
HAL Id: inria-00460462
https://hal.inria.fr/inria-00460462v3

Submitted on 18 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree automata based semantics of firewalls
Tony Bourdier

To cite this version:
Tony Bourdier. Tree automata based semantics of firewalls. 6th International Conference on Net-
work Architectures and Information Systems Security, 2011, La Rochelle, France. pp.171–178,
�10.1109/SAR-SSI.2011.5931363�. �inria-00460462v3�

https://hal.inria.fr/inria-00460462v3
https://hal.archives-ouvertes.fr

Tree automata based semantics of firewalls

Tony Bourdier
Inria Nancy & Université Henri Poincaré & Loria – Pareo Team

BP 101, 54602 Villers-lès-Nancy Cedex, France
Tel.: (+33)3.54.95.84.15
Tony.Bourdier@inria.fr

February 2011

Abstract

Security constitutes a crucial concern in modern information systems. Sev-
eral aspects are involved, such as user authentication (establishing and verifying
users’ identity), cryptology (changing secrets into unintelligible messages and
back to the original secrets after transmission) and security policies (preventing
illicit or forbidden accesses from users to information). Firewalls are a core
element of network security policies, that is why their analysis has drawn many
attention over the past decade. In this paper, we propose a new approach
for analyzing firewalls, based on tree automata techniques: we show that the
semantics of any process composing a firewall (including the network address
translation functionality) can be expressed as a regular set or relation and thus
can be denoted by a tree automaton. We also investigate abilities opened by
tree automata based representations of the semantics of firewalls.

Contents

1 Introduction and motivations 2

2 Preliminaries 3
2.1 Term algebra and rewrite systems . 3
2.2 Tree automata . 4

3 Firewall semantics 4
3.1 Processing model . 5
3.2 Vocabulary for formal reasoning . 6
3.3 Tree automata based semantics . 7

4 Applications 10
4.1 Properties . 10
4.2 Structural analysis . 11
4.3 Query analysis . 13
4.4 Further abilities . 13

5 Conclusion 14

1

Tree automata based semantics of firewalls

1 Introduction and motivations

Since the late 80s, firewalls are at the heart of network security. First designed to
enable private networks to be opened up to the outside in a secure way, the growing
complexity of organizations make them indispensable to control information flow
within a company. The central role of firewalls in the security of the organization
information make their management a critical task. Moreover, it is admitted for
some years the importance of using formal methods to specify security policies. For
example, to achieve high levels of certification (EAL1 5, 6, 7), it is necessary to
provide a formal specification enabling to obtain mechanized formal proofs, to carry
out techniques for test generation or to perform static analyses ensuring required
properties.

Thus, for years, many methods and tools have been developed for analyzing
and testing firewall policies. These methods can be broken down into two different
categories: the active methods and the passive methods. The former consist in
sending packets to the network and to make a diagnosis according to the received
packets. The main advantage of these methods is that they can be directly performed
without any computation. However, such methods have the major drawback of
consuming bandwidth, interfering with the traffic and being no exhaustive. That is
why many works focused on passive methods, that is methods which send no packet
and make an offline analysis. Two main categories of passive analysis are investigated
in the literature: structural analysis and query analysis. Structural analysis examine
the relationships that rules have with other rules within a firewall configuration or
across multiple firewalls. These works consider that a misconfiguration (or conflict)
occurs when several rules match the same packet or when a rule can be removed
without changing the behavior of the firewall. Query analysis provides a way to ask
questions of the form “Which computers in the private network can receive packets
from www.inria.fr?”. It then consists in defining a language to describe a firewall
query and a way to compute its solutions. Some interesting work [AsH04, CCBGA06,
ABR08, ASH03, BB07, GL04, CCBGA05, Liu08, ASHBH05] looked into structural
analysis and others [Haz00, EZ01, LG09, MK05] looked into query analysis. Indeed,
[AsH04, CCBGA06, ABR08, ASH03, BB07, GL04, CCBGA05, Liu08, ASHBH05]
focus on defining, detecting and discussing misconfigurations. All of them assume
that packets are not modified during their network traversal and then do not support
network translation address capabilities. [Haz00, EZ01, LG09, MK05] use structures
based on decision diagrams which provide a way to represent both rule sets of firewalls
and solutions of some queries over firewalls. All these works are dedicated to a specific
analysis.

Comparing to these works, our aim is to study a representation of the semantics
of each component of a firewall based on tree automata and to build a decidable first
order theory associated to the firewall. We show that issues raised by previously
mentioned analyses are definable in this theory and thus obtain a generic procedure
for performing these analyses.

