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Abstract
The role of anisotropic scattering in rotational collisions of electrons with CO molecules is
investigated numerically with Monte Carlo (MC) simulations and with calculations using the
Lisbon KInetics two-term Boltzmann solver (LoKI-B). The study adopts integral cross
sections taken from the IST-Lisbon database of LXCat or extracted from Biagi’s code
Magboltz v11.10. Different angular scattering models for rotational collisions are implemented
and compared in MC simulations, and a novel anisotropic scattering model is derived from the
dipole-Born differential cross sections, to describe the strongly forward-peaked nature of
rotational collisions. This model is also implemented in LoKI-B, to describe the anisotropic
inelastic/superelastic scattering in dipole rotational collisions, using coherent expressions for
the corresponding integral and momentum transfer cross sections. The comparison between
MC and LoKI-B results shows that the calculation of swarm parameters is more influenced by
the choice of the angular scattering model than the adoption of the two-term approximation,
yielding deviations up to 50% in the reduced mobility for different angular distributions. The
consequences in the swarm derivation of cross sections are also discussed. Finally, it is shown
that inclusion of electric-quadrupole interactions, usually neglected in electron swarm studies,
can improve the agreement between numerical results and measurements.
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1. Introduction

Carbon monoxide (CO) plays an important role in our atmo-
sphere and in the interstellar medium, a role that is also fun-
damental in a wide variety of plasma applications, such as
plasma deposition [1] and high power lasers [2]. Detailed cross
sections for interactions of electrons with CO are needed in
areas such as reforming of CO2 [3, 4], studies of CO adsorp-
tion on surfaces [5] and re-entry physics [6]. For instance, the
CO Cameron bands (a3Π→ X1Σ) were observed in the emis-
sion spectra of the Martian atmosphere [7] and in atmospheric
convection in Jupiter [8]. Electron scattering by CO is also rel-
evant in astrophysics, since this molecule is the most abundant
in molecular clouds, after hydrogen. In particular, rotational
excitation of CO by photoelectrons and subsequent emission
of radiation are important processes in the energy balance of
astrophysical plasmas [9]. The electron energy range for those
phenomena goes down to tens of meV [1].

Several reviews of binary collisions data and swarm param-
eters of electrons in CO can be found in literature. As an
example, a comprehensive review of experimental methods
and electron scattering data published until 1983 is given by
Trajmar and co-authors [10]. An updated version has been pub-
lished by Brunger and Buckman [11] accounting for measure-
ments until 2002 and later by Raju [1]. Those cross sections
cannot be used directly in plasma modelling, since they do
not constitute a complete set, as the ones typically derived
from swarm analysis [12]. Examples of swarm-derived cross
sections for electrons in CO are the ones by Hake and Phelps
[13] and by Land [14]. A complete review of electron impact
cross sections in CO has also been performed by Itikawa [15].
Phelps and Itikawa cross sections sets are available in table
format at LXCat databases [16, 17].

Recently, a complete set of cross sections for electron scat-
tering in CO has been proposed by the Lisbon group [18] and it
is available at the IST-Lisbon database of LXCat [19]. This set
has been optimized by comparing results of transport param-
eters calculated using the Lisbon KInetics two-term Boltz-
mann solver (LoKI-B) [20] with experimental measurements
at different gas temperatures (Tgas) and reduced electric fields
(E/N). One important contribution of the work by the Lisbon
group [18] is the analysis of cross sections at low energies,
where the electron-dipole interaction dominates. In [18], the
importance of rotational excitation and de-excitation processes
for calculations of electron swarm parameters is highlighted.
Moreover, these authors propose an elastic momentum transfer
(MT) cross section for collisions of electrons with the ground
electronic state of CO, from which one can estimate a total
MT.

The approach recommended by the Lisbon group is differ-
ent than the one adopted by Hake and Phelps [13], where a
total MT cross section is used directly in the calculations. More
specifically, the total MT determined in the analysis by Hake
and Phelps [13] is given by the sum of a dipole term, calcu-
lated as a rotational MT with the Born approximation [21], and
a nitrogen-like elastic MT cross section. In the same work, the
effect of 16 different rotational levels of CO is also analysed. In
addition, in [13], a novel approach was investigated, where the

effect of several rotational levels was approximated by a sin-
gle rotational level. Nevertheless, cross sections for rotational
collisions are not reported either in the Phelps [16] or in the
Itikawa [17] database of LXCat.

Building upon the results by the Lisbon group [18], the
present work extends the analysis of that cross sections set,
focussing on the description of rotational collisions. Specif-
ically, this work is motivated by the discrepancies found in
electron transport parameters obtained from two-term solu-
tions of the electron Boltzmann equation using the IST-Lisbon
dataset and experimental measurements. Indeed, deviations
between measurements and calculations are up to 20% at 77 K,
exceeding the experimental error, typically below 3%. This
problem is also relevant for plasma modelling, since uncertain-
ties around 10% are typically taken as acceptable upper limit
for transport coefficients [12]. Moreover, the accuracy of the
two-term approximation for optimization of electron impact
cross sections in CO has not been addressed in previous studies
by Hake and Phelps [13] and Ogloblina and co-authors [18].

In this work, Monte Carlo (MC) calculations of electron
transport parameters in CO are compared to numerical results
obtained with the two-term solver LoKI-B [20] and with exper-
imental measurements, to test the accuracy of the two-term
approximation. A fully native MC simulations code developed
recently by some of the present authors is used [22, 23]. More-
over, two different datasets of cross sections are taken into
account: the IST-Lisbon one available at LXCat [19] and the
one from Biagi’s code Magboltz v11.10 [24]. To the best of
our knowledge, Biagi’s cross sections form the only complete
set available for use in an MC simulations code and this work
presents a first independent analysis of this dataset for calcu-
lations of electron transport parameters. Particular emphasis is
given to (i) the angular model adopted to describe anisotropic
scattering in rotational collisions and (ii) the inclusion of this
effect in both MC and two-term codes.

In the pioneering work by Reid [25], the assumption of
isotropic scattering was tested in a number of different model
gases, with two-term solutions and MC simulations. Similarly,
the inclusion of anisotropic scattering in electron–molecule
collisions in nitrogen was considered by Phelps and Pitchford
[26], using a generalization of the traditional two-term expan-
sion of the electron velocity distribution function (EVDF) in
Legendre polynomials. In [26], it has been found that the
changes in chemical rate coefficients and transport parameters
due to the inclusion of anisotropic scattering are smaller than
1% in the range 10 � E/N � 50 Td and up to 10% at higher
E/N values, between 500 and 1500 Td. Recently, a comparison
of different anisotropic scattering models in MC simulations
was made by Janssen and co-authors [27]. They recommend
forward inelastic scattering for an argon-like model gas and,
in general, whenever differential cross sections (DCSs) are not
available. However, their model does not consider the role of
low-energy threshold excitations that are typical of molecular
gases, like CO.

Casey and co-authors analysed the effect of anisotropic
scattering for rotational collisions of electrons in molecu-
lar nitrogen, using a two-term and a multi-term solver [28].
They found that the inclusion of the anisotropic contributions
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changes the drift velocity up to 11% and 10% at 77 K and
293 K, respectively, compared with the isotropic case. This
effect decreases with increasing E/N, for both temperatures.
However, in N2 only electric quadrupole processes are present,
whereas electron scattering with CO molecules is dominated
by dipole interactions at low energies. In fact, the descrip-
tion of different types of rotational interactions requires dif-
ferent angular scattering models that are consistent with the
net momentum exchange. This aspect is not addressed in the
work of Casey and co-authors [28], where simple empirical
formulas are used for anisotropic rotational scattering, similar
to the ones proposed by Kushner [29] and by Reid [25].

Here, we conduct a detailed study on low-energy thresh-
old anisotropic collisions in CO and their impact on electron
swarm parameters, assessing different angular scattering mod-
els for dipole rotational collisions. We propose a novel model
to describe the strongly forward-peaked nature of electron-
dipole interactions, based on the Born approximation, for use
in MC simulations codes. This anisotropic scattering treatment
is included also in the two-term code LoKI-B [20]. The inclu-
sion of this treatment is consistent with previous treatments by
Phelps and Pitchford [26] and Pitchford et al [30], but it was
neglected in [18].

The paper is organised as follows. In section 2, the key
equations describing the scattering in dipole rotational colli-
sions are introduced. In section 3, the electron impact cross
sections from Biagi’s Magboltz code v11.10 [24] are described
and compared with the IST-Lisbon dataset [18]. Different
angular scattering models for electron-dipole interactions are
investigated in section 4. Section 5 presents a comparison
between measurements and calculations of electron swarm
parameters in CO, obtained with MC simulations and LoKI-
B solutions. Attention is given to the effect of different
angular distribution models on MC calculations of transport
coefficients. In section 5.2, the addition of quadrupole rota-
tional collisions to Biagi’s dataset is discussed. In section 6, the
implementation of anisotropic inelastic scattering in the two-
term Boltzmann solver LoKI-B is discussed, highlighting the
differences with the MC description. Section 7 summarizes the
main results and concludes the paper.

