to combine in an elfegay the dataflow control used by many
HPC software and the control flow approach requisgccomplex and distributed application
execution and monitoring.

A significant bonus of this approach is that besifiilt-tolerance provided by the middleware,
which handles communication, hardware and job fafiuthe users can define and handle appli-
cation logic failures at the workflow specificatitevel. This means that a new abstraction layer

INRIA

A Distributed Workflow Platform for High-Performam&imulation 19

is introduced to cope with application-level erratsun-time. Indeed, these errors do not neces-
sarily result from programming and design errofiseyf may also result from unforeseen situa-
tions, data values and limit conditions that contit be envisaged. This is often the case for
simulations due to their experimental nature, @lgcovering the behavior of the system being
simulated.

This provides support to resiliency using an asytrim&heckpoint mechanism. This feature
allows for efficient handling mechanisms to restamty those parts of an application that are
characterized by the users as necessary for ovargaratic behavior.

Further, this approach can be evolved dynamically, when applications are running. This
uses the dynamic selection and exception handliechanism in the YAWL workflow system.

It allows for new rules and new exception handlimdpe added on-line if unexpected situations
occur at run-time.

Acknowledgement

This work is partly supported by the French NatldResearch Agency ANR (Agence Nationale
de la Recherche), OMD2 project (Optimisation Mlliscipline Distribuée), grant ANR-08-
COSI-007, program COSINUS (Conception et Simulgtion

7 Bibliography

[1] T. Nguyén, et al. “A Distributed Workflow Plarm for Simulation”. Proc. % Intl. Conf
gglgdvanced Engineering Computing and ApplicationSciences. Florence (l). October

[2] A. Abbas, High Computing Power: A radical Chenin Aircraft Design Process, In
proceedings of the 2nd China-EU Workshop on Mutiysics and RTD Collaboration in
Aeronautics. Harbin (China) April 2009.

[3] T. Nguyén and J-A Désidéri, Dynamic Resiliéiorkflows for Collaborative Design, In
Eroceedlngs of the 6th Intl. Conf. on Cooperatlmgn, Visualization and Engineering.

uxemburg. September 2009. Springer-Verlag. LNCS85pp. 341-350 (2009)

[4] W. Van der Aalst et al., Modern Business Psscéutomation: YAWL and its support
environment, Springer (2010).

[5] N. Russel et al. Workflow Control Flow PatterrA Revised View. Technical Report.
University of Eindhoven (NL). 2006.

[6] E. Deelman et Y. Gil, Managing Large-Scaleieftific Workflows in Distributed
Environments: Experiences and Challenges, In poings of the 2nd IEEE Intl. Conf. on
e-Science and the Grid. Amsterdam (NL). Decemb8620

[7] Oracle VM VirtualBox, User Manual, 2011. httww.virtualbox.org Last accessed:
03/31/2011.

[8] M. Ghanem et al., Grid-enabled workflows fodustrial product design, In proceedings of
the 2nd Intl. Conf. on e-Science and Grid Computhmgsterdam (NL). December 2006.

[9] G. Kandaswamy et al., Fault-tolerant and rexgv of scientific workflows on
cGo_rgpgtoaélg(;)nal grids, In proceedings of the 8th. I8§mp. On Cluster Computing and the
rid. .

[10] H. Simon. Future directions in H'\iﬁ;h-Perfc_)rmanEom uting 2009- 2018. Lecture given at
the ParCFD 2009 Conference. Moffett Field (Ca). ag9.

[11] J. Wang et al., A high-level distributed exton framework for scientific workflows, In

proceedings of the"d[EEE Intl. Conf. on eScience. Indianapolis (Ined@mber 2008.

[12] D. Crawl and I. Altintas, A Provenance-Baseau Tolerance Mechanism for Scientific
Workflows, In proceedings of thd'2Intl. Provenance and Annotation Workshop. IPAW
2008. Salt Lake City (UT). June 2008. Springer. IS\N&272. pp 152-159.

[13] M. Adams et al., Facilitating Flexibility andynamic Exception Handling in Workflows
through Worklets, Technical report, Faculty of Imfmtion Technology, Queensland
University of Technology, Brisbane (Aus.), OctoRe06.

