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Artificial intelligence (AI)

Artificial intelligence (AI) is a field of computer science, built to replicate or simulate 
the cognitive abilities of humans to learn. AI is powered by machine and deep learning 
algorithms running on powerful computers, intended to provide fast and accurate 
output [1]. 

Machine learning is a subfield of AI, that can detect and optimize for important features 
within data to characterize a predefined outcome. In the healthcare domain, data 
originate from a variety of sources:

•	 Clinical data: features derived from the routine clinical workflow (e.g., age, 
height, weight, etc.).

•	 Quantitative imaging data, otherwise called radiomics: that are derived from 
medical images, such as CT, MR, PET, and ultrasound. Radiomics features can 
be characterized into four feature types: intensity, shape, texture, and wavelet.

•	 Genomic data: derived from DNA/RNA information of an organism, mainly 
used to determine the functions of genes. 

Machine learning can investigate each one of these data types individually or by 
coupling all or some of them [2,3]. In healthcare research, machine learning has greatly 
contributed to improving the diagnosis and prognosis processes by facilitating clinical 
decision-making [4,5].

Deep learning is a subfield of machine learning which functionality is inspired by the 
human brain. It uses neural networks with several embedded layers encapsulating a 
large quantity of neurons that can extract useful features from data. Different architec-
tures have been proposed to perform different tasks and improve the performance [6]. 
Deep learning has gained great interest in healthcare research. In the field of radiology, 
the interest has mainly been to automate a multitude of manual processes such as 
image classification, segmentation, and detection and classification of abnormalities [7].

Distributed learning

Data is a key element to drive forward AI developments in both research and industry. 
In this context, the more quality data available to train and validate AI models, the more 
accurate is the outcome derived from it. For this reason, data collection and sharing are 
essential parts for every AI project. Nevertheless, recent legal and ethical considerations 
protecting personal data such as the European general data protection regulation (GDPR) 
and in USA the health insurance portability and accountability act (HIPAA) have made 
the data collection process challenging, time consuming, and costly [8,9]. Multicentric AI 
studies learning from distributed data has the potential to address these challenges. This 
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approach is known as distributed learning, where AI models characterized by machine 
learning or deep learning models learn iteratively or simultaneously from siloed data 
distributed across a network of partners [10–13]. Distributed learning enables large-scale 
data access while preserving privacy. The conventional distributed learning frameworks 
reported in the literature (prior to this thesis), all rely on a central server that coordinates 
the learning in the network. This design is subject to 1) a trust issue, as all partners are 
required to blindly trust the entity that manages the server, 2) a traceability issues that 
originates from the model centralization, thus the partners do not have a transparent 
monitoring system to evaluate the participation of the remaining network partners.

To overcome the issues associated with the conventional design of distributed learning, 
we propose a fully decentralized distributed learning framework. We achieve full decen-
tralization by integrating a public blockchain (Ethereum), which is peer-to-peer (P2P) 
framework that enforces trust, immutability, transparency, traceability, and security on 
the network. In this thesis, we:

Firstly, identify conventional distributed learning and Sequential learning 
coupled with blockchain technology namely Chained Distributed Machine 
learning (C-DistriM), as illustrated in Figure 1.1. 

Figure 1.1: A) conventional distributed learning: all the partners are connected to a server that 1) initializes 
the learning, 2) each partner trains a portion of the model on local data, 3) each partner provides the model 
parameters to the server, 4) the server aggregates the parameters, 5) shares the updated parameters with 
the partners, 6) each partner retrains the local models using the updated parameters and sends them 
back to the server for update, 7) this process repeats until convergence criteria are met. B) decentralized 
sequential distributed learning: each partner holds a copy to the blockchain, that makes the learning 
history available for all, 1) training is initiated by the fi rst partner that is connected to the system, 2) once 
the local model training is over, the next partner can start updating the previous model, 4) this process 
repeats until all partners fi nish updating the model.
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Secondly, evaluate the application of sequential learning on small batch siloed 
data, then we evaluate the C-DistriM infrastructure in real world clinical settings.

The contribution of this work is to enable large-scale data access while preserving data 
privacy and provide a distributed learning framework that enforces trust, immutability, 
transparency, traceability, and security on the network. 

Structure of the thesis

This thesis comprises the following topics:

1. Centralized learning - radiomics: presents a detailed overview of radiomics, 
in the standard centralized learning scheme, and analyzes its abilities in 
improving the clinical decision-making process (Chapter 2). 

2. Distributed learning: appraises the existing implementations of conven-
tional distributed learning frameworks and discuss possible future pathways 
(Chapter 3).  

3. Sequential  learning and  blockchain: outlines blockchain technology 
and the important technical aspects of conventional distributed learning 
frameworks that must be adapted to achieve a successful integration with 
blockchain to accomplish full decentralization (Chapter 4). 

4. Evaluation: is dedicated to first evaluate the fundamental change of the 
conventional distributed learning frameworks, represented by sequential 
distributed learning, on small batches of data (Chapter 5), second evaluate 
C-DistriM in a multinational setting (Chapter 6). Figure 1.2 shows a summary 
of the structure of this thesis. 

This thesis is divided into six chapters.

Chapter 1 provides a general introduction to the thesis.

Chapter 2 describes the process of centralized radiomics, emphasizes its pitfalls, and 
challenges, opportunities within the context of improving clinical decision making.

Chapter 3 investigates the integration of distributed learning in healthcare, identify the 
limitations of the conventional distributed learning frameworks, and propose prospects 
to address those limitations.

Chapter 4 focuses on the implementation of a fully decentralized, immutable, and trans-
parent distributed learning prototype (C-DistriM). The proposed distributed learning 
prototype is powered by the public Ethereum blockchain. The prototype was evaluated 
by simulating two distributed learning networks using two open-source datasets.  
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Chapter 5 is dedicated to investigating the potential of sequential distributed learning 
when applied on very small, siloed sets of clinical and imaging data. Using five open-
source datasets, we evaluated three machine learning models: support vector machines, 
logistic regression, and perceptron. Additionally, we evaluated a more complex 
algorithm that consist of a convolutional neural network.

Chapter 6 presents the results of evaluating C-DistriM in a distributed learning network. 
The model consists of a convolutional neural network to estimate the cancer grade of 
prostate cancer patients using magnetic resonance imaging. 

Chapter 7 discusses the work presented in this thesis and presents further perspectives.

Figure 1.2: Summary of the thesis structure.
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Abstract

Radiomics is the quantitative analysis of standard-of-care medical imaging; the 
information obtained can be applied within clinical decision support systems to 
create diagnostic, prognostic, and/or predictive models. Radiomics analysis can 
be performed by extracting hand-crafted radiomics features or via deep learning 
algorithms. Radiomics has evolved tremendously in the last decade, becoming 
a bridge between imaging and precision medicine. Radiomics exploits sophis-
ticated image analysis tools coupled with statistical elaboration to extract the 
wealth of information hidden inside medical images, such as computed tomog-
raphy (CT), magnetic resonance (MR) and/or positron emission tomography (PET) 
scans, routinely performed in the everyday clinical practice. Many efforts have 
been devoted in recent years to the standardization and validation of radiomics 
approaches, to demonstrate their usefulness and robustness beyond any reason-
able doubts. However, the booming of publications and commercial applications 
of radiomics approaches warrant caution and proper understanding of all the 
factors involved to avoid “scientific pollution” and overly enthusiastic claims by 
researchers and clinicians alike. For these reasons the present review aims to be 
a guidebook of sort, describing the process of radiomics, its pitfalls, challenges 
and opportunities, along with its ability to improve clinical decision making, from 
oncology and respiratory medicine to pharmacological and genotyping studies.
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Introduction

Imaging is a fundamental technology in medicine and is used in clinical practice to aid 
decision making for screening, diagnostic [1], therapeutic [2] and follow-up purposes. 
Radiomics was born in 2012 as an innovative approach to image analysis, using 
automated high-throughput extraction of large amounts of quantitative features from 
standard-of-care medical images [3,4]. The hypothesis is that quantitative analysis of 
medical image data can provide complementary information to aid physicians in the 
decision-making process, aided by automatic or semi-automatic software, in a fast and 
reproducible way [5]. Radiomics is the result of several decades of computer-aided 
diagnosis, prognosis, and therapeutics research [6,7]. A robust radiomics approach 
consists in the identification of a wide variety of quantitative features from medical 
images, the storage of such data in several independent databases functioning as 
a single entity (federated databases) [8] and the subsequent data mining to obtain 
clinically relevant outcomes [9]. Medical images such as CT, MR, and/or PET scans can 
be analysed and processed to extract relevant radiomics features which can be used 
for screening, diagnostic [10], follow-up and prognostic [11] purposes as well as for 
pharmacokinetic and pharmacodynamic studies [12–14]. Databases which collect 
and cross-reference vast amounts of radiomics data along with other relevant patient 
information from millions of cases are already a reality, but still present considerable 
management problems [15–18]. However, Radiomics is not the “philosopher stone” for 
clinical decision-making. Since its inception in 2012, the number of radiomics publica-
tions has grown exponentially (See Figure 2.1) as well as its detractors and disbelievers. 
The proven efficacy of radiomics approaches and the enthusiasm around this new 
method have to be tempered by its informed application and the careful evaluation 
of its real potential.

Figure 2.1: Number of “radiomics” publications per year (2012-2020). Data obtained from Scopus 
(09/09/2020).
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Two main approaches are used for radiomics analysis, hand-crafted features and 
deep learning (DL). Radiomic hand-crafted features (such as intensity, shape, texture 
or wavelet) offer information on the specific area of the imaging scan one wishes to 
investigate, might be a tumour region or a whole organ. These features are distinct yet 
interconnected to other data sources (such as clinical, treatment or genomic data) [19]. 
The main challenge lies in the collection and integration of multimodal data sources 
in a quantitative fashion, delivering unambiguous clinical information and in turn 
allowing accurate and robust outcome prediction [20]. Deep learning methods instead 
uses a data driven approach for model creation, mimicking simplified brain neuron 
interactions. Deep learning has the advantage of not needing prior segmentation of 
the imaging scan: however the “black box” approach of DL i.e. the lack of interpret-
ability of the models and features generated is seen as the main limitations for clinical 
applicability. Moreover, DL approaches need a large amount of data to truly express 
their potential, and sometimes the patients cohort available, for example in case of 
rare diseases, are not enough to leverage a DL architecture in an effective manner.

For as much as this scenario seems straightforward and most alluring for clinicians, there 
are still too many published prediction models which lack standardized evaluation of 
their performance, reproducibility, and/or clinical utility [21,22]. 

In this review, the pitfalls and challenges along with the opportunities presented by 
radiomics to improve personalized precision medicine will be showcased, stressing 
important methodological aspects of radiomics prediction model both in term of 
development and validation. We will explore the advanced information technologies 
that are essential for the simultaneous management of radiomics and clinical data. 
Finally, we will present our outlook on the necessary steps that still need to be taken 
to ensure widespread acceptance of radiomics in current clinical practice.

Good practices in radiomics studies 

Radiomics can be defined as a collection of methods (algorithms) used to extract a large 
number of features from radiographic medical images [9]. Radiomics emerged originally 
in the field of oncology [1,23]; however, it can be applied to any medical study where 
a disease or a condition can be imaged [24–27]. A radiomics study can be divided into 
four main phases: data selection and curation, features extraction, exploratory analysis 
and modelling. Below we report a typical step-by-step radiomics workflow (Figure 2.2).
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Data selection and curation
Radiomic analyses starting point is the selection of an imaging technique (CT, MRI, PET, 
etc.), the identification of the region or volume of interest (ROI or VOI) and the choice of 
a specific prediction target — the relevant clinical question that the radiomics analysis 
aims to answer. In a typical oncological study, the whole primary tumour is analysed and 
linked to available data on treatment outcomes and disease prognosis, such as survival 
rate or tumour shrinkage. Radiomic analyses can be performed on subregions of the 
tumour (habitats), metastatic lesions, as well as in normal tissues. Radiomics analysis, 
however, is not restricted to radiotherapy and can be applied to any image generated 
in the clinical setting [28–30]. The use of standardized imaging protocols to eliminate 
unnecessary variability is of paramount importance [9,31] and has been recognized 
through the years as one of the main factors leading to low quality radiomics analysis 
[32]. Still nowadays, however, non-standardized imaging protocols are commonplace: 
reproducibility and comparability of radiomic studies would immensely benefit from 
clear guidelines on how imaging protocols should be applied and reported. To at least 
partially overcome these issues, images datasets must be carefully evaluated and where 
possible standardized, following well-established radiomics criteria [33]. Selection of 
slice increment and reconstruction kernel can be used, for example, as criteria to include 
or exclude imaging scans for radiomics feature extraction. 

•	 Medical imaging 

Segmentation 
Segmentation is the first fundamental step in radiomics analysis and can be performed 
manually by expert radiologist/clinicians or (semi-) automatically [34]. Both approaches 
have their pros and cons and the most suited one varies on a case-by-case basis [35,36]. 
In general, automatic segmentation is more reproducible and faster than hand-made 
segmentation. The segmentation step determines which voxels within an image 
are analysed: it is easy to see that the variability in segmentation (both human- and 

Figure 2.2: Scheme of the radiomics workfl ow for hand-crafted features (top) and deep learning 
(bottom).
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machine-driven) can introduce bias in the evaluation of the derived radiomic features 
[37]. For example, a semi-automatic segmentation method can result in different 
radiomic features than a manual segmentation, as well as segmentation performed 
by two different physicians. Comparing multiple segmentation approaches might 
be a solution to limit the amount of this bias [38] . It may consist in different clinical 
experts manual segmentation or the, perturbation of the automatic or semi-automatic 
segmentations with noise [39] or again the combination of different segmentation 
algorithms [40,41]. 

Phantom studies and feature stability
Another source of variability in the preliminary radiomics phase is the inter-machine 
and inter-vendor differences between the scanners employed [42]. In most real-life 
situation, the radiomics study must rely on data acquired on different scanners from 
different producers and with different “history”: thus, not taking into account this 
systematic source of uncertainty might jeopardize the radiomics model prediction 
capabilities. To overcome at least part of this intrinsic limitation, the use of phantoms 
(i.e. an object built in shape and materials as close as possible to human tissue and 
organs) is a suitable mean to assess and account for the possible similarities and dif-
ference [43]. Radiomics features need also to be robust with respect to other possible 
sources of variability such as target volume motion, expansion or shrinkage. To probe 
the feature resilience, test-retest approaches [44,45] can be exploited to measure 
feature stability: for example, two datasets of images acquired at two different time 
points from the same subjects (e.g. patients or phantoms) or the use of cohorts from 
multiple sources [46,47]. In this way, volatile or robust features can be identified and 
excluded from model development. 

To ameliorate the reproducibility of radiomics features, several methods of harmoni-
zation have been proposed in the literature. The ComBat method, initially developed 
for genomics, aims to remove non-biological differences related to scanner type in 
an effort to combine radiomics features extracted from data coming from different 
centres [32,48,49]. Other methods includes Neural Network training for radiomics 
feature standardization [50], intensity and diffusion maps harmonization [47,51] and 
data augmentation with generative adversarial networks (GAN) [52]. For a complete 
overview see [53].

Feature extraction 
The essence of radiomics is the extrac tion of quantitative image features to character-
ize VOIs. Hand-crafted radiomics feature can be divided in five group: size and shape 
based–features, descriptors of the image intensity histogram, descriptors of the 
(spatial) relationships between image voxels, features extracted from filtered images, 
and fractal features [54,55]. Feature values are dependent on image pre-processing 
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steps performed, such as filtering, or intensity discretization and reconstruction. Fur-
thermore, variations exist in feature nomenclature, mathematical definition, extraction 
methodology, and software implementation of the extraction algorithms [56–58]. To 
harmonize radiomics features and model reports, all these differences has to be taken 
into account and clear specification included with each model [33].

Exploratory analysis 
The true potential of radiomics approaches lies in the possibility to combine radiomics 
and other non-image based features with the prediction endpoint to create a single 
dataset. This approach allows the evaluation of possible correlations between features. 
However, some radiomics features that are highly correlated with other routine clinical 
features (such as tumour stage or age) might not provide additional meaningful infor-
mation. Approaches such as (unsupervised) clustering, PCA (principal component 
analysis) [59] or MRMR (maximum relevance minimum redundancy) [60] identify and 
eliminate redundancy, for instance, by reducing highly correlated features to a single 
representative archetypical feature. This is a fundamental step to avoid overfitting 
[61,62]. On the other hand, additional data collected, for example, from multiple seg-
mentations or phantom studies can be used to test the feature robustness [63,64]. This 
process of reduction should be described clearly, to avoid misinterpretation and aid in 
the unambiguous identification of relevant features. Also, univariable correlations of 
single radiomics features with clinical outcome is part of the exploratory analysis and 
could inform the subsequent modelling step, underlining relations between single 
radiomics features with clinical covariates of interest.

Modelling 
After features extraction and possible reduction, the creation of the radiomic model 
encompasses three major steps: feature selection, modelling methodology, and 
validation. Regarding the choice of modelling methodology, the identification of the 
best machine-learning method is a crucial step; thus, in an ideal scenario, multiple 
methods should be utilized and compared [65] and their implementation should be 
comprehensively documented. Another fundamental point in the modelling phase 
is the validation, which has to be performed in order to verify the applicability of the 
model in a real-world situation. Ideally, the model should be internally and externally 
validated, and the performance compared and clearly reported [20,66,67].  

•	 Feature selection 
The number of radiomics feature which could be extracted from medical images is 
technically unlimited. Several different filters, feature categories and other parameters 
can be used to mine the information hidden inside an imaging scan. Including all the 
possible features, even if practically possible, would result in overfitting which in turn 
renders the model useless for patients not previously evaluated (the so called curse 
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of dimensionality) [68,69]. The most used approach is the reduction to archetypal 
feature representing a group or class of features, identified by dimensionality reduction 
techniques. Several different kind of clustering algorithms and PCA are available and 
also this choice has to be justified and reported in detail, to promote transparency and 
replicability. Again, the same feature might be relevant for a given dataset, segmented 
in a certain way for a specific end-point prediction but not important whit a different 
segmentation routine or a different cohort of patients. 

•	 Modelling methodology
The choice of modelling technique has been proven to affect prediction performance 
in radiomics [65]. Ideally, multiple modelling methodologies should be tested to 
select the best approach for the given data set and the other parameters involved 
in the creation of the model. Comparison between machine Learning (ML) and deep 
Learning (DL) approaches are common [70,71] or even combination of both [72] and 
the final choice has to take into account, along with the performance of the model, 
also the applicability of the proposed strategy in a real-world situation, considering for 
example computational burden or explainability of the resulting predictions [73,74]. 
Another key point in the selection of modelling methodology is replicability by other 
researchers, in the light of responsible and transparent research and innovation. This 
can be achieved, for example, by making the software code available in public reposi-
tories such as GitHub [75], Gitlab [76] and OpenML [77]. Also, many scientific journals 
put in place, in the last years, tools to help data and algorithms sharing, making these 
available to the scientific community.  

•	 Validation 
Validation techniques are needed to assess the generalizability of the model predictions. 
Validation answers the question whether the model is predictive for the whole target 
patient population or just for a particular subset of cases analysed. Model performances 
are typically measured in terms of discrimination and calibration. Discrimination is 
represented by the concordance statistics. For example the discrimination metric for 
binary outcome is the receiver operating characteristic (ROC) curve, or area under the 
ROC curve (AUC) [78]. The AUC is linked to the sensitivity and specificity of the model 
and represents the probability that a random patient matching an outcome is assigned 
in the class specific for that outcome with a larger probability than another random 
patient who does not match the outcome. The calibration, instead, is a measure of the 
agreement between observed outcomes and model predictions [79]. Calibration can 
be reported using a calibration plot and calibration-in-the-large/slope, with the Brier 
score, the mean squared prediction error, as a measure of overall performances. 

The statistical methods used on both training and validation data sets need to be 
reported in detail. A valid model must exhibit statistical consistency between the 
training and validation sets. In terms of validation set selection, an externally validated 
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model has more credibility than an internally validated one because validation with 
independent data sets is considered more robust [67,79–81]. For “good radiomics 
practice”, the reproducibility and replicability of the model should also be included in 
the validation step. Reproducibility relates to the verification of the result by independ-
ent researchers using the same methodology and data set, to verify the absence of 
errors, while replicability means the possibility of replicating the radiomics analysis with 
the same methodology but different appropriate datasets, to generalize the original 
findings [82–86]. Reproducibility and replicability in radiomics are, however, not possible 
if researchers do not disclose all the details of the analysis performed. Each radiomics 
model must be accompanied by the of imaging protocol used for image collection, 
selected scans for analysis with exclusion and inclusion criteria, segmentations of VOIs, 
detailed accounts of how features were extracted (including the pre-processing and 
feature reduction , and of the modelling methodology used (ideally, the code) [87]. 