Indeed, one of the main motivations of tree automata is the study of computa-
tional problems that can be solved using these machines. The usual approach consists
in associating a logical system to a class of automata, which provides decision pro-
cedures for problems expressed as specifications in this logical system. Although

1Evaluation Assurance Level

2

T. Bourdier

one knows that decidable theories are not necessarily trivial from a computational
point of view, we use here some classes of automata that enable operations over tree
automata to be performed with low-complexity algorithms. Moreover, a significant
work has been done during the last years in order to obtain new efficient algorithms.
In particular, some libraries implementing efficient algorithms with efficient data
structures have been recently developed [Len10]. A great advantage of our approach
is the use of the well established algebraic frameworks of tree algebra and automata.
Thus, our work takes full benefit from years of research on these domains. In par-
ticular, as we will sketch at the end of this paper, we can successfully apply from
our work new techniques for model checking, called regular tree model checking,
that have been developed to verify systems whose transition relation is described
with a binary tree automaton [AJMd02, BHRV06]. Such techniques, following our
approach, allow for example to find unwanted flows of packets from a given network
security policy.

Roadmap. In Section 2, we recall basic definitions of terms, rewrite systems and
tree automata. In Section 3, we show that the semantics of all firewall components
are regular sets and relations. We investigate in Section 4 the possibilities opened
by a tree automata based description of the semantics of firewalls. In particular,
we define a first order theory in which all usual analyses are definable. We also
discuss further abilities made possible by the use of tree automata. Finally, we give
concluding remarks in Section 5.

2 Preliminaries

We assume that the reader is familiar with the standard notions of rewrite systems
and tree automata. Comprehensive surveys can be found in [BN98] for first order
terms and rewrite systems and in [CDG+08] for tree language theory. This section
fixes our notations.

2.1 Term algebra and rewrite systems

A signature Σ consists of a finite set SΣ whose elements are called sorts and an
alphabet of symbols together with an application which associates to any symbol f
a non empty sequence of sorts, which is denoted by f : s1 × . . .× sn 7→ s. ar(f) = n
is called the arity of f . Given a signature Σ, a sort κ ∈ SΣ and a countable set
X s of variables for each sort s, we denote by T κΣ,X the set whose elements are called
terms sorted by κ inductively defined as follows: for any x ∈ X κ, x is in T κΣ,X and

for any f : s1 × . . . × sn 7→ κ and 〈 t1, . . . , tn 〉 ∈ T
s′1

Σ,X × . . . × T
s′n

Σ,X , with s
′
i ≤ si for

any i, the word f(t1, . . . , tn) is in T κΣ,X . TΣ,X is the union of T sΣ,X for every sort s.
The set of variables occurring in t ∈ TΣ,X is denoted by Var(t). If any variable of
Var(t) occurs only once in t, t is said to be linear. If Var(t) is empty, t is called a
ground term. TΣ denotes the set of all ground terms. A position of a term t is a
finite sequence of positive integers describing the path from the root of t to the root
of the sub-term at that position. The empty sequence representing the root position
is denoted by ε. Pos(t) is called the set of positions of t. t|ω, resp. t(ω), denotes
the subterm of t, resp. the symbol of t, at position ω. We denote by t [s]ω the term

3

Tree automata based semantics of firewalls

t with the subterm at position ω replaced by s. We call substitution any mapping
from X to TΣ,X which is the identity except over a finite set of variables Dom(σ)
called domain of σ extended to an endomorphism of TΣ,X . σ is often denoted by
{x 7→ σ(x) | x ∈ Dom(σ)}. If for any x ∈ Dom(σ), σ(x) ∈ TΣ, σ is said to be ground.
For any ground substitution σ, σ(t) is called a ground instantiation of t. A rewrite
rule (over Σ) is a pair (lhs, rhs) ∈ TΣ,X × TΣ,X such that Var(lhs) ⊆ Var(rhs) and
a rewrite system is a set of rewrite rules R inducing a rewriting relation over TΣ,
denoted by →R and such that t →R t′ iff there exist (l, r) ∈ R, ω ∈ Pos(t) and a
ground substitution σ such that t|ω = σ(l) and t′ = t [σ(r)]ω. Finally, we denote by
∗−→R the reflexive transitive closure of →R.

2.2 Tree automata

We call n-ary tree automaton any quadruple A = 〈Σ, Q, F,∆ 〉 such that Σ is
an alphabet of function symbols, Q is a finite set of states, F is a subset of Q
whose elements are called final states and ∆ is a relation over TΣn[Q] × Q whose
elements are called transitions where Λ is a new symbol and Σn [Q] consisting of
the unique sort conf and the alphabet (Σ ∪ {Λ})n \ {〈Λ, . . . ,Λ 〉} ∪ Q such that
〈 f1, . . . , fn 〉 ∈ (Σ∪{Λ})n is of sort conf × . . .× conf 7→ conf with ar(f1, . . . , fn) =
maxi∈[1,n](ar(fi) | fi 6= Λ) and any q ∈ Q is a constant of sort conf . An ele-
ment of TΣn[Q] is called a configuration. A transition lhs → rhs of ∆ is normal-
ized iff for any ω 6= ε, lhs(ω) ∈ Q. An automaton whose transitions are normal-
ized is said normalized. A tree automaton is said deterministic iff all its transi-
tions have a different left-hand side. Without loss of generality, we can consider
that all automata are normalized and deterministic. The rewriting relation in-
duced by ∆ over TΣn[Q] is denoted by →A and the language recognized by A is
L(A) = {〈 t1, . . . , tn 〉 ∈ TΣ | ∃qf ∈ F, t1 ⊗ . . . ⊗ tn

∗−→A qf} where t = t1 ⊗ . . . ⊗ tn
is the configuration such that: ∀ω ∈

⋃n
i=1 Pos(ti), t(ω) = 〈 t1[ω), . . . , tn[ω) 〉 where

u[ω) = u(ω) if ω ∈ Pos(t) and Λ otherwise. A set E of n-tuples of terms (or equiva-
lently n-ary relation) is said regular iff there exists an n-ary tree automaton A such
that E = L(A). Moreover, we say that a set (or a relation) is effectively regular iff
it is regular and we can compute the automaton which recognizes it.