RR n° 7600

20 Toan Nguyén, Laurentiu Trifan

[14] M. Adams et al., The worklet custom service YAWL, Installation and User Manual,
Beta-8 Release, Technical Report, Faculty of Infiiom Technology, Queensland
University of Technology, Brisbane (Aus.), OctoR606.

[15] L. Ramakrishnan et al., VGrADS: Enabling e€3aie workflows on grids and clouds with
fault tolerance. Proc. ACM SC’09 Conf. Portland {ONovember 2009.

[16] M. Baudin, Introduction to Scilab”, Consortiuncilab. January 2010. Also:
http://wiki.scilab.org/ Last accessed: 03/31/2011.

[17] F. Baude et al., Pro%rar_nming, composing, odph for the grid. in "GRID
COMPUTING: Software Environments and Tools", JoseGOnha and Omer F. Rana
(Eds), Springer Verlag, January 2006.

[18] http://edition.cnn.com/2009/TRAVEL/01/20/muniloverview Last accessed: 03/31/2011.

[19] J. Dongarra, P. Beckman et al. “The InternsloExascale Software Roadmap”. Volume
25, Number 1, 2011, International Journal of Hel‘?hf@rmance Computer AB lications,
ISSN 1094-3420. Available at: http://www.exascalg/d.ast accessed: 03/31/2011.

[20] R. Gupta, P. Beckman et al. “CIFTS: a CoortBdalnfrastructure for Fault-Tolerant
gggtgems”. Proc. 38Intl. Conf. Parallel Processing Systems. Viennal)(ASeptember

[21] The Workflow Management Coalition. http://wwwmc.org Last accessed: 03/31/2011.

[22] D. Abramson, B. Bethwaite et al. “Embeddingt@jization in Computational Science
Workflows”. Journal of Computational Science 1 (@R1Pp 41-47. Elsevier.

[23] A.Bachmann, M. Kunde et al. “Advances in Gatieation and Decoupling of Software
Parts in a Scientific Simulation Workflow SystenmProc. 4' Intl. Conf. Advanced
Engineering Computing and Applications in Scienédstence (l). October 2010.

[24] R. Duan, R. Prodan et al. “DEE; a DistributesLilt Tolerant Workflow Enactment Engine
for Grid Computing”. Proc. 3L Intl. Conf. on High-Performance Computing “and
Communications. Sorrento (I). LNCS 3726. Septen20@5.

[25] http://www.yawlfoundation.org/software/docuntation. The YAWL foundation. 2010.
Last accessed: 03/31/2011.

[26] Y.Simmhan et al. “Building the Trident Sciditi Workflow Workbench for Data
Management in the Cloud”. In proceedings of thel8td Conf. on Advanced Engineering
g&r)gputmg and Applications in Science. ADVCOMP’2008liema (Malta). October

[27] Object Management Group / Business Process ent Initiative. BPMN
Specifications. http://www.bpmn.org, Last acces§a114/2011.

[28] OASIS Web Services Business Process Executianguage. http:// www.oasis-
open.org/committees/tc_home.php?=wg_abbrev=wshgldccessed: 03/31/2011.

[29] Sherp G., et al. Using UNICORE and WS-BPEL $wmientific Workfow execution in Grid
Environments. Proc. EuroPAR 2009. LNCS 6043. irfgar. 2010.

[30] Ludascher B., et al. Scientific Workflows: Buesss as usual ? Proc. BPM 2009. LNCS
5701. Springer. 2009.

[31] Montagnat J. et al.. A Data-driven Workflow nguage for Grids based on Array
Programming Principles. Proc. SC 2009Workshop on Workflows in Support of Large-
Scale Science. WORKS 2009. Portland (Or). ACM 2009.

[32] Yildiz U. et al. Towards Scientific Workflowdterns. Proc. SC 2009" 4Vorkshop on
Workflows in Support of Large-Scale Science. WORIKI®9. Portland (Or). ACM 2009.

[33] Plankensteiner K. et al.. Fault-tolerant Babavn State-of-the-Art Grid Workﬂow([)l_)
Management Systems. CoreGRID Technical Report T®-00October 2007.
http://www.coregrid.net Last accessed: 03/31/2011.

[34] Duvigneau R. et al. A three-level parallelipatstrategy for robust design in aerod?énamics.
Proc. 20th Intl. Conf. on Parallel Computationali&lDynamics. May 2008. Lyon (F).