The Radiomics Quality Score: 3 years later 

In 2017 the Radiomics Quality Score (RQS) was proposed in an effort to help the scientific 
community assessing the quality and scientific/clinical value of a radiomics study at 
a glance [4]. A similar example is the Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis Or Diagnosis (TRIPOD) initiative [80]. The RQS is 
determined by 16 key criteria which are assigned to a point value for a maximum of 36 
points (100%). These criteria cover image acquisition protocols, statistic data treatment, 
cohorts provenance and open science policies, encompassing all the relevant aspects 
which a reliable radiomics publication should present. Evaluating, 3 years after its pub-
lication, on what has been achieved with this initiative, we can clearly see that the road 
ahead is still long. The RQS was espoused with enthusiasm by the scientific community: 
however, was mainly used to assess the quality of already published studies. Recently, 
several systematic reviews have appeared, covering a variety of cancers: breast cancer 
[88,89], hepatocellular carcinoma [90], gliomas [91], prostate cancer [92], lung cancer 
[93,94] and renal carcinoma [95]. All authors reported a very low RQS for the investigated 
publications (lower than 50%, and in most cases lower than 20%) with lack of external 
validation, prospective study registration and feature robustness test as the main causes. 
Also, open science policies and relevant clinical outcomes are among the most critical 
points raised for already published radiomics studies. To the best of our knowledge, 
however, researchers are still reticent in calculating and publishing the RQS for their 
newly developed radiomics models. In our opinion this is slowing down considerably the 
acceptance of radiomics as a full-fledged ancillary method for critical clinical decision-
making. The RQS should be seen as a quality seal of the published results more than a 
way of underlining the possible weaknesses of the proposed model. A low RQS score 
does not necessarily mean that the research is not sound but it should be part of the 
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discussion and motivate the authors to carefully think through all the steps performed 
and discuss why deviation from “good practice” is justified or what can be done better. 
Editors, reviewers, and readers should be able to ascertain whether a radiomic study 
is compliant with good radiomics practice or, alternatively, whether the authors have 
justified any non-compliance. Overly optimistic claims concerning robustness and 
generalizability diminish scientific and clinical impact and should be avoided.

The consideration about the apparently limited impact of the RQS thus far might spur 
the scientific community to ask the question whether the RQS requires regular evalu-
ation and updating in such a fast-evolving field, like radiomics. For example, RQS was 
tailored on hand-crafted feature while nowadays deep learning is gaining momentum 
and some of its inherent strengths and weaknesses might not be captured correctly in 
the current version of the RQS score.

Radiomics towards personalized medicine

Virtual biopsy
In patients with cancer, different parts of the tumour have distinct molecular character-
istics, but also different lesions (metastases) from a tumour disease, which may have a 
role in terms of therapeutic efficacy and such differences, might change over time. As 
it is not possible to take samples of every part of each tumour at multiple time points, 
the optimal characterization of tumours is not achieved using biopsy[96]. However, 
radiomics might be used to “sample” different part of the tumour at different time 
points (i.e. different scans) and, along with genomic data, used as a virtual biopsy tool 
[97,98]. The combination of radiomics and genomics is called radiogenomics and has 
gathered considerable attention in the last years, as a way of augmenting the power 
of both approaches, for personalized medicine and treatment follow-up [99–101].

Beyond oncology
Radiomics was mostly employed in oncology up to now, but in the last years showed 
its potential for other clinical applications. Radiomics analysis was performed on MRI 
scans to distinguish between different cognitive disorders such as Alzheimer’s disease 
[102–104], autism spectrum disorder [105] or amnestic mild cognitive impairment 
(aMCI) [106,107]. Another field in which radiomics might give a relevant contribution is 
bone disease study. Radiomics methods have been reported for the early identification 
of osteoporosis [108] or for classification of osteoporotic patients compared to normal 
subjects or suffering from osteopenia [109]. Radiomics was also applied to maxillofacial 
radiology [110]. Among the new application of radiomics, the 2020 brought forth a clear 
winner. The outbreak of new SARS-CoV-2 virus and the subsequent pandemic placed the 
research community under unprecedented pressure in the race to find better diagnostic 
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and therapeutic tools to fight this threat to human health. The correlation between 
COVID-19 infection and lung CT scans characteristics was reported early during the 
year [111,112], suggesting that radiomics might be a successful approach in the early 
diagnosis and prognosis of COVID-19 patients. In the last months of 2020, the scientific 
community has produced a deluge of radiomics publications related to COVID-19. 
Radiomics has been used for diagnosis [41,113,114], to distinguishing pulmonary 
infections from different sources [115–117] or predicting the length of hospitalization 
[118]. A complete overview of all the radiomics approaches for COVID-19 is beyond 
the scope of the present review; a relevant collection of the most interesting articles 
can be found in [119,120].

Delta radiomics 
The vast majority of radiomics methods published focus on imaging data acquired 
at a single time point, mostly imaging tumours before the start of treatment. Delta-
radiomics introduces a time component with the extraction of quanti tative features 
from image sets acquired over the course of treatment [121–123], which provides 
information on the evolution of feature values. Delta-radiomics promises to improve 
diagnosis, prognosis, prediction, monitoring, image-based intervention, or assessment 
of therapeutic response [124,125]. Delta radiomics has been proven effective in the 
study of immunotherapy response [126,127] or to predict recurrence in oncological 
patients [128].

Open science and data sharing 
There is a pressing need to embrace knowledge and data-sharing technology [129], 
which transcends institutional and national boundaries [130]. This is especially true for 
radiomics whose potency is directly linked to the amount and quality of data available. 
Larger datasets, deeper clinical and molecular information and homogeneous imaging 
sources will result in more robust and reliable radiomics models. To unlock the full 
potential of radiomics for clinical decision making, the research and clinical community 
must strive for a truly open science – sharing datasets, algorithms, best practices and 
finding new ways to improve collaborations. One initiative to accomplish these goals 
is CancerLinQ [131], the ASCO data centralization approach. Another initiatives are 
worldCAT and its European counterpart euroCAT [132] that consist in a novel data-
federated approach that successfully links radiotherapy institutes in the Netherlands, 
Germany, Belgium, Italy, Denmark, Australia, China, India, South Africa, Ireland, UK, 
USA and Canada [133,134]. Other important initiatives include The Cancer Imaging 
Archive (TCIA) [135], The quantitative imaging network (QIN) [136], the quantitative 
imaging biomarkers alliance (QIBA) [137], the MEDomics consortium [138], and quan-
titative imaging in cancer: connecting cellular processes with therapy (QuIC-ConCePT) 
[139]. To overcome data sharing issues, such as privacy concerns or insufficient infra-
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structures, an approach based on distributed machine learning for radiomics model’s 
creation has been proposed. The concept of distributed (federated, privacy preserving) 
machine learning is not new in healthcare application [8,133] but has recently shown 
its potential for radiomics [140,141]. For example, Shi et al. performed a multi-centre 
study to develop a radiomic signature for lung cancer in one institution and validated 
the performance in an independent institution, without the need for data exchange 
[142]. In another recent case study, Bogowicz et al. developed and validated a radiomic 
signature for head and neck cancer, training the model remotely from 6 independent 
cohorts, showing that the performances of the distributed model were as good as 
the one obtained with traditional radiomic approach [143]. The next step in this open 
science initiative for radiomics should be the creation of database to store and cross-
reference radiomics feature and relevant clinical data (radiomics ontology [144,145]). 
Also, the accessibility of radiomics in general must be improved and some initiatives 
in this regard are already in place, especially from a software perspective. Several open 
source or freeware software are already available [58,146–148] and code sharing is 
becoming more and more accepted in the scientific community.

New applications of radiomics 
In the last years, radiomics had broaden its horizon, pushing the boundaries of what was 
achieved thus far. The possibility to use radiomics signatures to explore new medical 
conditions is expanding. Recently, a signature for the determination of chromosome 
deletion in low grade glioma (LGG) patients [149] has been reported. The authors 
developed two radiomics signature, composed of seven and five features respectively, 
extracted from T2- and T1-weighted post-contrast MRI. Both signatures showed an 
accuracy higher than 0.70. Another recent example of the novel pathways for radiomics 
is represent by the paper of Mu et al. [150]. The authors realized a radiomics signature on 
baseline PET-CT image of NSCLC patients treated with immune checkpoint inhibitors. 
The signature was able to predict prolonged weight loss syndrome (cachexia), which 
contribute to primary resistance to immune checkpoint inhibitors therapy. The signature 
was also able to predict durable clinical benefit (DCB), progression-free survival (PFS) 
and overall survival (OS). The performance on this signature in the external testing 
cohort were satisfying (AUC higher than 0.65). Radiomics was also used to explore 
different imaging technique such as ultrasound imaging (US). Chiappa et al. [151] 
developed a signature for differential diagnosis of myometrial tumors. While the study 
is based on single center data, performance of the signature in discriminating between 
patients with sarcoma or myoma were very good (accuracy of 0.85), proving that also 
US imaging can be successfully mined via radiomics approaches. The combination of 
radiomics and digital pathology has been also recently reported for different kind of 
cancer such as nasopharyngeal carcinoma [152], non-small cell lung cancer [153] and 
pancreatic cancer [154] among others. All these examples showcase the versatility 
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of radiomics which could stem from a closer collaboration with clinical expert and AI 
scientist beyond the current applications.

Conclusions and future outlook

The outlook for radiomics is very promising and the efforts devoted to its standardiza-
tion are already bearing their fruits. However, there is still much work to do, especially 
to link fundamental research to current clinical practice. Physicians and healthcare 
personnel should be involved from the start of the process, along with relevant 
authorities. On the other hand, more effort should be devoted in the technological 
transfer, taking the published research and perform the necessary steps to bring it 
from a (validated) proof-of-concept to the clinic. This also emphasizes the need for 
comprehensive and universal indicators (such as the RQS) of the quality of a model. 
The normative framework is currently evolving along with the innovations in the field 
of AI driven healthcare. For example, FDA is gathering feedbacks and propositions to 
draft a novel regulatory framework for AI/ML based medical devices [155]. Paradigms 
need to re-invented to allow these breakthroughs to reach the clinic in the very near 
future, always putting patient’s welfare first. Personalized, patient-centric medicine is 
almost a reality and radiomics is playing a major role in it and will represent one of the 
key factors for the future of healthcare.
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Abstract

Big Data for healthcare is one of the potential solutions to deal with the numerous 
challenges of healthcare such as rising cost, aging population, precision medicine, 
universal health coverage and the increase of non-communicable diseases. 
However, data centralization for big data raises privacy and regulatory concerns.

Covered topics include (1) an introduction to privacy of patient data and distrib-
uted learning as a potential solution to preserving this data, a description of the 
legal context for patient data research, and a definition of machine/deep learning 
concepts; (2) a presentation of the adopted review protocol; (3) a presentation 
of the search results; (4) a discussion of the findings, limitations of the review, 
and future perspectives.

Distributed learning from federated databases, makes data centralization unnec-
essary. Distributed algorithms iteratively analyze separate databases: essentially 
sharing research questions and answers between databases instead of the data 
itself. In other words, one can learn from separate and isolated datasets without 
patient data ever leaving the individual clinical institutes.

Distributed learning promises great potential to facilitate Big Data for medical 
application in particular for international consortiums. Our purpose is to review 
the major implementations of distributed learning in healthcare.
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Introduction

Law and ethics seek to produce a governance framework for the processing of patient 
data that produces a solution to the issues that arise between the competing desires of 
individuals in society for on the one hand privacy and on the other advances in health 
care. Traditional safeguards to achieve this governance have come from, for example, 
the anonymization of data, or informed consent. These are not adequate safeguards 
for the new big data and artificial intelligence methodologies in research: it is increas-
ingly difficult to create anonymous data (rather than pseudonymized/ coded data) or 
to maintain it against reidentification (through linking of datasets causing accidental 
or deliberate reidentification). The technology of big data and artificial intelligence 
(AI), however, itself increasingly offers safeguards to solve the governance problem. 
In this paper we explore how privacy-preserving distributed machine learning from 
federated databases might assist governance in healthcare. The paper first outlines the 
basic parameters of the law and ethics issues, and then discusses machine learning and 
deep learning. Thereafter, the results of the review are presented and then discussed. 
The methodology for this paper is that distributed machine learning is an evolving 
field in computing, with 665 articles published between 2001 and 2018, and the study 
is based on a literature search and focus on the medical applications of distributed 
machine learning and provide an up-to-date summary of the field.

The legal context for patient data research 
The challenges in law and ethics in relation to Big Data and Artificial Intelligence are 
well documented and discussed [1-16]. The issue is one of balance: privacy of health 
data and access to data for research. This issue is likely to become more pronounced 
with the foreseeable developments in healthcare, notably in relation to rising cost, 
aging population, precision medicine, universal health coverage and the increase of 
non-communicable diseases. However, recent developments in laws, for example, in 
the European Union’s General Data Protection Regulation, seem to maintain the tra-
ditional approach that seems to favor individualism above solidarity. Individualism is 
strengthened in the new legislation. There is a narrowing of the definition of informed 
consent in Article 4.11 of the GDPR, with the unclear inclusion of the necessity for broad 
consent in scientific research included in Recital 33.

In relation to the continuing ambiguity of the unclear legal landscape for research using 
and reusing large data sets and linking between data sets, the GDPR is not clear in the 
area of reidentification of individuals. For the GDPR, part of the problem is clear - when 
data have the potential when added to other data to identify an individual, then those 
data are personal data and subject to the Regulation. The question is, is this absolute 
(any possibility, regardless of remoteness), or is there a reasonableness test? Recital 26 
includes such a reasonable test: “To ascertain whether means are reasonably likely to 
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be used to identify the natural person, account should be taken of all objective factors, 
such as the costs of and the amount of time required for identification, taking into 
consideration the available technology at the time of the processing and technologi-
cal developments.” 

From this overview of legal difficulties, it is clear that there are obstacles to process-
ing data in Big Data, Machine Learning and Artificial Intelligence methodologies and 
environments. It must be stressed that the object is not to circumvent the rights of 
patients, or to suggest that privacy should be ignored. The difficulty is that where 
the law is unclear, there is a tendency towards restrictive readings of the law to avoid 
liability, and in the case of the methodologies and applications of data science discussed 
here, the effect of unclear law and restrictive interpretations of the law will be to block 
potentially important medical and scientific developments and research. Each of the 
uncertainties will require regulators to take a position on the best interpretation of the 
meaning of the law according to the available safeguards. The question for the data 
science community is, how far can that community itself address concerns about privacy, 
about reidentification, and about safeguarding autonomy of individuals and their 
legitimate expectations to dignity in their treatment through the proper treatment of 
their personal data? How far distributed learning might contribute a suitable safeguard 
is the question addressed in the remainder of this paper.

Machine learning
Machine learning comes from the possibility to apply algorithms on raw data to acquire 
knowledge [1].  These algorithms are implemented to support decision-making in 
different domains including healthcare, manufacturing, education, financial modeling, 
and marketing [2,3]. In medical disciplines, machine learning has contributed to 
improving the efficiency of clinical trials and decision-making processes. Some examples 
of machine learning applications in medicine are the localization of thoracic diseases 
[4], early diagnosis of Alzheimer [5], personalized treatment [6], outcome prediction 
[7,8], and automated radiology reports [9].

There are three main categories of machine learning algorithms. Firstly, in supervised 
learning, the algorithm generates a function for mapping input variables to output 
variables. In unsupervised learning, the applied algorithms do not have any outcome 
variable to estimate and the algorithms generate a function mapping for the structure 
of the data. The third type is referred to as reinforcement learning, whereby in the 
absence of a training dataset the algorithm trains itself by learning from experiences 
to make increasingly improved decisions. A reinforcement agent decides what action 
to perform to accomplish a given task [10,11]. Table 3.1 provides a brief description of 
selected popular machine learning algorithms across the three categories.
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Deep learning
Deep learning is a subset of machine learning which, in turn, is a subset of artificial 
intelligence [12], as represented in Figure 3.1. The learning process of a deep neural 
network architecture cascades through multiple nodes in multiple layers, where nodes 
and layers use the output of the previous nodes and layers as input [13]. The output 
of a node is calculated by applying an activation function to the weighted average of 
this node’s input. As described by Andrew NG [14], “The analogy to deep learning is 
that the rocket engine is the deep learning models and the fuel is the huge amounts 
of data that we can feed into these algorithms.” Meaning that the more data are fed 
into the model the better the performance. Yet, this continuous improvement of the 
performance in concordance with the amount of the data is not correct for traditional 
machine learning algorithms reaching a steady performance level that does not improve 
with the increase of the amount of the training data [15].

Figure 3.1: Relationship between artificial intelligence, machine learning, and deep learning.

Methods and material selection

A PubMed search was performed to collect relevant studies concerning the utilization 
of distributed machine learning in medicine. We used the search strings: “distributed 
learning”, “Distributed machine learning” and “privacy preserving data mining”. The 
preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement 
was adopted to select and compared distributed learning literature [16]. The PRISMA 
flow diagram and checklist are slightly modified and presented in the Supplementary 
Materials (Section A and B) respectively. The last search for distributed machines learning 
articles was performed on 28-02-2019.
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Search results

A total of 127 articles were identified in PubMed using the search query: (“Distributed 
Learning” OR “Distributed Machine Learning” OR “privacy preserving data mining”). Six 
papers were screened, a brief summary of each article is presented in the Table 3.2.

Distributed learning
Distributed learning ensures data safety by only sharing mathematical parameters (or 
metadata) and not the actual data or in any instance data that might enable tracking 
back the patient information (such as patient ID, name, date of birth …). In other 
words, distributed algorithms iteratively analyse separate databases and return the 
same solution as if data were centralized: essentially sharing research questions and 
answers between databases instead of data (watch the animation: https://youtu.be/
nQpqMIuHyOk). Also, before processing with the learning process researchers must 
make sure all data have been successfully anonymized and secured by means of hashing 
algorithms and semantic web techniques respectively as can be seen in Figure 3.2. 
In addition to postprocessing methods to address the multi-center variabilities [17].

•	 Distributed machine learning
A large quantity of training data is required for machine learning to be applied, espe-
cially in outcome modelling where multiple factors influence learning. Provided there 
is sufficient and appropriate data, machine learning typically results in accurate and 
generalizable models [18,19]. However, the sensitivity of the personal data greatly 
hinders the conventional centralized approach to machine learning, whereby all data 
are gathered in a single data store. Distributed machine learning resolves legal and 
ethical privacy concerns by learning without the personal data ever leaving the firewall 
of the medical centers [20].

The euroCAT [21] and ukCAT [22] projects are a proof of distributed learning being suc-
cessfully implemented into clinical settings to overcome data access restrictions. The 
purpose of euroCAT project was to predict patient outcomes (e.g., post radiotherapy 
dyspnea for lung cancer patients) by learning from data stored within clinics without 
sharing any of the medical data.

•	 Distributed deep learning
Training a deep learning model typically requires thousands to millions of data points 
and is therefore computationally expensive as well as time consuming. These chal-
lenges can be mitigated with different approaches. First, as it is possible to train deep 
learning models in a parallelized fashion [23], using dedicated hardware (graphics 
processing units, tensor processing units) [24] reduces the computational time. Second, 
as the memory of this dedicated hardware is often limited, it is possible to divide the 
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training data into subsets called batches. In this situation, the training process iterates 
over the batches, only considering the data of one batch at each iteration [25]. On the 
top of easing the computing burden, using small batches during training improves the 
model’s ability to generalize [26].

These approaches address computation challenges, but do not necessarily preserve 
data privacy. As for machine learning, deep learning can be distributed to protect 
patient data [27,28]. Moreover, distributed deep learning also improves computing 
performance as in the case of wireless sensor networks, where centralized learning is 
inefficient, both in terms of communication and energy [29,30].

An example of distributed deep learning in the medical domain is that of Chang et al. 
[31] who deployed a deep learning model across four medical institutions for image 
classification purposes using three distinct datasets: retinal fundus, mammography, and 
ImageNet. The results were compared with the same deep learning model trained on 
centrally hosted data. The comparison showed that the distributed model accuracy is 
similar to the centrally hosted model [31]. In a different study, McClure et al, developed 
a distributed deep neural network model, to reproduce Freesurfer1 brain segmentation. 
The results demonstrated a performance improvement on the test datasets [32]. Similar 
to the previous study, a brain tumor segmentation was successfully performed using 
distributed deep learning across ten institutions (BraTS distribution) [33].

In the matter of distributed deep learning, the training weights are combined to train 
a final model, and the raw data is never exposed [32,34]. In the case of sharing the 
locale gradients [23], it might be possible to retrieve estimations of the original data 
from these gradients. Training the local models on batches may prevent retrieving all 
the data from the gradients, as these gradients correspond to single batches not all the 
local data [35]. However, setting an optimal batch size needs to be considered [23], to 
assure data safety and model’s ability to generalize [26,36,37].

•	 Privacy and integration of distributed learning networks
Privacy in a distributed leaning network addresses three main areas; data privacy, the 
implemented model’s privacy, and the model’s output privacy. Data privacy is achieved 
by means of data anonymization and data never leaving the medical institutions. The 
distributed learning model can be secured by applying differential privacy techniques [38] 
preventing leakage of weights during the training, and cryptographic techniques [39]. These 
cryptographic techniques provide a set of multi-party protocols that ensure security of the 
computations and communication. Once the model is ready, not only can the network 
participants use it to learn from their data, but this learning should be able to be performed 
locally and under highly private and secure conditions to protect model’s output [21].

1 An open-source tool for preprocessing and analyzing (segmentation, thickness estimation …) of human 
brain MRI images (http://freesurfer.net/fswiki/FreeSurferWiki).
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The users of a machine/deep learning model are not necessarily the model’s develop-
ers. Hence, documentation and the integration of automated data eligibility tests have 
two important assets:

•	 The documentation ensures providing a clear view of what the model is 
designed for, a technical description of the model, and its use.

