
EZTrace: a generic framework for
performance analysis

François Trahay
Yutaka Ishikawa

Riken, University of Tokyo
{trahay, ishikawa}@il.is.s.u-tokyo.ac.jp

François Rue
Raymond Namyst

INRIA Bordeaux – Sud-Ouest
LaBRI, University of Bordeaux

{rue,namyst}@inria.fr

Mathieu Faverge
Jack Dongarra

University of Tennessee
{mfaverge,dongarra}@eecs.utk.edu

Abstract—Modern supercomputers with multi-core nodes en-
hanced by accelerators, as well as hybrid programming models,
introduce more complexity in modern applications. Exploiting
efficiently all the resources requires a complex analysis of the
performance of applications in order to detect time-consuming
or idle sections. This paper presents EZTRACE, a generic trace
generation framework that aims at providing a simple way to
analyze applications. EZTRACE is based on plugins that allow
it to trace different programming models such as MPI, pthread
or OpenMP as well as user-defined libraries or application. This
framework uses two steps: one to collect the basic information
during execution and one post-mortem analysis. This permits
tracing the execution of applications with low overhead while
allowing to refine the analysis after the execution of the program.
We also present a simple script language for EZTRACE that
gives the user the capability to easily define the functions to
instrument without modifying the source code of the application.
The evaluation of EZTRACE shows that the framework offers
a convenient way to analyze applications without impacting the
execution.

I. INTRODUCTION

Numerical simulation has become one of the pillars of the
process of science in many domains: numerous research topics
now rely on computational simulation for modeling physical
phenomenons. The needs for simulation in various computer
power hungry research areas such as climate modeling, com-
putational fluids dynamic or astrophysics have led to designing
massively parallel computers that now reach petaflops.

Given the cost of such supercomputers, high performance
applications are designed to exploit the available computing
power to its maximum. During the development of an ap-
plication, the optimization phase is crucial for improving the
efficiency. However, this phase requires extensive understand-
ing of the behavior and the performance of the application.
The complexity of supercomputer hardware, due to the use
of NUMA architectures or hierarchical caches, as well as
the use of various programming models like MPI, OpenMP,
MPI+threads, MPI+GPUs, PGAS models, makes it more and
more difficult to understand the performance of an application.

Due to the complexity of the hardware and software stack,
the use of convenient analysis tools is a great help for
understanding the performance of an application. Such tools
permit the user to follow the behavior of a program and to
spot its problematic phases. However, the variety of scientific

libraries and programing models makes it mandatory for such
tools to be generic. Allowing easy instrumentation of any kind
of library or application is crucial in order to work on most
modern platforms and to meet the requirements of emerging
programing models.

This paper describes the design and implementation of
EZTRACE, a generic framework for performance analysis.
EZTRACE uses a two phase mechanism based on plugins
for tracing applications. This permits easy specification of
the functions to analyze as well as the way they should be
represented. Moreover, EZTRACE provides an easy to use
script language that allows the user to instrument functions
without modifying its source code. The remainder of this
paper is organized as follows: in Section II, we present
various research related to performance analysis. The design of
EZTRACE is described in Section III. Section IV provides an
overview of a script language for EZTRACE that permits users
to easily instrument libraries and applications. The results
of experiments conducted on EZTRACE are discussed in
Section V. Finally, in Section VI we draw a conclusion and
introduce future work.

II. RELATED WORK

Since the advent of parallel programming and the need for
optimized applications, such research on performance analysis
tools has been conducted. Two main directions were explored:
application profiling and program tracing.

Research on profiling applications have led to tools ca-
pable of gathering statistics on the execution of a program
and creating a non temporal report. Profiling tools such as
GPROF [1] provide extensive information such as the list of
time consuming functions. However these tools do not provide
temporal performance data. Detecting typical abnormal behav-
iors – such as several MPI processes being blocked waiting
for one particular message – is thus difficult.