[35] Joseph E.C., et al. A Strategic Agenda fordpean Leadership in Supercomputing: HPC
2020. IDC Final Report of the HPC Study for the D@rmation Society of the EC. July
2010. Available at: http://www.hpcuserforum.com/Hlast accessed: 03/31/2011.

[36] %I(IMP.E., Murray W., Wright M.H. Practical @mization. Elsevier Academic Press.

[37] Gmsh. https://geuz.org/gmsh/ Last accessgt102011.

[38] Metis. http://glaros.dtc.umn.edu/gkhome/matistis/overview Last accessed: 03/31/2011.
[39] Num3sis. http://num3sis.inria.fr/blog/ Lastcassed: 03/31/2011.

[40] OPALE project at INRIA. http://www-opale.infj@es.fr Last accessed: 03/31/2011.

INRIA

A Distributed Workflow Platform for High-Performam&imulation 21

@ YAWLEMor - C:\Program Files\ YAWL#Study-2.0.1 \ Examples' distributed_codeletyawl =] ﬂ

Specification Net Edt Elements Jools View Hep

Ble R [+ = 3 x| =
Dﬂ'@ 1| %) astribted_codelets
ajal:
+ — Ea = 1
e C oy o] i i M e st B

valeurs_nominales Ihs;dcsinn run_cbservations get_data criteria results_visualization

Web Custom BQL’OQL@@ Local Shell
Services Services Scrints Scripts

[{P1HP2 'DOKD1+{D2] \cokm—]

Figure 16. The platform interfaces to local and disibuted codes.

= I“I
[ap | |
el o
— e e iz
[Tl
[iharzanl
T
Rl
e
)
oy
‘ "
[
Flaw
-]
L) (ETE 2 o
i'hm:mrno— | Meatene Fow |
| 2 | ==
e e o WU N A, O
Jncorooted | | Cosddizng Crospermsiizn Axsoosiian

[T ‘l_l:lp'lnl| [Ectrzh | S

Figure 17. The BPMN metamodel - © 2007 OMG.

RR n° 7600

22 Toan Nguyén, Laurentiu Trifan

YalnL

123 L Custom Custom Custam Custamn [l Custom
EarAnas Service Senvice Senvice Sanvice Service

cl FAMOSA
Cluster P !
Front-end UFITII'I'HZEJ[IDE'I
Suite

Figure 18. A distributed optimization experiment.

first level
| Optimizer FAMOSA parallelism

| zal s
—__(optimization) Geometry

S;]DT?W e Geometry s

——— parallelism

Condition 1 ___-——--“"'_—___-_ T robustness) o 1
- lCondition 2 HJE“‘-“_____LCDI'IC!ILIOH K '

' i
' [Density map
! ' —F[GMSH gnd generator

| Mesh
Y

! v third level
| Partitionar (METIS) parallelism

: !) / ; (solver)
' : Mesh ‘I’/ iMESh 2 Mesh P

NUM3SIS NUM3SIS NUM3SIS

' | Flow solver || Flow solver || Flow solver

] ' e N ¢50Iullon 2 /solution P

; : Post-treatment i
i "‘-—._‘__H_ —{ (o] I

! T) fﬂ;—”
G e + Data 2 e

¢ Data1 ™ £ Daak

i
Cost function evaluation

¢ Value 1 +Va||,1132 Value N ¢

Figure 19. The FAMOSA optimization suite - © 201@Project OPALE - Régis Duvigneau.

INRIA

A Distributed Workflow P

latform for High-Performam&imulation

23

B VAWLEditor - £\ Program Fles\ YAWL4Study-2.0.1 Examplesdistributed_codelet yoml

Specification Het E# Hements Tools View Help
. EIEFRE ENE

2 x|

o/&
=2

[Taskl |
i ,.:h: ? valeurs_nominales

= @ manual o

o €, Aitomatd | /

+ [Routing S
$_ Piugin /

Ihs_design run_sbservations get_data criteria
5 A 4 &
4 L 5
| / | N
! V4 1
i

/

/

€
¥ |

oo " ==Distributed HPC application steering

results_visualization

¢

\6\’ J
‘e‘A
\ 'P
v

Linux OS

Linux VM Windows VM

Linux OS

High-Speed Network Infrastructure

Figure 20. The distributed simulation platform.