•	 The eligibility tests are important to ensure that correct input data is extracted 
and provided prior to executing the model: In euroCAT [21], a distributed 
leaning expert installed quality control via data extraction pipelines at 
every participant point in the network. The pipeline automatically allowed 
data records fulfilling the model training eligibility criteria to be used in the 
training. The experts also test the extraction pipeline thoroughly in addition 
to the machine learning testing. However, there were post processing com-
pensation methods to correct for the variations caused by using different 
local protocols [17].

Discussion

If one examines oncology, for instance, cancer is evidently one of the greatest challenges 
facing healthcare. More than 16 million new cancer cases were reported in 2017 alone 
[40]. This number climbed to 18.1 million cases in 2018 [41]. This increasing number of 
cancer incidences [42] means that there is undoubtedly sufficient data worldwide to 
put machine/deep learning to meaningful work. However, as highlighted earlier this 
requires access to the data and, as also highlighted earlier, distributed learning enables 
this in a manner that resolves legal and ethical concerns. Nonetheless, integration of 
distributed learning into healthcare is much slower in comparison to other fields, which 
raises the question of why this should be? Here, we summarize a set of methodologies 
to fasten the adoption of distributed learning and provide future directions.

Current state of medical data storage and preprocessing

•	 Information communication technology (ICT)
Every hospital has its own storage devices and architecture [35,36]. In this case, the ICT 
preparation for distributed learning requires significant energy, time, and manpower, 
which can be costly. This same process (data acquisition and preprocessing) needs to 
be repeated for each participating hospital [45] and subsequently development and 
adoption of medical data standardization protocols need to be developed for this 
implementation process. 
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•	 Make the data readable: FAIR data principles
One way to enable a virtuous circle network effect is to embrace another community 
engaged in synergistic activities (joining a distributed learning network is worthwhile 
if it links to another large network). The FAIR guiding principles for data management 
and stewardship (FAIR = findable, accessible, interoperable, re-usable) have gained sub-
stantial interest, but delivering scientific protocols and workflows that are aligned with 
these principles is very significant [46]. A description of FAIR principles is represented 
in Figure 3.3. Technological solutions are urgently needed that will enable research-
ers to explore, consume, and produce FAIR data in a reliable and efficient manner, 
to publish and reuse computational workflows, and to define and share scientific 
protocols as workflow templates [47]. Such solutions will address emerging concerns 
about the non-reproducibility of scientific research, particularly in data science (e.g., 
poorly published data, incomplete workflow descriptions, limited ability to perform 
meta-analyses, and an overall lack of reproducibility) [48,49]. As workflows are funda-
mental to research activities, FAIR has broad applicability which is vital in the context 
of distributed learning with medical data.

Figure 3.3: Description of FAIR principles.

Why not publicly share medical data?
Some studies were conducted trying to facilitate and secure data sharing procedures 
to encourage related researchers and organizations to publicly share their data and 
embrace transparency [50], by proposing data sharing procedures and protocols aiming 
to harmonize regulatory frameworks and research governance [51,52]. Despite the 
efforts made towards data sharing globalization, the sociocultural issues surround-
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ing data sharing remain pertinent [53]. Large clinical trials also face limitations in the 
data collection capabilities due to limited data storage capacities and manpower. To 
retrospectively perform additional analysis, all the participating centers need to be 
contacted again, which is time consuming and delays research [54].

Further, medical institutions prefer not to share patient data to ensure privacy protec-
tion [55]. This is, of course, in no small part about ensuring the trust and confidence of 
patients who display a wide range of sensitivities towards the use of their personal data.

Organizational change management
The adoption of distributed learning will require a change in organizational manage-
ment (such as making use of newest data standardization techniques and, adapting 
the roles of employees to more technical oriented tasks as for example data retrieval). 
Provided knowledge and understanding of proper change management concepts, 
healthcare providers can implement this latter successfully [56]. Change management 
principles such as: defining a global vision, networking, and continuous communicating 
could facilitate the integration of new technologies and bring up the clinical capabilities. 
However, this process of change management can be complicated because it requires 
the involvement of multiple healthcare centers from different countries and continents. 
This diversity can trigger a fear of loss2, which stems from differences of opinion and 
regulation [57], and the absence of data standardization -making the processes of data 
acquisition and preprocessing harder-. Additionally, the lack of knowledge about the 
new technology which leads to resistance to accept the change and innovation [57,58]. 
Therefore, it is important to help healthcare organizations understand the need for 
distributed learning by explaining the context of the change in terms of traditional 
ways of learning to distributed learning; and a long-term vision of the improvements 
that it can bring including time and money savings for both hospitals and patients 
which could in turn improve patient lives. In addition to conducting more studies on 
research databases to consolidate a proof of safety and quality of distributed models.

As can be seen in Table 3.2, distributed learning has been applied to train different 
models that can predict different outcomes for a variety of pathologies, including lung 
cancer [21,59,60], thyroid cancer [61], Heart cardiac events [62], and schizophrenia [63]. 
This in addition to the continuous development of tools and algorithms facilitating 
the adoption of distributed learning, such as the variant learning portal, the alternat-
ing direction method of multipliers (ADMM) algorithm [2], as well as the application 
of FAIR data principles. The cited studies provide a proof that distributed learning can 
ensure patient data privacy and guarantee that accurate models are built that are the 
equivalent of centralized models. 

2 One the major factors of financial decision making.
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Limitations of the existing distributed learning implementations
A shared limitation of the studies presented in Table 3.2 is that the number of institutes 
involved in the distributed network is rather small. The size of network varies from four 
to ten institutions. With few medical institutes involved, the models were trained using 
the data of few hundred patients only. By promoting the use of distributed learning, 
it should instead be possible to train the models using data from thousands or even 
millions of patients.

Future perspectives
An automated monitoring system accessible by the partners or medical centers par-
ticipating in the distributed learning network can promote transparency, traceability, 
and trust [64]. Recent advances of information technology such as blockchain can 
be integrated into a distributed learning network [65]. It allows trusted partners to 
visualize the history of the transactions and actions taken in the distributed network. 
This integration of blockchain should help in easing the resistance to the new dis-
tributed technology among healthcare workers as it provides both provenance and 
enforceable governance.

In 2008, Satoshi Nakamoto introduced the concept of peer-to-peer electronic cash 
system known as Bitcoin [66]. Blockchain was made famous as the public transaction 
ledger of this cryptocurrency [66,67]. It ensures security by using cryptography in a 
decentralized, immutable distributed ledger technology [68]. It is easy to manage as it 
can be made public, whereby any individual can participate, or it can be made private, 
where all participants are known to each other [69]. It is an efficient monitoring system, 
as records cannot be deleted from the chain. By these means Blockchain exceeds its 
application as a cryptocurrency to a permanent trustful tracing system. Figure 3.4 
illustrates a visual representation of blockchain.

Boulos et al. demonstrated how blockchain could be used and contribute in healthcare: 
securing patient information and provider identities, managing health supply chains, 
monetizing clinical research and data (giving patients the choice to share), processing 
claims, detecting fraud, and managing prescriptions (replace incorrect and outdated 
data) [68]. In addition to the abovementioned uses of blockchain, it has been also used 
to maintain security and scalability of clinical data sharing [70], secure medical records 
sharing [71], prevent of drug counterfeiting [72] and secure patient’s location [73].

It is essential that the use of distributed machine/deep learning and blockchain be har-
monized with the available security preserving technologies i.e., continues development 
and cybersecurity, which begins at the user levels (use strong passwords, connect using 
only trusted networks …) and ends with more complex IT infrastructures (such as data 
anonymization, user ID encryption …) [74]. Cybersecurity is a key aspect in preserving 
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privacy and, ensuring safety and trust among patients and healthcare systems [75]. 
The continuous development or post-marketing surveillance can be seen as the set 
of checks and integrations that should occur when a distributed learning network is 
launched. This practice should make it possible to identify any weak security measures 
in the network or non-up-to-date features that may require reimplementation [76,77].

The distributed learning and Blockchain technologies presented here show that there 
are emerging data science solutions that begin to meet the concerns and shortcom-
ings of the law. The problems of reidentification are greatly reduced and managed 
through the technologies. Clearly, there are conceptual issues of understanding the 
impact of these technologies on “privacy”, and the relationship between privacy and 
“confidentiality”, but there are significant technical developments for the regulators to 
consider that could answer a number of their concerns.

Summary

Currently, a combination of regulations and ethics makes it difficult to share data even 
for scientific research purposes. The issues relate to the legal basis for processing and 
anonymization. Specifically, there has been reluctance to move away from informed 
consent as the legal basis for processing towards processing in the public interest, and 
there are concerns about the reidentification of individuals where data is deidentified 
and then shared in aggregated environments. A solution could be to allow research-
ers to train their machine learning programs without the data ever having to leave the 
clinics which in this paper we have established as distributed learning. This safe practice 
makes it possible to learn from medical data and can be applied across various medical 
disciplines. A limitation to its application, however, is that medical centers need to be 
convinced to participate in such practice, and regulators also need to know suitable 
safeguards have been established. Moreover, as can be seen in Table 3.2, even with the 
use of distributed learning, the size of the data learned from remain rather small. In 
the future the integration of Blockchain technology to distributed learning networks 
could be considered as it ensures transparency and traceability whilst following FAIR 
data principles can facilitate the implementation of distributed learning.
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Section B
PRISMA 2009 Checklist

Section/topic # Checklist item 
Reported on 
page # 

TITLE 
Title 1 Identify the report as a systematic review, meta-analysis, 

or both. 
1

ABSTRACT 
Structured 
summary 

2 Provide a structured summary including, as applicable: 
background; objectives; data sources; study eligibility 
criteria, participants, and interventions; study appraisal 
and synthesis methods; results; limitations; conclusions 
and implications of key findings; systematic review 
registration number. 

3

INTRODUCTION 
Rationale 3 Describe the rationale for the review in the context of 

what is already known. 
4-6

Objectives 4 Provide an explicit statement of questions being 
addressed with reference to participants, interventions, 
comparisons, outcomes, and study design (PICOS). 

7

METHODS 
Protocol and 
registration 

5 Indicate if a review protocol exists, if and where it can be 
accessed (e.g., Web address), and, if available, provide 
registration information including registration number. 

9

Eligibility 
criteria 

6 Specify study characteristics (e.g., PICOS, length of follow-
up) and report characteristics (e.g., years considered, 
language, publication status) used as criteria for eligibility, 
giving rationale. 

9

Information 
sources 

7 Describe all information sources (e.g., databases with 
dates of coverage, contact with study authors to identify 
additional studies) in the search and date last searched. 

9

Search 8 Present full electronic search strategy for at least one 
database, including any limits used, such that it could be 
repeated. 

9

Study selection 9 State the process for selecting studies (i.e., screening, 
eligibility, included in systematic review, and, if applicable, 
included in the meta-analysis). 

9 (and 
Supplementary 
Materials 
(Section A))

Data collection 
process 

10 Describe method of data extraction from reports (e.g., 
piloted forms, independently, in duplicate) and any 
processes for obtaining and confirming data from 
investigators. 

9

Data items 11 List and define all variables for which data were sought 
(e.g., PICOS, funding sources) and any assumptions and 
simplifications made. 

N/A

Risk of bias 
in individual 
studies 

12 Describe methods used for assessing risk of bias of 
individual studies (including specification of whether this 
was done at the study or outcome level), and how this 
information is to be used in any data synthesis. 

N/A
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Section/topic # Checklist item 
Reported on 
page # 

Summary 
measures 

13 State the principal summary measures (e.g., risk ratio, 
difference in means). 

N/A

Synthesis of 
results

14 Describe the methods of handling data and combining 
results of studies, if done, including measures of 
consistency (e.g., I2) for each meta-analysis.

9

Risk of bias 
across studies 

15 Specify any assessment of risk of bias that may affect 
the cumulative evidence (e.g., publication bias, selective 
reporting within studies). 

N/A

Additional 
analyses 

16 Describe methods of additional analyses (e.g., sensitivity 
or subgroup analyses, meta-regression), if done, 
indicating which were pre-specified. 

N/A

RESULTS 
Study selection 17 Give numbers of studies screened, assessed for eligibility, 

and included in the review, with reasons for exclusions at 
each stage, ideally with a flow diagram. 

9 (and 
Supplementary 
Materials 
(Section A))

Study 
characteristics 

18 For each study, present characteristics for which data 
were extracted (e.g., study size, PICOS, follow-up period) 
and provide the citations. 

28-32

Risk of bias 
within studies 

19 Present data on risk of bias of each study and, if available, 
any outcome level assessment (see item 12). 

N/A

Results of 
individual 
studies 

20 For all outcomes considered (benefits or harms), present, 
for each study: (a) simple summary data for each 
intervention group (b) effect estimates and confidence 
intervals, ideally with a forest plot. 

28-32

Synthesis of 
results 

21 Present results of each meta-analysis done, including 
confidence intervals and measures of consistency. 

28-32

Risk of bias 
across studies 

22 Present results of any assessment of risk of bias across 
studies (see Item 15). 

N/A

Additional 
analysis 

23 Give results of additional analyses, if done (e.g., sensitivity 
or subgroup analyses, meta-regression [see Item 16]). 

N/A

DISCUSSION 
Summary of 
evidence 

24 Summarize the main findings including the strength of 
evidence for each main outcome; consider their relevance 
to key groups (e.g., healthcare providers, users, and policy 
makers). 

14

Limitations 25 Discuss limitations at study and outcome level (e.g., risk 
of bias), and at review-level (e.g., incomplete retrieval of 
identified research, reporting bias). 

18

Conclusions 26 Provide a general interpretation of the results in the 
context of other evidence, and implications for future 
research. 

21

FUNDING 
Funding 27 Describe sources of funding for the systematic review and 

other support (e.g., supply of data); role of funders for the 
systematic review. 

22
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Abstract

The utility of artificial intelligence (AI) in healthcare strongly depends upon 
the quality of the data used to build models, and the confidence in the predic-
tions they generate. Access to sufficient amounts of high-quality data to build 
accurate and reliable models remains problematic owing to substantive legal 
and ethical constraints in making clinically relevant research data available 
offsite. New technologies such as distributed learning offer a pathway forward, 
but unfortunately tend to suffer from a lack of transparency, which undermines 
trust in what data are used for the analysis. To address such issues, we hypoth-
esized that, a novel distributed learning that combines sequential distributed 
learning with a blockchain-based platform, namely chained distributed machine 
learning C-DistriM, would be feasible and would give a similar result as a standard 
centralized approach. C-DistriM enables health centers to dynamically partici-
pate in training distributed learning models. We demonstrate C-DistriM using 
the NSCLC-Radiomics open data to predict two-year lung-cancer survival. A 
comparison of the performance of this distributed solution, evaluated in six 
different scenarios, and the centralized approach, showed no statistically signifi-
cant difference (AUCs between central and distributed models), all DeLong tests 
yielded p-value > 0.05. This methodology removes the need to blindly trust the 
computation in one specific server on a distributed learning network. This fusion 
of blockchain and distributed learning serves as a proof-of-concept to increase 
transparency, trust, and ultimately accelerate the adoption of AI in multicentric 
studies. We conclude that our blockchain-based model for sequential training 
on distributed datasets is a feasible approach, provides equivalent performance 
to the centralized approach.
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Introduction

The application of artificial intelligence (AI) algorithms in medical imaging has evolved 
from machine learning that is able to learn from quantitative (Radiomics) features to 
deep learning algorithms, mostly convolutional neural networks (CNN), that are in turn 
able to learn complex non-linear features from medical imaging and inform about 
diagnosis, prognosis, and personalize treatment options [1–5]. The CNN algorithms 
showed a great performance when applied to medical imaging [6,7]. Ultimately the 
ability to successfully generalize an AI algorithm is influenced by the quality (volume, 
veracity, variety, and velocity -4Vs) of the training data [8]. As the data quality improves 
[9], a similar trend is seen in both performance and generalizability. Typically, a solitary 
medical center does not have sufficient quality data for the specific task at hand to 
implement high-performance AI for use in other sites. The conventional approach to 
access high quality data in healthcare is through multicentric studies, however, recent 
legal and ethical considerations (e.g., general data protection regulation (GDPR) and 
health insurance portability and accountability act (HIPAA)) have now made multicentric 
studies with centralized databases problematic [10]. One potential way to address this 
challenge is to share the training workload of machine learning models rather than 
centralize the data, originating from multiple institutions. This approach, proposed in 
2013, is known as distributed learning (federated learning) [11,12]. 

Distributed learning – a fusion of machine learning and distributed computing – 
allows machine learning models to be trained on multiple siloed datasets without the 
need for patient data to leave the firewalls of each database [13]. Distributed learning 
preserves privacy by design, by sharing model weights for subsequent training cycles 
instead of privacy sensitive data. Distributed learning has been successfully applied to 
train machine learning models using data originating from multiple medical centers 
[11,14–16] on a global scale, producing models with equivalent performance to cen-
tralized data training approach [17].

A distributed learning network involves multiple partners. Within the network, each 
partner is connected to a central coordinator (i.e., the master server) that initializes 
and aggregates the learning. This design however is vulnerable to malicious or (un)
intentional misuse of the network, as researchers have demonstrated it is possible to 
retrieve sensitive patient information from the shared weights of the model [18]. Fur-
thermore, it is impossible for each partner to monitor the quality of the data provided 
by others within the network. In essence, this approach requires collaborators to 
blindly trust the master server. Given the risks associated with this design, elevating 
the transparency and traceability of the data and learning may improve usability and 
confidence of this approach.
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Blockchain is a technology utilizing cryptographic hashing techniques to maintain a 
distributed data structure that stores information in an append-only manner. The inte-
gration of a blockchain model with a distributed learning technique, enables researchers 
to create a secure and immutable storage of computation history. The advantage of 
using blockchain together with distributed learning is that the master-server approach 
of conventional distributed learning is replaced by a decentralized architecture. Such 
an architecture defines the relationship between the partners in the network, without 
requiring that one trusted server mediates the work.

The use of blockchain for distributed learning has been proposed in recent works [19,20], 
however these studies only provide a proof-of-concept, without a fully decentralized 
solution supported by a blockchain platform. Furthermore, the scalability and privacy 
of this approach have yet to be evaluated [18].

In this work, we address these concerns with a novel blockchain-based approach to 
trace data provenance and safeguard the distributed learning process. Using the NSCLC-
Radiomics dataset first introduced by Aerts et al. [21] we aim to confirm our hypothesis 
that, not only, our new decentralized model performs equivalent to a centralized model, 
but also provides the additional guarantee of traceability for the actions performed 
by all centers. Additionally, we validate our solution to demonstrate the ability of the 
blockchain distributed learning to leverage modern machine and deep learning tech-
niques (e.g., convolutional neural networks).

Our objective, using the NSCLC-Radiomics dataset, is not to improve the signature 
developed by Aerts et al. [21] but rather to prove the feasibility of a blockchain based 
distributed learning approach and to illustrate that the distribution of data over multiple 
data centers provides similar results to the standard centralized approach. 

This article makes the following contributions: 1) defines a blockchain-based protocol 
for training AI models using a distributed architecture; 2) shows how to construct clas-
sification models with sequential training on local datasets; and 3) demonstrates that 
the resulting blockchain model performs with comparable performance to that of a 
model where the training is conducted in centralized settings. 

Background and significance

Learning from medical imaging
The process of extracting meaningful insights from medical images can be performed 
by applying Artificial Intelligence (AI) algorithms (i.e., machine learning or deep learning) 
[22]. Deep learning is a set of data decomposition and correlation algorithms inspired 
by similar processes within the human brain. These algorithms have been applied in 
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multiple fields including healthcare and medicine. convolutional neural networks 
(CNN), a class of deep learning, are commonly used to classify data from various data 
sources and medical images are no exception. AI algorithms are capable of extracting 
important information from medical images, which in turn, can be used in decision 
support systems to improve diagnostic, prognostic, or predictive accuracy [12,23].

Distributed learning
Distributed learning is a technique that supports multi-center machine learning, 
pioneered in 2013 [12]. These algorithms are designed to perform training while data 
remains in the local databases of each center [11,14,15,24]. The collaborators of a dis-
tributed learning process are connected to a master server that initializes and updates 
the learning. After initialization, each collaboration center trains a portion of the model 
on local data then provides the model weights to the master server. The master server 
in turn aggregates the weights, updates the model, and shares the updated model 
weights with the collaborators within the network. Each collaborator then retrains 
the local models based on the updated weights and sends them back to the master 
server to close the loop, which operates until a convergence threshold is reached, as 
illustrated in Figure 4.1. This approach, in principle, enables large-scale data/learning 
access, which improve performance and increase accuracy. In addition, distributed 
learning resolves legal and ethical privacy concerns associated with medical data by 
ensuring that sensitive data never leaves the firewalls of the medical centers.

Figure 4.1: Conventional distributed learning (federated learning) process.
(A) Master server initialize the learning by sending initial models to the partners (B) partners train the 
received model with local data, (C) partners send updated models to the master se,rver, (D) master server 
aggregates the received models and verify convergence criteria.
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Blockchain
Blockchain is a peer-to-peer (P2P) computational framework introduced in 2008 [25]. 
Transactions in a blockchain can be thought of as computational interactions between 
participants (such as the medical centers). Within a blockchain network, every partici-
pant can view and add interactions, but never modify the existing ones. This is due to 
the fact that interactions are stored in blocks, which are validated in the blockchain 
network. Each validated block contains a cryptographic hash of the previous block, 
thus making it impossible to forge interaction history in the system. 

After its successful application within the cryptocurrency domain [25], blockchain 
technology subsequently received significant attention from the scientific community. 
This initial success instigated the use of blockchain in healthcare. Blockchains can now 
be used to ensure secure data sharing [26], compliance with license terms [27,28], 
drug counterfeiting prevention [29], amongst other applications in healthcare [30] 
and other domains [31].

