
HAL Id: inria-00587200
https://hal.inria.fr/inria-00587200

Submitted on 19 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model driven engineering method for SAIA architecture
design

Julien Deantoni, Jean-Philippe Babau

To cite this version:
Julien Deantoni, Jean-Philippe Babau. Model driven engineering method for SAIA architecture design.
Ingénierie Dirigée par les Modèles, Jun 2006, Lille, France. �inria-00587200�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49994259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00587200
https://hal.archives-ouvertes.fr


Model driven engineering method for SAIA
architecture design

Julien DeAntoni — Jean-Philippe Babau

CITI laboratory – INSA-Lyon
21, avenue Jean Capelle, 69621 Villeurbanne cedex
julien.deantoni ; jean-philippe.babau@insa-lyon.fr

ABSTRACT. SAIA is an architectural style for the development of systems dedicated to process
control. Designing an architecture that conforms to a style implies the manipulation of a lot of
entities and the respect of numerous constraints. The approaches based on models and models
transformations are well adapted to manage the complexity and to enforce the separation of
concerns. This paper presents a model driven engineering method for the development and the
validation of systems that conform to SAIA. Moreover, a tool supporting the method allows a
systematic use of models and transformations.

RÉSUMÉ. SAIA est un style architectural destiné au développement de systèmes dédiés au
contrôle de procédés. Construire une architecture conforme à un style architectural donné né-
cessite la manipulation de nombreuses entités et le respect de nombreuses contraintes. Les
approches basées sur les modèles et les transformations de modèles permettent de gérer cette
complexité et d’imposer une séparation des préoccupations. Notre objectif est alors de fournir
une méthode basée sur les concepts définis par l’ingénierie dirigée par les modèles pour le
développement et la validation de systèmes conformes à SAIA. Enfin, un outil implémente la
méthode proposée afin d’aider le concepteur à respecter les modèles et leurs transformations.

KEYWORDS: MDE, real time, development method, architectural style, model validation, model-
ing tool.

MOTS-CLÉS : IDM, temps réel, méthode de conception, style architectural, validation de modèles,
outil de modélisation.



110 IDM’06, Lille – Secondes journées sur l’ingénierie des modèles

1. Introduction

Over the last few years, engineers have been faced with the problem of developing
more and more complex real time systems in a world where time-to-market constraints
are constantly increasing. Among real time systems, Systems Dedicated to Process
Control (SDPC) are systems closely linked to the physical environment.

A SDPC builds, in real time, a view of the controlled process by using sensors (Cf.
figure 1). Then it computes the necessary commands in order to control the process.
Finally, commands are performed using actuators. Since the external environment has
its own behaviors, all operations must be performed respecting real time constraints
such as a minimum frequency or a maximum delay.

Figure 1. Representation of a SDPC

For these reasons, the SDPC communication part is developed in an ad-hoc and
hand-made way. Of course, this type of development leads to concern merged code
and specifications. In consequence, a software engineering approach has to be used
to precisely specify the communication protocol; in a functional way as well as in
an extra-functional way (Jumel, 2003). Among the various software engineering sub-
domain, the software architecture gives propositions about the development and the
early validation of software (Shaw et al., 1996, Ghezzi et al., 2000, Bass et al., 1998).

The study of software architecture has highlighted that redundant configuration
are used to solve classes of problems. These specific structures are identified as archi-
tectural style. SAIA1 (DeAntoni et al., 2005b) is an architectural style that has been
defined for the development of SDPC. Its goal is to facilitate the development, the
evolution and the timing analysis of the communication protocol part.

Building an architecture that conforms to a style implies the manipulation of a lot
of entities and constraints. It severely increases the engineers’ works and its com-
plexity. So, to efficiently build and validate an architecture, methods and tools are
necessary. As highlight by MDA (Model Driven Architecture : (OMG-MDA, 2003) ),
dealing with models and models transformations is a way to properly apply separation

1. SAIA : Sensor/Actuator Independent Architecture



SAIA model driven method 111

of concerns, and so, to reduce complexity. The aim of this paper is to propose a model
driven engineering method to support the conception of system with SAIA.