2. Electron scattering in dipole rotational
collisions

2.1. Differential, integral and momentum transfer cross
sections for dipole rotational collisions of electrons in CO

The kinematics of a scattering event is described by its DCS
dσ(ε,θ)

dΩ , where ε is the incident electron energy, θ is the polar
scattering angle and dΩ = 2π sin θ dθ is the differential solid
angle, under the assumption of azimuthal symmetry. The DCS
provides information about the angular distribution of elec-
trons after the scattering. It is well known that, in the low-
energy region, rotational transitions can be described by the
Born approximation combined with the point-dipole interac-
tion [15]. In the particular case of polar molecules, like CO,

Figure 1. DCS from dipole-Born approximation, as a function of the
incident electron energy and the polar scattering angle, for the
J = 0 → 1 rotational excitation by electron impact in CO.

the DCS for rotational transitions is calculated as:

dσ (ε, θ)
dΩ

=
4
3

(a0μ)2R∞
K2

√
ε′

ε

J>
2J + 1

, (1)

where a0 is the Bohr radius, μ = 4.32 × 10−2 is the perma-
nent dipole moment of CO in atomic units, R∞ is the Rydberg
constant in eV, ε and ε

′
are the electron energies before and

after the collision, respectively, for transitions between states
with rotational quantum numbers J and J′ with J′ − J = ±1,
J> = max

(
J, J′

)
is the reduced matrix element of the transi-

tion J → J′, and K2 = |k′ − k|2 = ε′ + ε− 2
√
εε′ cos θ is the

squared magnitude of the change in relative momentum, due
to the collision. Equation (1) is valid for linear molecules, like
CO. More generally, other expressions are derived by Craw-
ford for symmetric-top molecules [31]. The DCS given by
equation (1) is plotted in figure 1, as a function of the incident
electron energy and the polar scattering angle, for the transi-
tion from J = 0 to J′ = 1. In particular, due to the long-range
dipole interaction, a highly anisotropic angular distribution is
obtained, where small-angle scattering is dominant. Moreover,
even if scattering at extreme angles (i.e. θ > 90◦) is not for-
bidden, this event is highly unlikely, due to the sharp decrease
of the DCS at increasing angles. From this first consideration,
it can be noted that dipole rotational collisions in the Born
approximation do not lead to an isotropic angular scattering
distribution function.

Integration of the DCS over the solid angle yields the
integral cross section (ICS):

σICS (ε) = 2π
∫ π

0

dσ (ε, θ)
dΩ

sin θ dθ. (2)

In [32], ICSs for dipole rotational excitations σICS
J,J+1 (ε) are

obtained from equation (2), by direct integration of the DCS
from equation (1) over the solid angle. These cross sections
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can be written as:

σICS
J,J+1 (ε) =

(a0μ)2R∞
VJ,J+1

J + 1
2J + 1

f
(
ε/VJ,J+1

)
, (3)

where VJ,J+1 is the energy threshold of the transition J → J +
1 in eV and

f (x) =
16π
3x

log
(√

x +
√

x − 1
)

(4)

is the reduced excitation cross section, with x = ε/VJ,J+1.
In the pioneering works by Altshuler [21], Crawford [31],

and Shimamura and Takayanagi [33], it has been shown that
the electron-dipole interaction in the Born approximation can
be described by a MT cross section that is generally different
from the corresponding integral. In their work, the MT cross
section is calculated as

σMT (ε) = 2π
∫ π

0

dσ (ε, θ)
dΩ

(1 − cos θ) sin θ dθ. (5)

From equations (1) and (5), the electron impact MT cross
sections for transitions between the rotational levels J and
J + 1 can be written as:

σMT
J,J+1 (ε) =

(a0μ)2R∞
VJ,J+1

J + 1
2J + 1

g
(
ε/VJ,J+1

)
, (6)

where the function g
(
ε/VJ,J+1

)
is given by

g (x) =
8π
3x

[
1 −

(√
x −

√
x − 1

)2

√
x
√

x − 1
log

(√
x +

√
x − 1

)]
.

(7)
Strictly, equation (5) is valid for describing the MT of electrons
in elastic collisions. More generally, an expression for inelastic
MT cross sections was proposed by Makabe and White [34]
and it can be written as

σMT
J,J+1 (ε) = 2π

∫ π

0

dσ (ε, θ)
dΩ

[
1 −

(
1 − VJ,J+1

ε

)1/2

cos θ

]

× sin θ dθ, (8)

where the term

[
1 −

(
1 − VJ,J+1

ε

)1/2
cos θ

]
is the relative

rate of MT for electrons in a two-body electron–molecule
collision. Note that equation (8) is generally applicable to
any kind of inelastic scattering, and not only to the case of
dipole-rotational collisions. By substitution of equation (1)
into equation (8), it can be verified that the electron impact MT
cross section for the transition J → J + 1 has the same form of
equation (6) where the function g(x) of equation (7) is replaced
by the following expression

gcorr(x) =
8π
3x

{
η(x) −

[
η(x)(2x − 1) − 2

√
x
√

x − 1
]

√
x
√

x − 1

× log
(√

x +
√

x − 1
)}

, (9)

with η(x) =
(
1 − x−1

)1/2
. In other words, equation (7) is a

particular case of equation (9) that can be retrieved by setting

Figure 2. Reduced cross sections of dipole rotational excitations:
integral contribution (solid black line), from equation (4), and
momentum transfer contributions, from equation (7) (solid red line)
and equation (9) (dashed line).

η(x) = 1 or, equivalently, in the limit for VJ,J+1/ε→ 0. Inte-
gral and MT reduced cross sections from equations (4), (7) and
(9) are plotted in figure 2.

Small percent deviations between g(ε/VJ,J+1) and
gcorr(ε/VJ,J+1) are found for x � 20, within 8%. As expected,
larger discrepancies appears in the limit x → 1, when the inci-
dent electron energy is comparable with the energy threshold
of rotational collisions. Nevertheless, the percent deviations
for x < 20 are still relatively small, up to 22% at x = 1.9.
Hence, the use of equations (5) and (7), as derived by Altshuler
[21] for a linear molecule, is justified for dipole rotational
collisions of electrons in CO when (i) the rotational energy
difference between consecutive levels is sufficiently small,
(ii) the point-dipole interaction is adopted, and (iii) the Born
approximation is applied. The validity of such approximation
for dipole rotational collisions is discussed in subsection 2.2.
The use of equation (5), instead of equation (8), for dipole
rotational collisions in a two-term Boltzmann solver is also
justified in section 6. For other inelastic processes involving
higher energy exchanges, the use of an appropriate expression
of inelastic MT cross section, as defined in equation (8), is
recommended.

Moreover, since g(ε/VJ,J+1) < f (ε/VJ,J+1), each rotational
MT cross section is smaller than the corresponding ICS. Tak-
ing into account the differences between f (ε/VJ,J+1) and
g(ε/VJ,J+1) is important not only for an accurate description
of the energy and MT rates in rotational collisions, but also
to define a total (or effective) MT cross section, correspond-
ing to the sum of the MT cross sections for all elastic/inelastic
processes. In fact, equations (6) and (7) were used also by
Hake and Phelps [13] for the description of the low energy
part of their total MT cross section. In particular, the difference
between f (ε/VJ,J+1) and g(ε/VJ,J+1), as shown in figure 2, can
explain the apparent inconsistency found by Hake and Phelps
[13], where the effective MT cross section is smaller than the
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total ICS for rotational collisions [18]. This inconsistency is
solved by considering that the total MT cross section in the
Phelps database of LXCat [16] is given, as a first approxima-
tion, by the sum of an elastic MT cross section with the rota-
tional MT cross sections σMT

J,J+1 (ε), weighted by the fractional
populations of the respective rotational levels. The justification
for using σMT

J,J+1 (ε), instead of σICS
J,J+1 (ε), to calculate the total

MT cross section is further explained in section 6, where it
is shown that this is a good approximation for the description
of dipole rotational collisions also in a two-term Boltzmann
solver.

Note that, with the detailed-balance assumption, the for-
mula of Klein–Rosseland [35] can be used for calculations of
de-excitation cross sections from the corresponding excitation
ones as

σJ+1,J(ε) =
2J + 1
2J + 3

(
ε+ VJ,J+1

ε

)
σJ,J+1(ε+ VJ,J+1). (10)

Hence, by substitution of equations (3) and (6) into
equation (10), the ICS and MT cross section for de-excitation
from the rotational level J + 1 to J can be written as

σICS
J+1,J(ε) =

(a0μ)2R∞
VJ,J+1

J + 1
2J + 3

f sup
(
ε/VJ,J+1

)
, (11)

σMT
J+1,J(ε) =

(a0μ)2R∞
VJ,J+1

J + 1
2J + 3

gsup
(
ε/VJ,J+1

)
, (12)

respectively. Functions f sup

(
ε/VJ,J+1

)
and gsup

(
ε/VJ,J+1

)
in

equations (11) and (12) are

f sup(x) =
16π
3x

log
(√

x + 1 +
√

x
)

, (13)

gsup(x) =
8π
3x

[
1 −

(√
x + 1 −

√
x
)2

√
x + 1

√
x

log
(√

x + 1 +
√

x
)]

.

(14)
The same considerations on the differences between ICSs and
MT cross sections for inelastic rotational collisions apply to
superelastic collisions.

For the purpose of this study, the definitions of DCS
(equation (1)), ICS (equations (3) and (4)) MT cross section
(equations (6) and (7)) are important when comparing results
from MC simulations and two-term calculations. On the one
hand, as discussed in section 4, in MC simulations, ICS and
DCS are used to describe the energy and angular dependence
of the scattering. On the other hand, a two-term solution
expresses the DCS as an expansion in Legendre polynomi-
als, where the zeroth order and first order coefficients of the
expansion are related to the ICS and MT cross sections. The
inclusion of anisotropic scattering in a two-term Boltzmann
solver is further discussed in section 6.

2.2. On the validity of the Born approximation combined
with the point-dipole interaction model

A detailed theoretical analysis of the Born approximation com-
bined with the point-dipole interaction can be found in the
studies by Takayanagi [32], Crawford [31], and Shimamura

and Takayanagi [33]. Here, we briefly summarize the main
hypotheses underlying this approximation and their validity
for calculating DCS of dipole rotational collisions of electrons
in CO, as compared with more advanced calculations meth-
ods. In particular, it is important to remember that the DCSs
of equation (1) have been derived under the following main
assumptions [32]:

(a) The interaction potential does not significantly alter
the incident electron wave-function (weak potential
approximation).

(b) The dipole part is the dominant contribution of the inter-
action and it can be represented by the point-dipole model,
as described in [36].

(c) The first-order perturbation theory is appropriate to
describe the collision processes.