The table depicted in Figure 1 recalls usual automata and operations over tree
automata together with their semantics. We recall that the membership, the empti-
ness, the finiteness, the equivalence and the inclusion problems are decidable for tree
automata.

3 Firewall semantics

In this section, we propose a definition of firewall semantics using tree automata.
First, we informally explain the behavior of firewalls. Next, we describe the language
from which we will describe firewall semantics. Finally, we show in the last part of this
section that we can automatically compute, from usual specifications of firewalls, tree
automata describing the behavior of each of their components and how to combine
them to obtain an automaton corresponding to a firewall.

4

T. Bourdier

Notation Language recognized by the automaton
A⊕ A′ L(A)⊕ L(A′) where ⊕ is ∩, ∪, or ×

A (TΣ)n \ L(A)
Ωκ T κΣ

Idn(A) n-tuples 〈 t, . . . , t 〉 for t ∈ L(A)
rec(t) ground instantiations of t (t linear)
ti(A) (n+1)-tuples 〈 t1, . . . , ti−1, t, ti, . . . , tn 〉 s.t. 〈 t1, . . . , tn 〉 ∈ L(A)
ui(A) (n-1)-tuples 〈 t1, . . . , ti−1, ti+1, . . . , tn 〉 s.t. ∃t ∈ TΣ :

〈 t1, . . . , ti−1, t, ti+1, . . . , tn 〉 ∈ L(A)
ui/t(A) (n-1)-tuples 〈 t1, . . . , ti−1, ti+1, . . . , tn 〉 s.t.

〈 t1, . . . , ti−1, t, ti+1, . . . , tn 〉 ∈ L(A)
∂k〈 f1,...,fn 〉(A) n-tuples 〈 t1, . . . , tn 〉 s.t.

∃〈f1(. . . , xk−1
1 , t1, x

k+1
1 , . . .), . . . , fn(. . . , xk−1

n , tn, x
k+1
n , . . .)〉 ∈ L(A)

Figure 1: Operations effectively preserving regularity

3.1 Processing model

In a network, when a host wants to transmit a message to another host, data message
are encapsulated in a packet. A packet consists of the data that should be trans-
mitted as well as some additional information, called header, used to route it to the
appropriate destination. To control packet transmission between different subnet-
works2, it is common to deploy a network security policy based on a combination of
firewalls. A firewall is an application that controls the forwarding of packets which
cross it by using a combination of:

• packet filtering, which consists in inspecting each packet and either allowing it
to continue its traversal or dropping it and

• network address translation, which consists in modifying network address in-
formation in packet headers.

Firewalls inspect incoming packets and accept or deny to forward them based upon
a list of decision rules. These rules map the description of a set of packets to a
decision. The most often used criteria [CF02, Rus02] that firewalls use are the
packet’s source and destination address, its protocol, and, for TCP and UDP traffic,
the port number. Moreover, firewalls often offer network address translation (NAT)
functionality, which consists in rewriting the source (SNAT) or destination address
(DNAT) into another address. The following diagram sums up the behavior of a
firewall:

Translation of
destination address

(DNAT)

Filtering
rules

Translation of
source address

(SNAT)

accept
to

forward

drop

X

incoming
packet

output
packet

Firewall

1 2 3

2A subnetwork is a logically visible subdivision of a network characterized by an IP ranges (its
domain).

5

Tree automata based semantics of firewalls

At each step (1, 2 and 3), the packet is compared against a list of rules and the
action (translation of destination address, drop or forward and translation of source
address) corresponding to the first matched rule is performed.

Example 1. The following figure gives a simple example of firewall:

Filtering:

IP address src IP address dest Protocol Port src Port dst Decision

192.168.20.1/24 121.130.1.1/28 tcp 80 any accept
any any any any any drop

NAT:

Src/Dest Address range Port range New address [: port]
Dest 192.168.5.128/25 any 121.130.1.15:80
Src 192.168.20.1/24 any 121.130.1.1

We use the CIDR notation [FL06] to denote subnetworks3. Any packet of
protocol tcp whose source is 192.168.20.1:80 and destination 192.168.5.130:80
(notation address:port) is forwarded by the firewall as a packet whose source
is 121.130.1.1:80 and whose destination is 121.130.1.15:80 whereas any packet
whose destination is 121.130.1.30:80 is dropped by the firewall.