First, the section 2 presents an overview of SAIA. The next section describes the
different models and models transformations implied during the conception of the
system. Then, the section 4 presents a tool that implements the method. After, we
present the related work and we give some conclusions and perspectives.

2. SAIA architectural style

2.1. SAIA concepts

Sensors Actuators Independent Architecture is an architectural style which defines
entities and entity-associations for the modeling of SDPC. From a software engineer-
ing point of view, its goal is to separate the concerns between target, communication
protocol and control (see figure 1). From a practical point of view, it allows a develop-
ment of SDPC independently of specific sensors actuators; a realistic simulator-based
simulation (DeAntoni et al., 2005b) and an easy timing analysis (DeAntoni et al.,
2005a).

SAIA is a layered architecture. It distinguishes three layers through three models:
one for the target, one for the communication protocol and one for the control. It al-
lows the evolution of the control or the target without impacting each other. Each layer
is specified thanks to components whose behaviors are accessible through interfaces.

Figure 2. SAIA layered organization



112 IDM’06, Lille – Secondes journées sur l’ingénierie des modèles

2.2. Control layer

In the control layer, the control activity is based on a description of an ideal envi-
ronment view called Input/Output (I/O). It models the state of the environment through
data, events and the requirements on environment through commands. Each I/O de-
scribes the required QoS needed for the correctness of the control. There are three
QoS characteristics : the arrival law, the delay and the precision (precision is not spec-
ified for an event). SAIA focuses on the interaction of a system with the external
environment. Consequently, the control laws are seen in SAIA like black boxes. All
these pieces of information are described in the SAIM (Sensors/Actuators Indepen-
dent Model).

2.3. Driver layer

The driver layer is described by a model called SAM (Sensors/Actuators Model).
It specifies the sensors and actuators services available on a specific platform. In the
same way than the SAIM, there is a distinction between three entity types: driver_data,
driver_event and driver_command. The two first entity types encapsulate a sen-
sor driver whereas driver_command encapsulates an actuator driver. It provides a
platform-specific view of the environment. Sensors and actuators drivers describe the
QoS provided by the underlying hardware with the same QoS characteristics than the
SAIM. To formally evaluate the provided QoS by sensors and actuators drivers is not
a trivial activit but there are works on (Robles et al., 1999, Ben-Hedia et al., 2005).
SAIA considers that the QoS provided is a priori known.

2.4. Adaptation layer

The adaptation layer, described by the ALM (Adaptation Layer Model) realizes
the "smart" link (functional and extra-functional) between the ideal environment view
of the SAIM and the platform specific environment view of the SAM. To do that,
the adaptation layer is composed of three elements (Data Adaptation Element, Event
Adaptation Element, Command Adaptation Element), each dedicated to a specific I/O
type. Three2 internal activities has been identified to specify an ALM element:

–
����������	

: it is used to cast driver_data or command value in order to manipulate
them consistently. It consists in unity change and/or reference mark change.

– 
�� 	���������	 : it encapsulates the human knowledge specifying how high abstrac-
tion level inputs are produced from low abstraction level driver information or how
high abstraction level command are performed by low abstraction level driver actions.
This activity owns a dynamic and functional3 behavior. The dynamic behavior repre-

2. expect for event where format() is not applicable
3. In SAIA, the functional behavior possess a temporal budget called WCET: Worst Case Exe-
cution Time



SAIA model driven method 113

sents the reactive part of the interpretation (way to collect and produce information)
whereas the functional behavior represents the transformation part of the interpretation
(way to compute pieces of information together: average, max, ...).

– � ������������	 : it specifies a modification/adaptation of the QoS. This activity is
mainly represented by the dynamic behaviors (creation of a constant delay, ...) but can
also embedded a functional behavior for complex computation (i.e. interpolation).