The validity of assumptions (a) and (b) has been examined
by Shimamura and Takayanagi [33] and by Takayanagi [32]
by evaluating the relative importance of various partial cross
sections. Their study points out that the Born approximation is
not as poor as one might expect, even for low incident electron
energies. This is due to the fact that the effective region of inter-
action is distant from the molecule. Therefore, the electron
wave-function is only slightly distorted from its incident form.
For this reason, the point-dipole interaction may be adopted,
since only distant encounters are important. The same argu-
ments hold also for quadrupole rotational collisions, as shown
by Gerjuoy and Stein [37]. The validity of this approxima-
tion at low energies is confirmed also by theoretical studies by
Crawford and Dalgarno [38], who applied the close-coupling
method to the calculation of dipole rotational cross sections in
CO, and by Jain and Norcross [39], who made ab initio calcu-
lations of the interaction of electrons and CO. These studies
show that the electron-dipole interaction dominates in scat-
tering at low energies, for ε < 0.05 eV. Moreover, their ICSs
are in good agreement with the ones reported by Itikawa and
Mason [40], derived from the Born-dipole theory. For inter-
mediate energies, typically around 1 eV, the first-order theory
is no longer applicable to obtain reliable results. This is due to
the fact that polarizability and short-range interactions can dis-
tort the incident electron wave-function. In these conditions,
corrections to the Born approximation can be included via R-
matrix [41] or close-coupling calculations [36]. For increasing
values of energies (i.e. above 10 eV), collisions of electrons
are often fast enough to make collision much shorter than the
molecular rotation. Therefore, rotational cross sections are pri-
marily determined by rotational constants, such as the dipole
and quadrupole moment.

The validity of assumption (c) is related to the magnitude of
the dipole moment of the CO molecule. In particular, since the
dipole moment of CO is not large, a simple perturbation theory,
such as the one based on the Born approximation, is applicable.
In [42], it is discussed that the Born approximation provides a
very poor estimate of the MT cross section for dipole rotational
collisions, unless the dipole moment is small (i.e. μ < 0.5ea0).

To test the validity of DCSs derived from the Born-dipole
treatment, accurate calculations are required, by assuming a
more realistic interaction. An example of such calculations
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Figure 3. Percent deviations between DCSs for the J = 0 → 1
rotational excitation by electron impact in CO obtained from
close-coupling calculations by Crawford and Dalgarno [38] and
from Born-dipole theory (equation (1)), as a function of the polar
scattering angle, for different incident electron energies, namely
0.01 eV (solid line), 0.03 eV (dashed line), and 0.1 eV
(dashed-dotted line).

are the ones performed by Crawford and Dalgarno [38], based
on the close-coupling method, where dipole, quadrupole and
short-range interactions in spherically symmetric form are
included. Percent differences between DCS for the dipole tran-
sition 0 → 1 derived from the Born theory and close-coupling
calculations by Crawford and Dalgarno are shown in figure 3.
The percent differences are reported as ΔDCS/DCSBorn(%) =
(DCSBorn − DCSCD) /DCSBorn · 100, where DCSCD is the
expression of DCS as in [38], and DCSBorn comes from
equation (1). Three different incident electron energies are
considered, namely 0.01, 0.03 and 0.1 eV.

Figure 3 shows that the agreement worsens when increas-
ing the incident electron energy from 0.01 eV to 0.1 eV. In
particular DCSs obtained from the Born-dipole theory overes-
timate the contribution of backward scattering in dipole colli-
sions, due to missing coefficients in equation (1) that include
the dependence of the DCS on transition probability matri-
ces with different angular momentum. Nevertheless, percent
deviations between the results obtained from the two differ-
ent approaches are within 20%, when the incident electron
energy is sufficiently small (i.e. ε � 0.1 eV). Similar conclu-
sions for the 0 → 1 transition have also been drawn by Itikawa
and Takayanagi [43] for other two polar molecules, HCI and
CN. Moreover, in [38], it is also shown that quadrupole inter-
actions are almost isotropic. This description is coherent with
the Born theory and the same assumption is employed in this
work in sections 5.2 and 6, where the addition of quadrupole
collisions is investigated. To summarize, at low incident elec-
tron energies, the scattering is dominated by dipole rotational
collisions of electrons with CO molecules. Moreover, since
the scattering is distant and the CO dipole moment is not
large, the first Born approximation combined with the point-
dipole interaction model provides a simple and effective way to

accurately describe the angular scattering component of
electron-dipole and electron-quadrupole interactions in CO.
Note that the same conclusions cannot be trivially extended
to other polar molecules, such as H2O, where the inclusion
of short-range interactions is important not only to obtain
accurate DCSs, but also for a correct estimation of ICSs of
rotational collisions [41].

3. Electron impact cross sections sets in CO

Two different datasets of cross sections for electron impact in
CO are considered. The first set was recently proposed by the
Lisbon group [18] and it is available at the IST-Lisbon database
of LXCat [19]. This set has been optimized from calculations
of electron swarm parameters in CO, using the two-term Boltz-
mann solver LoKI-B [20]. The second set was obtained from
Biagi’s MC simulations code Magboltz v11.10 [24]. Biagi’s
set is not available at LXCat, thus cross sections have been
carefully transcribed from the source code into the LXCat for-
mat. To the best of our knowledge, there are no other indepen-
dent works using this dataset, hence, this section is dedicated
to its description.

The cross sections included in Magboltz v11.10 are shown
in figure 4. These data were adjusted to reproduce measure-
ments of electron swarm parameters from Haddad and Milloy
[44], Petrović and Crompton [45], Nakamura [46], Saelee and
Lucas [47], and Pack et al [48], for temperatures between 77 K
and 443 K. In particular, the set is composed by 1 elastic MT
cross section for the ground electronic state (i.e. CO(X)); 26
dipole rotational excitations of the ground vibrational state
CO(X, ν = 0) (i.e. CO(X, ν = 0, J = 0) → CO(X, ν = 0, J′),
with J′ = 1–26); 6 vibrational excitations from CO(X, ν = 0);
six electronic excitations of CO(X, ν = 0); 1 ionization and
1 dissociative electron attachment to O−. Superelastic colli-
sions from excited rotational and vibrational levels are also
included in Magboltz, as they are essential for accurate calcu-
lations of electron swarm parameters at low and moderate E/N
values (i.e. 0.01 � E/N � 100 Td). Cross sections for these
processes are calculated with the Klein–Rosseland formula
(equation (10)) [35].

Electron scattering from CO has similarities with that of
N2, leading to the observation that the transport properties are
similar in both gases [1]. Like nitrogen, CO does not have a
Ramsauer–Townsend minimum. Moreover, in both gases, the
elastic MT cross section decreases at low electron energies (i.e.
below 0.5 eV) exhibiting a pronounced resonance peak around
2 eV and a negative slope for energies greater than 2 eV [1].
The difference with respect to nitrogen is that CO is a heteronu-
clear molecule, with a permanent dipole moment μ = 0.11 D
in the ground state, hence, interactions between electrons and
the molecular dipole are dominant in the low energy region.
In figure 4, it can be seen that below 0.3 eV the cross section
for the rotational transition J = 0 → 1 is larger than the elastic
MT. In Magboltz v11.10, electron impact rotational excitations
are generated with the formulas of Takayanagi [32] for dipole
rotational transitions (i.e. equations (3) and (4)). In total, Biagi
has considered 26 electron impact rotational excitations/de-
excitations from J = 0 up to J = 26, satisfying the selection
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Figure 4. Biagi’s electron impact cross sections for CO, as a
function of electron energy, obtained from the Magboltz code
v11.10 [24]. Vibrational and rotational excitation cross sections are
total cross sections, given by the sum of contributions from
individual levels, where the fractional populations are calculated
according to a Boltzmann distribution at 300 K.

rule |ΔJ| = 1 for dipole processes, all exhibiting the typi-
cal trend of an allowed-dipole transition, with a decrease as
log (ε) /ε at increasing energy, as given by equations (3) and
(4).

Figure 5(a) highlights the differences between Biagi and
IST-Lisbon cross sections for elastic MT and rotational excita-
tions (here, only σICS

0,1 (ε) is plotted as far as rotational collisions
are concerned). Specifically, the elastic MT cross sections
from the two datasets agree reasonably well for energies above
0.5 eV, whereas large discrepancies are present at lower ener-
gies. These discrepancies are related to the ICS for rotational
excitations adopted in the two datasets, which, in turn, show
large discrepancies for energies below 0.03 eV. In fact, Biagi
calculates ICSs for rotational excitations from equations (3)
and (4), whereas the rotational cross sections by IST-Lisbon
are adjusted to have a match between experimental measure-
ments and numerical results, obtained with the two-term solver
LoKI-B [20], for the electron swarm parameters. Additionally,
these adjusted rotational cross sections are subtracted from
Phelps effective MT to obtain an elastic MT cross section.
Note that it is hard to measure an elastic MT cross section in
this case, due to the difficulties in separating the elastic contri-
bution from the individual rotational transitions in an experi-
mental energy loss spectrum [15]. Hence, on the one hand, the
IST-Lisbon set is obtained assuming isotropic scattering, with-
out any distinction between ICS and MT cross sections and it
is adjusted to be used in a two-term Boltzmann solver. On the
other hand, Biagi’s set uses ICSs for rotational collisions (from
equations (3) and (4)) in the Born approximation, in combina-
tion with an anisotropic scattering model to describe the trans-
fer of momentum in MC simulations. It is clear that, in this
case, the choice of the angular scattering model has an impact
on the optimization of the cross sections set, based on swarm
analysis. In fact, while the isotropic assumption implies that a
single set of rotational cross sections is used to describe both

energy and momentum exchanges, using an anisotropic model
introduces differences between ICS and MT cross sections.
A more detailed investigation on angular scattering models
for dipole-rotational collisions in MC simulations codes is
presented in sections 4 and 5.

As regards higher energy threshold processes, six differ-
ent cross sections for electron impact vibrational excitation
of the ground vibrational state CO(X, ν = 0) are available in
Biagi’s set. Second-kind (superelastic) collisions from vibra-
tional states of the ground electronic state are also included,
assuming micro-reversibility [35]. These vibrational excita-
tion cross sections are in good agreement with measurements
by Gibson and co-authors [51], Ehrhardt and co-authors [52]
and Land [14], and also with recent calculations by Laporta
and co-authors [53]. Cross sections from [53] are also used in
the IST-Lisbon dataset [18]. As opposed to the Lisbon dataset,
Biagi’s vibrational excitation cross sections are divided by a
normalizing factor of 1.3, as suggested in the work by Haddad
and Milloy [44]. Moreover, for energies above 4 eV, Biagi’s
cross sections are extrapolated linearly in a double logarithmic
scale.