3.2 Vocabulary for formal reasoning

In order to give a formal semantics to each of firewall components, we need to define
the vocabulary from which we will describe the objects of our study (IP, packets,
. . .). As the introduction of this paper lets it suppose, we base our work on a
description of each entities which composes a firewall as a term. In other words, we
use terms to represent all these entities. In what follows, we will talk about symbolic
representation of these entities.

For readability reasons, we consider in what follows that packets are only de-
scribed by addresses and ports. Other information, such as protocols, tcp flags,
states, could be considered without difficulty. The selected symbolic representation
of entities is based on the following signature:

0, 1 : Binary → Binary
: → Binary
ip : Binary → IP
port : Binary → Port
from : IP× Port → SrcAddress
dest : IP× Port → DstAddress
packet : SrcAddress× DstAddress → Packet

As we consider in this paper only one signature, we will denote by sort the set of
ground terms of sort sort (abuse of notation).

Let us describe the meaning of the above symbols. IP addresses are represented
as terms of sort Binary describing the inverted binary representation of the address.
For example, the IP address 192.168.1.1 is symbolically denoted by the following term
ip(1(0(0(0(0(0(0(0 (1(0(0(0(0(0(0(0 (0(0(0(1(0(1(0(1 (0(0(0(0(0(0(1(1(#) · · ·) (know-
ing that the integer 192 has 11000000 for binary representation and 168 has 10101000).
We proceed in the same way for ports (with the symbol port instead of ip). Finally,
packets are terms of sort Packet. For convenience, we will use in this paper the
dot-decimal notation for addresses and the decimal notation for ports. For example:

6

T. Bourdier

packet(from(ip(192.168.1.1), port(80)), dest(ip(172.20.3.1), port(80))) has to be un-
derstood as the term packet(from(ip(ts), port(tp)), dest(ip(td), port(tp))) where

ts = 1(0(0(0(0(0(0(0 (1(0(0(0(0(0(0(0 (0(0(0(1(0(1(0(1 (0(0(0(0(0(0(1(1(#) · · ·)
td = 1(0(0(0(0(0(0(0 (1(1(0(0(0(0(0(0 (0(0(1(0(1(0(0(0 (0(0(1(1(0(1(0(1(#) · · ·)
and tp = 0(0(0(0(1(0(1(0(0(0(0(0(0(0(0(0(#) · · ·)

Now, let us recall that a subnetwork is a logically visible subdivision of an IP
network. Subnetworks are characterized by the partition of IP addresses into two
parts: a "network prefix" and a "host number". More precisely, defining a subnet-
work consists in giving a number n < max of bits (where max is 32 for IPv4 and
128 for IPv6) together with a sequence of n bits (characterizing the network prefix).
The remaining max− n bits identify the host within the subnetwork. For example,
the subnetwork (CIDR notation [FL06]) 192.168.5.64/26 corresponds to the range of
IP addresses whose binary representation begins with the 26 first bits of the binary
representation of 192.168.5.64. Note that for convenience, we suppose that any term
of sort IP represents an IP address. A term of sort IP corresponds to an IPv4 address
(resp. IPv6) iff it contains exactly 32 (resp. 128) symbols 0 or 1.

Proposition 2. The set of symbolic representations of IP addresses which belong
to a given subnetwork is a regular set.

Proof. Let be a subnetwork characterized by a prefix b1, . . . , bn. The minimal deter-
ministic automaton recognizing the set of IP addresses which belong to this subnet-
work is given by:

ip(qn) → qF
0(qn) → qn
1(qn) → qn

 ∪ {bi(qi−1)→ qi | i = 1, . . . , n} ∪ {#→ q0}

Note that if we denote by E[n] the subset of terms of E of length n, for any boolean
operation ⊕, E[n] ⊕ F [n] = (E ⊕ F)[n]. Thus, there is no problem to consider
automata which recognize IP addresses of an arbitrary length. �

3.3 Tree automata based semantics

In what follows, we consider that a firewall f is given by three sets filter(f), dnat(f)
and snat(f) respectively containing filtering rules, prerouting (or DNAT) rules and
postrouting (or SNAT) rules as well as an order relation <f over these rules.

3.3.1 Filtering rules

Let us start by giving a semantics of filtering rules. If we denote by Packet the set of
all packets, then any filtering rule r ∈ filter(f) is associated to a subset of Packet
which corresponds to the packets validating all conditions specified by r. For any
packet p ∈ Packet and filtering rule r, we write r �filter p to indicate that the
packet p matches the rule r.

7

Tree automata based semantics of firewalls

Proposition 3. For any filtering rule r, the set �filter (r) = {p ∈
Packet | r �filter p} is effectively regular.

In addition, since filtering rules of firewalls are evaluated depending on the order
<f (only the first matched rule is applied), then the set of packets that effectively
match a rule depends on the set of prior rules. For any firewall f and filtering rule r
occurring in f , we define the relation �f

filter as follows: r �f
filter p iff r �filter p

and there is no prior rule r′ <f r in filter(f) such that r′ �filter p.