The association of the three previous layers (SAM + ALM + SAIM) produces a
representation of the whole system called SASM (Sensors Actuators Specific Model).

2.5. SAIA and the QoS

Since SAIA goal is the verification of the QoS conformance during conception, no
online QoS information is needed. Thus, SAIA specifies the QoS in a lightweight way,
like in (L.DiPippo et al., 1999). The QoS characteristics are specified by interval [Min
; Max]. Once specified, SAIA mixes two different approaches for QoS consideration.
In one hand, the SAIM specifies the required QoS and the SAM specifies the provided
QoS. This results in a contract for the QoS in the sense of the fourth contract level
described in (Beugnard et al., 1999) for component contract specification. On the
other hand, the QoS provided by the ALM is computed from the QoS provided by the
SAM and the adaptation element behaviors. It is evaluated by the analysis of a specific
configuration.

Now, the concepts and terms used by SAIA have been introduced. The next section
describes the proposed method by beginning with the SAIM modeling.

3. SAIA MDE method

In SAIA the control activity is developed independently of the sensors actuators.
In consequence, the development method starts with the modeling of the SAIM and its
validation. Then, the SAM and the ALM modeling are presented. To finish, the mod-
els and the models transformations used for the validation are detailed. It is important
to notice that all models and models transformations are done during the conception
of the system. No transformations are realized on the deployed system.

3.1. SAIM development and validation

To begin, it is necessary to produce the SAIM from the specifications. The first
stage is the determination of the I/O needed by the control. It is important to notice
that the I/O represent data, event or command which are independent of any sensor or
actuator technology. The I/O identification is extracted from the specification accord-
ing to the functionality needed by the control activity (labeled 1 on figure 3). After the
I/O identification, it is still impossible to describe the QoS required because it highly



114 IDM’06, Lille – Secondes journées sur l’ingénierie des modèles

depends on the control activity. Therefore the second stage is the control activity mod-
eling (labeled 2 on figure 3). The control model must be based on the I/O description;
the other information is extracted from the specifications. The modeling of the SDPC
control activity is not treated here because SAIA sees it as a black box. The follow-
ing stage (labeled 3 on the figure 3) extracted the non-functional constraints from the
specifications. These constraints reflect the QoS objectives for the application in term
of deadline, power consumption and user level quality of service (i.e. no deviation in
the trajectory, etc). These constraints are a goal to reach and the constraints derivation
explicitates that the QoS objectives are met as long as the I/O QoS required is re-
spected (Torngren, 1998). This models transformation produces the QoS required for
each I/O (labeled 4 on the figure 3). Now, the I/O functional model, the QoS required
by the I/O and the control model can be mapped to produce a single model: the SAIM
(labeled 5 on figure 3).

Figure 3. SAIM development process

3.2. SAM modeling

The second stage in the system development is to choose and model the sensors ac-
tuators of a specific platform. The output of this stage is the SAM. The SAM specifies
the platform driver types and their provided QoS. Once the SAM modeled, we must



SAIA model driven method 115

Figure 4. ALM development process

link the SAM with the I/O of the SAIM. It must be done by respecting the functional
as well as extra-functional constraints.

3.3. ALM modeling

Since the ALM is in charge of the complex link between the SAM and the SAIM,
its modeling specifies the mapping between these two models. The ALM mod-
eling consists in three main stages. The first one (labeled 1 on the figure 4) in-
troduces the structuring knowledge reflecting the drivers involved in the construc-
tion/accomplishment of the I/O. In other words, connectors are created between the
drivers interfaces and the associated adaptation elements interfaces as well as between
the adaptation elements interfaces and the associated I/O interfaces. This stage re-
quires pieces of information from both the SAM and the SAIM (labeled 1 on the
figure 5). The two other stages consist in the modeling of the internal part of each
adaptation elements. In the second stage (labeled 2 on the figure 4), a structuring of
the internal entities must be done (i.e. Is format useful? Is QoS adaptation useful
and where, before or after the interpretation? ...). This structuring is mainly dictated
by the domain knowledge and experiences. Then, in the last stage (labeled 3 on the
figure 4), for each internal activity of the adaptation elements the dynamic and func-
tional behaviors have to be specified. It gives information on the elements behaviors
as described in the section 2.4 (interpretation type, functions WCET, and so on).