Numerous research were conducted on tracing the execution
of applications. This type of performance analysis tool permits
the collection of temporal information on the behavior of a
program. The resulting traces can then be visualized with tools
such as VAMPIR [2], PARAVER [3] or VITE [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49994243?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Manual instrumentation

The basic idea of application tracing is to record events
when the application reaches specific key points. At the end
of the application, a trace file that contains the recorded events
is written on disk. This trace file can then be visualized or ana-
lyzed. Tracing the execution of an application can be achieved
by manually instrumenting its source code. Specialized tools
such as FXT [5] provide a convenient way of recording events
during the execution of multithreaded applications.

In order to avoid reinventing the wheel each time an
application is analyzed, various tools permit the use of pre-
instrumented libraries. The MPI Profiling Interface [6] allows
tracing tools to interface with MPI calls in a portable way.
Specific libraries automatically intercept MPI functions [7],
calls to pthread functions [8] or OpenMP directives [9]. This
allows for easy analysis of any application based on these
major programming models.

Pre-instrumenting a library also permits the user applying
optimization during the construction of traces. For example,
limiting the instrumentation to MPI functions allows for com-
pressing the recorded events [10], [11]. Such techniques thus
permit reducing the size of the output traces while preserving
the information. However, this is only possible for a set of
pre-defined functions: these techniques cannot be applied to
user-defined functions.

Using manual instrumentation for analyzing an application
requires heavy modifications of its source code unless the
instrumentation is restricted to widely used libraries. If such
source code modification can be performed for some applica-
tions, it can be problematic for large source codes.

B. Automatic instrumentation

Various work has focused on reducing the effort needed
for instrumenting user-defined functions. Automatic instru-
mentation of applications allows the user for inserting event
recording instructions in all the functions defined in a program.
SCALASCA [12], TAU [13] or VAMPIRTRACE [14] are able to
intercept calls to widely used libraries – MPI, OpenMP, etc.
– and to automatically instrument the application functions
during the compilation of the program. This technique works
with most compilers and makes instrumenting the application
functions easy. These tools also support binary modification –
using the DYNINST API [15] – for instrumenting applications
and can use the PAPI API [16] for collecting performance
counters during the execution of the program.

However, recording events at each function call is time
consuming. It thus causes a significant overhead on the per-
formance of the application. Moreover, fully instrumenting
an application may result in very large trace files. In order
to avoid degrading the performance, these tools also allow
manual instrumentation of the application. The user can thus
focus on a set of interesting functions while reducing the size
of the trace files and overhead.

In order to ease the analysis of applications, various work
has focused on providing a complete software suite that
permits tracing the execution of programs. INTEL TRACE

ANALYZER AND COLLECTOR and OPEN|SPEEDSHOP [17]
are able to instrument applications and to analyze the resulting
traces. The PABLO [18] performance analysis environment
also provides a graphical interface for instrumenting the source
code of the application.

C. Discussion on current application tracing tools

Longstanding research efforts have led to numerous so-
lutions for performance analysis. Thanks to these solutions,
users can now trace applications based on widely used libraries
such as MPI or OpenMP with little effort. The overall good
performance of current tracing tools allows for collecting
execution traces without disturbing the application.

However, while instrumenting MPI functions with current
tools is straightforward, analyzing functions defined by the
application requires modifying and recompiling the source
code. Instrumenting manually an application is thus feasible,
but this method is not convenient for large source code.
Moreover, listing the instrumented functions requires browsing
the source code in search of instrumentation instructions. A
convenient way to specify the functions to instrument would
ease the analysis of application.

The way post-mortem analysis is organized is another
issue; once the execution of the application is over, it is not
possible to interact with the traces. Once the execution trace
is recorded, it is difficult to refine the analysis for focusing on
a particular point.

Moreover, current application tracing tools do not permit
choosing the representation of an event; the output trace shows
that a function was called at one point, but representing non
temporal events is tricky. Tracking the values of variables is
also hard to achieve with current solutions.

We believe that performance analysis tools should provide
a simple yet flexible way to instrument function and to
customize their representation in the output trace. Such a
solution would greatly ease the analysis of the performance
of an application.