Proposition 4. For any firewall f and filtering rule r ∈ filter(f), the set
�f

filter (r) = {p ∈ Packet | r �f
filter p} is effectively regular.

We saw that the goal of a filtering rule is to associate some set of packets with
a decision (accept or drop). Thus, we can see any filtering rule r as a partial
function r7−→ filter which associates to any packet p such that r �filter p either
accept or drop. Moreover, as previously, we define a partial function r7−→ f

filter
which maps any packet p such that r �f

filter p to the decision (accept or drop)
associated to r.

Proposition 5. For any firewall f and filtering rule r ∈ filter(f), the partial
functions r7−→filter and r7−→ f

filter are effectively regular (as relations).

Finally we can associate any firewall f with a function which maps any packet
p ∈ Packet to a decision. This function is, by definition:

7−→ f
filter =

⋃
r∈filter(f)

r7−→ f
filter

(where the functions r7−→ f
filter are seen as relations with disjoint domains). We

obtain the following proposition:

Proposition 6. For any firewall f , 7−→ f
filter is effectively regular.

3.3.2 Translation rules

The objective of the network address translation rules is to transform any packet into
another packet (possibly identical). So, every rule r of dnat(f) can be considered
as a partial function r7−→dnat from Packet to Packet.

A similar reasoning leads us to define for every rule r ∈ dnat(f) the relations
r �dnat p and r �f

dnat p respectively meaning that p matches the rule r and that p
matches r but does not match any prior rule r′ <f r.

Proposition 7. For any DNAT rule r, r7−→dnat is effectively regular.

8

T. Bourdier

Proof. Let r be a DNAT rule. r is characterized by a source subnetwork net together
with a target IP address add as well as possibly a source port sport together with
a target port tport. If no port is specified, then the translation does not alter the
destination port of the packet. Let us build the automaton recognizing the functional
relation r7−→dnat. We denote by:

• A[net] the tree automaton which recognizes the set of IP addresses which belong
to net;

• A[add] the automaton recognizing the IP address add;

• A[sport] and A[tport] the automata recognizing, if specified, sport and tport.

We build the automaton Adnat[r] as the automaton containing the following rules:

• 〈 packet, packet 〉 (qfr, qdst)→ qF (qF is the unique final state);

• rules of the automaton Id2(ΩSrcAddress) whose final state is renamed into qfr;

• 〈 dest, dest 〉 (qip, qport)→ qdst;

• rules of the automaton Id2(ΩPort) whose final state is renamed into qport if
sport and tport are not specified or rules of A[sport] × A[tport] whose final
state is renamed into qport otherwise;

• rules of the automaton A[net]× A[add] whose final state is renamed into qip;

�
Like filtering rules, any DNAT rule r has a different semantics in the context

of the set of DNAT rules of a firewall f . We denote by r7−→ f
dnat the corresponding

semantics which also is a function from Packet to Packet.

Proposition 8. For any firewall f and filtering rule r ∈ dnat(f), the partial
function r7−→ f

dnat is effectively regular (as a relation).

When a packet matches no DNAT rule, then it is not translated by DNAT. In
other terms, the semantics of the set of rules dnat(f) is a total function r7−→ dnat
from Packet to Packet which is the identity except over the union of domains of
r7−→dnat for r ∈ dnat(f). Formally, we have:

7−→ f
dnat =

 ⋃
r∈dnat(f)

r7−→ f
dnat

 ∪ id|Packet\(
⋃

r∈dnat(f)�dnat(r))

Proposition 9. For any firewall f , 7−→ f
dnat is effectively regular.

All the notations and results presented in this part are naturally extended to
SNAT.

9

Tree automata based semantics of firewalls

3.3.3 Firewall semantics

We saw in Section 3.1 that when a packet p goes through a firewall f , the following
steps occur:

• p is rewritten into p′ by the DNAT rules,

• p′ is either accepted or dropped,

• if p′ is accepted, then p′ is rewritten into p′′ by the SNAT rules.

In other words, any firewall f describes a function which associates to a packet
p ∈ Packet either another packet or drop. We denote by f7−→ this function.

Proposition 10. For any firewall f , f7−→ is effectively regular.

Proof. f7−→= L
(

u2

(
t3 (Adnat) ∩ t1,3(Aaccept

filter) ∩ t1(Asnat)
)

∪ u2 (Adnat ∩ t1(Adrop
filter))× rec(drop)

)
where:

• L(Adnat) = 7−→ f
dnat, L(Asnat) = 7−→ f

snat,

• L(Aaccept
filter) = (7−→ f

filter)−1(accept) and L(Adrop
filter) = (7−→ f

filter)−1(drop).

�

4 Applications

Our goal is to show that all usual analyses can be expressed as operations (which
preserve regularity) over sets and relations that have previously been shown regular
and that our approach allows us to extend the possibilities of analyses. In this section,
we first study simple properties over a firewall (completeness and comparison). We
next show that our approach allows us to deal with usual analyses (structural and
query analyses). Finally, we discuss one further ability enabled by our approach.