Once the ALM modeled, a mapping of the three models (SAM SAIM and ALM)
generates the SASM (labeled 2 on the figure 5), i.e. a Sensors Actuators Specific
Model of the whole system. At this stage, the SASM is functionally complete but the
QoS provided by the ALM is not known. The remainder of the method is dedicated to
the completion and the validation of this model.

3.4. System validation

The system validation is decomposed into two main stages. The first one consists
in the evaluation of the QoS provided by the ALM. The second stage consists in a



116 IDM’06, Lille – Secondes journées sur l’ingénierie des modèles

Figure 5. SASM models and transformation for validation

comparison between the QoS provided by the ALM and the QoS required by the
SAIM. This second stage is called admission test.

3.4.1. ALM provided QoS evaluation

To produce a model of the ALM provided QoS, the following information must be
available for all adaptation element in the ALM:

– the QoS provided by the sensor drivers (for Input production) or by the Output
(for actuator driver),

– the adaptation element internal structure,

– the adaptation element activity temporal behaviors.

Now, all these peaces of information must be analyzed and computed to produce
the adaptation element provided QoS. This step has to be done for each adaptation
element in order to produce the ALM provided QoS (labeled 3 on the figure 5). When
finished, the ALM provided QoS model is mapped with the SASM to generate a full



SAIA model driven method 117

SASM; i.e a SASM including functional and extra-functional information (labeled 4
on the figure 5). The determination of its validity is in charge of the admission test.

3.4.2. Admission test

To be valid, the provided QoS characteristics of the ALM must satisfy the required
QoS characteristics of the SAIM. In SAIA, the QoS characteristics are specified thanks
to intervals [Min ; Max]. Consequently, the admission test must verify these rules:

{∀(QoScharacteristic) ∈ ALM} ⊆ {(associated QoScharacteristic) ∈ SAIM}

Therefore, for each QoS characteristics:

[Minprovided; Maxprovided] ⊆ [Minrequired; Maxrequired]

The admission test transformation can generate two outputs depending on its suc-
cess or its failure. If the admission test fails (labeled 6.1 on the figure 5), a QoS
report is generated to identify where the rules violation have occurred. This report can
be examined and the QoS adaptation of the responsible element(s) has to be done or
changed (labeled 7 on the figure 5) and a new validation process must be done. If the
admission test succeeds (labeled 6.2 on the figure 5), the validation process ends.

4. The SAIA method implementation

In the previous section, all the models and models transformations for a SAIA
MDE development and validation have been presented. In order to implement the pro-
posed method, a SAIA development environment has been developed. The generation
of this specific modeling environment is based on the Model Integrated Computing
(Sztipanovits et al., 1997). MIC uses meta-models to explicit the rules governing the
modeling of valid systems. MIC is implemented by the Generic Modeling Environ-
ment (GME (ISIS, 2005)), a meta-programmable toolkit for the creation of domain-
specific modeling environments. The meta-modeling paradigm employed in GME is
based on the UML.