Blockchain works via two regulating elements: a P2P network and a consensus protocol. 
The P2P network initiates and appends blocks representing the computations of the 
network. The consensus mechanism consists of a set of rules determining the contribu-
tion of each partner when validating the computations. A smart contract is a protocol 
that runs aside with the blockchain and enforces the rights and responsibilities of the 
network partners [32,33]. Once deployed, participants in the blockchain network can 
interact via smart contracts.

Materials and methods

Data
We used the open NSCLC-Radiomics dataset [34,35] to demonstrate this proof-of-
concept study. The dataset consists of CT scans of 422 Non-Small Cell Lung Cancer 
(NSCLC) patients, paired with Gross Tumor Volume (GTV) segmentations (performed by 
an experienced radiologist), and the clinical outcome (survival). A summary of cohort 
and tumor specificities of the NSCLC-Radiomics dataset is presented in Table 4.1.

The generalizability of the proposed infrastructure was validated using the IRIS open 
dataset [36].
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Chained Distributed Machine learning (C-DistriM) 

•	 Architecture
The objective of C-DistriM is to train distributed models with equivalent performance 
as centralized models, preserve data privacy, and increase trust amongst participating 
partners. C-DistriM leverages trust between the partners via the blockchain that stores 
unfalsifiable records of the training process. Figure 4.2 presents the overall architecture 
of C-DistriM. The smart contract of C-DistriM ensures:

•	 Creation of an organization structure representing the network of partners: 
the network of partners is stored within a smart contract. Each partner will 
take part in the learning process without moving the data to a trusted server. 

•	 Confirmation of model deployment: saving each iteration of the model to 
cloud is considered as a new transaction in the blockchain. This requires that 
a consensus and an agreement on the current state of the blockchain to be 
reached by majority of the partners prior to appending the new transaction to 
the blockchain. Herein, every time a partner locally trains a model a majority 
must approve for the model to be saved in the cloud. 

•	 Association of every partner with data quality and quantity: before confirming 
the model deployment, the transaction block with model accuracy statistics is 
established. This information determines if the contributions of the previous 
collaborator improved or negatively affected the model performance.

•	 Confirmation of model fetching: similarly, to “confirmation of model deploy-
ment”, each time a partner requests a model from the cloud for subsequent 
training the majority of partners in the network must approve before the 
model to be downloaded.

Table 4.1: Patient and tumor characteristics

Variable Frequency

Disease
NSCLC 422

Gender
Male
Female

68.7 %
32.3 %

TNM staging
I
II
IIIa
IIIb

22.0 %
9.5 %
26.5 %
41.9 %

Treatment
Radiotherapy
Radio-Chemotherapy

46.5 %
53.5%
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•	 Traceability of model leakage and data provenance. As all training records 
are saved to an append only chain in a timely manner, every model is linked 
to all partners that used it during the training process (load, upload, update). 
Similarly, every model can be linked to the data used to train/update it while 
maintaining data privacy concerns.

•	 Implementation
This work leveraged Ethereum blockchain [37], an open source smart contract platform, 
integrated with our distributed learning pipeline. We have implemented the smart 
contract using Solidity (compiler version 0.5.5), on RemiX IDE [38]. Solidity is an object-
oriented programming language commonly used to implement smart contracts within 
the blockchain community.

Figure 4.3 illustrates the proposed distributed learning architecture. During each 
training iteration, a partner receives a token from the smart contract to start training 
the local model on local data. Once the model is trained the partner sends a request 
to archive the model to the cloud. Once approved by the majority, the smart contract 
returns a token allowing the partner to push the model to the cloud. Automated 
voting was performed based on the area under the receiver operating characteristic 
curve (AUC) of the model. If the model AUC deteriorates, a negative vote is cast, while 
improvements/no change in the AUC result in positive votes. In this prototype we 
used Google Cloud Storage (GCS) platform to store the shared models, where client-
cloud communication was facilitated using the Python google-cloud-storage library 
(version 1.21.0). The models were encrypted and decrypted when being saved to or 
downloaded from the cloud. The encryption and decryption processes were performed 
using the Advanced Encryption Standard (AES-256) [37], as it is recommended for long 
term storage [39].

Ethereum is a public blockchain, implying that the C-DistriM computation history can 
be reviewed by the participating partners as well as the broader public. The prototype 
used the Ganache network [40], which allowed us to recreate the Ethereum blockchain 

Figure 4.2: Overview of C-DistriM.
(Step 1) partners register to the network through the smart contract; (step 2) training starts by iterating 
through the partner list: (1) start training the first local model; (2) when training ends; (3) request a token to 
save the model to cloud; (4) vote to decide if model will be saved to cloud; (5) smart contract generates a 
token; (6) the partner gets the token; (7) and saves the model to cloud; (8) then the training is terminated for 
this partner. In the next iteration: (1) the partner will request a token to load the previous model from cloud; 
(2) smart contract generates a token; (3) the partner gets the token; (4) load previous model from cloud; 
(5) gets model; (6) start training; (7) when training ends; (8) request a token to save the model to cloud; 
(9) vote to decide if model will be saved to cloud; (10) smart contract generates a token; (11) the partner 
gets the token; (12) and saves the model to cloud; (13) then the training is terminated for this partner. The 
same process repeats for all partners. Step (3) if all partners finished training, then the training process is 
terminated.
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platform for testing purposes. This means that our prototype is currently tested with 
a local test-net, however, the model is ready to be deployed in the public Ethereum.

While blockchain technology provides an auditable, traceable, and unfalsifiable 
structure to record distributed learning flow, it does not secure the learning process. 
To prevent any intentional or unintentional misuse of the downloaded model weights, 
by any of the partners, the model weight vectors were locked using the python por-
talocker library (version 1.5.2). During training, the training was initialized in the first 
iteration. The output model of the first iteration was used as a starting point for the next 
iteration, so is the new model. This process was repeated until all partners sequentially 
finish training. The last model in the queue was designated as the final output of the 
distributed learning process.

Figure 4.3: Distributed learning fl ow diagram, each iteration corresponds to one partner update of 
the model with local data.



Blockchain in multicentric medical imaging (C-DistriM) | 83   

4

 Training

•	 Data	preparation
Data augmentation was performed to balance the two classes (survive and not survive 
at a threshold of 2 years after start of treatment). The augmentation was performed 
in a different manner for each class: (1) the minority class in the training dataset was 
balanced by supplementing with zoom scaled variants of the images. After augmen-
tation, the number of cases increased from 422 cases to 704 cases, (2) the images 
corresponding to the class that is represented high, non- survived (labeled 0) in the 
case of NSCLC-Radiomics dataset, was randomly augmented during the run-time (i.e., 
during training). 

The data (n=704) was randomly split into training (n=563) and testing (n=141) sets 
(80% training and 20% testing) to train and evaluate the centralized training. Six testing 
scenarios were devised to validate the distributed infrastructure:

•	 “Scenario 1”: simulation of a network of two partners by splitting the training 
data (same training data used to train the centralized model) into two subsets 
(n=281, and n=282 respectively). 

•	 “Scenario 2”: simulation of a  network of three partners by splitting the training 
data into three subsets (n=188, n=189, and n=186 respectively). 

•	 “Scenario 3”: simulation of a network of four partners by splitting the training 
data into four subsets (n=141, n=140, n=141, and n=141 respectively). 

•	 “Scenario 4”: simulation of a coalition of two partners by splitting the 
training data into two non-equally distributed subsets (n=112, and n=451 
respectively). 

•	 “Scenario 5”: simulation of a coalition of three partners by splitting the 
training data into three non-equally distributed subsets (n=113, n=67, and 
n=383 respectively). 

•	 “Scenario 6”: simulation of a coalition of four partners by splitting the training 
data into four non-equally distributed subsets (n=57, n=355, n=113, and 
n=38 respectively). 

In all scenarios the models were evaluated using the same test data (n=141).

Data allocations were performed using scikit-learn library (version 0.22), therefore 
each partner in the training cycle held a balanced dataset. Once the data is prepared, 
they are split between the centers and run locally with the overall distributed learning 
process mediated by the C-DistriM blockchain model.

Data splits performed for the IRIS dataset are detailed in Supplementary materials 
(Section A).
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•	 Centralized	model
A previously validated 3D CNN binary classifier for two-year survival classification was 
implemented [41,42]. The CNN model is based on ResNet-18 [41]. The model consists 
of an input layer of shape (120, 160, 16), followed by 3x3 convolutional layers (while 
each convolutional layer is followed by a ReLu activation and batch normalization) with 
residual connections, the total number of convolutional layers is 18, in addition to an 
output layer entailing a sigmoid activation function. GTV segmentations were used to 
determine axial slices containing the tumor and crop them for training. As every GTV is 
of a different size, all cropped volumes were resized to (120 x 160 x 16) pixels for model 
training and validation process.

•	 Decentralized	models
For each C-DistriM scenario, the batch size and validation-steps were adapted according 
to the number of data points in every center. The performance of both distributed 
and centralized models was quantified as the AUC of the receiver operating charac-
teristic curve (ROC) and calibration curves. AUC values ranged from zero to one and 
the closest to one the AUC is, the better the model is. A calibration curve (or reliability 
curve) was defined as a plot of the relative frequency of empirical probability versus 
the predicted probability frequency. Calibration curves of ideal/optimized classifiers 
should fall close to the diagonal, as the estimated probabilities and empirical prob-
abilities reach convergence.

Results

The model trained in a centralized approach, where all the data are contained in a single 
database and the training was performed without blockchain integration was used as 
the reference standard. We assessed the two-year prediction performance from the 
distributed and centralized survival CNN models, respectively. Table 4.2 summarizes the 
comparative performance in the test set of each approach (in 95% confidence interval).

A DeLong test [43] was used to compare the ROC curves and calculate the p-values to 
determine the differentiation significance between two independent means. The tests 
yielded a p-value of 0.102, 0.907, 0.984, 0.962, 0.747, and 0.779 when comparing the 
centralized model versus scenarios 1-6 respectively. The comparison of the ROC curves 
indicated that there is no statistically significant difference (all p-values > 0.05) between 
the performance of the distributed models and the centralized model in terms of dis-
crimination, as shown in Figure 4.4. These results indicate that the distributed models 
can learn appropriate features in a comparable way to the centralized model learning; 
and that integration of distributed learning and blockchain is feasible.
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From the calibration plots presented in Figure 4.5, we can observe a variation in the 
calibration of the models.

The IRIS conclusions were the same as the NSCLC-Radiomics dataset use-case. Detailed 
results are presented in Supplementary materials (Section A).

Supplementary materials (Section B) represents the ROC curves of each iteration of 
the scenario 3. The curves demonstrate how the learning improves when centers with 
more data are included in the training process.

Table 4.2: Discrimination performance (AUC) obtained by training centralized and distributed CNNs 
predicting 2-year NSCLC survival

Training type AUC (95% CI)

Centralized 0.76 (0.68-0.84)

Distributed (Scenario 1) 0.76 (0.73-0.88)

Distributed (Scenario 2) 0.76 (0.68-0.84)

Distributed (Scenario 3) 0.76 (0.68-0.84)

Distributed (Scenario 4) 0.76 (0.68-0.84)

Distributed (Scenario 5) 0.76 (0.68-0.83)

Distributed (Scenario 6) 0.77 (0.69-0.85)

Figure 4.4: Receiver operator characteristic curves for two-year survival model trained using central-
ized learning and distributed learning.
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Discussion and future work

Since its conception in 2013, Distributed learning has shown significant efficacy when 
leveraging big data to drive clinical insights [12]. This was recently demonstrated by 
Deist et al. who leveraged over 23,000 datapoints to train and validate a distributed 
logistic regression model, predicting post-treatment two-year survival [24]. In parallel 
researchers have developed methods to improve model generalizability [44], and 
promote training transparency via blockchain technologies [19,45]. Chen et al. proposed 
a fully blockchain-based privacy preserving distributed deep learning pipeline [19] 
where local model weights, from partners over the distributed network, are archived 
into the blockchain ledger as a transaction before being updated by the next collabora-
tor’s local data iteratively. Similar works have been demonstrated by Kuo et al. [45,46] 
leveraging blockchain using Logistic Regression machine learning models. While these 
pipelines [13,32,33] permit to secure local training and guarantee full traceability of the 
shared model weights, these methods are susceptible to drawbacks. These methods 
primarily employ fully visible model weights, which facilitate opportunities for misuse. 
Moreover, archiving the local weights to blockchain blocks along each iteration/partner 

Figure 4.5: Calibration curves for centralized and distributed learning models.
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is costly (Ethers) and computationally expensive, and not recommended for a highly 
scalable system with a focus on throughput and efficiency.

Weng et al. proposed DeepChain, an optimized blockchain for secure distributed deep 
learning training [20], however the weights are saved directly to the blockchain and 
are accessible by all the partners within the distributed network. To overcome the risk 
of exposing the model weights, Lugan et al. [47] proposed to train distributed learning 
models on encrypted data, preventing any exposure of local weights. Nevertheless, 
when implementing deep learning and encrypting model weights, model design 
requires careful consideration as aspects such as the CNN activation functions must 
be adapted [48]. Model design challenges are exacerbated with the need for extensive 
computation power associated with complex encryption computations. Other studies 
proposed adding noise to the shared model weights [49,50], as an attempt to prevent 
the extraction of sensitive information. However, this approach can result in degrada-
tion of model performance. In this work, we proposed a solution to address the current 
challenges of distributed learning by means of blockchain and architectural modifica-
tions to the conventional distributed learning scheme. This work builds on previous 
applications by incorporating Ethereum, a validated, commercially used blockchain 
technology as opposed to ad hoc blockchain infrastructures4. The proposed approach, 
C-DistriM, secures the shared models within the distributed network by locking them 
when temporarily downloaded to local machines for process – alleviating concern of 
unauthorized use of models (i.e., edit, retrain, load model weights, or perform predic-
tions). Post-training, C-DistriM: (1) encrypts the locally trained model, (2) uploads the 
encrypted model to the cloud and (3) removes all local copies preventing unauthorized 
exposure of the model. In contrary to other solutions, such as training on encrypted 
data, C-Distrim: maintains the native implementations of machine/deep learning 
algorithms that may be used for training. We observed that the AUC for distributed 
learning models generated by C-DistriM do not differ with statistical significance 
from models trained in classical centralized configuration. Calibration plots between 
models indicated a slight variation between the predicted scores. As CNN models have 
hundreds of millions of parameters that may influence stable performance dependent 
on (1) the size and type of training data, and (2) optimal batch size. Additionally, the 
last layer of a CNN is not in the proper scale to evaluate the reliability of the model 
[51]. To obtain appropriate probabilities, one may consider rescaling the predictions 
by applying Platt Scaling [52] or Temperature Scaling [53], however this was out of 
the scope of this work.

While blockchain infrastructure does permit archiving model iterations within the block-
chain ledger, blockchains are not suitable for large data storage [37]. To mitigate this 

4 Ad hoc blockchains refer to use implementations that are designed to replicate blockchains for test 
purposes but are not suitable for deployment.
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concern, C-Distrim archives model iterations over the cloud, while the blockchain is used 
exclusively to store model metadata (i.e., partner name, and model name – composed 
of the partner name and iteration number) and monitor the training performance. 
Based on the performance of the model in a particular iteration, the improvement or 
deterioration of the model can be traced back to a particular dataset/partner. Blockchain 
tokens are used to generate access permissions to the model in the cloud. C-Distrim 
facilitates the ability to “restore” a prior model state and retrain an updated model by 
skipping the training step for a particular partner in the case of model performance 
degradation. This functionality can also be used as an internal quality control metric 
to flag the incorporation of poor data into the training cycle. Table 4.3 illustrates 
the key differences between the listed blockchain infrastructures and the proposed  
C-DistriM.  

Table 4.3: Summary of different blockchain infrastructures used for privacy preserving distributed 
learning

Ref Blockchain Shared information Smart contract

[19] Public •	 Model gradient •	 Authentication

[20] Permissioned •	 Model gradient
•	 Data size 
•	 Data format
•	 Data topic 
•	 Data description

•	 Coordinates computation

[46] Permissioned •	 Model mean
•	 Model covariance
•	 Model type
•	 Accuracy
•	 Iteration number

Not applicable

[47] Experimented 
with both public 
& private

•	 Hash of the model’s 
parameters

•	 Participant ID
•	 Participant strength

Not applicable

C-DistriM Public •	 Token of model’s cloud 
location

•	 Participant ID
•	 AUC
•	 Iteration number 
•	 Approval of trained models
•	 The last updated model 

(final model)

•	 Coordinates access to 
consortium 

•	 Coordinates model training
•	 Coordinates the partners and 

access to the trained models in 
the cloud

One of the key features of the C-DistriM infrastructure is its traceability. Traceability of 
the data and lineage of the AI algorithms are key components of trustworthy AI. As 
the transaction records are immutable on blockchain ledgers, we can trace back any 
action performed by any of the participating partners at any time. Furthermore, due 
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to the inherent traceability of our infrastructure, it is expected that all the participating 
partners will have accentuated trust in using the process. The blockchain ledger can 
also foster commercial discussions such as royalties for the new AI algorithms propor-
tional to the number of patients provided by each partner in the distributed network.

Deploying a smart contract to public Ethereum is payable. Thereby, it is important to 
note that this work was developed using the development and testing environments 
provided by Ethereum.

In future works, we will extend the C-DistriM pipeline to monitor the applications of 
the final models and integrate a web portal accessible by all the participating partners 
to visualize the transaction history. We also intend to extend our development cycle 
using the Ethereum test networks to simulate a real-word distributed learning network 
and measure its performance in terms of scalability and costs. Finally, we wish to 
investigate how C-DistriM performs when malicious partners are intentionally added 
to the network.

Conclusion

In this work, we validated our hypothesis which is Chained Distributed Machine learning 
combined with a blockchain-based platform (C-DistriM), is feasible and gives a similar 
result to the traditional centralized approach. Furthermore, the blockchain architecture 
was beneficial to trace data origin and monitor the training process against model 
degradation and dishonest behaviors. We believe this approach will increase trust 
between parties therefore stimulate collaboration globally between parties when 
delivering robust AI informed by big data.
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Supplementary materials

Section A
Materials and methods

Data preparation
The IRIS dataset (n=150) contains three iris species. The dataset classes are balanced, 
fifty examples for each species, therefore we did not any preprocessing on the data.

We randomly split the data (n=150) into training (n=120) and testing (n=30) sets to train 
and evaluate the centralized training. Following scenarios were prepared and executed:

•	 “Scenario 1”: a simulation of a network of two partners by splitting the 
training data (same training data used to train the centralized model) into 
two subsets (n=60, and n=60 respectively).

•	 “Scenario 2”: a simulation of a network of three partners by splitting the 
training data into three subsets (n=40, n=40, and n=40 respectively).

•	 “Scenario 3”: a simulation of a network of four partners by splitting the 
training data into four subsets (n=30, n=30, n=30, and n=30 respectively).

•	 “Scenario 4”: we simulated a network of two partners by splitting the training 
data into two non-equally distributed subsets (n=80, and n=40 respectively).

•	 “Scenario 5”: a simulation of a network of three partners by splitting the 
training data into three non-equally distributed subsets (n=24, n=57, and 
n=39 respectively).

•	 “Scenario 6”: a simulation of a network of four partners by splitting the 
training data into four non-equally distributed subsets (n=24, n=39, n=18, 
and n=39 respectively).

In all scenarios the models were evaluated using the same test data (n=30).

All data splits were performed using scikit-learn library version 0.22. 

Training
C-Distrim was prepared to train multi-class neural network. Once the data is prepared, 
they are split between the local centers and run locally using the C-DistriM infrastructure.

Results 

The ROC curves for each class are illustrated in Figure S4.1, and the comparative per-
formance of each approach (in 95% confidence interval) is illustrated in Table S4.1.
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Figure S4.1: Receiver operator characteristic curves for IRIS species prediction model trained using 
centralized learning and distributed learning.
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The Delong tests yielded a p-value of 1 when comparing the centralized model versus 
scenarios 1-6 respectively for class 0. The tests yielded a p-value of 0.508, 0.544, 0.575, 
0.310, 0.778, and 0.544 when comparing the centralized model versus scenarios 1-6 
respectively for class 1. The tests yielded a p-value of 0.479, 0.318, 0.318, 0.309, 0.318, 
and 0.318 when comparing the centralized model versus scenarios 1-6 respectively 
for class 2.

Section B

Table S4.1: Discrimination performance (AUC) obtained by training centralized and distributed 
multiclass neural network predicting iris species

Training type

AUC (95% CI)

Class 0 Class 1 Class 2

Centralized 1 (1-1) 0.97 (0.93-1) 0.97 (0.93-1)

Distributed (Scenario 1) 1 (1-1) 0.94 (0.85-1) 0.98 (0.95-1)

Distributed (Scenario 2) 1 (1-1) 0.99 (0.96-1) 1 (1-1)

Distributed (Scenario 3) 1 (1-1) 0.99 (0.96-1) 1 (1-1)

Distributed (Scenario 4) 1 (1-1) 0.95 (0.89-1) 0.95 (0.89-1)

Distributed (Scenario 5) 1 (1-1) 0.96 (0.91-1) 1 (1-1)

Distributed (Scenario 6) 1 (1-1) 0.99 (0.96-1) 1 (1-1)

Figure S4.2: Receiver operator characteristic curves for two-year survival models trained using 
“Scenario 3” data distribution.
(A) model 1: data from center 1 only (n=141); (B) model 2: data from center 1 and center 2 (n=141 + n=140); 
(C) data from center 1, center 2, center 3 (n=141 + n=140 + n=141); (D) data from center 1, center 2, center 
3, center 4 (n=141 + n=140 + n=141 + n=141).
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Abstract

Artificial intelligence (AI) typically requires a significant amount of high-quality 
data to build reliable models, where gathering enough data within a single institu-
tion can be particularly challenging. In this study we investigated the impact of 
using sequential learning to exploit very small, siloed sets of clinical and imaging 
data to train AI models. Furthermore, we evaluated the capacity of such models 
to achieve equivalent performance when compared to models trained with the 
same data over a single centralized database.