4.1 Properties

If one sees a firewall as a decision process which associates to an incoming packet a
decision which can be drop or another packet, the following properties are relevant
to analyze: consistency, which indicates that at most one decision is taken for a given
incoming packet, termination, which assures that a firewall computes a decision in a
finite time and completeness, which means that for any incoming packet, the firewall
returns a decision. Another important issue is to compare different firewalls. By
construction, every firewall denotes a terminating and consistent decision process.
Then, we deal with completeness and comparison. We first give the formal definition
of completeness and next define an order to compare firewalls.

Definition 11 (Completeness). We say that a firewall f is complete iff f7−→ is
a total function.

10

T. Bourdier

Proposition 12. Completeness is decidable.

It is sufficient to check that the projection over the first component of the au-
tomaton recognizing f7−→ equals to ΩPacket (decidable).

In the case of complete firewalls, it can be important to determine if a firewall is
less or more permissive than another one. More permissive means allowing at least
the same traffic. Such an order is obviously not total.

Definition 13 (Order). We define a partial order over complete firewalls �
as follows: for any f and f ′, f � f ′ (f ′ is more permissive than f) iff for any
p, p′ ∈ Packet, if p f7−→ p′ then p f ’7−→ p′. We write f ≈ f ′ iff f � f ′ and f ′ � f . Note
that f ≈ f ′ iff f7−→= f ’7−→.

Proposition 14. The order relation � is decidable.

Proof. It is sufficient to compute the automata recognizing the restriction of f7−→ and
f ’7−→ to packets which are not associated to drop and to test the inclusion between

them. �

4.2 Structural analysis

Structural analysis refers to the detection of misconfigurations (or anomalies) in fire-
walls rules. A complete survey of misconfigurations can be found in [CCBGA06,
HAS06]. Examples of anomalies are shadowing, redundancy, correlation, excep-
tion,. . .We have shown that the sets and relations of Figure 2 are regular and that
we can compute tree automata which recognize them.

(i) �filter (ii) �snat (iii) �dnat

(iv) �f
filter (v) �f

snat (vi) �f
dnat

(vii)
·7−→filter (viii)

·7−→ snat (ix)
·7−→dnat

(x)
·7−→ f

filter (xi)
·7−→ f

snat (xii)
·7−→ f

dnat

(xiii) 7−→ f
filter (xiv) 7−→ f

snat (xv) 7−→ f
dnat

(xvi)
f7−→

Figure 2: Sets and relations of the theory of a firewall f

It is well known that the set of solutions of any first order formula containing only
variables and ground terms (or equivalently the computation of algorithms containing
only operations depicted in Figure 1) over regular sets and relations are effectively
regular, i.e. we can compute a tree automaton which recognizes the set of solutions.

Definition 15. For any firewall f , we define Thf as the first order theory based
on the following syntax:

11

Tree automata based semantics of firewalls

• Constants: rules of f , packets of Packet, decisions (accept and drop)

• Predicate symbols: those of the Figure 2 and <f

• Quantifiers: ∃ and ∀

• Variables: any countable set

• Connectives: ∧,∨,⇒,¬

Proposition 16. For any firewall f , the theory Thf is decidable. Moreover,
for any formula of Thf , we can compute a tree automaton recognizing the set of
solutions.

A possible algorithm to compute the tree automaton corresponding to a formula
of Thf can be established following the approach described in [DT90]. In addition,
we can easily show that any misconfiguration can be expressed as a formula of Thf .
It would be tedious to consider all anomalies, that is why we only discuss about an
example of misconfigurations (shadowing). Let us first recall the definition of the
shadowing anomaly.

Definition 17 (Shadowing). We say that a firewall has shadowing iff it contains
at least one filtering rule such that all packets it accepts (resp. drops) are dropped
(resp. accepted) by a prior rule. In such a case, the concerned rule is said to be
shadowed.

Proposition 18. The shadowing property can be expressed as a formula of Thf .

Indeed, we can define the formula Shadowedf (r) as follows :

∀p: p r7−→ f
filteraccept⇒ (∃r′: r′ <f r ∧ p

r′7−→ f
filterdrop)

∨ ∀p: p r7−→ f
filterdrop⇒ (∃r′: r′ <f r ∧ p

r′7−→ f
filteraccept)

Thereby, the real question which arises from structural analysis in our case is to
know if the selected symbolic representation of packets provides efficient algorithms
to perform these operations. Indeed, it is well-known that operations over tree
automata have high complexity in general. We can remark that in our case the
complexity of operations strongly relies on the representation of addresses. Therefore,
let us focus our discussion over addresses and their representation. We made the
choice of describing addresses as words over {0, 1} (or equivalently as terms built
from monadic symbols 0 and 1 and a constant #). To simplify explanations, we
consider word automata (the correspondence with tree automata is straightforward).
A good property of manipulated ranges of addresses is that corresponding minimal
and deterministic automata has no loop except at their unique final state which
loops over itself for any word. Let us call n-prefix (or simply prefix) language any
regular language of the form α1.{0, 1}∗ ∪ . . . ∪ αn.{0, 1}∗. The main advantages of
such languages are the following:

12

T. Bourdier

• boolean operations preserve the prefix property,

• boolean operations can be performed in O(n) (where n is the number of states
of the bigger operand) over the minimal deterministic automata and

• the corresponding algorithms directly produce deterministic and minimal au-
tomata (which avoid to perform any determinization).