Excitations to higher vibrational states of CO(X) are also
included in the IST-Lisbon set, up to ν = 10. However, the
contribution of these additional processes in the calculation of
electron transport parameters is expected to be negligible. In
fact, under swarm conditions, the transition ν = 0 → 1 is the
most important one, due to the lower cross sections for transi-
tions to higher levels and the small populations of levels above
the ν = 0 one.

Biagi’s set includes electron impact excitations to the fol-
lowing electronic states: CO

(
a3Π

)
, CO

(
a′3Σ+

)
, CO

(
A1Π

)
,

CO
(
b3Σ+

)
, CO

(
E1Π+ C1Σ+

)
and CO(13.5 eV). The cross

sections are the same as the ones used in swarm analysis by
Land [14] and by Hake and Phelps [13], where the excitation
to CO

(
E1Π+ C1Σ+

)
is given by the sum of the corresponding

individual cross sections. The ‘state’ denoted as CO(13.5 eV)
is a composite of several states that present a broad peak in the
electron impact excitation spectra, as suggested by Sawada and
co-authors [50].

Total electronic excitation cross sections from Biagi [24],
IST-Lisbon [18], Raju [1], Kanik and co-authors [49] and
Sawada and co-authors [50] are plotted in figure 5(b). As
expected, Biagi’s total electronic excitation cross section is
in good agreement with the one from Sawada and co-authors
[50], since most of Biagi’s cross sections are taken from this
source. Note that Biagi’s cross sections are linearly extrapo-
lated in double logarithmic scale, for energies above 100 eV.
The small peak in Biagi’s cross section near 6.0 eV is due to a
resonance structure in the a3Π excitation cross section, as mea-
sured by Swanson and co-authors [54]. This peak is not present
in the other cross sections sets, probably due to the negligible
effect it has on the calculated electron transport parameters in
pure CO. However, as suggested by Haddad and Milloy [44],
omitting the peak in the a3Π excitation cross section gives
a difference of about 18% between calculated and measured
values of electron drift velocities, for a mixture of 1% CO in
argon.
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Figure 5. (a) Elastic momentum transfer cross sections of electrons in CO(X) (black lines) and electron impact rotational excitation
CO(X, ν = 0, J = 0) → CO(X, ν = 0, J′ = 1) (red lines), from IST-Lisbon (dashed lines) [18] and Biagi (solid lines) [24] datasets, and (b)
total electronic excitation cross sections from CO(X, ν = 0), from different sources: Raju [1] (green solid line), IST-Lisbon [18] (red solid
line), Biagi [24] (black solid line), Kanik et al [49] (dashed-dotted line), and Sawada et al [50].

Differences between Biagi’s and IST-Lisbon total elec-
tronic excitation cross sections are due to the fact that, in the
IST-Lisbon dataset [18], cross sections for excitation to a3Π
and b3Σ+ are taken from Sawada and co-authors [50], whereas
for all other electronic excitations are taken from Itikawa [15].
Moreover, differences with the set of Kanik and co-authors
[49] are due to the fact that the latter considers the contribu-
tion of a3Π, a′3Σ+, d3Δ and A1Π only, increased by 20%.
The cross section recommended in the book by Raju [1] is an
average between the one proposed by Sawada and co-authors
[50] and the one recommended by Kanik and co-authors [49].
It should be noted that the book by Raju [1] was published
after the 2003 update of Biagi’s cross sections. Recently, a
new set of electron impact cross sections has been released
in Magboltz v11.11 [55]. The update includes (i) anisotropic
scattering for dipole rotational collisions based on the angular
scattering model by Okhrimovskyy and co-authors [56], (ii)
11 electron impact vibrational excitations of the ground vibra-
tional state taken from the work by Allan [57], (iii) measured
oscillator strengths for dipole transitions, and (iv) separated
contributions from ionization and eight dissociative ioniza-
tion channels. The recent changes related to the anisotropic
scattering of rotational collisions are further discussed in the
next section. A detailed comparison between measured and
calculated electron swarm parameters, using the 2021 ver-
sion of Biagi’s electron impact cross sections, will be inves-
tigated in details in the future. Since the agreement obtained
with the current set [24] is already very good, we expect that
the main results presented in this work still apply for the
2021 set.

4. Angular scattering models for electron-neutral
rotational collisions in Monte Carlo simulations

In order to compare different angular scattering models, it is
useful to define the angular distribution function I (ε, θ), by

normalizing the DCS as

I (ε, θ) =
1

σICS (ε)
dσ (ε, θ)

dΩ
. (15)

The advantage of using this formulation is that one might
keep the same ICS, while varying the angular scattering model
[27, 58]. The considered angular distributions are based on
isotropic scattering, empirical formulas given by Longo and
Capitelli [59] and Kushner [29], and the dipole-Born theory
[31]. The scattering angles in electron–molecule collisions can
be sampled according to a theorem of probability theory [60],
by inverting the following expression:

ri = 2π
∫ θi

0
I
(
ε, θ′

)
sin θ′ dθ′, (16)

where ri is a collection of random numbers uniformly dis-
tributed between 0 and 1, θi is a collection of random num-
bers distributed according to a probability distribution function
p
(
ε, θ′

)
= 2πI

(
ε, θ′

)
sin θ′ in [0, π] and p

(
ε, θ′

)
is normal-

ized to 1 in [0, π].
The angular distribution for isotropic scattering is constant,

i.e.

I (ε, θ) =
1

4π
, cos θi = 1 − 2ri. (17)

Moreover, this scattering model leads to equal ICS and
MT cross sections (equations (2) and (5)), in contrast with a
description of dipole rotational collisions based on the Born
approximation, as described in the works by Crawford [31]
and by Shimamura and Takayanagi [33].

Longo and Capitelli [59] have introduced an anisotropic
scattering model that takes into account the differences
between ICSs and MT cross sections. The model is based on
the definition of an artificial DCS that satisfies equations (2)
and (5). The artificial DCS is composed by the sum of two
constant DCSs, one for isotropic forward scattering (i.e. 0 �
θ � π/2) and the other one for isotropic backward scattering
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Figure 6. Polar plot of the angular distribution functions I (ε, θ) at
ε = 0.01 eV for the isotropic scattering model (red line) and the
anisotropic scattering models by Longo and Capitelli with Biagi’s
correction [24, 59] (green line), Kushner [29] (blue line) and the
dipole-Born DCS proposed in this work (magenta line).

(i.e. π/2 < θ � π). With these assumptions, the forward scat-
tering probability can be calculated as:

PF (ε) =
1
2
+ γ (ε) , γ (ε) =

σICS (ε) − σMT (ε)
σICS (ε)

, (18)

where the term γ (ε) accounts for the relative difference
between ICS and MT cross sections. A strongly forward-
peaked model for rotational collisions (i.e. PF (ε) > 0.5,
for any ε) is obtained, by using equations (3) and (6) in
equation (18). This model was implemented in Magboltz
v11.10 [24] with a renormalization of the forward scattering
probability according to

PF (ε) =
1
2
+ γ (ε)

(1 − cos Θm)

sin2 Θm
, (19)

whereΘm = sin−1
(
2
√
γ (ε) (1 − γ (ε))

)
defines the maximum

polar scattering angle (which is found around 60◦, in this case).
As a consequence, the polar scattering angle θi is sampled
according to isotropic scattering between 0 and Θm:

cos θi = 1 − αri, (20)

where α = 2Θm/π. In [29], Kushner proposes an empirical
expression for the angular distribution of the form:

I (ε, θ) =
m + 2

8π
cosm

(
θ/2

)
, (21)

where m is an energy dependent fitting parameter used to
reproduce experimental DCSs. If experimental measurements
of DCSs are not available, m is assumed constant. In [28],
Casey and co-authors have considered m = 1, to describe the
anisotropy of electron rotational collisions in N2. In this case,
the scattering angle in the polar direction can be calculated
from equation (16) as

θi = 2 cos−1
[
(1 − ri)

1/3
]
. (22)

Note that equation (21) assumes that I (ε, θ) is independent
on the kinetic energy of the incident electrons. Typically, this
assumption is valid in the region of resonant vibrational excita-
tions [52], but it is not able to reproduce the DCS over a large
energy spectrum. The dependence of I (ε, θ) on both kinetic
energy of electrons and scattering angle is investigated in the
next subsection.

4.1. Anisotropic scattering model from the dipole-Born
differential cross sections

In this subsection, a novel anisotropic scattering model for the
description of dipole-rotational collisions in MC simulations
is derived. The model aims to overcome the inconsistencies
and/or limitations previously described and it is based on the
Born theory illustrated in section 2. The model departs from
the coherent expressions for the differential and ICSs for rota-
tional transitions, given by equations (1) and (15), respectively.
By substitution of equations (1) and (3) into equation (15), the
following angular distribution function I (ε, θ) is obtained:

I (ε, θ) =
1

4π

√
ε
√
ε± VJ,J±1

K2

×
[

log

(√
ε± VJ,J±1 +

√
ε√

VJ,J±1

)]−1

. (23)

Hence, by substitution of equation (23) in equation (16) and
integration, an expression for the polar scattering angle θi is
derived for use in MC simulations codes:

cos θi = 1 +
2ξ2

1 − ξ2

(
1 − ξ−2ri

)
, (24)

where ξ is an energy-dependent function of the form:

ξ (ε) =
VJ,J±1(√

ε± VJ,J±1 +
√
ε
)2 . (25)

Since the energy exchange in rotational transitions is typ-
ically found in the range 10−4–10−3 eV, it can be concluded
that ξ � 1 and then equation (24) can be simplified as

cos θi ∼ 1 − 2ξ2(1−ri). (26)

Equation (26) corresponds to a strongly forward-peaked
scattering model with values of cos θi often very close to 1.
Nevertheless, scattering at extreme angles is still possible, for
example at ri = 1.

A comparison between different angular distribution func-
tions, obtained from the aforementioned models, is shown
in figure 6. An incident electron energy of ε = 0.01 eV is
assumed for the models of Longo and Capitelli and dipole-
Born DCS. For the latter, the transition J = 0 → 1 has been
considered.