We propose a privacy preserving distributed learning framework, learning 
sequentially from each dataset. The framework is applied to three machine 
learning algorithms: Logistic Regression, Support Vector Machines (SVM), and 
Perceptron. The models were evaluated using four open-source datasets (Breast 
cancer, Indian liver, NSCLC-Radiomics dataset, and Stage III NSCLC).

The proposed framework ensured a comparable predictive performance against 
a centralized learning approach. Pairwise DeLong tests showed no significant 
difference between the compared pairs for each dataset. 

Distributed learning contributes to preserve medical data privacy. We foresee this 
technology will increase the number of collaborative opportunities to develop 
robust AI, becoming the default solution in scenarios where collecting enough 
data from a single reliable source is logistically impossible. Distributed sequen-
tial learning provides privacy persevering means for institutions with small but 
clinically valuable datasets to collaboratively train predictive AI while preserving 
the privacy of their patients. Such models perform similarly to models that are 
built on a larger central dataset.
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Introduction

The application of artificial intelligence (AI) (i.e., machine/ deep learning models) within 
the clinical decision making process, also referred to as precision medicine, has become 
a research topic of increasing interest [1,2]. The rising number of published AI models 
in the literature that support diagnosis/ prognosis is a testament to this. 

The most common way to train AI models, often referred to as “centralized training”, is 
when the data is sourced from a single centralized database and the training of the clas-
sification AI model is local to a single machine. This approach however is not ideal during 
collaborative efforts where data sharing and centralization is strictly regulated by legal 
and ethical considerations. For instance, the General Data Protection Regulation (GDPR) 
and Health Insurance Portability and Accountability Act (HIPAA) act as safeguards to 
protect the privacy of patient data. Distributed learning (i.e., federated learning, ensemble 
learning, or sequential learning) offers a promising solution to this centralization barrier, 
allowing development and validation of predictive models while preserving the privacy 
the patient data. Federated learning, the most conventional form of distributed learning, 
involves a master server that coordinates the initialization and aggregation of learning 
within a consortium of partners [3,4]. Ensemble learning consists of training independ-
ent models on local data, and each model’s predictions on new data are grouped to a 
single global prediction [5]. Sequential distributed learning is an extension of distributed 
learning enabling the partners of a consortium to iteratively update a model with their 
respective local datasets. The last model in the queue is the final model [6,7]. These 
approaches are particularly appealing in the cases of small datasets (e.g., low clinical 
volume or rare diseases) in which the amount of data available to a single center is below 
the threshold to develop robust and generalizable AI. Since the performance and the 
robustness of an AI model is directly related to the number of samples on which it was 
trained and validated [2], the scarcity of data coupled with lengthy procedures required 
to centralize data can derail initiatives to develop clinical decision support tools.

While distributed learning has been well established with applications in multicentric 
studies [3,6,8–10], and previous work on ensemble distributed learning on small local 
datasets has indicated promising performance [11,12], the impact of the network 
data-scape (e.g., small batch sizes) has yet to be systematically investigated for sequen-
tial distributed learning. In this work, we investigate the performance of Stochastic 
Gradient Descent (SGD) based classifiers trained using a sequential distributed learning 
approach. We evaluate the influence on model performance when using micro batch 
sizes (as small as n = 1) to replicate cases where a participating institution (or partner) 
may only provide a single case record to the consortium to support training. To this 
extent we examine the influence of micro batch sizes on sequential learning model 
performance compared to the equivalent (i.e., same data) centralized model using a 
variety of Radiomics and clinical open-source datasets.



102 | Chapter 5

Background and significance

Model Optimizers - Stochastic gradient descent 
This work also explores stochastic gradient descent (SGD) which is an iterative opti-
mization method. It is a commonly used optimization technique applied to various 
machine and deep learning algorithms[13]. Upon each training iteration, the SGD 
optimizer fine-tunes the algorithm, minimizing the error of the model. As opposed to 
standard gradient descent optimizers, where the error is reduced over the entirety of 
the training dataset, SGD randomly selects small training batches and approximates the 
gradient for the random batch. The iterative process of batch selection is performed by 
randomly shuffling the dataset and minimizing over all batches, offering the advantage 
of avoiding local minima and reducing model optimization time.

Challenges in medical image analysis
Multicentric studies are needed to develop robust AI and to demonstrate the clinical 
relevance of imaging AI. This kind of studies face many challenges such as: 

1. Data collection (described in section “Medical data sharing”); 

2. Data heterogeneity, caused by the difference in acquisition and reconstruc-
tion settings amongst the different medical centers[14]. To ensure better 
model building in a heterogeneous domain, the raw data and/or the features 
derived from it must be harmonized [15,16]; 

3. And Inter-reader variability, the automation of manual tasks, such as organ 
and lesion delineation, requires to learn from ground truth masks delineated 
manually by experienced radiologists [17].The difference in experience and 
trainings of the clinicians leads to a variation on the ground truth delinea-
tions, which in turn represents a challenge in segmentation model training 
and validation [17]. 

Medical data sharing 
Despite the efforts made to publicly share medical data in public repositories, including, 
the cancer imaging archive (TCIA; https://www.cancerimagingarchive.net/), and the 
NIH BioLINCC (https://biolincc.nhlbi.nih.gov/home/), among others [18], data sharing 
remains very difficult, especially in low prevalence rare diseases. Within the context of 
rare-diseases, data sharing limitations can hinder rare disease research and develop-
ment, as well documented cases may be limited in number. This proves especially 
difficult in situations where a single institution may want to extract hidden insights 
using machine learning approaches, such as a diagnostic or prognostic biomarker. 
Initiatives, such as the European joint program on rare diseases (EJP RD; https://www.
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ejprarediseases.org/index.php/about/), began to address this issue and has illustrated 
the potential of data in driving precision medicine and accelerating rare disease 
diagnosis/ prognosis.

The importance of datatype (e.g., genotype, phenotype and endotype among others) 
in modeling patients with rare diseases, is well demonstrated within the literature 
[19,20]. However, de-identification of patient data prior to sharing, does not necessarily 
guarantee preservation of privacy [21] as patient personal information can potentially be 
re-identified from the de-identified features (e.g., up to 99.98% of the American popula-
tion in any dataset can be identified using only 15 demographic features) [22]. This risk 
increases as the dimensionality of data increases. In order to protect patient sensitive 
information, data acquisition and sharing is therefore tightly regulated by ethical and 
legal constraints [23]. In this context, distributed sequential learning is an important 
approach to facilitate data analysis across institutions while preserving data privacy.

Distributed learning
Distributed learning was first applied to clinical decision support systems in 2013 [2]. 
Distributed learning infrastructures enable the efficient training of machine/ deep 
learning models by isolating training data in respective local databases of each col-
laborative center. Distributed learning can be applied in various forms. In federated 
learning, each of the collaborators connects to a master server that initializes and 
updates learning. After initialization, each collaboration center trains a portion of the 
model on their local data then provides the resulting model weights to the master server. 
The master server in turn aggregates the weights, updates the model, and shares the 
updated model weights with the collaborators within the network. Each collaborator 
then retrains the local models based on the updated weights and sends them back to 
the master server to close the loop, which operates until a convergence threshold is 
reached [3,4]. Another form of distributed learning is sequential learning, differing in 
learning management architecture: 1) learning orchestrated by a cloud server such as 
the personal health train (PHT; https://www.dtls.nl/fair-data/personal-health-train/) 
[9,24], or 2) decentralized learning as applied in Chained-Distributed Machines Learning 
(C-DistriM) [6]. Each iteration in a sequential learning process corresponds to an update 
of the model from one collaborator. This type of learning is slower when compared to 
federated learning, where the learning is parallel, but is not subject to the logistical 
concerns (mainly related to the variation of the internet connection speed across the 
partners) related to federated learning [25].

In distributed learning data is not visible to the researchers. For this reason, research-
ers have to rely on the statistical information derived from the local data to build a 
global model. To reach an optimal performance some modeling steps such as feature 
selection and inference have to be adapted [4,26,27].   In this regard, the literature has 
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demonstrated both federated learning and distributed learning achieve a comparative 
performance to traditional centralized learning approaches [4,6,10,28,29].

Machine learning classifi ers
In this work we consider three machine learning classifiers, depicted in Figure 5.1, in 
distributed sequential settings:

1. Support vector machines (SVM), a supervised learning algorithm, applied 
mostly towards classification, but also for regression and the detection of 
outliers. SVMs work by establishing two parallel hyperplanes, separating the 
different classes of the feature space. The best fit is established as the one 
that maximizes the distance between both hyperplanes [30]. To accommo-
date data variability (i.e., linearly separable or not) various kernels such as 
linear, radial basis function have been established to optimize the distance 
between hyperplanes [31]. In this work we applied linear SVM techniques.

2. Logistic regression is a statistical method used for analyzing a feature space in 
which there are one or more independent variables that identify a predefined 
outcome. The assumption is that multiple linear regressions of the independ-
ent variables are transformed using a logit function to form a conditional 
probability of the outcome variable. Logistic regression assumes that the 
feature space possesses a linear relationship with the outcome, making it a 
linear algorithm with a nonlinear transform [30]. 

3. Perceptron, a single-layer neural network used for linear classification. The 
hidden layer mimics the design of a network of neurons within the human 
brain. Similarly, a perceptron network predicts classifications based on 
patterns within a series of input features correlating to a specific outcome[30]. 
The process is as follow: 1) the input features are multiplied by their corre-
sponding weights, that are randomly selected at the first iteration, 2) sum 
the results of step (1) to generate a weighted sum, 3) calculate the outcome 
(output) by applying the weighted sum to the activation function, that maps 
the outcome into values ranging between two predefined values (labels) 
such as [0,1].
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Methods

Data 
In this study, four open-source datasets were collected from two different public reposi-
tories: the UC Irvine machine learning repository (https://archive.ics.uci.edu/ml/index.
php) and cancerdata.org (https://www.cancerdata.org/). The characteristics of these 
datasets are illustrated in Table 5.1. The datasets include:

1. breast cancer Wisconsin dataset [32]. 

2. Indian liver dataset [33], 

3. NSCLC-Radiomics dataset [34,35], 

4. Stage III NSCLC dataset [36].

Figure 5.1: A) Support Vector Machine, B) Logistic Regression, C) Perceptron.
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These datasets were used to train and test the selected machine learning classifiers. 
Each of these datasets consists of a feature space corresponding to a binary outcome, 
as illustrated in Table 5.1. In addition to these four data sets, we extended our analysis 
to test sequential distributed learning on deep neural networks applied to smaller sets 
of (MNIST) dataset [37].

The breast cancer Wisconsin dataset consists of features calculated from a digitized 
image of a fine needle aspirate (FNA) of a breast mass [38], and an outcome defined 
as “malignant” or “benign”. ANOVA test was used to perform select the robust features. 
50% of the features were discarded based on ANOVA’s F-ratio, reducing the total number 
of features from 30 to 15.

The Indian liver dataset [33] consists of a set of demographics and clinical features (all 
patient records were collected from North East of Andhra Pradesh, India) for patients 
with liver disease. A Pearson pairwise feature correlation was performed. Highly 
correlated features (i.e., with Pearson correlation coefficient > 0.7) were discarded, 
reducing the total number of features from 11 to 8. Four patients had missing values 
corresponding to one feature, the missing data were imputed based on the mean value 
of the corresponding feature vector.

The NSCLC-Radiomics dataset [34,35] consists of radiomics features extracted, using 
RadiomiX (Radiomics/Oncoradiomics SA, Liège, Belgium) based on quantitative 
image analysis technology, from gross tumor volumes (GTV) of standard CT images 
corresponding to 422 patients. Gross tumor volume segmentations were performed 
by trained oncologists. Of the 421 records, 44 subjects were discarded during the 
radiomic features calculation phase. The discarded subjects had GTV segmentations 
with multiple unconnected volumes. In these cases, signature feature “compactness” 
cannot be calculated since it is defined for a single volumetric object. The outcome 
(survival) in NSCLC-Radiomics was converted into two-year survival (binary). New feature 
selection was not performed, the four predictive features reported in the original study 
[39] were used.

Data from [36] is referred to as The Stage III NSCLC dataset. The dataset consists of a 
combination of clinical, dosimetric features and clinical outcome (survival) for lung 
cancer patients. Missing data were imputed, using the scikit-learn (version 0.22) impu-
tation transformer. The imputation was based on the mean values of each feature. No 
feature selection was performed for this dataset, instead predictive features reported 
in the original study [36] were used to train the models.

As a means to mitigate classifier scaling bias, features in all training sets were indepen-
dently normalized to the interval [0,1] and the same normalization factor was applied 
to their respective validation and test sets. The primary objective of this work was to 
assess model performance variability across unique training scenarios in centralized 
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vs. distributed SGD training approaches. Improving the prediction performance of for 
models trained with these datasets was out of the scope of this work. 

Experiment design
Three commonly used machine learning (ML) classifiers were selected to conduct this 
study (Support Vector Machine (SVM), Logistic Regression, and Perceptron). Each clas-
sifier satisfies the inclusion criteria: 

1. the classifier can be trained in a sequential manner, 

2. the classifier has previously been applied and accepted in medical image 
analysis scientific community [8,40]. 

The open-source SGDClassifier package (scikit-learn v0.22, Google Summer of Code) 
in Python (v3.6) was used to implement the selected classifiers [41].

Each dataset was split into training, validation, and test sets (60% training, 20% valida-
tion, and 20% testing). Training, validation, and test sets were stratified based on the 
outcome label to guarantee equal percentage of positive and negative samples on 
each subset. The validation data was used for hyperparameter tuning and the test set 
was used evaluate the model performance. 

For each dataset, we simulated four training cases:

Centralized: a centralized learning approach where the entirety of the training 
set was used by a single partner to fit the model – used as the reference for 
distributed learning approaches.

Case 1: a distributed learning approach composed of 2 partners (2 subsets), 
randomly distributed between each partner (67% and 33% of the dataset).

Case 2: a distributed learning approach representing an extreme case where 
each partner contributes with a single datapoint (i.e., from a single patient). In 
this case the model was updated at each iteration incorporating one additional 
datapoint.

Case 3: a repeat of Case 2, with the exception of randomly shuffling the dataset 
to observe the effect the order of the training data (of medical centers) has on 
the resulting model.
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Optimization of Training Parameters 

Centralized model 
For each classifier and dataset pair, we trained a central model and used it as the 
reference to compare performance of each corresponding distributed model. Hyperpa-
rameters tuning was performed for optimal performance. The primary tuned parameter 
specified the regularization parameter used to calculate learning rate, herein referred 
to as alpha (α), and number of iterations (epochs). Default values with respect to the 
classifier were used for remaining parameters such as tolerance, and penalty. To tune 
the hyperparameters we defined a set of alpha values ranging between 1e-7 and 1, as 
illustrated in Figure 5.2. For each classifier:

1. The validation set performance (determined by the area under the curve 
(AUC) of the Receiver Operating Characteristic curve (ROC)), was estimated 
for each parameter α. 

2. The resulting models were compared based on their performances. 

3. The best α parameter was then selected according to the model comparison 
outcome. 

4. Each classifier was subsequently retrained using the best corresponding α 
parameter. 

5. Finally, the performance of the global model was then evaluated against 
the appropriate test set.

Distributed learning models
Hyperparameters tuning was also performed for distributed learning cases, as illustrated 
in Figure 5.3. Model optimization was performed over 5 key steps:

1. For each simulated partner, estimate the validation set performance (AUC) 
corresponding to each parameter α. 

2. Compare the resulting models based on their performances. 

3. Select the best α parameter according to the model comparison outcome. 

4. Retrain each classifier using the best corresponding α parameter in a sequen-
tial manner. 

5. Finally, the performance of the global model was then evaluated against 
the appropriate test set.
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Finally a pairwise comparison of the final aggregated models AUC values corresponding 
to each classifier and dataset was performed using DeLong tests [42]. 

To consider the impact of shuffling the local training datasets, and their size on model 
performance in cases where partners have multiple datapoints each, we extended 
the experiments conducted in this study. To sufficiently realize these experiments, 
we sourced the modified national institute of standards and technology (MNIST) 
dataset [37], a commonly used large dataset suited to test deep neural networks. Data 
description, the different data splits, model architecture, and results are available in 
Supplementary Materials (Section A). 

Results 

Results based on dataset
The combination of 4 datasets, training cases and 3 model architectures resulted in 
48 uniquely trained models. Table 5.2 summaries model performance for each archi-
tecture and training use case reported as the AUC and a 95% confidence interval (CI). 
Models trained with the breast cancer dataset outperformed models trained with other 
datasets in all model architectures. The Indian dataset had notably better performance 
in specific training use cases and model architectures when compared to classification 
performance for either NSCLC dataset. Logistic regression and perceptron architectures 
had improved performance over SVM for classification in either NSCLC dataset.

Results based on training use case 
Figure 5.4 depicts the AUC values corresponding to each study case for each pair of 
classifier and dataset. For each classifier, the derived AUC values per use case (cen-
tralized, case 1, case 2, case 3) trended with a high degree of similarity but were not 
identical. Shuffling and local dataset size variability produced observable differences 
in the ROC curves. However, the Pairwise DeLong tests [42] were used to compare 
the ROC curves for each of the training scenarios and found no statistically significant 
differences (p-values > 0.05), as summarized in Table 5.3 organized by classifier and 
training dataset. Furthermore, each model trained in a distributed fashion did not 
differ significantly from the reference centralized trained model (p-values > 0.05). These 
results were validated on a CNN classification model using the MNIST dataset. Detailed 
results of the MNIST experiments are presented in Supplementary Materials (Section 
A). ROC curves corresponding to each training scenario and dataset is reported in the 
Supplementary Materials (Section B).
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Results based on classifier architecture
In most cases the average absolute difference in the AUC values were blow 5%. The 
average difference in the AUC of the centralized training over the Breast cancer, Indian 
Liver, NSCLC-Radiomics dataset, Stage III NSCLC datasets was reported as 0.67%, 1.75%, 
8.33%, and 6.24%, respectively. Differences in the AUC for each training scenario 
versus each classifier has been summarized in Table S5.1, Supplementary Materials 
(Section C). The maximum average difference of the AUC values for the distributed 
learning classifiers per dataset increases up to 8.74%, 7.66%, and 8.64% for case, case 
2, case 3, respectively. It should be noted that in extreme cases certain scenarios had 
AUC differences above 10%, highlighted in Table S5.1 of the Supplementary Materials 
(Section C). These results suggest the optimal classifier chosen is highly dependent on 
the characteristics of the dataset. 

Table 5.2: Discrimination performance (AUC) obtained by training centralized and distributed 
classifiers (SVM, logistic regression, and Perceptron) using four different datasets (Breast cancer, 
Indian Liver, NSCLC-Radiomics dataset, and Stage III NSCLC)

Classifier Training scenario

AUC (95% CI)

Breast 
cancer

Indian 
Liver

NSCLC-Radiomics 
dataset

Stage III 
NSCLC

Support vector 
machine

Centralized 0.99 
(0.98-1)

0.76 
(0.68-0.85)

0.64 
(0.51-0.77)

0.64 
(0.48-0.79)

Case 1 0.99 
(0.99-1)

0.77
(0.69-0.86)

0.64 
(0.51-0.77)

0.61 
(0.46-0.75)

Case 2 0.98 
(0.98-1)

0.74 
(0.65-0.83)

0.65 
(0.52-0.77)

0.60 
(0.46-0.76)

Case 3 0.98
(0.97-1)

0.75 
(0.67-0.84)

0.62 
(0.49-0.75)

0.61 
(0.46-0.76)

Logistic 
Regression

Centralized 0.98 
(0.98-1)

0.76
(0.67-0.84)

0.72 
(0.61-0.84)

0.70 
(0.57-0.82)

Case 1 0.97
(0.95-0.99)

0.76
(0.67-0.85)

0.71 
(0.59-0.82)

0.69
(0.56-0.82)

Case 2 0.97 
(0.94-0.99)

0.73
(0.64-0.82)

0.72 
(0.61-0.84)

0.65 
(0.52-0.78)

Case 3 0.99
(0.98-1)

0.74
(0.65-0.83)

0.70 
(0.58-0.82)

0.67 
(0.55-0.79)

Perceptron Centralized 0.99
(0.98-1)

0.78
(0.70-0.86)

0.72 
(0.61-0.84)

0.70 
(0.55-0.84)

Case 1 0.98 
(0.96-1)

0.76
(0.68-0.85)

0.68 
(0.55-0.80)

0.69 
(0.56-0.82)

Case 2 0.99 
(0.98-1)

0.74
(0.65-0.83)

0.67 
(0.54-0.79)

0.67 
(0.53-0.81)

Case 3 0.99 
(0.98-1)

0.78
(0.70-0.86)

0.66 
(0.54-0.79)

0.69 
(0.56-0.81)
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Discussion and future work

High quality datasets with sufficient training datasets are required for machine learning 
models to converge and generalize [2]. When working with patient data, there are 
important ethical and legal considerations to be managed, when considering sharing 
patient data between institutions.