Consequently, misconfigurations can be efficiently detected.

4.3 Query analysis

Another main issue addressed about firewalls is query analysis. Query analysis pro-
vides a way to assist firewall administrators in understanding the behavior of a
firewall by computing the result of user-defined queries such as “Which hosts in
the subnetwork 192.168.1.1/22 can receive packets from a host in the subnetwork
172.20.1.1/24 ?”. Such analysis only recently emerged with [MK05, LG09]. To han-
dle the class of queries presented for example in [LG09], it is sufficient to slightly
extend the formulae of Thf . The main feature handled in usual queries which cannot
be computed by a formula of Thf is reasoning about the different fields of packets
(source or destination IP, . . .). Thus, we add to Thf :

• linear terms of sort Packet whose variable are of sort IP or Port

• subnetworks (as constants)

• a binary predicate ∈ over terms of sort Packet and subnetworks

This extension of Thf preserves the Proposition 16.

Example 19. Let us consider a firewall f between a private network and the
internet together with the following query “Who can access to www.inria.fr
from the private network 192.168.1.1/22” ? This query can be expressed as
the following formula:

ip1 ∈ 192.168.1.1/22 ∧ ∃ip2, ip3, ip4, p2, p3:

packet(from(ip1, p1), dest(ip2, 80)) f7−→ packet(from(ip3, p2), dest(138.96.146.2, 80))

∧ packet(from(138.96.146.2, 80), dest(ip3, p2)) f7−→ packet(from(ip4, p3), dest(ip1, p1))

where 138.96.146.2 is the IP address of www.inria.fr. From this formula we
can compute a tree automaton recognizing the set of pairs of IP addresses and
ports 〈 ip1, p1 〉 satisfying the query.

4.4 Further abilities

Let us mention a promising example (that we can not develop due to the lack of
place): regular tree model checking. Regular tree model checking is a method for
formal verification of infinite-state systems whose states are encoded as trees and
whose transition relation is denoted by a tree transducer (transducers are binary tree
automata recognizing relations over terms having the same set of positions). Given
a transducer T , regular tree model checking consists in computing the transitive

13

Tree automata based semantics of firewalls

closure of →= L(T) and then the set of reachable states (from a regular initial set
of configurations) as tree automata ([ALdR05, BHRV06]).

Regular tree model checking can be successfully applied to network security poli-
cies analysis. Indeed, given a network composed by firewalls separating several sub-
networks, we can define a transition system whose states are terms of sort Packet in
which the head symbol has been replaced by a symbol which indicates the subnet in
which the packet is located. To any firewall f in the network is associated a part of the
transition relation corresponding to the semantics of f such that net1(t)→f net2(t′)
if f separates the networks net1 and net2 and packet(t) f7−→ packet(t′). A host h
which belongs to the subnet net can receive the packet packet(t) from another host h′

located in net′ if net(t) is a reachable state (and t contains the subterm dest(ip, port)
where ip is the IP address of h) from the automaton recognizing net′(t′) (and t′ con-
tains the subterm dest(ip′, port′) where ip′ is the IP address of h′). Given such a
transition system and knowing that the transition relation is recognized by a trans-
ducer if we fix the size of IP addresses (the proof is obvious), our framework allows us
to detect violations of the security policy. Indeed, contrary to query analysis which
only allow to compute valid instantiations of a given path (since any query describes
a path in the network), regular tree model checking provides a way to prove the
existence of paths denoting unwanted (and no necessarily direct) flows of packets.

5 Conclusion

We have proposed in this paper an original way to describe firewall semantics using
tree automata. We have shown that this approach allows us to perform usual ana-
lysis over firewall policies. Some advantages of our approach are the following: First,
unlike most of existing works, tree automata allow us to consider the network ad-
dress translation functionality. Second, the proposed approach allows us to perform
structural and query analysis. Misconfigurations are automatically computed from
their formal definitions. Moreover, we have shown that our approach opens new
perspectives of analyses. For all these reasons, describing firewall semantics with
tree automata seems to be relevant and promising. We currently work on several
follows-up of the results presented in this paper. The first one concerns composition
of firewalls: we try to extend the specification of firewalls to take into account the
routing functionality. It would allow us to define the semantics of complex compo-
sitions of firewalls. We also want to address the problem of minimalizing the set of
rules of a given firewall, i.e. building from a tree automata based firewall semantics
an equivalent firewall having a minimum of filtering and NAT rules. Finally, we
currently work on the implementation of the work presented in this paper.

Acknowledgment

The author would like to thank Jean-Christophe Bach for discussion about firewalls
and Horatiu Cirstea for its improvement suggestions. This work was supported by
anr ssurf and région Lorraine.