Kushner’s angular distribution is almost isotropic, with a
slight anisotropy in the forward direction, due to the fact that
m = 1 was chosen. From figure 6, it is clear that an artifi-
cial DCS is used in Longo and Capitelli’s model that presents
a more pronounced forward peak structure, when compared
with Kushner’s, due to the correction by Biagi that reduces
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Figure 7. Zeroth (a) and first order (b) Legendre polynomial coefficients calculated with MC simulations (solid line) and LoKI-B [20]
(dashed line) at different reduced electric fields (from left to right: 0.01, 1, 10, 50 and 100 Td), using Biagi’s cross sections [24]. A
Boltzmann distribution at 300 K for rotational and vibrational levels of the ground electronic state is assumed.

the forward scattering component to maximum polar angles
Θm < 60◦. Scattering angles above Θm are not allowed by
the artificial shape of the DCS. The angular scattering model
based on the dipole-Born DCS proposed here differs signif-
icantly from the other three. This model includes not only
a dependence on the polar scattering angle, thus improving
the scattering description, but also considers a dependence on
the electron energy before and after the collision, thus over-
coming the limitations of the empirical formulas by Kushner.
Moreover, in the proposed model, the scattering angle is sam-
pled directly from the dipole-Born DCS, instead of an artifi-
cial DCS and a forward scattering probability. Nevertheless, it
should be emphasized that the dipole-Born anisotropic model
is valid only for this specific type of transitions, whereas the
other three models are generally applicable to other types of
scattering.

5. Calculations of electron swarm parameters in
CO

In this section, we aim to assess the validity of the two-term
approximation for electrons in CO. Moreover, we verify the
effects of different anisotropic scattering models for dipole
rotational collisions on the calculations of electron swarm
parameters. Anisotropic effects in vibrational and electronic
excitations were not considered, since the comparison of the
calculated and measured swarm data is already very good for
E/N > 1 Td, where these processes are dominant, with the
current cross section sets. Nevertheless, the study of these
effects is interesting and can provide valuable insight for future
improvements of the cross section sets.

A fully native MC simulations code is used for sim-
ulations of the electron kinetics in CO and calculations
of electron transport parameters. The code was previously
benchmarked against solutions of two-term and multi-term
Boltzmann solvers and was combined with variance reduc-
tion techniques in atomic and molecular gases simulations [22,
23]. It uses a null-collision method [61], along with a modified

time-step technique [62] and it includes the effects of the finite
temperature of the background gas with an exact test particle
MC technique that takes into account the translational distribu-
tion of neutrals [63]. According to this treatment, the frequency
for an arbitrary electron-neutral collision is

ν(v) = N
∫

u′
σ(|v − u|)|v − u|F(u)du, (27)

with N the number gas density, v the velocity of the inci-
dent electron, u the velocity of the background gas, σ(|v − u|)
the corresponding electron-impact cross section, and F(u) the
velocity distribution function of the background gas particles,
normalized as ∫

u′
F(u)du = 1. (28)

In this work, a Maxwell–Boltzmann distribution for the back-
ground gas particles is used, motivated by the swarm condi-
tions under investigation. The same approach has been adopted
by Vialetto and co-authors [23] for calculations of electron
transport parameters in CO2. Details about the method can be
found in [63]. The scattering event is simulated in the centre-
of-mass frame, requiring cross sections written in the same
reference frame. Formulas for converting cross sections from
the laboratory to the centre-of-mass frame can be found in [64].
Here, the differences between cross sections in the center-of-
mass and in the laboratory frame are negligible, due to the low
electron-to-neutral mass ratio. After each scattering event, the
magnitude of the electron velocity vector is updated based on
energy conservation and the velocity components are rotated
based on trigonometric expressions [65]. In [23], the MC Flux
method is used for calculations of flux transport coefficients,
whereas here, a standard time-of-flight (TOF) MC method for
the calculation of bulk transport parameters [66] is employed.
Hence, the trajectories of a large number of electrons (typi-
cally 104 or 105) are followed in swarm conditions, under the
effects of collisions with the background gas and of a constant
DC electric field. To ensure that steady-state is reached, the
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percent deviation of the mean kinetic energy at every time-
step is calculated. The steady-state time tSS is defined as the
time when this deviation is below 0.1%. Once tSS is reached,
results for bulk transport parameters are averaged with a sam-
ple time of 10−9 s until a final time tfin = 10tSS, in order to
improve statistics. In addition to the MC simulations code, we
have also used the Boltzmann solver LoKI-B [20, 67], based on
a two-term expansion of the EVDF in Legendre polynomials
and adopting a finite difference scheme to discretise the elec-
tron Boltzmann equation in energy space. As usual in two-term
Boltzmann solvers, LoKI-B assumes isotropic scattering of
electrons in rotational collisions. In section 6, this assumption
is dropped and the treatment of dipole rotational collisions
in LoKI-B is extended to include anisotropic effects. It is
important to mention that LoKI-B provides calculations of flux
transport parameters, whereas MC simulations calculate bulk
transport parameters [12] from the spatio-temporal evolution
of the electron swarm, according to a standard TOF formula-
tion [66, 68]. However, for low/moderate values of E/N (i.e.
below 100 Td) in CO, the differences between flux and bulk
coefficients are below 1%, meaning that the general consider-
ations of this study are not affected by these different formula-
tions. Indeed, distinction between flux and bulk parameters in
CO must be taken into account at higher E/N values, where the
role of non-conservative inelastic collisions is dominant [69].

In order to compare MC simulations results with the ones
obtained with LoKI-B, we start by considering isotropic scat-
tering of electrons in rotational collisions. The calculations are
performed for E/N values between 0.01 and 100 Td, using the
cross sections set of Biagi. In MC simulations, the trajecto-
ries of 104 initial electrons are followed. An energy bin size of
10−4 eV for E/N � 10 Td and of 10−1 eV for E/N > 10 Td is
considered. The calculations with the solver LoKI-B are per-
formed for the same E/N values, assuming a temporal growth
of the electron density and adopting 1000 energy cells that are
automatically adjusted by prescribing the decade-fall of the
electron energy distribution function between 20 and 25 [20].
In both MC simulations and LoKI-B calculations, we consider
a Boltzmann population at 300 K for the vibrational and the
rotational levels of the electronic ground state, where vibra-
tional energies are calculated using the Morse anharmonic
oscillator model and rotational energies are calculated with a
rigid rotor model [70]. Figures 7(a) and (b) show the zeroth
( f 0) and the first order ( f 1) Legendre polynomial coefficients,
respectively, calculated from LoKI-B and MC simulations.
Normalization is such that∫ ∞

0
f 0(ε)

√
ε dε = 1, (29)

with ε the electron kinetic energy. The CPU time for a sin-
gle calculation is around 10 s for LoKI-B and up to 1 h for
MC simulations, due to the long time for averages required
by the simulations, obtained with a 2.6 GHz six-Core Intel
Core i7 processor. Figure 7 reveals a relatively good agreement
between MC simulations and LoKI-B results, with small devi-
ations observed only in the body and in the tail of f 0 and f 1.
Similar conclusions are obtained when using the IST-Lisbon
cross sections set [18] for the same range of E/N (not shown).

As mentioned in section 3, there are similarities in the elec-
tron scattering cross sections of CO and N2, and thus also in
the corresponding transport properties [1]. However, N2 yields
significant deviations between two-term and multi-term/MC
solutions, already at moderate values of E/N [71], whereas
calculations in this work confirm the validity of the two-term
approximation in CO. This fact is even more counter-intuitive
if it is taken into account that the magnitude of inelastic cross
sections for vibrational excitations of CO is about 30% greater
than that of N2, in the same energy region [1]. This observa-
tion can be explained by noting that CO, contrarily to N2, has
a permanent dipole moment. In fact, rotational excitations by
electron impact are driven by the interaction of electrons with
the weak electric field resulting from the dipole moment of
the CO molecules. In view of their very low energy thresh-
olds, rotational processes contribute to the isotropization of
electrons velocity, thus favouring the validity of the two-term
approximation. In the case of N2, dipole rotational excitations
do not naturally occur, hence rotational processes are of the
electric quadrupole type [37], with cross sections typically one
order of magnitude lower. Quadrupole rotational collisions are
usually neglected in studies of electron kinetics in CO, but, for
completeness, the effect of these processes on the calculations
of transport parameters is discussed in section 5.2.

5.1. Assessment of anisotropy effects on swarm parameters
using Monte Carlo simulations

In order to test the assumption of isotropic scattering, calcu-
lations of electron transport parameters obtained with LoKI-B
and MC simulations are compared with experimental measure-
ments from the Dutton [72] and the LAPLACE [73] databases
of LXCat. In addition to isotropic scattering, MC simula-
tions have been performed taking into account also the three
anisotropic scattering models for dipole rotational collisions
described in section 4, using elastic MT and total inelastic
cross sections from a single database. It should be noted that
this assumption does not fix the total MT cross section [12],
which changes when varying the angular distribution model
associated with the dipole rotational collisions, thus inducing
modifications in the calculated swarm parameters.

In figures 8(a) and (b), measurements and calculations of
the electron reduced mobility (μN) are compared in the range
0.01 � E/N � 100 Td, for gas temperatures (Tgas) of 77 K
and 300 K, respectively. The results were obtained adopting
the cross sections of Biagi [24] and the anisotropic scattering
models presented in section 4. As for previous calculations,
a Boltzmann distribution at Tgas for rotationally and vibra-
tionally excited states of the ground electronic state of CO
molecules is assumed.

MC simulations assuming isotropic scattering are in excel-
lent agreement with calculations from LoKI-B, within 2% in
the E/N range considered. The calculations are also in general
good agreement with the measurements [72, 73] for E/N > 3
Td. However, significant differences can be observed between
measured and calculated values of μN at lower E/N, for MC
simulations with isotropic scattering and LoKI-B. In partic-
ular, at 77 K, these differences exceed 50% (figure 8(a)),
while at 300 K the differences are about 30% (figure 8(b)).
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Figure 8. Reduced mobilities at 77 K (a) and 300 K (b) measured [72, 73] (points) and calculated from LoKI-B [20] (dashed curve) and MC
simulations (solid curves), using the Biagi cross sections set and different angular scattering models for dipole rotational collisions. MC
isotropic (red curve), MC with Kushner’s model [29] (blue curve), MC with Longo and Capitelli’s model with Biagi’s correction [24, 59]
(green curve) and MC with dipole-Born DCS model (magenta curve). A Boltzmann distribution at Tgas for rotational and vibrational levels
of the ground electronic state of CO is assumed.