The results presented in this work demonstrate that sequential distributed learning 
on small, isolated datasets (including extreme cases of model updated using a single 
datapoint at a time) achieves equivalent performance to models trained in conventional 
centralized learning. Similar conclusions were observed in the case of multiclass classi-
fication using the MNIST dataset [37]. We observed, by applying a pairwise DeLong [42] 
comparison, that the AUC for distributed learning models do not differ with statistical 
significance from models trained in centralized scenarios. 

The results in Table 5.2 and 5.3 and the ROC curves indicate that there is a difference in 
the performance of different classifiers, and this difference can vary from one dataset to 
another. We noted that the average AUC difference between the classifiers can increase 
up to 8.33%, 8.74%, 7.66%, and 7.66% with respect to each use case (centralized, case 1, 
case 2, case 3) and dataset (Breast cancer, Indian Liver, NSCLC-Radiomics dataset, Stage 

Figure 5.4: AUC of each classifi er and dataset pair, for each dataset four diff erent models have been 
trained.
Centralized, case 1: two partners, case 2: each center holds one patient, case 3: each center holds one 
patient with a shuffl  e in the order of the partners while training.
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III NSCLC). Even though this margin may be perceived as inconsequential, the clinical 
risk of decisions based on predictions must be considered as with all changes in model 
performance. Cases with AUC differences above our 10% threshold (highlighted in red), 
indicate that this specific classifier is suboptimal for the dataset in question. Thus, with 
respect to learning [43], we recommend to select the classifier based on comparative 
performance of the different centralized and distributed classifiers, or base the selection 
justified criteria related to the data characteristics that will be used to fit the model.

Previous reports on distributed ensemble learning [11,12], showed the potential of 
application of this particular type of distributed learning to small siloed datasets. For 
example, Tuladhar et al. [12] reports that grouping models learned locally from either 
artificial neural network, SVM, or random forest could efficiently exploit small sets of 
data to build global models. These results suggest that the application of ensemble 
learning on small dataset is feasible. While other authors have demonstrated that 
grouping local logistic regression models, is promising in the case of small datasets 
[11]. In addition to that, they proposed a model update based on the distributed sets of 
data information to improve the global model performance on small datasets. Results 

Table 5.3: P-values corresponding to the pairwise Delong test

Model Test

Dataset 

Breast 
cancer

Indian 
Liver

NSCLC-
Radiomics 

dataset
Stage III 
NSCLC

p-value p-value p-value p-value

Support vector machine Central model vs case 1 0.155 0.594 0.926 0.810
Central model vs case 2 0.785 0.475 0.871 0.718
Central model vs case 3 0.082 0.861 0.53 0.760
Case 1 vs case 2 0.143 0.429 0.969 0.953
Case 1 vs case 3 0.071 0.710 0.685 0.980
Case 2 vs case 3 0.271 0.580 0.234 0.941

Logistic Regression Central model vs case 1 0.061 1 0.422 0.606
Central model vs case 2 0.076 0.250 0.196 0.541
Central model vs case 3 0.904 0.538 0.373 0.663
Case 1 vs case 2 0.425 0.224 0.401 0.652
Case 1 vs case 3 0.052 0.652 0.823 0.787
Case 2 vs case 3 0.066 0.677 0.285 0.762

Perceptron Central model vs case 1 0.147 0.448 0.062 0.600
Central model vs case 2 0.427 0.267 0.332 0.809
Central model vs case 3 0.370 0.858 0.210 0.662
Case 1 vs case 2 0.322 0.274 0.838 0.868
Case 1 vs case 3 0.329 0.212 0.719 0.936
Case 2 vs case 3 0.946 0.129 0.848 0.856
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of these studies [11,12] showed an overall improvement in global model performance 
compared to models trained in a single institution data. These results, however, cannot 
be extended to the case of distributed sequential learning. 

Our results demonstrate that sequential distributed learning can be beneficial for the 
application of AI for outcome prediction in favor of medical institutes holding very 
small datasets. Practical examples of small datasets can be 1) pediatric cases that tend 
to suffer from small sample sizes [44], 2) early phase clinical trials where the sample 
size tend to have around 20 subjects [45], and 3) rare diseases as they have a very low 
prevalence (< 5/10000 in the European population) [46], making it nearly impossible 
for a single medical center to collect enough data to train machine learning models. 
Even with these limitations, and with considerably small datasets (20 to 100 datapoints), 
researchers have been using machine learning to build diagnosis and prognosis models 
for rare diseases [47]. The generalizability of trained models is directly related to the 
quality and quantity of the training data [48]. In this regard, distributed learning provides 
opportunity to develop generalizable models with small high-quality datasets in multi-
center applications while also mitigating the need to share data and maintaining the 
privacy of all patient information, such as imaging, genomic, or clinical insight. 

Batch size is well known to have an effect on final model performance [49], where 
evidence suggests that large batch size does not always relate to better model per-
formances [50]. Conversely, in distributed learning applications, 1) a smaller batch 
size has been linked to the privacy of the training data, as it considerably reduces 
the ability to reproduce training data from shared model weights in case of weights 
leakage [51], 2) it has been well documented that the order of training partners in a 
distributed network influences the performance of the model [28]. Our results suggest 
that the centralized and distributed models are not statistically different. Therefore, we 
see distributed sequential learning as a viable tool for multicentric precision medicine 
studies, particularly in applications with small datasets such as rare diseases and could 
also be applied in pediatrics and early phase clinical trials.

The tuning of each classifier prior training of the final model is an essential step in 
achieving robust and generalizable models as this is dependent on the nature of data 
used in training. The need for tuning hyperparameters stems from the fact that the clas-
sifiers investigated in this work are using SGD as an optimizer, and thus cannot avoid this 
optimization step. The main parameter that needs to be optimized is the learning rate; 
as it controls the manner in which model is modified according to the estimated error 
at every iteration/update of the model weights. The process of learning rate selection is 
challenging as a small value theoretically facilitates better performances but in contrast 
can increase training phase time significantly. On the other hand, a larger learning rate 
value can result in an unstable training phase, as the model updates very quickly in 
each iteration causing it to converge to a flat (i.e., less optimal) minima.
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Tuning model hyperparameters is also imperative for distributed classifiers, as we 
showed in this study. Furthermore, we observed that there is a need to investigate 
different combinations of hyperparameters and number of iterations. Hyperparameter 
and training settings such as number of iterations, coupled with a set of model selection 
criteria (based for example on a comparison of model accuracies or model parameters) 
[52], can be beneficial to reduce the risk of overfitting. However, this leads in turn to one 
limitation, related to the longer execution time in comparison to traditional centralized 
training. This increase in time is accounted by the need to investigate all the training 
data across all the participating partners to set optimal hyperparameters. In addition 
to this, it is important to consider communication costs, as all parameter tuning and 
model updates occur over the internet. Characterizing the time required for training is 
challenging as the duration is highly dependent on each partner’s internet bandwidth. 
Future directions of this work will include analysis to characterize the model training 
duration in a distributed fashion, identify the scalability of the infrastructure to accom-
modate larger loads by increasing available computational power either though scale 
up (additional hardware) or scale out (additional nodes) and investigate the elasticity 
or ability to dynamically handle varying loads of data.

Conclusion 

This study demonstrates 1) the proof-of-concept of sequential distributed learning 
applied on small sizes of data, narrowed down to a single datapoint at a time 2) the 
opportunities associated with this type of distributed infrastructures on the applica-
tion of AI in low prevalence diseases. We simulated three different distributed learning 
cases using three classifiers and four different datasets. Our results indicate that 
sequentially training the models using (extremely) small datasets delivers statistically 
similar performance (p-values > 0.05) in comparison to the conventional centralized 
approach. This work provides a validation of the potential of distributed learning in 
case of small datasets and a new opportunity to data driven outcome modeling in rare 
disease research. Furthermore, this work can be used to continuously update predictive 
models as new data is available. Finally, future work is planned to estimate and optimize 
the scalability of sequential distributed learning infrastructures in real world settings. 
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Supplementary materials

Section A
MNIST dataset

Methods

Data 
MNIST, is a publicly available dataset, that was developed to evaluate machine/deep 
learning models trained to classify handwritten digits [1]. The MNIST dataset consists 
of 60000 training images and 10000 test images (28x28 pixels) of handwritten digits 
(0-9). It has been widely used in the development and validation of novel handwritten 
digit detection models.

Model 
The model is based on Convolutional Neural Networks (CNN). CNNs are a an advanced 
and more complex implementation of simple neural networks. These algorithms are 
commonly used to classify and analyze different types of imaging depending on the 
desired outcome. 

The model architecture consists of an input layer of shape (28, 28, 1), followed by two 
convolutional layers, by pooling layer, and a fully connected layer, in addition to an 
output layer consisting of a SoftMax activation function. Multiple filters are used at 
each convolutional layer, for different types of feature extraction. 

Training 
•	 A centralized model was training using all the 60000 training images and 

tested using the 10000 test images.

Different distributed learning scenarios were simulated using the training set, to test 
the effect of training using different dataset sizes, all the models were tested using 
the same test set.

•	 Case 01: the training data was split into two centers of set 1 (n = 40200) and 
set 2 (n = 19800) respectively, the model was trained by fitting the first set of 
data and then update this model using the second set of data. 

•	 Case 01 shuffle: in this case the exact same data split used in “Case 01” was 
employed, however the training order was changed, meaning the model 
was trained using set 2 (n = 19800) and then updated using set 1 (n = 40200).

•	 Case 02: the training data was split into four centers: set 1 (n = 19800), set 
2 (n = 13266), set 3 (n = 18045), and set 4 (n = 8889) respectively. The model 
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was trained by fitting set 1, then updated using set 2, followed by set 3, and 
finally update the model using the set 4.

•	 Case 02 shuffle: in this case the same data split used in “Case 02” was 
employed with a random shuffle of the training order. The training odder was 
set 4 (n = 8889), followed by set 1 (n = 19800), followed by set 3 (n = 18045) 
and finally the model was updated using set 2 (n = 13266).

•	 Case 03: the training data was split into ten centers: set 1 (n = 6534), set 2 (n 
= 13266), set 3 (n = 8889), set 4 (n = 5955), set 5 (n = 8100), set 6 (n = 3990), 
set 7 (n = 4378), set 8 (n = 2934), set 9 (n = 1965), and set 10 (n = 3989). The 
model was trained by fitting all the training sets in ascending order from 
set 1 to set 10. 

•	 Case 03 shuffle: in this case the same data split used in “Case 03” was 
employed with a random shuffle of the training order. The new training odder 
was set 4 (n = 5955), followed by set 2 (n = 13266), set 7 (n = 4378), set 3 (n 
= 8889), set 6 (n = 3990), set 10 (n = 3989), set 9 (n = 1965), set 8 (n = 2934), 
set 5 (n = 8100), and finally the model was updated using set 1 (n = 6534).

•	 Case 04: the training data was split into twenty centers: set 1 (n = 13266), 
set 2 (n = 8889), set 3 (n = 5955), set 4 (n = 3990), set 5 (n = 2673), set 6 (n 
= 1791), set 7 (n = 1200), set 8 (n = 804), set 9 (n = 539), set 10 (n =732), set 
11 (n = 361), set 12 (n = 6534), set 13 (n = 4378), set 14 (n = 2934), set 15 (n 
= 1965), set 16 (n = 1317), set 17 (n = 882), set 18 (n = 591), set 19 (n = 803), 
and set 20 (n = 396). The model was trained by fitting all the training sets in 
ascending order from set 1 to set 20. 

•	 Case 04 shuffle: in this case the same data split used in “Case 04” was 
employed with a random shuffle of the training order. The new training odder 
was set 13 (n = 4378), set 14 (n = 2934), set 20 (n = 396), set 3 (n = 5955), set 
11 (n = 361), set 10 (n =732), set 7 (n = 1200), set 18 (n = 591), set 17 (n = 
882), set 1 (n = 13266), set 9 (n = 539), set 2 (n = 8889), set 6 (n = 1791), set 
4 (n = 3990), set 12 (n = 6534), set 5 (n = 2673), set 16 (n = 1317), set 19 (n = 
803), set 8 (n = 804), and set 15 (n = 1965).

Results
The results of the model training for the centralized model and all the cases described 
in section (c. Training) of the Appendix are depicted the Figures S5.1, S5.2, S5.3, S5.4, 
and S5.5 respectively. The results obtained with the MNIST dataset support the results 
obtained with the four datasets and machines leaning classifiers reported in the main 
paper.
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Figure S5.1: Central model: model accuracy and loss on the on the training and test sets.

Figure S5.2: A) case 01: model accuracy and loss on the test set, B) case 01 shuffl  e: model accuracy 
and loss on the test set.
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Figure S5.3: A) case 02: model accuracy and loss on the test set, B) case 02 shuffl  e: model accuracy 
and loss on the test set.

Figure S5.4: A) case 03: model accuracy and loss on the test set, A) case 03 shuffl  e: model accuracy 
and loss on the test set.

Figure S5.5: A) case 03: model accuracy and loss on the test set, B) case 03 shuffl  e: model accuracy 
and loss on the test set.
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Section B
ROC curves

BREAST CANCER Wisconsin Dataset

Figure S5.6: Receiver operator characteristic curves for breast mass classifi cation model (SVM) 
trained using centralized learning and distributed learning.

Figure S5.7: Receiver operator characteristic curves for breast mass classifi cation model (Logistic 
regression) trained using centralized learning and distributed learning.
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Figure S5.8: Receiver operator characteristic curves for breast mass classification model (Perceptron) 
trained using centralized learning and distributed learning.

INDIAN LIVER dataset

Figure S5.9: Receiver operator characteristic curves for liver disease detection model (SVM) trained 
using centralized learning and distributed learning.
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Figure S5.10: Receiver operator characteristic curves for liver disease detection model (Logistic 
regression) trained using centralized learning and distributed learning.

Figure S5.11: Receiver operator characteristic curves for liver disease detection model (Perceptron) 
trained using centralized learning and distributed learning.
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NSCLC-RADIOMICS dataset

Figure S5.12: Receiver operator characteristic curves for two-year survival model (SVM) trained 
using centralized learning and distributed learning.

Figure S5.13: Receiver operator characteristic curves for two-year survival model (Logistic regres-
sion) trained using centralized learning and distributed learning.
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Figure S5.14: Receiver operator characteristic curves for two-year survival model (Perceptron) 
trained using centralized learning and distributed learning.

Figure S5.15: Receiver operator characteristic curves for overall survival model (SVM) trained using 
centralized learning and distributed learning.

STAGE III NSCLC dataset
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Figure S5.16: Receiver operator characteristic curves for overall survival model (Logistic regression) 
trained using centralized learning and distributed learning.

Figure S5.17: Receiver operator characteristic curves for overall survival model (Perceptron) trained 
using centralized learning and distributed learning.
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Section C
Average difference in classifier AUC in percent

Table S5.1: Percentage difference and average difference in classifier AUC for each dataset (Breast 
cancer, Indian Liver, NSCLC-Radiomics dataset, and Stage III NSCLC)

Training scenario Classifiers

Difference in AUC (%) 

Breast 
cancer Indian Liver

NSCLC-
Radiomics 

dataset
Stage III 
NSCLC

Central model SVM vs LR 1.1 0.00 12.5 9.37
SVM vs Perceptron 0.00 2.63 12.5 9.37
LR vs Perceptron 1.02 2.63 0.00 0.00
Average difference 0.67 1.75 8.33 6.24

Case 1 SVM vs LR 2.02 1.29 10.93 13.11
SVM vs Perceptron 1.01 1.29 6.25 13.11
LR vs Perceptron 1.03 0.00 4.22 0.00
Average difference 1.35 0.86 7.13 8.74

Case 2 SVM vs LR 1.02 1.35 10.76 6.66
SVM vs Perceptron 1.02 0.00 3.07 11.66
LR vs Perceptron 2.06 1.36 6.94 4.68
Average difference 1.36 0.90 6.92 7.66

Case 3 SVM vs LR 1.02 1.33 12.90 9.83
SVM vs Perceptron 1.02 4.00 6.45 13.11
LR vs Perceptron 0.00 5.40 5.71 2.98
Average difference 0.68 3.57 8.35 8.64

References
[1] Y. Lecun, Gradient-Based Learning Applied to Document Recognition, PROCEEDINGS OF THE IEEE. 86 

(1998) 47.
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Abstract

Objectives: setting up centralized multicentric studies is a complex and time-
consuming process. Distributed learning allows machine learning models to use 
data from multiple institutions without exchanging individual patient-level data. 
We demonstrate this technique in a cross institutional study to predict prostate 
cancer grade group of prostate cancer patients. 

Materials and Methods: simulated a two-center distributed learning network 
to train and validate a prostate cancer grade group predictive model. The open-
source dataset of Prostate MRI and Ultrasound with Pathology and Coordinates 
of Tracked Biopsy (n = 1151) was used to demonstrate the distributed learning 
framework. 

Results:  the model’s performance was evaluated on a global test set of 192 
subjects. The Global model showed an average AUC of 0.77 on the global test 
set for classification of five prostate cancer grade groups (Gleason score (GS) <= 
6, GS = 3+4, GS = 4+3, GS = 8, and GS > 8). 

Conclusion: distributed learning for classifying prostate cancer grade groups 
is feasible and presents a new methodology to analyze prostate cancer data 
without exposing any private information.
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Introduction

Unlike other solid organ cancers, imaging is not used to diagnose patients with prostate 
cancer. Prostate cancer diagnosis is performed through biopsy for patients with a high 
level of prostate specific antigen (PSA) in their blood [1]. From the biopsy is estimated 
a Gleason Score which is a grading system used to rate the aggressiveness of prostate 
cancer and help choosing appropriate treatment options. 

Artificial intelligence (AI) is a promising filed that has been successfully applied in 
medical imaging. AI was used for diagnosis and prognosis of different pathologies and 
diseases specially in radiology [2]. Similarly, AI approaches (i.e. machine learning and 
deep learning) have been implemented to prostate histopathology [3]. In this context, 
it was observed that machine learning applications for quantitative imaging (radiomics) 
as well as deep features can be used to predict Gleason score [4–6]. However, medical 
data is highly protected by law and ethics[7]. In consequence accessing and sharing 
such data became difficult and time consuming. Combining distributed learning and 
blockchain technology allows us to train the models without the data leaving their 
original locations [8]. The addition of a blockchain-based interaction provides the 
ability to trace back data provenance and usage of the created models. This combina-
tion prevents any data leakage and ensures the usage of the model for the purposes 
it was intended for initially. 

We hypothesize that training of prostate cancer grade group prediction models in a 
distributed fashion across multiple sites is feasible and gives the similar performance 
than a centralized approach. Distributed learning provides an opportunity to train 
AI models with more data compared to data available at single centralized hospital. 
As this data originates from different centers; we expect our model to outperform 
models trained using data from a single center and to be more generalizable. Further 
the model can help predict prostate cancer grade group from prebiopsy magnetic 
resonance imaging (MRI).  

In this paper, we propose a multicentric model for prostate cancer grade group predic-
tion learned from multi-stage prostate cancer MRI of prostatectomy patients. The MRIs 
are coupled with both Biopsy and prostatectomy Gleason scores. Blockchain technology 
is used to validate and monetize the data used for training. 

Materials and Methods

Data
We used the open source Prostate MRI and Ultrasound With Pathology and Coordinates 
of Tracked Biopsy (Prostate-MRI-US-Biopsy) dataset [9–11] to run this experiment. The 
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dataset consists of 1151 T2 weighted MRI observations of prostate cancer patients, 
each MRI is applied with prostate and tumor segmentation masks, and biopsy derived 
primary and secondary Gleason scores. 

A total number of 14 observations were excluded from further analysis because they 
had missing segmentations, either prostate mask or tumor mask, or both, leaving 
1110 eligible for prostate cancer grade group model training and global testing. Each 
3D image was cropped around the prostate mask to make sure the prostate gland is 
available for model training. From each T2 weighted image we extracted three consecu-
tive slices based on the diameter of the tumor. We firstly selected the slice containing 
the tumor with biggest diameter, we then selected the preceding and succeeding 
slices. Each slice is reshaped to a size of 64 by 64 pixels. The three consecutive slices 
are grouped as a three-channel input for the model. The data was split to training and 
testing sets (80% and 20% respectively). The training data was further split in to two 
sets (80% and 20% respectively) simulating two partners (Partner 1 and Partner 2). Prior 
training, each partner’s set is split into 80% and 20% subsets for training and validation 
respectively. All data splits (Training, validation, and testing) were stratified based on 
the outcome label classes to guarantee  equal percentage of positive and negative 
samples on each set. The primary and secondary Gleason scores were translated into 
labels containing five classes ranging from 0 to 4, as described in Table 6.1.