14

T. Bourdier

References

[ABR08] T. Abbes, A. Bouhoula, and M. Rusinowitch. An inference system for
detecting firewall filtering rules anomalies. In ACM Symp. on Applied
Computing, pages 2122–2128. ACM, 2008.

[AJMd02] P.A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular tree
model checking. In Intl Conf. on Computer Aided Verification, volume
2404 of LNCS. Springer, 2002.

[ALdR05] Parosh Aziz Abdulla, Axel Legay, Julien d’Orso, and Ahmed Rezine.
Simulation-based iteration of tree transducers. In Tools and Algorithms
for the Construction and Analysis of Systems, LNCS, pages 30–44.
Springer, 2005.

[ASH03] E. Al-Shaer and H. Hamed. Firewall policy advisor for anomaly detec-
tion and rule editing. In Intl Symp. Integrated Network Management,
volume 246 of IFIP Conf. Proceedings, pages 17–30. Kluwer, 2003.

[AsH04] E. Al-shaer and H. Hamed. Discovery of policy anomalies in distributed
firewalls. In IEEE Intl Conf. on Computer Communications, pages
2605–2616. IEEE C.S., 2004.

[ASHBH05] E Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict classifica-
tion and analysis of distributed firewall policies. In IEEE Journal on
Selected Areas in Communications, volume 23, pages 2069 – 2084, 2005.

[BB07] A. Benelbahri and A. Bouhoula. Tuple based approach for anomalies
detection within firewall filtering rules. In IEEE Symp. on Computers
and Communications, pages 63–70. IEEE C.S., 2007.

[BHRV06] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract
regular tree model checking. Electronic Notes in Th. Comp. Sci.,
149(1):37–48, 2006.

[BN98] F. Baader and T. Nipkow. Term rewriting and all that. C.U.Press,
1998.

[CCBGA05] F. Cuppens, N. Cuppens-Boulahia, and J. Garcia-Alfaro. Detection and
removal of firewall misconfiguration. In Intl Conf. on Communication,
Network and Information Security. ACTA Press, 2005.

[CCBGA06] F. Cuppens, N. Cuppens-Boulahia, and J. Garcia Alfaro. Detection of
network security component misconfiguration by rewriting and correla-
tion. In Joint Conf. on Security in network ARchitectures and Security
of Information Systems, 2006.

[CDG+08] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
Available on: http://gforge.inria.fr/projects/tata/, 2008.

[CF02] B. Conoboy and E. Fictner. Ip filter based firewalls howto. Available
on: http://www.obfuscation.org/ipf/ipf-howto.pdf, 2002.

15

http://gforge.inria.fr/projects/tata/
http://www.obfuscation.org/ipf/ipf-howto.pdf

Tree automata based semantics of firewalls

[DT90] M. Dauchet and S. Tison. The theory of ground rewrite systems is
decidable. In Symp. on Logic in Computer Science, pages 242–248.
IEEE C.S., 1990.

[EZ01] P. Eronen and J. Zitting. An expert system for analyzing firewall rules.
In Nordic Work. on Secure IT Systems, pages 100–107, 2001.

[FL06] V. Fuller and T. Li. Classless Inter-Domain Routing (CIDR): The In-
ternet Address Assignment and Aggregation Plan. The Internet Society,
2006. RFC 4632.

[GL04] M.G. Gouda and A.X. Liu. Firewall design: Consistency, complete-
ness, and compactness. In IEEE Intl Conf. on Distributed Computing
Systems. IEEE C.S., 2004.

[HAS06] H. Hamed and E. Al-Shaer. Taxonomy of conflicts in network security
policies. IEEE Communications Magazine, 44(3):134–141, 2006.

[Haz00] S. Hazelhurst. Algorithms for analysing firewall and router access lists.
Technical Report TR-WITS-CS-1999-5, University of the Witwater-
srand, South Africa, 2000.

[Len10] O. Lengál. An efficient tree automata library. Master’s thesis, Brno
university of technology, 2010.

[LG09] Alex X. Liu and Mohamed G. Gouda. Firewall policy queries. IEEE
Transactions on Parallel and Distributed Systems, 20(6):766–777, 2009.

[Liu08] A.X. Liu. Formal verification of firewall policies. In IEEE Intl Conf.
on Communications, pages 1494 – 1498. IEEE C.S., 2008.

[MK05] R. Marmorstein and P. Kearns. An open source solution for test-
ing NAT’d and nested iptables firewalls. In Conf. on Large Installa-
tion System Administration, pages 103–112, Berkeley, CA, USA, 2005.
USENIX.

[Rus02] R. Russell. Linux 2.4 packet filtering howto. Available on: http://
www.netfilter.org/documentation, 2002.

16

http://www.netfilter.org/documentation
http://www.netfilter.org/documentation

	Introduction and motivations
	Preliminaries
	Term algebra and rewrite systems
	Tree automata

	Firewall semantics
	Processing model
	Vocabulary for formal reasoning
	Tree automata based semantics

	Applications
	Properties
	Structural analysis
	Query analysis
	Further abilities

	Conclusion