Consequently, SAIA has been meta-modeled in GME meta-modeling paradigm.
After the meta-modeling of the SAIA entities in GME, presentation information must
be added to the meta-model for the generation of the SAIA modeling tool. This in-
formation describes various views where entities are viewable or not according to the
model (see 1: in the figure 6) and the place in this model. Since each model is de-
scribed in a different view, in a specific model, only the entities belonging to this
model are usable (see 2 in the figure 6). In addition of the different views, it allows
creating a depth hierarchy. For instance, an entity such as the 
�� 	���������	 activity is
only accessible when "entering" in an adaptation element (see 4 in the figure 6). This
way, it separates the concerns between the different models but also between the struc-
ture of the system (see 3 in the figure 6), the internal structure of components (see 4



118 IDM’06, Lille – Secondes journées sur l’ingénierie des modèles

Figure 6. a view of the tool and its hierarchy

in the figure 6) and the behaviors of component internal activities (see 5 in the figure
6). A screenshot of the tool and its different views are given figure 6.

Now, it is possible to use GME with SAIA paradigm, i.e. it is possible to cre-
ate most of models described by the method. On the figure 3 and 5, all the models
and transformations represented by a hatched box are supported by the tool. The
other models and models transformations includes the modeling of the control and
the constraints derivation transformation. For SDPC, the control model and the con-
straint derivation can be implemented by the MATLAB tool suite (Mathworks Inc,
2005a, Mathworks Inc, 2005c, Mathworks Inc, 2005b).

The use of SAIA has highlighted the use of redundant interpretation and QoS adap-
tation reactive part. Consequently, a toolbox of predefined automata for 
�� 	���������	
and � ��� ����� ��	 activities is provided for SAIA. The interpretation, as well as the QoS
adaptation, modifies the QoS provided by the SAM. To facilitate the evaluation of the
new provided QoS, all automata in the toolbox are associated with equations. These
equations characterize the QoS provided in output of the automaton according to the
QoS provided in input and the automaton characteristics (DeAntoni et al., 2005a).

This way, if the modeler uses only predefined automata, the transformation called:
"ALM QoS evaluation" on the figure 5 can be done by applying the equations to the
QoS characteristics provided in input of the automaton. On the contrary, if the modeler
chooses user-made automata, analytical equations are not available and the validation
is more complex. In this case, the tool acts as an input generator for analysis tools
allowing the evaluation of the ALM provided QoS.



SAIA model driven method 119

One solution has been implemented by the tool. It is based on timed automata
modeling and analysis. The chosen language for the timed automata modeling is IF
(Bozga et al., 2002). IF is composed by a formal timed automata language and an
associated tool. It allows the evaluation of some QoS characteristics (Ben-Hedia et
al., 2005). Consequently, the SASM described in the SAIA modeling tool is translated
into an IF model. For the first stage of this translation, we use the faculty of GME to
export models in an XML format whose the DTD is a representation of the modeling
paradigm used. In the second stage of the translation, a parser retrieves the necessary
information from the XML file. Then it generates the appropriate IF model from this
information. Now, the analysis can be performed thanks to the analysis tools suite.

After these steps, the QoS provided by each adaptation element and accordingly
by the adaptation layer is known and can be added to the SASM model in the tool. The
admission test must now verify that the QoS provided by the adaptation layer satisfies
the QoS required by the SAIM.

The rules governing the admission test are the ones described in the section 3.4.
This admission test is implemented in the tool thanks to OCL constraints. The evalu-
ation of these constraints can be done in the SAIA modeling tool by asking for con-
straints evaluation. If the test fails, for each constraint violations the tool gives the
adaptation element and the QoS characteristic where the constraint is violated.

This tool has been used with success in the realization of an exploration robot
(DeAntoni et al., 2005c). This exploration robot must conform to the specification
dictated by the maRTian Task challenge. After the modeling of the robot, the source
code must be generated. This code generation needs information about the Real Time
Operating System (available scheduling policy, etc) where the system is executed.
It also needs mapping rules specifying how the components and their activities are
mapped into RTOS tasks. Since the code generation goal was only to verify that
all the mandatory pieces of information are included in the full SASM model, this
knowledge has been brought manually.

The method advantages are highlight by the fact that the exploration robot devel-
opment relies on a simulator. The SAM in this case represents the services provided
by the simulator. Since the SAM is separated from the SAIM by the ALM, during the
deployment on a real target, the changes are not propagated in the whole system. The
changes impact the SAM and the ALM but the SAIM stays unchanged.