Table 6.1: Prostate cancer grade group, associated Gleason score, and labels

Grade group Primary GS Secondary GS Combined GS Labels

1 3 3 6 0
2 3 4 7 1
3 4 3 7 2
4 4,3,5 4,5,3 8 3
5 4,5,5 5,4,5 9 & 10 4

Real time data augmentation was performed on the final training sets (Partner 1 and 
Partner 2) to balance the different classes (0, 1, 2, 3, and 4). For each training set first 
determine the majority class, based on which the number the augmentation threshold 
is defined for the remaining classes. The augmentation threshold is the difference 
between the size of the majority class the each of the remaining classes’ size, and it 
determines the number of augmented images that need to be produced to balance 
the data. The performed augmentation consists of clockwise rotation, anticlockwise 
rotation (with a random angle between 2 and 13 degrees respectively), random noise, 
and Gaussian blur.
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Model architecture
The model consists of a ResNeXt-50 [12] pretrained on ImageNet dataset [13]. During 
the training process, the ADAM optimizer was applied with the learning rate (lr = 1e-5); 
model loss was calculated using categorical cross-entropy. The output of the model is 
classification probability of five categories. 

Model training 
We used the C-DistriM [8] software to set up a distributed learning network of two 
partners. Each partner had direct access patient-level data, the local learning and model 
parameter (such as the number of steps per epoch, number of epochs, and batch size) 
estimation is based on the data size. C-DistriM is a decentralized distributed learning 
framework based on Ethereum blockchain. C-DistriM’s smart contract was deployed 
to Ethereum Rinkeby test network (https://www.rinkeby.io/) to enable the learning 
from local partner data.  

Both partners data was placed in physical Surface Book 2 laptop (Intel(R) Core i7-8650U 
CPU, 16 GB RAM, equipped with NVIDIA GeForce GTX 1050 GPU), and running Windows 
10 Pro. Ethereum blockchain was installed and synced using the official Go implemen-
tation of the Ethereum protocol Geth version 1.10.6-576681f2 (https://geth.ethereum.
org/downloads/). An Ethereum account was created for each partner, the address of 
each partner and the smart contract can be found in Table 6.2, and the transaction 
history of each account can be accessed at the Rinkeby etherscan online platform 
(https://rinkeby.etherscan.io/).

Table 6.2: Corresponding Rinkeby test network addresses of the smart contract and partners (1 and 2)

Account holder Address on Rinkeby test network 

Smart contract 0xf3661ecd7e6c9c4bd8369462db1f7c1f87494363
Partner 1 0x1608076d8861c77feecc8a6e0f711776c63e8f4d
Partner 2 0x8541feebd9826d6ba4e13711278a1d43938d9795

The smart contract delegates the learning process by allowing only registered partners 
to proceed with the learning process. It provides the registered partner with an ERC271 
Token to enable it to make the local model available to the other partner for update 
(more information on Blockchain technology, smart contracts and ERC271 Tokens are 
available in Supplementary Materials (Section A1). The following flowchart presents a 
detailed overview of the learning process:
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Figure 6.1: C-DistriM workflow.
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Model performance in the local validation and global test set are expressed in term of 
the Area under the Curve (AUC) of the Receiver Operating Characteristic curve (ROC). 
The AUC is estimated for each class individually and the main AUC of the model is 
estimated by computing the average AUC of all possible pairwise combinations of the 
five classes, using the Python’s scikit-learn package (v=0.24.2). 

Results

A summary of cohort, tumor specificities in the dataset along with number of samples 
on each of the training, local validation, and global test sets is presented in Table 6.3.

Table 6.3: Dataset characteristics

Median 
age 

Median 
PSA

Prostate 
volume

Partner 1 samples Partner 2 samples

Global 
Testing 
samples

Training 
(after aug-
mentation) Validation 

Training 
(after aug-
mentation) Validation

+65 (years) 4.9 ng/ml  48 cc 290 32 1135 108 192

The average AUC of the global model on the local validation set of the Partner 1 (first 
training round) and Partner 2 (second training round) is 0.63 and 0.73 respectively. The 
global model achieved an average AUC of 0.77 on the global test set. The ROC curves 
for each class obtained on the local validation and the global test sets for the global 
model are presented in Figure 6.2. The performance for prostate cancer grade group 
1 (class 0) classification in the local validation set has an AUC of 0.54. Grade group 2 
(class 1), grade group 3 (class 2), grade group 4 (class 3), grade group 5 (class 4) present 
an AUC of 0.42, 0.77, 0.77, and 0.77 respectively.

The performance for prostate cancer grade group 1 (class 0) classification in the global 
test set has an AUC of 0.63. Grade group 2 (class 1), grade group 3 (class 2), grade group 4 
(class 3), grade group 5 (class 4) present an AUC of 0.55, 0.79, 0.79, and 0.79 respectively. 

Discussion

This study demonstrates the feasibility of privacy preserving distributed learning for 
prostate cancer. We developed and tested a distributed deep learning model for prostate 
cancer grade group (aggressiveness status) classification based on biopsy derived 
Gleason scores. To demonstrate our approach we used the open-source Prostate-MRI-
US-Biopsy dataset [9–11]. Our results showed an improvement of model performance 
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in the global model compared to the model trained on the first partner’s (Partner 1) 
data only. Distributed learning approaches were not previously investigated for prostate 
cancer grade group prediction. Herein, we present the potential of distributed learning 
to combine the knowledge retrieved from siloed MRI datasets. 

Figure 6.2: ROC curve (A) for local validation set (B) global test set.
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At the present time the most widely used diagnosis method for prostate cancer is 
biopsy[14]. However, it may expose the patients to possible infections [15]. Imaging is 
conceived as a non-invasive approach for diagnosis and prognosis analysis of various 
cancers [16,17]. We leveraged the potential of MRI and deep learning to classify prostate 
cancer grading groups. Our model achieved an AUC of 0.73 on the local validation set 
and an AUC of 0.77 on the global test set for classification of prostate cancer grade 
groups based on Gleason score (GS <= 6, GS = 3+4, GS = 4+3, GS = 8, and GS > 8). 

Several deep learning based studies were proposed to classify prostate cancer grade 
groups from MRI scans [18–21]. The results of these studies reported a classification AUC 
varying from 0.57 to 0.89. In spite of the fact that these studies achieved a good perfor-
mance, the majority were trained on a single dataset limiting the model’s capacity to 
generalize to other data collected using different acquisition parameters and protocols. 
In addition to that building a robust classification model requires an exposure to all the 
classification classes which is not the case in most of the datasets used in the proposed 
studies. Our distributed learning framework, however, provides the ability to update 
the classification models using new quality data (in terms of volume, veracity, variety, 
and velocity (4Vs) [22]) originating from different institutions. This exposure provides 
the model with an ability to generalize better. Moreover, class imbalance is known to 
affect the quality of the learning, to avoid overfitting on the majority class, we propose 
a data augmentation module that assesses on the fly how many new images should be 
generated for each class to balance the training on local dataset for each participating 
partner. Additionally, C-DistriM is based on Blockchain technology that ensures trace-
ability and transparency of the learning process, thus the partners do not need to trust 
any third party for aggregating the learning. 

Our study is limited to learning from biopsy labels, that are subject to errored estima-
tions when compared to post-surgery labels [14]. Further analyses are required to 
evaluate training classification of prostate cancer grade groups using post-surgery 
labels and compare the model performance to the one obtained using biopsy labels. 
The data we used in this study is open source, our future work include expending the 
analysis presented in this work to learn from post-surgery data directly on the clinics 
while preserving the data privacy within the clinics’ firewalls.

Conclusion

We have demonstrated the utility of privacy preserving distributed learning for classify-
ing prostate cancer grade groups. We aim install our infrastructure in clinical environ-
ments and improve the performance and generalizability of our model. 
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Supplementary materials

Background

Blockchain
The idea of blockchain was initially proposed by Nakamoto et al. [1] as a digital cryp-
tocurrency. It is a digital ledger that consists of transaction blocks and facilitates the 
transaction securely. Each block contains the hash of the previous block, as well as the 
timestamp. For public blockchain, the ledger is openly accessible for everyone but trans-
actions once made and confirmed, are permanent and immutable. Nowadays, Block-
chain technology has evolved to more general-purpose solutions such as Ethereum 
[2]. It uses a Proof of Work (PoW) consensus algorithm in which specific nodes, called 
miners, verify the validity of transactions. Once a transaction is confirmed, miners 
create a new block and append new valid blocks to the blockchain. To add the next 
block to the ledger, a miner must solve a complex mathematical problem and gets a 
reward in return for it. Moreover, due to the existence of smart contract functionality 
in Ethereum, it offers enormous functionalities that require agreements between two 
parties. Therefore, in our work, we use the Ethereum blockchain to interact between 
organizations. 

Smart Contract
A smart contract is a digital protocol stored on an Ethereum blockchain that executes 
automatically when predefined conditions are met [3]. The main purpose of a smart 
contract is to translate contractual clauses between two parties into a code and enable 
automated workflows. It eliminates the need for a third party and increases efficiency. 
In this paper, we use smart contracts to define the conditions for training the models 
of different organizations.

Tokens
Ethereum tokens are a special type of cryptocurrency, usually defined as fungible, 
exchangeable assets [4]. The goal of using tokens is to provide a sophisticated system 
that allows automated access control to the data and serves as an identifier for specific 
operations to allow the supervisory authority to inspect these interactions. ERC-721 
token [5] is a non-fungible asset i.e., the token cannot be swapped with another token 
and each token has a unique property. Non-fungible tokens (NFTs) represent data 
ownership over digital or physical assets and the ERC-721 standard provides functional-
ity to track the NFTs. Therefore, in this work, we use the ERC-721 token to represent a 
unique key to the specific organization which allows us to differentiate over the data 
model used for learning.
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Distributed learning is a growing area of interest in healthcare and precision medicine, 
it enables access to data distributed over different medical institutions. Consequently, 
it facilitates big data in healthcare while preserving the privacy of the data and 
increasing the generalizability of the learned models. We described, in chapter 2, one 
of the major research fields that utilized distributed learning being the concept of 
radiomics and quantitative imaging in its conventional centralized settings. Further-
more, it described its challenges, pitfalls, and opportunities particularly data sharing 
and privacy preserving alternatives. We presented an overview of the challenges and 
opportunities attributed to distributed learning frameworks in chapter 3. We proposed, 
in chapter 4, a new decentralized distributed learning framework that addresses the 
challenges of conventional distributed learning frameworks presented in chapter 3. 
We then evaluated, in chapter 5, the impact of using decentralized distributed learning 
to learn from very small, siloed datasets. Furthermore, we evaluated our solution in an 
international setting, in chapter 6.

The following sections elaborate on the main challenges associated with distributed 
learning frameworks. Additionally, our contribution to overcome those challenges and 
future works will be discussed. 

Multicentric Big data

Big data is a term employed to describe very large datasets, in healthcare domain it can 
be used for diagnostic and prognostic insight [1]. The significance of big data originates 
from the principle that large and heterogeneous datasets enable AI to learn and retain 
important characteristics better than small and homogenous datasets. In this context, 
issues related to data heterogeneity and variation are no longer relevant, as we illus-
trated in chapter 5, by simulating various distributed learning networks (n = 60000). 
However, a single healthcare organization cannot hold datasets that are big enough 
with respect to volume, veracity, variety, and velocity (4Vs) to be characterized as big 
data or to build reliable and generalizable AI [2]. Multicentric studies can leverage big 
data in healthcare and are particularly relevant for precision medicine initiative, early 
phase and pragmatic clinical trials. However, typical multicentric studies are slow and 
costly, primarily due to the legal and ethical considerations that hinders the process 
of data sharing and centralization in multicentric studies. Distributed learning offers a 
potential solution to these barriers by enabling fast and efficient multicentric studies 
while preserving the privacy of the data and ensuring similar performance as if the 
data was centralized [3,4]. 
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Technical implementation 

In the contrary to centralized learning processes described in chapter 2 for the use case 
of radiomics studies, technical implementation of distributed learning frameworks is a 
challenging process as it requires two main components: 1) client: which is the part of 
the software that is installed and is executed on a local machine owned or hosted by the 
hospital (or a research center) and on which the data is stored and accessible; 2) server: 
it consists of the main instance responsible to start, aggregate, and end the distributed 
learning process. Opensource frameworks have been released such as TensorFlow 
federated [5], Pysyft [6], Flower [7], and Vantage6 [8] to facilitate the implementation of 
federated learning frameworks for researchers. To utilize these frameworks, even if freely 
available, research centers invest considerable effort into integration and deployment 
using such frameworks. On the other hand (at the time of writing this thesis), there 
is a small number of companies (e.g., radiomics (Oncoradiomics SA) (chapter 6) and 
Owkin [9]) in addition to research groups (e.g., Dutch Personal Health Train [10,11], and 
Vantage 6 [12]), providing distributed learning solutions for medical research. These 
solutions are either production ready, built for long term use and technically validated 
or established for a fixed duration. However, since they are 1) only available as a com-
mercial product or 2) dependent on a grant financing a research project for a predefined 
timeline, the impact on their use is limited, in the first case research community cannot 
fully benefit from the solution due to the lack of permanent financial support, and in 
the second case continuous development and integration are complex and hard to 
achieve. In both cases, the existing distributed learning frameworks need a server to 
allow the learning aggregation within a distributed network of medical institutions 
(example: hospitals, clinics, or research centers). This aggregation is an important step 
in distributed frameworks because it ensures the training continuity and safeguards 
the data used, model parameters/ weights, and the models learned. The aggregation 
task is ensured by a third-party server, to which the partners are connected and provide 
information concerning each step of the learning process. This leads to:

1. A centralization issue, as all the partners are required to trust the entity that 
holds the aggregation server. 

2. A traceability issue, as the learning process is centralized, if the entity that 
manages the server is malicious it can falsity the records or not properly 
aggregate the learning. Detecting a server-side malignancy by the clients is 
very hard as they do not have any access to it. 

3. The most common form of distributed learning is the one of “Federated 
learning” where the learning is parallel (all partners train local models simul-
taneously). This form of distributed learning even if it provides fast training 
and accurate results, it also represents a challenge in case a new partner joins 
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the network after the first execution of the project and if the related funding 
(case of academia) is extended and new data is pulled to the network. In 
this case the partners are subject to two main requirements technical and 
administrative, as it is necessary to rerun the analysis from scratch and contact 
all partners to submit new ethical approval forms and sign new agreements.

Challenges

Data access and manipulation
Data access from distributed learning frameworks is considerably different than data 
access in centralized settings. Data is typically stored and managed in different languages, 
following different guidelines of the electronic health records (EHR). This variation in the 
storing techniques makes the data access for distributed learning frameworks harder 
to achieve. In addition to these variations the researchers and developers of distributed 
learning frameworks cannot physically access or analyze the data during the preprocess-
ing and learning processes [13]. In this matter, it is important to introduce standardi-
zation techniques for the data storage and usage, such as: 1) the digital imaging and 
communications in medicine (DICOM) standard [14], 2) the clinical data interchange 
standards consortium (CDISC) [15], 3) the health level seven (HL7) standards to guide 
data transfer and sharing [16], and FAIR (findable, accessible, interoperable, reusable) 
data principles [17], not only prior employment of distributed learning frameworks but 
as a routine practice, despite the type of the analysis that will be applied for the data. This 
standardization is key to effective manipulation of the data and saves time and expenses 
on the long term. Nonetheless, the integration of the aforementioned techniques is not 
straightforward and requires considerable efforts to setup and maintain. 

Adoption & resistance to change 
As discussed in chapter 3, the adoption distributed learning is subject to many impedi-
ments related technical, administrative, and informative constraints: 

Accessing data in distributed learning settings requires a change or adaptation of a 
number of healthcare personnel to accomplish the corresponding tasks. In the present 
case, it is crucial to put considerable endeavor to facilitate and simplify the integra-
tion of the mentioned technologies in the healthcare domain. Avoiding positioning 
the personnel ahead of unknown and hard to interpret technologies or tools, may 
represent a step forward in embracing and adopting distributed learning frameworks 
by the healthcare partners.

Similarly with centralized frameworks, distributed learning frameworks are also subject 
to administrative manipulations such as grant writing and application for study ethical 
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and legal approvals. However, the lack of an in-depth knowledge of distributed learning 
methods makes the task of the ethical and legal departments more complex, and in 
parallel the adoption of such new technologies harder. It is important to document the 
integral distributed learning process by accentuating not only the data privacy concerns 
that are covered by distributed learning frameworks, but also the security measures 
taken to protect the data and its derivatives (such as the learned models and model 
weights), along with transparency and clearance measures to allow all the participants 
in such distributed frameworks monitor the learning process with no restrictions and 
trust concerns. This goal is very hard to achieve by the server-based frameworks, as the 
partners will always be required to entirely and blindly trust a single or multiple entities 
administrating the server in question. Thereby, establishing transparent decentralized 
distributed data frameworks is of major importance in easing the adoption of these 
technologies in healthcare and precision medicine.

Blockchain technology  

Recently, blockchain has received great attention in the research community in health-
care and precision medicine. There are different types of blockchain technologies 
including public, private, and hybrid platforms, each one presents its own opportunities 
and challenges [18]. Herein, chapter 4 and 6, we focus on the public blockchains as no 
one has control over the information stored on it. Therefore, it is no longer necessary to 
trust an intermediary agent to mediate the learning process. This type of blockchains 
is based upon smart contracts, which are programming scripts that translate the legal 
agreements and terms agreed by all the healthcare partners involved in a network 
(distributed learning) into transactional actions. The smart contacts carry away the 
need for intermediaries and as such. Thus, it ensures process decentralization, enforces 
trust, immutability, transparency, traceability, and security.

Immutability
One of the major concerns associated with server-based distributed learning frame-
works is process immutability. These systems are prone to falsification because they are 
managed by a single entity. Blockchain is immutable by design. It is built to safeguard all 
information stored in the ledger. It attains immutability through the use of cryptographic 
hashing, which derives from mapping data of arbitrary length to a fixed-size digest. 
Each transaction is registered after validation on a digital block. Each block includes 
a hash of the previous block, hence immutability. The immutability characteristic of 
blockchain provides the ability to enforce trust and grant integrity of the distributed 
learning frameworks amongst a network of healthcare partners. 
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Transparency
Blockchain runs on top of a consensus algorithm that enforces a transparent transaction 
mining process in the network. Moreover, since contracts deployed to the blockchain 
are public and in full view, they are permanently available for review and validation. 
Facilitating transparency of the distributed learning process enables the network 
partners to 1) monitor the learning process at any time during and after the training 
ends, 2) facilitate data governance in distributed learning projects, and 3) search any 
transaction amended to the chain during the learning. 

Traceability
It is essential to provide process traceability to guarantee secure information sharing in dis-
tributed learning frameworks and encourage medical data providers to join such studies. 
Traceability enables real-time monitoring of data contribution to the learning process. 

Network security 
Blockchain, by means of its embedded immutability, is able to contribute to removing 
any threat related to partner misbehavior (such as providing falsified data). In addition, 
blockchain operates in combination with robust encryption protocols that ensure the 
security of the network.  

Challenges and opportunities 
The blockchain has shown its great potential within the research community. However, 
its adoption in clinical practice is yet to be determined. 

•	 Public blockchains are subject to a scalability issue, for example Ethereum 
can mine approximately thirty transactions per second.

•	 Public blockchains have a single way of functioning. The entity that desires 
to integrate blockchain technology is responsible for restructuring its infra-
structure to successfully coordinate both technologies.

•	 The transaction fee in public blockchains varies according to the network 
congestion status, whereas healthcare partners have fixed budgets for 
research projects. Therefore, it is complex to integrate a technology where 
it is hard to estimate the costs. 

Blockchain is a rapidly evolving technology. New features are being implemented and 
released to improve and facilitate blockchain integration. For example, Ethereum is 
planning a new release (Ethereum 2, https://ethereum.org/en/eth2/) where the scal-
ability is to be considerably improved (from thirty to thousands of transactions per 
second), consequently transaction fees will be reduced as well. 
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Technical considerations
As the main feature of public blockchains is to increase and enforce trust on the network, 
it is technically not suitable for some forms of distributed learning frameworks, such as 
federated learning, chapter 4. The core element of federated learning is weight aggre-
gation. The weight aggregation procedure takes place in a server that is connected to 
each partners’ site, where a local model is trained using local data. After completion 
of the learning, the local model weights are transferred to the server that averages 
all the local weights received from all or a part of the participating partners. Because 
of its reliance on an aggregation server, and because the current implementations of 
blockchain are not optimized to perform great computations such as weight averaging, 
there are substantial technical, computational, financial, and environmental challenges 
to overcome when attempting to integrate federated learning with blockchain. The 
most suitable form of distributed learning for integration with public blockchain is 
“sequential learning”. In chapter 4 we have shown that integration of sequential learning 
and blockchain technology is feasible and that training predictive models sequentially 
delivers a similar result to the traditional centralized learning approach.

Distributed learning to increment model knowledge

In chapter 5 we discussed the value of distributed learning, performed in sequential 
settings, in incrementing the model knowledge in case of very small batch data. This 
type of learning is very beneficial in case of low prevalence diseases, where a single 
hospital may hold a single patient record or a small batch of patients only. As the appli-
cation of AI improves with larger sets of data, it is unlikely a single medical center can 
train valuable machine learning models on low prevalence data. Sequential learning 
enables AI to learn new characteristics continuously and efficiently from medical data 
while maintaining privacy and model performance. The sequential functionality of this 
type of the learning does not only permit to continuously update the model when new 
data is available, but it also avoids repetitive administrative work, such as contacting 
all centers when a new center wants to join the network. 

Federated learning frameworks, as well, demonstrated their potential in performing 
effective model learning in the case of small batch data [13]. The learning is held simul-
taneously (at the same time) on all the network partners. Consequently, the addition of 
a new partner requires contacting all the other partners and restarting the training from 
scratch. Under these circumstances, updating a federated learning model is conceived 
as a new study. Therefore, all legal and ethical applications must be carried out again. 