/local_homejtnguyen/gmsh-2.5.0-Linux/share/doc/gmsh/examples/plex_vl xp0l.stp

(—][0]

Mess

:) 3
Info : meshing surfice £ (BSpline surface,
Info : Doms meshing 2n {1,3078 =)

Info : meshing oD,..
s mesh Srme 1

me

Options - Mesh

Fost-pra

Figure 21. Mesh for vehicle aerodynamics simulatio(Gmsh screenshot).

RR n° 7600

24 Toan Nguyén, Laurentiu Trifan

Distributed HPC application resilience

Bor|
FT-Pro
llinois
fmts|
i Inst.
FTB “l o o o \l|@ Tech.
(CIFTS)e—s -
Fault-Tolerant Linux OS Linux VM Windows VM Lt 0s
Backpane
[—
| High-Speed Network Infrastructure |

Fault-Tolerance software examples

Figure 22. Examples of resilience and fault-tolerare software.

E.L]

Generic e
Fault .
Tolerancs © ® \|@®
Sub S)
Syste'm Linux VM Windows VM Linux OS System &
(aka FTB) Comm.
«—> Fault
Tolerance
High-Speed Network Infrastructure |

Figure 23. Asymmetric checkpoints software for apptation resilience.

INRIA

A Distributed Workflow Platform for High-Performam&imulation 25

Dynamic Error Handler

TO

Figure 24. Error handler for a task T1 error: YAWL exlet.

TR P e g |

He Edt Mew Souces Al

Erl

bion Feads - Help

BEE me KAk PHE e B

(@] 2@ B s Badtkddi @Bea
DEPRTEELARE G
HBELI:IJEI ETnmear % IT BB [3
H buitin: .

L 4
ohfectirspector [

Prepartias | Diplay | nfurmation |

|5 kit | | @meat| (188 Dolate] [

|| Extrapelaba Patchas =

|| Inchuda Sets

11 Inchsda Eonas

1] show Patch Hamss

Ik Cache Math

1] Lpedate Gl

1 wall - patch 5
L front&ndBack - patch

(vl Felds

Comida |

) nuk; =
L#n &

=1 1

Figure 25. Pressure over a 2D airfoil (Paraview tésase).

RR n° 7600

26 Toan Nguyén, Laurentiu Trifan

w s u“ ‘m "E nm g R D 1 e A

e ERr MESPED 9a HaAsEME wel- [&
[=R el B EO4EEdaE @ec
peoRpewgE

R, T

| B btne:

1= INCEETIT

N

Figure 26. Pressure on a NACA airfoil (Paraview tdsase).

INRIA

A Distributed Workflow Platform for High-Performam&imulation 27

8 Content
A Distributed Workflow Platform for High-Performanc e Simulation............cccccccveveee.... 1.
1 (1) o o [UTox 1] o T 3
2 LS P2 Lo IR0 T G 3
3 TeStCase APPlICALION.........ooi it a e e e e 4
el EXAMPIE ettt ettt e e e e e e e e e et eeeeeeaeas 4
3.2 Application WOIKFIOW.uueiiiiiiiiii it 5
R = LY 11 T=T g Lo = 5
4.1 Rationalecccoeeviiiiviiiiiiiiiieeeees
M2 = (ot =Y o) o] I o =1 oo |1 o SO
R I = 10 11 (0] (=T =T (o <

4.4 Asymmetric checkpoints

5 IMPIEMENTALION ...t e e e e e e as 8
5.1 The YAWL workflow management SYStemMccoiciiiiiiiiiiiiiiiieeeeee e e
5.2 EXCeption handling.............uueieiiiiiiiii et e e
TR I = (=TS [15T g (o I
5.4 Distributed workflows
.5 SECUIBO ACCESS. . .uuniiiteieiet et it e eet s st s+t e et e s et e e s e e e et e s eaa s s s b s anetsesaneseen
o I 111 (=] =10 T
5.7 Service orchestration
5.8 Dataflow and CONtrol flOW.........coueiiieeii e et ee e 16
5.9 Other eXPEeriMENTSottt eeeeeene et e e e e e e e e e e e e e e eeaaaaaaeaeeaaan 17
(ST O] o [o] U 1Yo o TP OPOPPPR 18
T BiblHOGraphy ... 19
8 (0]] (=T 0| 27

RR n° 7600