5. Related work

In SAIA and the proposed method, a clean separation has been done between the
control activity and the sensors actuators provided by a specific target. This approach
is to assimilate to the MDA (Model Driven Architecture: (OMG-MDA, 2003)) philos-
ophy where a Platform Independent Model (PIM), a Platform Model (PM) and a Plat-
form Specific Model (PSM) are defined. The proposed method is an implementation
of the MDA philosophy where the platform is identified to the Sensors and Actuators.



120 IDM’06, Lille – Secondes journées sur l’ingénierie des modèles

MDA is successfully used for the development of general purpose systems (Frankel
et al., 2002, D.Wampler, 2003, P.Caceres et al., 2003) but there are few MDA-based
implementations for dedicated system where correctness strongly relies on hardware
performance.

(P.Boulet et al., 2003) proposes an implementation of MDA for systems on chip
design. This MDA adaptation of the "Y-approach" introduces an association model in
order to model the mapping between software and hardware models. This approach
considers machines and buses as the PM but not sensors and actuators dependen-
cies. Moreover, contrary to the proposed approach, no extra-functional descriptions
are made. However, the two approaches use the same idea which is the use of an
intermediate model to link the platform specific and platform independent models.

In the software architecture domain, lots of different works and strategies have al-
ready been proposed for the development and the validation of systems. One approach
is specifically closed to the one described in this paper: the approach developed for
the REACT project (Faucou et al., 2004).

The REACT project is based on the architecture description language CLARA
(Durand, 1998), dedicated to the description of reactive systems architecture. The
first stage of the project concerns the validation of a candidate architecture regarding
its functional and extra-functional requirements. The similar point with the proposed
approach is the use of external formalisms and tools to validate the systems. How-
ever, conversely to the proposed approach, the CLARA description does not identify
various models and models tranformations to conduct the architecture building.

Sensors / actuators communication is seldom dealt with but, (Cristina et al., 2005)
proposes a component based package for modeling of sensors and actuators in an
OSGI context: SensorBean. The approach identifies some services which are also
identified in SAIA. Since it is a recent approach, there is no detailed information
about extra-functional requirements, specification, and validation.

6. Conclusion

This paper presents a model driven methodology for the development and valida-
tion of SDPC communication protocol. Various models and model transformations
are identified. It facilitates the management of the SAIA entities and constraints dur-
ing development and validation of systems. The generation of a tool supporting the
method allows a systematic used of the models and transformations. Moreover, it has
allowed the validation of the approach through an international challenge: maRTian
task (DeAntoni et al., 2005c).

Several orientations for the future works can be interesting. First, for an use in an
industrial context, a SPEM (OMG-SPEM, 2005) modelisation of the proposed process
could facilitate evolution and reuse through systems families. Another interesting
orientation is to allow the creation of a bridge between the SAIA modeling tool and



SAIA model driven method 121

UML modeling/simulation tools; i.e. the creation of a SAIA UML profile. This way
a transformation from the SAIA modeling environment to a UML editor could be
implemented. Next orientation is the formalization of the transformation between
SAIA and IF models at a meta-model level. Finally, SAIA could be extended in order
to allow an automatic code generation for RTOS.

7. References

Bass L., Clements P., Kazman R., « Software Architecture in Practice », Addison Wesley, Read-
ing, Mass, 1998.

Ben-Hedia B., Jumel F., Babau J.-P., « Formal evaluation of Quality of Service for data acqui-
sition systems », Forum on specification and Design Language, 2005.

Beugnard A., Jézéquel J.-M., Plouzeau N., Watkins D., « Making component contract aware »,
IEEE computer, 32(7)p. 38-45, 1999.

Bozga M., Graf S., Mounier L., « IF-2.0: A validation environment for Component-Based Real
Time systems », In ed. Brinksma, K.G. Larsen (Eds) Proceedings of CAV’02, 2002.