In conclusion, sequential learning can significantly simplify the application of AI in case 
of law prevalence disease diagnosis. Nonetheless, the application of such frameworks, 
depends upon the efforts made to facilitate their integration on the clinical practice.  
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Future perspectives

The future vision of distributed learning is to reach a global learning scheme (Figure 
7.1), where different types of data across the world can be made accessible to answer 
a variety of research questions. To achieve this vision, it is necessary to deliver improve-
ments in three key areas of healthcare: technology, finance, and education.

Figure 7.1: Global clinical knowledge sharing.

In chapters 3 and 5 we integrated Ethereum, a public blockchain, to a distributed 
learning network to enforce traceability and address the trust issues related to the con-
ventional distributed learning frameworks. Future works could be oriented to integrate 
the newest version of Ethereum, that addresses scalability and computational concerns 
in the current version. Moreover, as the transaction costs may be lower in the upcoming 
Ethereum version, more complex forms of sequential learning, such us updating the 
global model with local data in a cyclic manner at every epoch, have to be investigated.

In chapter 5, we validated the benefits of sequential distributed learning on small sets 
of radiomics and micro-array datasets. These types of datasets require feature selection 
prior to distributed learning in order to prevent overfitting [19,20]. Feature selection 
is yet to be investigated in the case of long-term sequential learning where model 
knowledge is incremented every time a new partner joins the distributed learning 
network. In this case, the raw data and features are extracted using different protocols 
and software, which leads to a variance in the robustness of certain features. Future 
work needs to investigate how to select common robust features if the data is not 
analyzed in one round. 



160 | Chapter 7

National and international financial support is necessary to promote not only the 
implementation of distributed learning frameworks but the integration and the con-
tinuous development of these frameworks. Continuous development avoids repeating 
the work that has been accomplished previously by performing continuous, small, 
updates enabling the up-to-date code to be delivered to stakeholders as early as it is 
completed and tested. In addition to that, it is essential to bring research and industry 
together to benefit from 1) the industrial expertise in product setup, deployment, as 
well as manual and automated testing, 2) the research innovations in defining new AI 
methods to answer different research questions, and the invention of new pathways 
for distributed learning. The European Unition started to support the combination of 
research and industry, a great example of financing projects is the Horizon 2020 project 
that provides support to research and industrial initiatives for distributed learning and 
other fields of research [21].

To improve the visibility and understanding of distributed learning concepts and 
increase the familiarity of healthcare providers with these concepts, more educational 
workshops need to be carried out. Hands-on workshops such as AI for imaging, both 
editions 2018 and 2019, are helpful to educate users how the process of carrying out 
a distributed learning process, and how distributed data analysis is implemented in 
a real life simulation [22]. High level courses, such as 3rd ESTRO Physics workshop 
[23], are also helpful to introduce distributed learning to the healthcare community 
by 1) increasing awareness of the distributed learning frameworks, 2) facilitating the 
integration of these frameworks to the healthcare information and communications 
technology (ICT) systems, 3) eliminating the need to trust a coordinating entity, and 
4) prioritizing transparent traceability of the contribution and data, the adoption of 
distributed learning in healthcare will be feasible. 

Conclusion  

This thesis provides evidence of the validity of distributed multicentric studies as an 
alternative to centralized studies. We contributed by addressing the trust and trace-
ability issues associated with conventional distributed learning frameworks. Continu-
ous efforts are ongoing in improving distributed learning by means of performance 
and scalability. Nevertheless, additional efforts are required to answer all the technical 
questions related to distributed learning and facilitate the integration and adoption of 
such frameworks. We expect distributed learning in healthcare and precision medicine 
to be an active research area over the next decade and beyond.
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Summary 

Medical data is  distributed  across different  health  care providers and  is  difficult 
to share due to patient privacy protection regulations. In the last decade, the optimi-
zation of healthcare  facilities and reaching a personalized level of clinical decision-
making became highly dependent on the quantity and quality of the medical data. This 
data is used to learn useful and reliable artificial intelligence (AI), via machine or deep 
learning  models. Ideally,  data of all health care providers worldwide  should be 
standardized and available to  learn from. However, the current technical  and 
financial resources, as well as legal and ethical considerations to protect patient data 
privacy, do not permit to centralize all data in a single database. In consequence, the 
implementation of AI applications in clinical practice is slowed down. New technical 
advancements such as distributed learning allow national and/ or multinational mul-
ticentric AI while preserving patient data privacy concerns.  

In this thesis, we evaluated the current state of research in the field of radiomics. We then 
presented an up-to-date overview and limitations of distributed learning applications in 
health care. Also, we implemented a new infrastructure to address the limitations of 
the existing distributed learning solution. We studied the potential of decentralizing 
the learning process by enforcing trust, immutability, transparency, and traceability 
in distributed learning networks via blockchain smart contracts. Our results showed 
that the decentralization of distributed learning networks has the potential to train 
the models  on patient data  stored at  different  health  care  centers  without  need 
to exchange patient data and without need to trust a third party. 

Furthermore, we evaluated the potential of distributed learning on small sets of data 
that can mimic the case of low prevalence diseases and phase I clinical trial, where it 
is not possible for a single health care provider to hold enough data to train reliable AI 
models.  Our results suggest that distributed learning  1)  overcomes data sharing 
limitations for low prevalence diseases and can be the new way to apply AI for such 
diseases, 2) is capable to train models as good as centrally trained models. Moreover, 
we deployed our infrastructure to a public blockchain (Ethereum) test network and 
tested the feasibility of decentralized distributed learning in real world settings. The 
decentralized nature of the study makes it easy for the public to evaluate the time, cost, 
and the learning quality, hence reaching transparent learning process.  

Finally, this thesis showed that the decentralization of distributed learning processes 
is  feasible  and  eliminates  the trust issues associated with conventional distributed 
learning frameworks. Blockchain based decentralized distributed learning, thanks to 
its immutability, transparency, and traceability, may encourage health care providers to 
join distributed multicentric studies. 
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Nederlandse samenvatting

Medische gegevens is verspreid over verschillende zorgverleners en zijn moeilijk te 
delen vanwege de regels voor de bescherming van de privacy van patiënten. In het 
afgelopen decennium is de optimalisatie van zorginstellingen en het bereiken van een 
gepersonaliseerd niveau van klinische besluitvorming sterk afhankelijk geworden van 
de kwantiteit en kwaliteit van de medische gegevens. Deze gegevens worden gebruikt 
om bruikbare en betrouwbare kunstmatige intelligentie (AI) te trainen, d.m.v. machine- 
of deep learning-modellen. Idealiter zouden gegevens van alle zorgverleners wereldwijd 
gestandaardiseerd en beschikbaar moeten zijn om van te leren. De huidige technische 
en financiële middelen, evenals juridische en ethische overwegingen om de privacy van 
patiëntgegevens te beschermen, laten echter niet toe om alle gegevens in één enkele 
database te centraliseren. Hierdoor wordt de implementatie van AI-toepassingen in de 
klinische praktijk vertraagd. Nieuwe technische ontwikkelingen, zoals gedistribueerd 
leren, maken nationale en/of multinationale multicentrische AI   mogelijk met behoud 
van bezorgdheid over de privacy van patiëntengegevens.

In dit proefschrift hebben we de huidige stand van het onderzoek op het gebied van 
radiomics geëvalueerd. Vervolgens hebben we een actueel overzicht en beperkingen 
van gedistribueerde leertoepassingen in de gezondheidszorg gepresenteerd. We 
hebben ook een nieuwe infrastructuur geïmplementeerd om de beperkingen van de 
bestaande gedistribueerde leeroplossing aan te pakken. We hebben het potentieel 
bestudeerd van decentralisatie van het leerproces door vertrouwen, onveranderlijk-
heid, transparantie en traceerbaarheid in gedistribueerde leernetwerken af   te dwingen 
via slimme blockchain-contracten. Onze resultaten toonden aan dat de decentralisatie 
van gedistribueerde leernetwerken het potentieel heeft om de modellen te trainen op 
patiëntgegevens die zijn opgeslagen in verschillende zorgcentra zonder dat patiënt-
gegevens uitgewisseld hoeven te worden én zonder dat de gegevens aan een derde 
partij moeten te worden vertrouwd.

Verder evalueerden we het potentieel van gedistribueerd leren op kleine gegevenssets 
die ziekten met een lage prevalentie en fase I klinische onderzoeken kunnen nabootsen, 
waar het voor een enkele zorgverlener niet mogelijk is om over voldoende gegevens te 
beschikken om betrouwbare AI-modellen te trainen. Onze resultaten suggereren dat 
gedistribueerd leren 1) de beperkingen van het delen van gegevens voor ziekten met 
een lage prevalentie overwint en de nieuwe manier kan zijn om AI voor dergelijke ziekten 
toe te passen, 2) in staat is om modellen even goed als centraal getrainde modellen te 
trainen. Bovendien hebben we onze infrastructuur geïmplementeerd in een openbaar 
blockchain-testnetwerk (Ethereum) en hebben we de haalbaarheid van gedecentrali-
seerd gedistribueerd leren in de echte wereld getest. Het gedecentraliseerde karakter 
van het onderzoek maakt het voor het publiek gemakkelijk om de tijd, de kosten en de 
leerkwaliteit te evalueren, waardoor een transparant leerproces wordt bereikt.
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Ten slotte toonde dit proefschrift aan dat decentralisatie van gedistribueerde leerpro-
cessen haalbaar is en de vertrouwensproblemen elimineert die samenhangen met 
conventionele gedistribueerde leerkaders. Op blockchain gebaseerd gedecentraliseerd 
gedistribueerd leren kan, dankzij de onveranderlijkheid, transparantie en traceer-
baarheid ervan, zorgverleners aanmoedigen om deel te nemen aan gedistribueerde 
multicentrische onderzoeken.
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Impact paragraph 

Artificial intelligence demands a large amount of high-quality data to build reliable and 
generalizable models. Conventionally data analysis models are learned using central-
ized datasets. In a centralized setting, data is collected and shared to one database. 
Data analysis models such as machine/deep learning learn directly from the data. Data 
sharing and centralization is however strictly regulated by legal and ethical considera-
tions making the process of publicly sharing the data time consuming and costly.   

Distributed and federated learning infrastructures allow to apply machine/deep learning 
algorithms, in addition to other statistical data analysis in multicentric settings without 
patient data and information ever leaving the individual clinical institutes. These infra-
structures are designed to preserve patient data privacy. These infrastructures however 
suffer from luck of traceability and trust. Despite that, to apply these infrastructures in 
personalized medicine, and for them to last and be part of the medical device develop-
ment process, the following points need to be addressed: 1)   intensify traceability of 
patient data, 2) boost the trust amongst distributed learning partners, 3) provide evide
nce regarding the added value of distributed learning on providing optimal treatment 
options for individual patients. 

Peer-to-peer  distributed  frameworks  such as blockchain  (Ethereum in our study), 
provide a secure decentralized ledger that allows individuals to securely transfer and 
exchange value. Ethereum is an open-source public blockchain, that enables smart 
contact development. The computer programs of the smart contracts enforce the 
execution of the terms of legal agreements (contracts). 

In our study, we integrated blockchain to distributed learning and proposed a fully 
decentralized infrastructure. The integration of Blockchain to distributed learning infra-
structures is of high importance as it 1) eliminates the need to trust a third parity that 
aggregates the learning process (fully decentralizes the learning process), 2) provides 
means to trace partner involvement in the learning process (insured by the immutability 
of the transaction history), and 3) sets a transparent environment for the commerciali-
zation and intellectual property agreements related to the medical devises learned in 
a distributed fashion.   

Scientific impacts  
1. All  our  studies are  published  in medical and technical journals (such 

as:  Medicinal Research Reviews,  JCO Clinical Cancer Informatics,  IEEE 
Access, and Computers in Biology and Medicine).  

2. All our studies are open access.  
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3. The main contribution of this thesis is the application of blockchain tech-
nology to distributed learning infrastructures (decentralized learning). The 
studies carried out throughout this thesis are a baseline and starting point to 
investigate multiple diagnosis and prognosis clinical and/or imaging analysis. 
Additionally, decentralized learning, by exposing the model to more data, 
can help in improving the predictive value of existing and new models such 
as radiomics signatures as well as automated segmentation models. This in 
turn will help to reduce the time of the decision-making process. 

4. Chapter 2 presents an overview of radiomics (as one of the research fields 
that utilized distributed learning), assessed its challenges, pitfalls, and future 
directions.  

5. Chapter 3 appraises the existing implementations of conventional distrib-
uted learning frameworks and discusses possible future pathways.  

6. Chapter  4  showed that  utilization  blockchain technology  for  distributed 
learning  is feasible  and  is  essential  to  decentralize the learning process, 
enforce trust, immutability, transparency, traceability, and security.  

7. Chapter 5 in dictated that distributed learning is feasible and promising and 
in case of the diseases with a low prevalence.   

8. Chapter 6 evaluated the infrastructure proposed in chapter 4 in a distributed 
learning network.  

Social impacts  
1. Distributed learning, especially decentralized learning,  has the potential 

to  expose predictive models to more data, hence,  help in improving the 
predictive value of existing and new radiomics signatures as well as the 
automated segmentation models. This in turn will help to reduce the time 
of decision-making process and reduce medical practitioners’ workload.   

2. Continuous improvement of  diagnosis and prognosis tools  can improve 
patient care systems and reduce mortality rates.  

3. Fast  and  accurate  predictive models may  save time and  reduce costs  for   
patients.



174 | Appendices

Acknowledgements

I would like to thank my three supervisors: 

Philippe Lambin for providing me with the opportunity to join his research group and 
guiding me throughout this journey. He was always available and happy to answer 
questions and provide insightful advice. 

Sean Walsh for providing his insightful advice in the industry.

Henry C. Woodruff for the nice introduction to academia and mentorship.

Visara Urovi for her guidance throughout the last three years, all her supervision, support 
in different areas: Blockchain design and development, manuscript writing, and thesis 
structuring. It was a great pleasure working with you 

I am also grateful to Michel Dumontier, for organizing and allowing the collaboration 
with some members of his research group (Visara and Vikas Jaiman).

Special thanks to Ralph Leijenaar for his collaboration, advice, patience, and for making 
this experience fun and joyful. 

I would also like to thank my colleagues at Radiomics (Oncoradiomics SA) starting from 
Wim for providing all resources needed to accomplish this thesis and for the support 
he showed during the tough times of lockdown and self-isolation during the COVID-19 
breakdown, Fabio for his support during manuscript writing, Hanif for reviewing and 
editing my manuscripts, Mariaelena for providing insightful clinical advice, Akshayaa, 
Tania, Fabrizia, and all the Radiomics team one by one. 

Big thanks to all the fellow researchers at the D-Lab Iva, Yousif, Turkey, Lisa, Manon, 
Simon, Abdalla, William, Yvonka, Sergey, Relinde, Janita, Simone, Rianne, Floor and all 
the others for making this journey very much enjoyable and fun. 

My friends, Hela, Houda, Nabila, Ania, Mehdi, Ayman, Antar, Amine, and so on, your 
presence is such a blessing. Thank you all for being there for me. 

My family, my greatest source of motivation and inspiration, thank you for your support 
and unconditional love. 

😊😊 



Appendices | 175   

A

Curriculum vitae

Fadila Zerka was born on the 09th of June 1991 
in  Bejaia, Algeria. After high school at Lycée 
mixte  D’adekar  in  Bejaia  in 2010, she studied 
Applied Mathematics at the University of Abder-
rahmane Mira in Bejaia, Algeria. She performed 
two internships: first at  Bejaia  Mediterranean 
Terminal which focused optimizing the manipu-
lation of containers, second at Division de Dis-
tribution de l’Electricité et du Gaz de l’Est which 
focused on developing a model for detection of 

the vulnerable nodes in a gas network. After obtaining her bachelor’s degree in 2013, 
she was granted a one-year exchange to study computer science and information 
technology (CSIT) at the Technical University of Lodz in Poland. During the exchange 
year, she investigated the potential of differential differentiation for edge detection 
and compared it with other existing techniques. After that, she enrolled in the master’s 
program of CSIT at the Technical University of Lodz in Poland. In parallel with her master 
studies, she worked as an engineer at Fujitsu IT Solutions. After her graduation, she 
carried out her position at Fujitsu IT Solutions, where she gained an interest in research. 
In 2018, she started a PhD project in a joint program between Radiomics in Belgium 
and Maastricht University in the Netherlands. Her PhD focused on Distributed learning 
for optimal Radiomics knowledge. During her PhD, she visited the laboratoire de traite-
ment de l’information médicale (LATIM) at the University of Western Brittany, brest, 
France for a period of three months, to learn about radiomics feature harmonization. 
She also remotely joined the D-LAB at Maastricht University for three months to test 
her distributed learning infrastructure. 

 



176 | Appendices

List of manuscripts

Published
F. Zerka, V. Urovi, F. Bottari, R.T.H. Leijenaar, S. Walsh, H. Gabrani-Juma, M. Gueuning, A. 
Vaidyanathan, W. Vos, M. Occhipinti, H.C. Woodruff, M. Dumontier, P. Lambin, Privacy 
preserving distributed learning classifiers – Sequential learning with small sets of data, 
Computers in Biology and Medicine. 136 (2021) 104716. https://doi.org/10.1016/j.
compbiomed.2021.104716.

F. Zerka, V. Urovi, A. Vaidyanathan, S. Barakat, R.T.H. Leijenaar, S. Walsh, H. Gabrani-
Juma, B. Miraglio, H.C. Woodruff, M. Dumontier, P. Lambin, Blockchain for Privacy 
Preserving and Trustworthy Distributed Machine Learning in Multicentric Medical 
Imaging (C-DistriM), IEEE Access. 8 (2020) 183939–183951. https://doi.org/10.1109/
ACCESS.2020.3029445.

F. Zerka, S. Barakat, S. Walsh, M. Bogowicz, R.T.H. Leijenaar, A. Jochems, B. Miraglio, D. 
Townend, P. Lambin, Systematic Review of Privacy-Preserving Distributed Machine 
Learning From Federated Databases in Health Care, JCO Clinical Cancer Informatics. 
(2020) 184–200. https://doi.org/10.1200/CCI.19.00047.

J. Guiot, A. Vaidyanathan, L. Deprez, F. Zerka, D. Danthine, A. Frix, P. Lambin, F. Bottari, 
N. Tsoutzidis, B. Miraglio, S. Walsh, W. Vos, R. Hustinx, M. Ferreira, P. Lovinfosse, R.T.H. 
Leijenaar, A review in radiomics: Making personalized medicine a reality via routine 
imaging, Med Res Rev. (2021) med.21846. https://doi.org/10.1002/med.21846.

J. Guiot, A. Vaidyanathan, L. Deprez, F. Zerka, D. Danthine, A.-N. Frix, M. Thys, M. Henket, 
G. Canivet, S. Mathieu, E. Eftaxia, P. Lambin, N. Tsoutzidis, B. Miraglio, S. Walsh, M. 
Moutschen, R. Louis, P. Meunier, W. Vos, R. Leijenaar, P. Lovinfosse, Development and 
validation of an automated radiomic CT signature for detecting COVID-19, Infectious 
Diseases (except HIV/AIDS), 2020. https://doi.org/10.1101/2020.04.28.20082966.

A. Vaidyanathan, M.F.J.A. van der Lubbe, R.T.H. Leijenaar, M. van Hoof, F. Zerka, B. 
Miraglio, S. Primakov, A.A. Postma, T.D. Bruintjes, M.A.L. Bilderbeek, H. Sebastiaan, P.F.M. 
Dammeijer, V. van Rompaey, H.C. Woodruff, W. Vos, S. Walsh, R. van de Berg, P. Lambin, 
Deep learning for the fully automated segmentation of the inner ear on MRI, Sci Rep. 
11 (2021) 2885. https://doi.org/10.1038/s41598-021-82289-y.

W. Rogers, S. Thulasi Seetha, T.A.G. Refaee, R.I.Y. Lieverse, R.W.Y. Granzier, A. Ibrahim, 
S.A. Keek, S. Sanduleanu, S.P. Primakov, M.P.L. Beuque, D. Marcus, A.M.A. van der Wiel, 
F. Zerka, C.J.G. Oberije, J.E. van Timmeren, H.C. Woodruff, P. Lambin, Radiomics: from 
qualitative to quantitative imaging, BJR. 93 (2020) 20190948. https://doi.org/10.1259/
bjr.20190948.



Appendices | 177   

A

In preparation/submitted
F. Zerka, V. Urovi, A. Vaidyanathan, R.T.H. Leijenaar, S. Walsh, H. Gabrani-Juma, H.C. 
Woodruff, M. Dumontier, P. Lambin, A blockchain based approach for Privacy Preserv-
ing distributed learning - Grade Group Prediction for Prostate Cancer Patients. (In 
preparation)

A. Vaidyanathan, J. Guiot, F. Zerka, F. Belmans, I. Van Peufflik, L. Deprez, D. Danthine, 
G. Canivet, P. Lambin, S. Walsh, M. Occchipinti, P. Meunier, W. Vos, P. Lovinfosse, R.T.H. 
Leijenaar, An externally validated fully automated deep learning algorithm to classify 
COVID-19 and other pneumonias on chest CT. (Submitted)




	Contents
	Chapter 1 - Introduction
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7 - Discussion
	Summary
	Nederlandse samenvatting
	Impact paragraph
	Acknowledgements
	Curriculum vitae
	List of manuscripts