III. EZTRACE: A GENERIC FRAMEWORK FOR
PERFORMANCE ANALYSIS

EZTRACE has been designed to tackle the limitations of
current performance analysis tools described in the previous
section. This framework relies on plugins in order to offer a
generic way to analyze programs; depending on the application
to analyze or on the point to focus on, several modules can be
loaded. EZTRACE provides pre-defined plugins that permit the
analysis of applications that use MPI libraries, GNU OpenMP,
Pthreads or the PLASMA [19] library. However, user-defined
plugins can also be loaded in order to analyze application
functions or custom libraries.

EZTRACE uses a two phase mechanism for performance
analysis. During the first phase that occurs while the appli-
cation is executed, functions are intercepted and events are
recorded. After the execution of the application, the post-
mortem analysis phase is in charge of interpreting the recorded
events. This two phase mechanism permits the library to



MPI_Send:

RECORD_EVENT
call MPI_Send_orig
RECORD_EVENT

MPI_Send
...

call MPI_Send

...

...

LibEZTraceApplication LibMPI

Fig. 1. Instrumentation of library functions using dlsym

separate the recording of a function call from its interpretation.
It thus allows the user to interpret a function call event in
different ways depending on the point he/she wants to focus
on. For example, a call to MPI_Recv can be interpreted by
representing a communication – if the user focuses on the
communication pattern of the application – or by notifying
the modification of a buffer if the analysis focuses on memory
accesses. Separating the recording of events from their inter-
pretation also allows for reducing the overhead of profiling a
program; during the execution of the application, the analysis
tool should avoid performing time-consuming tasks such as
computing statistics or interpreting function calls.

In this Section, we first describe the way EZTRACE records
events while the application runs. Then we explain how the
post-mortem analysis phase works. We conclude this Section
by discussing the benefits brought by EZTRACE.

A. Recording events

During the execution of the application, EZTRACE inter-
cepts calls to the functions specified by plugins and records
events for each of them. Depending on the type of functions,
EZTRACE uses two different mechanisms for interception.
The functions defined in shared libraries are instrumented
using a dlsym mechanism whereas functions defined by the
application are intercepted using the DYNINST [15] tool.

The dlsym mechanism uses LD_PRELOAD for overriding
the functions to instrument as illustrated in Figure 1. When
the EZTRACE library is loaded, it retrieves the addresses of
the functions to instrument. When the application calls one
of these functions, the version implemented in EZTRACE
is called. This function records events and calls the actual
function.

The dlsym mechanism cannot be used for functions de-
fined in the application since there is no symbol resolution.
It is thus necessary to patch the application. EZTRACE uses
the DYNINST [15] tool for instrumenting the program on the
fly. As depicted in Figure 2, EZTRACE uses DYNINST for
inserting calls to RECORD_EVENT at the beginning and/or at
the end of each function to instrument. When the application
calls an instrumented function, EZTRACE can thus record
events.

For recording events, EZTRACE relies on the FXT li-
brary [5]. Each process being instrumented by EZTRACE
generates a trace file using FXT. In order to keep the
trace size as compact as possible, FXT records events in a
binary format that contains only the minimum amount of
information. As depicted in Figure 3, FXT only records a
timestamp, an event code and optional parameters. Since FXT

Foo:

instruction 1

instruction 2

...

instruction n

return

Application

RECORD_EVENT

RECORD_EVENT

Fig. 2. Instrumentation of application functions using DYNINST

...sizecodeTimestamp param 1

Fig. 3. FXT event format.

instrumentation is fully reentrant, multiple threads can record
events simultaneously. The use of atomic operations in FXT
for handling concurrent event recording allows EZTRACE
to maintain the integrity of the output trace without using
expensive synchronization primitives.

EZTRACE plugins associate event codes to the functions
that they intercept. Thus, when intercepting a function, EZ-
TRACE provides FXT with the event code corresponding to
this function and the identifier of the calling thread. The
automatic recording of the thread identifier provides useful
information to the analysis phase, especially for multithreaded
applications. For example, it allows the library to determine
which threads are sending or receiving messages using MPI.
Depending on the function to instrument, EZTRACE may add
optional parameters. For example, the arguments passed to
MPI_Send are reported to the FXT trace so that the post-
mortem phase can reconstruct the application communication
pattern.