When anisotropic scattering in rotational excitations and de-
excitations is included in MC simulations, calculations of
μN are significantly affected. The effect is more evident for
E/N < 3 Td, where the exchange of momentum is controlled
by rotational processes. Specifically, MC simulations using the
forward scattering model of Kushner with m = 1 [29] lead
to differences up to 17% at 77 K and up to 10% at 300 K,
when compared with the results of the isotropic model. These
results are in agreement with the ones obtained by Casey
and co-authors [28], where the same angular distribution
function is used for the description of quadrupole rotational
collisions in N2. Since the angular distribution of quadrupole
interactions is isotropic, it is adequately described by
Kushner’s model, with m = 1, that leads to an angular distri-
bution close to the isotropic case. However, this also explains
why this anisotropic model does not completely solve the dis-
crepancies between experimental measurements and MC sim-
ulations when using the dipole rotational cross sections of
Biagi. The anisotropic models of Longo and Capitelli [59] and
dipole-Born DCS (section 4.1) for rotational processes lead to
good agreement between MC simulations and measurements.
In particular, at 300 K, the calculated reduced mobilities agree
with the experimental data within 2%. Similar deviations can
be found between measurements and calculations at 77 K for
E/N < 0.2 Td and E/N > 0.8 Td, but differences increase up
to 8% for 0.2 � E/N � 0.8 Td, where μN starts decreasing
with E/N. As discussed in section 5.2, these discrepancies
can be reduced by including quadrupole rotational excitations
and de-excitations, that are neglected in calculations shown in
figure 8.

Although the most recent version of cross sections in Mag-
boltz v11.11 [55] is not used in here, the general good agree-
ment obtained with the model of Longo and Capitelli is
expected, because Biagi’s cross sections were adjusted for
such agreement using this anisotropic description in Magboltz
v11.10 [24]. However, that model is based on an artificial

DCS, not compatible with a Born formulation [33]. Moreover,
the original model in [59] needs to be corrected due to the
strongly forward-peaked nature of the scattering, as discussed
in section 4. Alternatively, dipole-Born DCS can be used to
calculate the polar scattering angle in rotational collisions.
This description can be implemented in MC codes to simulate
electron impact rotational collisions with linear molecules, in
combination with ICSs described with the Born approximation
(equation (3)).

Calculations for μN were performed also with the IST-
Lisbon cross sections set [18]. MC simulations and LoKI-B
results are shown in figures 9(a) and (b), together with mea-
surements [72, 73] obtained at 77 K and 300 K, respectively.

Once again, significant differences among calculated
reduced mobilities can be observed for E/N < 3 Td, when
different angular scattering models are used in MC simu-
lations. In particular, deviations exceeding 50% are found
between results from MC simulations with isotropic scat-
tering and with a dipole-Born model for rotational pro-
cesses at 77 K, these differences decreasing to about 30% at
300 K. However, contrarily to what is observed for results
obtained with Biagi’s cross sections, MC simulations assum-
ing Kushner’s anisotropic model with m = 1 [29] lead to the
best agreement with measurements. The use of other scattering
models, like the one by Longo and Capitelli [59] or the dipole-
Born DCS, leads to strong overestimations of μN for E/N <
3 Td, when compared with experimental data. Nevertheless,
since the IST-Lisbon cross sections set [18] was adjusted
with the assumption of isotropic scattering, the apparent good
agreement between experiments and MC simulations using
Kushner’s model is seen as fortuitous. On the other hand, devi-
ations up to 20% can be found when using the isotropic model
at 77 K in MC simulations or in LoKI-B, meaning that the net
momentum exchange in rotational processes is not well cap-
tured by the IST-Lisbon cross sections set. As mentioned in
section 4, this is due to the fact that the isotropic assumption
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Figure 9. As in figure 8, but for calculations using the IST-Lisbon cross sections set [18].

leads to equal MT cross sections and ICSs (i.e. σMT = σICS),
which is inconsistent with the theoretical studies by Altshuler
[21] and Crawford [31] on the MT theory for dipole rotational
collisions. Moreover, this formulation may lead to negative
values for the elastic MT cross section, if this is calculated
from the total MT by Hake and Phelps [13] or Land [14], by
subtracting the inelastic contribution [18].

For completeness, figures 10(a) and (b) show measurements
[72] and calculations of the characteristic energy (DT/μ) at
77 K and 300 K, respectively. The numerical results were
obtained with LoKI-B and MC simulations, using Biagi’s
cross sections. Note that the values of DT/μ decrease with
E/N, until the characteristic energy approaches kBTgas, in the
near thermal region.

A very good agreement is found between measurements
and calculations, using both LoKI-B and MC simulations, with
excellent numerical predictions (within 1%) obtained at 300 K
for 0.3 � E/N � 100 Td, where experimental data are avail-
able (see figure 10(b)). At 77 K and 0.01 � E/N � 0.3 Td,
discrepancies between calculations and measurements up to
10% are found. The inclusion of anisotropic scattering leads
to a significant improvement in the agreement for 0.06 �
E/N � 0.3 Td, whereas discrepancies can still be found for
values between 0.01 and 0.06 Td. In [18], similar discrepan-
cies are found in the same E/N region using LoKI-B with
the IST-Lisbon cross sections. As suggested by Hake and
Phelps [13], these discrepancies can be due to the fact that
experimental data are overestimated in the low E/N region.
Contrarily to what is observed for μN calculations, that are
strongly dependent on the angular scattering model, MC sim-
ulations for DT/μ are not significantly affected by the choice
of the angular distribution in rotational collisions. This result
can be explained by the fact that, as a first approximation,
both the transversal diffusion coefficient DT and the mobil-
ity μ are inversely proportional to the total MT cross section,
their ratio becoming less sensitive to variations in this cross
section. A more accurate explanation is given in section 6,
where anisotropic effects in solutions of the two-term electron
Boltzmann equation are considered.

In figure 11, the longitudinal component of the bulk dif-
fusion tensor divided by the mobility (DL/μ), obtained from
MC simulations, is compared with measurements [72], for
Tgas = 300 K. For this transport coefficient, measurements at
77 K are not available. As before, calculations were performed
using Biagi’s cross sections, assuming different angular scat-
tering models for rotational collisions. With LoKI-B it is not
possible to calculate the bulk longitudinal diffusion coefficient
DL. As for DT/μ, an excellent agreement is observed between
calculations and measurements for all the angular scattering
models considered here.

From the results of this section, it is clear that the choice
of the angular scattering model for dipole rotational collisions
has an impact on the comparison of calculated and measured
swarm parameters larger than the choice of a two-term or an
MC solution at steady-state. This is due to the very different
trend of the ICS and MT cross sections (equations (3) and (6)),
as shown in figure 2. In fact, changing the angular distribution
while keeping the sum of the ICSs unchanged, will affect the
total MT cross section, hence transport parameters, such as the
reduced mobility.

5.2. Effect of quadrupole rotational collisions

In this section, the effect of the inclusion of quadrupole rota-
tional processes to Biagi’s dataset is investigated. These pro-
cesses are neglected in most of the available cross sections sets
for CO, due to the weakness of the quadrupole interaction.
However, these interactions are not necessarily negligible and,
depending on the molecular orientation relative to the velocity
of the incident electron, quadrupole rotational transitions can
occur [33]. The inclusion of rotational collisions was already
suggested in the analysis by Hake and Phelps [13] and by Ran-
dell and co-authors [9]. Quadrupole excitations for CO have
also been included in the work by Land [14], in the continuous
approximation.

For very low electron energies (i.e. below the threshold
of electronic excitation processes), the treatment of Gerjuoy
and Stein [37] for electric quadrupole transitions is justified.
They deduce an effective cross section, based on the Born
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Figure 10. As in figure 8, but for the characteristic energy, with calculations using Biagi’s cross sections set [24].

Figure 11. Longitudinal diffusion coefficients divided by electron
mobilities at 300 K measured [72, 73] (points) and calculated with
MC simulations (curves), using Biagi’s cross sections set [24] and
different angular scattering models for dipole rotational collisions,
as in figure 8. MC isotropic (red curve), MC with Kushner’s model
[29] (blue curve), MC with Longo and Capitelli’s model [59] (green
curve) and MC with dipole-Born DCS model (magenta curve). A
Boltzmann distribution at 300 K for rotational and vibrational levels
of the ground electronic state of CO is assumed.

approximation for the excitation from rotational quantum
number J to J + 2 [37]:

σquadr
J,J+2 (ε) =

8π
15

Q2a2
0

(
ε+ VJ,J+2

ε

)1/2 (J + 1) (J + 2)
(2J + 1) (2J + 3)

,

(30)
where Q = 1.86 is the effective electric quadrupole moment of
the CO molecule in units of ea2

0 [74] and VJ,J+2 is the energy
threshold for the transition J → J + 2. In this work, 13 differ-
ent quadrupole excitations of rotational levels of the ground
vibrational state have been considered, according to the selec-
tion rule |ΔJ| = 2. Moreover, the corresponding de-excitation
cross sections have been calculated from the Klein–Rosseland

Figure 12. Reduced mobilities at 77 K and 300 K measured [72, 73]
(points) and calculated (curves) from MC simulations, including
(green curve) or neglecting (magenta) quadrupole rotational
collisions in Biagi’s cross sections set [24]. A Boltzmann
distribution at Tgas for rotational and vibrational levels of the ground
electronic state of CO is assumed.

formula [35]. These cross sections are valid for low-energy
electrons, since the main part of the interaction is long-range.
For ε � 1.0 eV, where the cross sections become independent
on the electron energy, an artificial Born decay of 1/ε was
introduced. The angular distribution of the quadrupole rota-
tional collisions is assumed to be isotropic. In fact, there is
no forward peaking in the corresponding DCSs, as opposed to
scattering by dipole potential [33].