Cristina M., Donsez D., Lalanda P., « Approche IDM pour le développement des services basés
capteurs », Ingénierie Dirigée par les modèles (IDM’05), 2005.

DeAntoni J., Babau J.-P., « A MDA approach for systems dedicated to process control »,
eleventh IEEE International Embedded and Real Time Computing Systems and Applica-
tions (RTCSA’05), 2005a.

DeAntoni J., Babau J.-P., « A MDA-based approach for real time embedded systems simu-
lation », Nineth IEEE International Symposium on Distributed Simulation and Real-Time
Applications (DS-RT’05), 2005b.

DeAntoni J., Babau J.-P., « SAIA: Sensors/actuators Independent Architecture -
A showcase through maRTian task specification », Proceedings of the ERTSI
2005 - Embedded Real Time Systems Implementation Workshop, held in conjunc-
tion with 26th IEEE International Real-Time Systems Symposiump. 43-50, 2005c.
http://www.cs.york.ac.uk/ftpdir/reports/YCS-2005-397.pdf.

Durand E., « Description et vérification d’architectures d’applications temps réel: CLARA et
les réseaux de Petri temporels », PhD thesis, école centrale de Nantes, 1998.

D.Wampler, « The Role of Aspect-Oriented Programming in OMG’s Model-Driven Architec-
ture », Aspect Programming Inc, 2003.

Faucou S., Déplanche A.-M., Trinquet Y., « An ADL centric approach for the formal design of
real time systems », In Architecture description language, IFIPp. 67-82, 2004.

Frankel D., J.Parodi, « Using Model-Driven Architecture(tm) to Develop Web Services », IONA
Technologies PLC, White paper, 2002.

Ghezzi C., Jazayeri M., Mandrioli D., « Software Architecture: a Roadmap », In A. Finkelstein
editeur, International Conference on Software Engineering, ACM press, 2000.

ISIS, « The Generic Modeling Environment (GME) », 2005. ISIS: Institute for Software Inte-
grated Systems. Vanderbilt University.

Jumel F., « Definition and management of a quality of service for real time applications (in
french) », thesis in LORIA laboratory, Nancy, 2003.



122 IDM’06, Lille – Secondes journées sur l’ingénierie des modèles

L.DiPippo, L.Ma, « A UML Package for Specifying Real-Time Objects », Computer Standards
and Interfaces 2000, 1999.

Mathworks Inc, « MATLAB », http://www.mathworks.com/products/matlab/, 2005a.

Mathworks Inc, « real time workshop », http://www.mathworks.com/products/rtw/, 2005b.

Mathworks Inc, « SIMULINK », http://www.mathworks.com/products/simulink/, 2005c.

OMG-MDA, « Model Driven Architecture guide V1.0.1 », http://www.omg.org/mda, 2003.

OMG-SPEM, « Software Process Engineering Metamodel Specification Version 1.1 »,
http://www.omg.org/docs/formal/05-01-06.pdf, 2005.

P.Boulet, J.L.Dekeyser, C.Dumoulin, P.Marquet, « MDA for SoC Embedded Systems Design,
Intensive Signal Processing Experiment », FDL03, 2003.

P.Caceres, E.Marcos, B.Vela, « A MDA-Based Approach for Web Information System Devel-
opment », wisme, 2003.

Robles E., Held J., « A comparison of Windows driver model latency performance on Windows
NT and Windows 98 », Proc. OSDI third symposium, 1999.

Shaw M., Garlan D., « Software architecture: Perspectives on an emerging discipline », Prentice
Hall, 1996.

Sztipanovits J., Karsai G., « Model-Integrated Computing », IEEE Computer, vol. 30, no. 4, pp.
110-112, 1997.

Torngren M., « Fundamentals of implementing Real-Time Control applications in distributed
computer systems », Real Time System, 1998.