B. Post-mortem analysis

After the execution of the application, the trace files are
analyzed during the post-mortem phase. Recorded events are
read in the execution order and are interpreted by plugins.
During this interpretation phase, the plugins can generate a
merged trace file – in the OTF [20] or PAJÉ [21] formats –
or compute statistics. Since each event code corresponds to
a function that was intercepted during the recording phase,
a plugin has to interpret all the event codes that it defines.
However, a single event code may be interpreted by different
plugins. For example, the code associated with the MPI_Recv
function may be used for representing a communication, or for
notifying a memory access depending on the interpretation
plugin.

While the FXT trace consists of a set of unrelated events,
the post-mortem analysis phase adds semantics that allows
the user to understand the behavior of the application. For
doing this, EZTRACE acts on the trace modifiers provided
by the GTG library [22]; a set of containers is defined –
processes, threads, GPUs, etc. – and interpretation plugins
modify their information over time. Plugins can modify the
state of a container for pointing out a particular phase in the



application – a thread entered a critical section, a particular
function was called, etc. Plugins can also notify non lasting
events – submission of a new job, lock released, beginning of a
non-blocking communication, etc. The value of variables can
also be tracked. This can be useful for representing the number
of pending jobs, the total allocated memory or any quantity
that may give hints about the behavior of the application.

Moreover, depending on the semantics of the recorded
events, EZTRACE plugins can extract statistics. This can pro-
vide the user with useful information. For example, statistics
on MPI messages can reveal the amount of communication
between each pair of processes. This information, as well as
the communication pattern of the application, may help the
user improve the placement of processes in order to improve
the performance of the application [23].

C. Benefits brought by EZTrace

The use of a generic framework for performance analysis
such as EZTRACE permits users to collect information on the
execution of most HPC applications. Since EZTRACE relies
on plugins, any application can be analyzed as long as plugins
for its libraries are available.

The two phase mechanism used in EZTRACE allows to
separated the recording of the execution of an application from
its analysis. This permits to run the application only once and
to work on the collected traces later. It is thus possible to refine
the analysis of a set of traces. For example, the execution of an
application mixing MPI and OpenMP can be recorded using
EZTRACE. The analysis of this execution can then focus on
either MPI, OpenMP or both paradigms depending on the user
interest.

IV. ANALYZING USER-DEFINED FUNCTIONS

The instrumentation of functions implemented in widely
used libraries can provide useful information for a large range
of applications. For example, recording calls to MPI functions
will help analyzing most MPI-based applications. When devel-
oping a framework for performance analysis, providing pre-
defined mechanisms for such libraries is thus crucial. However,
pre-defining mechanisms for all the existing libraries is not
feasible, and convenient tools for analyzing less common
libraries as well as applications are required. This way, the
framework can be used for any application regardless of the
libraries it uses.

In Section II, we have shown that instrumenting custom
applications or libraries with available frameworks can be
tedious. Since EZTRACE uses a plugin mechanism, analyzing
an MPI program is not different from analyzing an application
based on a random library, as long as a plugin for this library
is available. It is thus important for the user that the framework
provides a convenient way to create plugins.

A. Overview of the plugin mechanism

Since EZTRACE uses a two phase mechanism for applica-
tion analysis, plugins are made up of two parts:

� �
int foo(int arg1, int arg2) {
EZTRACE_EVENT2(FOO_ENTRY, arg1, arg2);
int ret = foo_callback(arg1, arg2);
EZTRACE_EVENT0(FOO_EXIT);
return ret;

}� �
Fig. 4. Example of function overriding.� �

void handle_foo_entry() {
INIT_THREAD_ID(thread_id);
pushState(CURRENT, "ST_Thread",

thread_id, "foo");
free(thread_id);

}� �
Fig. 5. Example of event interpretation.

a) Event collection: This part of the plugin intercepts
calls to a set of specified functions. When this happen, events
are recorded before and/or after the execution of the function.
Depending on whether the functions are defined in a shared
library or in the application, the plugin may use function over-
riding or dynamic instrumentation for intercepting function
calls.

b) Trace interpretation: After the execution of the appli-
cation, the plugin interprets the events that were recorded. For
doing this, EZTRACE delegates the handling of each recorded
event to the plugin that is then free to interpret it.