In figure 12, measurements of μN at 77 K and 300 K
[72, 73] are compared with the results from MC simulations,
with and without the presence of quadrupole collisions in
Biagi’s cross sections set.

For 0.01 � E/N � 1 Td, differences between the calcu-
lated μN, including or neglecting quadrupole processes, are
up to 8% and 5%, at 77 K and 300 K, respectively. These dif-
ferences decrease with increasing E/N, becoming less than
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0.5% for E/N > 1 Td. Results show that the inclusion of
quadrupole processes improves the agreement between MC
simulations and measurements of μN, for E/N values between
0.2 and 0.8 Td. This is due to the fact that quadrupole contribu-
tions are beyond 10% for energies greater than 20 meV, being
comparable to the dipole contributions at energies above 100
meV [9]. Hence, although neglected in most of the previous
studies, quadrupole interactions are important to improve the
agreement between measurements and calculations in the nar-
row region of E/N values where transport parameters exhibit
stronger variations. In section 6, it is shown that this is the case
also for the characteristic energy in addition to the electron
reduced mobility.

6. Implementation of the anisotropic treatment of
rotational collisions in the two-term Boltzmann
solver LoKI-B

In this section, the treatment of dipole rotational
collisions in LoKI-B [20] is extended by includ-
ing anisotropic effects. A patch file including the
changes with respect to the current LoKI-B implemen-
tation [67] is provided as supplementary information
(https://stacks.iop.org/PSST/30/075001/mmedia). The exten-
sion follows the pioneering work by Reid [25], Kumar and
co-authors [75] and Phelps and Pitchford [26], who introduced
anisotropic terms in the two-term Boltzmann equation based
on the Legendre polynomials expansion. In this work, the
contribution of second-kind (superelastic) collisions has been
considered as well. The treatment assumes that the angular
dependence of the DCS is based only on the polar angle θ
between the initial and the final relative velocity vectors in the
laboratory frame.

According to Makabe and Petrovic [76], the DCS for the
kth collisional process can be expressed as an expansion in
Legendre polynomials P j (cos θ) under azimuthal symmetry
as

dσk (ε, θ)
dΩ

=

∞∑
j=0

2 j + 1
4π

σ j
k (ε) P j (cos θ) , (31)

where the quantities σ j
k (ε), hereafter termed partial cross

sections, are the jth Legendre polynomial coefficients of the
expansion, for the kth electron-CO molecule collision. Using
the orthogonality relation of the polynomials, the partial cross
sections can be expressed as [26]

σ j
k (ε) = 2π

∫ π

0

dσk (ε, θ)
dΩ

P j (cos θ) sin θ dθ. (32)

The relation of σICS
J,J+1 (ε) and σMT

J,J+1 (ε), for the rotational
transition J → J + 1, with the corresponding partial cross
section σ j

J,J+1 (ε) (defined by equation (32)) is trivial, if the def-
initions of ICS and MT cross sections, given by equations (2)
and (5), respectively, are taken into account. Hence, by trun-
cation of the DCS expansion (equation (31)) to the first order,

it can be noted that

σICS
J,J+1 (ε) 
 σ0

J,J+1 (ε) (33)

and
σMT

J,J+1 (ε) 
 σ0
J,J+1 (ε) − σ1

J,J+1 (ε) , (34)

where equation (33) reveals that the zeroth-order partial cross
section σ0

J,J+1 (ε) for the rotational collision J → J + 1 is equal
to the corresponding ICS, and equation (34) relates the zeroth
and the first order partial cross sections with the correspond-
ing MT cross section. It should be noted that equation (34)
is an approximation for the case of rotational collisions, valid
for small relative differences in the electron speed before and
after the collision [25]. From equations (33) and (34), it can be
inferred that the only information on the angular dependence
of the scattering, retained from a two-term expansion of the
DCS in Legendre polynomials, is related to the ICSs and the
MT cross sections.

The two-term expansion of the EVDF in Legendre poly-
nomials allows one to write the electron Boltzmann equation
as a system of two coupled differential equations, represent-
ing particle/energy conservation and momentum conservation
[75], the latter corresponding to [20]

− ε
E
N

d f 0 (ε)
dε

= C [ f 1] , (35)

where C [ f 1] is the collision operator for the anisotropic com-
ponent ( f 1) of the EVDF of the form:

C [ f 1] =
∑

i

Jela.
i (ε) +

∑
i, j>i

(
Jexc.

i, j (ε) + Jde−exc.
j,i (ε)

)
. (36)

Here, Jela.
i (ε) is the anisotropic component of the operator

describing elastic collisions of electrons with the ith state of
the gas, Jexc.

i, j (ε) is the anisotropic component of the oper-
ator describing electron collisions for the excitation of an
arbitrary level i to an arbitrary level j, and Jde−exc.

j,i (ε) is the
corresponding operator for the de-excitation of j → i. Note
that equation (36) can be trivially extended to account for the
effects of non-conservative electron collisions and/or to the
case of an arbitrary gas mixture [20]. In a general case, the
previous operator can be expressed as

Jela.
i (ε) = δi

[
εσMT

i,ela (ε) f 1 (ε)
]

, (37)

Jexc.
i, j (ε) = δi

[
εσ0

i, j (ε) f 1 (ε) −
(
ε+ Vi, j

)
σ1

i, j

(
ε+ Vi, j

)
× f 1

(
ε+ Vi, j

)]
, (38)

Jde−exc.
j,i (ε) = δ j

gi

g j

[(
ε+ Vi, j

)
σ0

i, j

(
ε + Vi, j

)
f 1 (ε)

− εσ1
i, j (ε) f 1

(
ε− Vi, j

)]
, (39)

where δi = Ni/N is the fractional number density of a generic
state i relative to the total gas density, σMT

i,ela is the elastic MT
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cross section for electron collisions with the ith state of the gas,
and σ0

i, j and σ1
i, j are the partial cross sections for the electron

impact excitation between states i and j with energy thresh-
old Vi, j and statistical weights gi and gj, respectively. Note
that, in equation (39), micro-reversibility is assumed in order to
express the de-excitation cross sections as a function of the cor-
responding excitations [35]. Often, inelastic cross sections are
small when compared to elastic ones [25], in which case one
can neglect the Jexc.

i, j (ε) and Jde−exc.
j,i (ε) terms in equation (36).

However, this assumption is not always accurate in molecu-
lar gases, where the inelastic (rotational and vibrational) col-
lisions may contribute significantly to the net exchange of
momentum.

By substitution of equations (37)–(39) into equations (36)
and (35) can be rewritten as proposed by Shkarofsky [77]

f 1 (ε) = −E
N

1
Ωc (ε)

d f 0 (ε)
dε

, (40)

where Ωc (ε) represents a total (effective) electron-neutral
cross section for MT, defined as

Ωc (ε) =

{∑
i

δiσ
MT
i,ela (ε) +

∑
i, j>i

[
δiσ

0
i, j (ε)

+ δ j
gi

g j

ε+ Vi, j

ε
σ0

i, j

(
ε+ Vi, j

)]}

−
{∑

i, j>i

[
δi
ε+ Vi, j

ε
σ1

i, j

(
ε + Vi, j

) f 1

(
ε+ Vi, j

)
f 1 (ε)

]}

−
{∑

i, j>i

[
δ j

gi

g j
σ1

i, j (ε)
f 1

(
ε− Vi, j

)
f 1 (ε)

]}
.

(41)
As noted in [26], Ωc (ε) is not uniquely defined, e.g.

equation (41) is valid under a two-term expansion of the EVDF
in Legendre polynomials. The terms on the right-hand-side of
equation (41) represent, in order, the momentum exchange due
to elastic collisions, electron impact excitations i → j, and de-
excitations j → i. Note that the first term is equivalent to the
one implemented in [20], under the assumption of isotropic
excitation/de-excitation collisions leading to a pure loss of
momentum after each event. More generally, if anisotropic
scattering is a relevant part of the net momentum exchange, re-
entry terms due to excitations and de-excitations (i.e. the sec-
ond and the third term on the right-hand side of equation (41),
respectively) should also be taken into account. These terms
are generally omitted in Boltzmann solvers based on the two-
term expansion in Legendre polynomials, due to the small ratio
f 1

(
ε± Vi, j

)
/ f 1 (ε).

In this study, the difference between ICSs and MT cross
sections for dipole rotational collisions given by equations (3)
and (6), evinces that the anisotropic scattering plays a relevant
role on the calculations of electron swarm parameters. Hence,
the full form of Ωc (ε) in equation (41) must be adopted.

Unless the incident electron energy is very low, the dif-
ference between the electron energies before and after rota-
tional collisions can be neglected, such that ε± VJ,J±1 ∼ ε.
Hence, Ωc(ε) can be approximatively written, evidencing the

contribution of the rotational collisions for MT, as

Ωc (ε) 

∑

i

δiσ
MT
i,ela (ε) +

∑
i, j>i

[
δiσ

0
i, j (ε)

+ δ j
gi

g j

ε+ Vi, j

ε
σ0

i, j

(
ε+ Vi, j

)]

+
∑

J,J+1

[
δJσ

MT
J,J+1 (ε) + δJ+1

gJ

gJ+1
σMT

J,J+1 (ε)

]
,

(42)

where the first term represents the elastic contribution for MT,
the second term is the inelastic contribution from all collisions
(excitations and de-excitations) except for the dipole rotational
collisions and the third term is the contribution of the dipole
rotational excitations and de-excitations. From equation (42),
it can be seen that the contribution for MT of all inelastic
processes, except for dipole-rotational collisions, is described
by ICSs, whereas electron-dipole interactions leading to rota-
tional collisions are described by the corresponding MT cross
sections. The advantage of using equation (42), with respect
to equation (41), in a two-term Boltzmann solver is clear. In
fact, due to the small energy between excited rotational lev-
els, a local operator is employed for the calculation of inelas-
tic and superelastic contributions to the electron energy fluxes
(i.e. the third term on the right-hand-side of equation (42)
depends only on ε and not on ε± VJ,J+1). This treatment
is also common for the description of rotational collisions
under the continuous approximation, based on a generaliza-
tion of the Fokker–Planck equation [78]. The applicability of
equation (42), even for E/N � 1 Td, where rotational colli-
sions are dominant with respect to elastic ones, is justified
for this work, due to the fact that the mean electron energy
is always (at least) a factor 20 higher than the energy threshold
for the excitation of the first rotational level. Thus, as shown
in figure 2, the approximation introduced in the rotational MT
cross section derived from equation (5) is negligible. More-
over, note that results obtained from the LoKI-B solver using
equation (42) are in good agreement with the ones obtained
from MC simulations, within a few percent, the latter not
depending on an explicit definition of the rotational MT cross
section. More generally, it is important to note that the assump-
tions underlying equation (42) are not applicable to any other
inelastic collisions, including electron impact vibrational exci-
tations, where the higher energy difference between excited
vibrational levels leads to an invalidation of the local approxi-
mation. For these cases, using equation (41) is recommended,
since it is based on the direct calculations of first-order partial
cross sections from the DCS.

The previous analysis can be used to update the calcula-
tion results of the two-term solver LoKI-B. Our study shows
that it is sufficient to extend the input data for the dipole rota-
tional collisions providing, as before, the ICSs of equations (3)
and (4) to calculate the collision operator of the isotropic
equation, in addition to the MT cross sections of equations (6)
and (7) to calculate the cross section of equation (42), used in
the anisotropic equation (40). Moreover, the improved treat-
ment of the anisotropic scattering for electrons in CO resolves
the apparent inconsistencies at low energies between the total
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Figure 13. Reduced mobilities at 77 K (a) and 300 K (b) measured (points) [72, 73] and calculated (curves). Calculations were obtained
using LoKI-B [20], with Biagi’s cross sections [24] and different scattering assumptions for dipole and quadrupole rotational collisions.
LoKI-B with isotropic scattering (red dashed curve), anisotropic scattering in dipole rotational collisions (solid red curve) and anisotropic
scattering in dipole rotational collisions with the inclusion of isotropic scattering for quadrupole collisions (solid green curve). A Boltzmann
distribution at Tgas for rotational and vibrational levels of the ground electronic state of CO is assumed.

Figure 14. As in figure 13, but for the characteristic energy.

MT and the sum of all ICSs for rotational collisions, pub-
lished in the Phelps database of LXCat [16], and described
by Ogloblina and co-authors [18]. In fact, as already sug-
gested in section 3, the scattering of low-energy electrons in
CO embeds an important contribution from dipole rotational
collisions, described by anisotropic DCSs, responsible for MT
cross sections smaller than the corresponding ICSs.

The new calculation results in CO, obtained using LoKI-
B with the cross sections of Biagi [24] and the cross section
of equation (42) (to account for the anisotropic scattering in
dipole rotational collisions), are presented in figures 13 and
14 for the electron reduced mobility and the electron charac-
teristic energy, respectively. Parts (a) and (b) of these figures
show results at 77 K and 300 K, respectively. The calcula-
tions assume the same working conditions as in section 5,
as well as the same input data for the elastic MT and the
vibrational/electronic excitation/de-excitation cross sections.
For comparison purposes, the figures show also the values

of the swarm parameters obtained experimentally [72, 73],
and calculated (i) assuming the isotropic scattering approx-
imation for dipole rotational collisions (as in the LoKI-B
curves of figures 8 and 10), or (ii) further considering electric-
quadrupole rotational cross sections.

Figure 13 shows good agreement (within a few percent)
between measurements and calculations, when anisotropic
effects for dipole rotational collisions are included in LoKI-
B. In particular, the results for μN from LoKI-B accounting
for anisotropic dipole interactions agree within 2% with MC
simulations assuming a dipole-Born angular scattering model
(section 4.1). Moreover, the addition of electric-quadrupole
interactions in LoKI-B contributes to an excellent agreement
with experimental data (within 2%), especially in the range
0.2 � E/N � 0.8 Td at 77 K (figure 13(a)), where discrep-
ancies up to 8% can still be found if only dipole rotational
collisions are taken into account. As mentioned in section 5.2,
isotropic scattering in quadrupole rotational collisions was
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assumed, due to the nature of the quadrupole interaction
potential in the Born approximation [33]. Hence, as opposed
to dipole interactions, cross sections for those collisions are
included in the second term of equation (42).

Contrarily to the large differences found in the LoKI-B cal-
culations of μN, when adopting different scattering assump-
tions, the numerical results of characteristic energies DT/μ are
barely affected by these assumptions, as shown in figure 14,
and already discussed in section 4. Nevertheless, the addition
of quadrupole rotational collisions is again fundamental, espe-
cially in the range 0.1 � E/N � 1.0 Td, to obtain excellent
agreement with measurements, within 2%.

The previous treatment allows one to include the effects
of anisotropic scattering in a two-term Boltzmann solver as a
modification of the cross section in equation (40) representing
the loss of forward momentum for electrons drifting through a
gas, under the influence of an electric field. To summarize, note
that one of the differences between an MC simulation method
and a Boltzmann solution of the EBE based on the two-term
approximation is that the former approach does not require
an expansion of the DCS in Legendre polynomials. Hence,
any angular distribution can be accurately described by MC
simulations without the need of an explicit definition of MT
cross sections. For these reasons, both measurements and cal-
culations of DCSs for electron collisions in molecular gases
are very much needed for an improved description of electron
kinetics, based on swarm analysis.

7. Conclusions

Electron scattering in CO has been investigated computa-
tionally via MC simulations and two-term solutions of the
Boltzmann equation, adopting two different electron impact
cross sections sets: the recently proposed IST-Lisbon set [18]
and Biagi’s set, extracted from the Magboltz code v11.10
[24]. Numerical results were compared with measurements of
electron swarm parameters in CO [72, 73].

Despite the results of previous studies, suggesting that
anisotropic scattering effects are generally small [26, 79], it
was found that by adopting different angular scattering models
for dipole-rotational collisions it is possible to induce strong
modifications in the calculated electron swarm parameters,
such as the reduced mobility. For this parameter, differences
between measurements and MC simulations of up to 50% and
30% at 77 K and 300 K, respectively, were obtained for dif-
ferent angular scattering models. Moreover, we also conclude
that the calculation of electron swarm parameters in CO is
more influenced by the choice of the angular scattering model
than the adoption of the two-term approximation. Indeed by
changing the angular distribution, while keeping the various
ICSs unchanged, one affects also the corresponding MT cross
sections, hence the electron transport parameters. An accu-
rate treatment of the angular distribution in electron–molecule
rotational collisions is expected to be important also in other
diatomic or polyatomic molecules, such as nitric oxide (NO),
ammonia (NH3) and water vapour (H2O).

The limitations found in previous descriptions of the
anisotropic scattering for rotational collisions, such as in

[29, 59], were overcome in this work by deriving a coher-
ent angular scattering distribution from the dipole-Born DCS
[31]. This novel angular scattering model can be used in MC
simulations for describing the strongly forward-peaked nature
of dipole rotational collisions between electrons and linear
molecules.

The present investigation provided also important conclu-
sions for improving the swarm derivation of electron scat-
tering cross sections in general, and more specifically in the
case of the CO molecule analysed here. On the one hand,
the inclusion in MC simulations of the anisotropic scattering
model based on the dipole-Born DCS, in combination with
the Biagi’s cross sections set [24], leads to good agreement
(within a few percent) between measurements and simulations
of electron transport parameters in CO. Notice that, despite a
more recent version of Biagi’s cross sections was released in
the Magboltz code v11.11 [55], a general good agreement is
already obtained by using cross sections from the previous ver-
sion [24]. In fact, the set in Magboltz v11.10 [24] was already
optimized for anisotropic scattering of dipole rotational colli-
sions. The impact of the recent update of vibrational and elec-
tronic excitation cross sections on the calculations of electron
swarm parameters requires future investigation.

On the other hand, using this novel scattering model with
the IST-Lisbon dataset [18] leads to strong deviations between
measurements and simulations. These deviations are expected,
since the IST-Lisbon cross sections have been derived under
the isotropic scattering assumption, not consistent with a Born
treatment of the rotational DCS [21, 33]. Nevertheless, this
cross section set remains suited for solvers adopting isotropic
scattering, and indeed it can be safely used in any solver for
E/N > 1 Td. In any case, the present conclusions suggest the
interest in proposing an alternative IST-Lisbon cross section
set, so as to properly describe the anisotropic features of rota-
tional collisions in CO, and the corresponding electron-neutral
total MT in solvers accepting this description.

In addition, the anisotropic inelastic/superelastic scattering
in dipole rotational collisions was implemented in the two-
term solver LoKI-B [20] using coherent expressions for the
corresponding ICSs and MT cross sections. The changes with
respect to the current LoKI-B implementation [67] to include
anisotropic effects in dipole rotational collisions are available
as supplementary information with this work and they will be
part of a future open-source version of the code. In particu-
lar, the information about the DCS is included in LoKI-B by
an adequate modification of the MT cross section, represent-
ing the total momentum lost by the electrons in elastic and
inelastic collisions with the background gas, as proposed by
Reid [25] and Phelps and Pitchford [26]. This modification
leads to a good agreement between LoKI-B calculations and
measurements [72, 73] of the electron reduced mobility and
characteristic energy, at low and moderate E/N values, when
adopting Biagi’s cross sections.

For completeness, the inclusion of quadrupole rotational
collisions in Biagi’s cross sections set has been investigated.
These processes were neglected in the previous studies by
Hake and Phelps [13], and by Ogloblina and co-authors [18].
From the present study, it can be inferred that both the
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quadrupole and the dipole contributions are comparable at
energies above 100 meV and that the inclusion of the former
improves the agreement between measurements and calcula-
tions of swarm parameters in the range 0.1 � E/N � 1 Td,
correcting discrepancies of up to 8%.

The present work highlights the importance of anisotropic
scattering in low energy threshold rotational collisions and
its effect on the calculation of electron swarm parameters in
CO. Our conclusions evince the importance of adopting a
correct description for the angular scattering of electrons by
molecules, hence reinforcing the need for accurate measure-
ments and/or quantum-mechanical calculations of DCS.
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