Writing a plugin for EZTRACE thus requires implementing
both an event collection module and a trace interpreter module.
An example of such modules is given in Figures 4 and 5.
In this example, the foo function is intercepted and events
are recorded before and after the call to the original function.
During the post-mortem analysis, the handle_foo_entry
function is called each time the FOO_ENTRY event code
appears. This function modifies the state of the calling thread
in the output trace.

Even if writing a plugin for EZTRACE is quite simple,
this can be simplified in order to make it accessible to end-
users that are not familiar with C programming. For that
reason, EZTRACE provides a convenient way to create plugins
using a simple script language. This language allows for
easily describing the functions to instrument as well as their
interpretation. User-defined scripts can then be converted into
plugins using a source to source compiler.

B. A script language for plugin creation

Due to the two phase mechanism used in EZTRACE, writing
a plugin requires specifying the functions to instrument and
the interpretation of these functions calls in the output trace.
However, providing EZTRACE with the interpretation is often
sufficient for guessing how to instrument a function. For
example, changing the state of a thread during the execution
of a function implies recording an event at the beginning and
at the end of the corresponding function, whereas notifying the



� �
NAME foo
DESC "Plugin for the foo library"
LANGUAGE C
TYPE LIBRARY

int foo(int arg1, int arg2)
BEGIN
RECORD_STATE("doing function foo")

END

void bar(int arg1)
BEGIN
EVENT("function bar called")

END� �
Fig. 6. Example plugin.

occurrence of a function with an event only requires recording
an event at the beginning of the function. The script language
for describing the functions to analyze thus focuses on the
interpretation of these functions in the output trace, leaving
the instrumentation to EZTRACE.

As illustrated in Figure 6, creating a plugin using this script
language boils down to describing the plugin and interpreting
each function that has to be analyzed.

1) Describing a plugin: In order to generate a plugin, the
source to source compiler needs some general information.
For example, the plugin type describes whether the functions
to intercept are defined in a shared library or in an application.
Depending on the plugin type, the source to source compiler
chooses between the DYNINST and the dlsym mechanisms.

2) Interpreting a function: The script describes the func-
tions to instrument by specifying each function prototype and
its interpretation. A set of keywords permits describing how
to generate the output trace by acting on the trace modifiers
described in Section III-B:

• PUSH_STATE(new_state) changes the state of a
thread.

• POP_STATE() reverts the state of a thread to its value
before the previous call to PUSH_STATE.

• RECORD_STATE(new_state) changes the state of
a thread during the execution of a function. This is
equivalent to calling PUSH_STATE at the beginning of
a function and POP_STATE at the end of it.

• EVENT(event_name) records an event.
• SET_VAR(var_name, value) assigns a value to a

variable.
• ADD_VAR(var_name, value) increases the value of

a variable.
• SUB_VAR(var_name, value) decreases the value

of a variable.
These keywords allow action on the output trace, however

in order to control more precisely the generation of a trace it is
necessary to distinguish the actions that should be performed
before the function call from the ones that should be done
after it. The CALL_FUNC keyword allows the user to specify
at which point the function should be called and thus permits

� �
int submit_jobs(int nb_jobs)
BEGIN
ADD_VAR("Number of jobs", nb_jobs)
CALL_FUNC
EVENT("New jobs")

END� �
Fig. 7. Example of function instrumentation using the script language.

the library to guess when an action should be performed.
For example, in the function listed in Figure 7, the variable
Number of jobs is increased before the function call,
whereas the event New jobs is set when the function ends.

The script language also provides conditional statements. It
is thus possible to take the result of a function call or the value
of a parameter into account.

In order to simplify the development of plugin, it is also
possible to skip the interpretation instructions. In that case,
the source to source compiler implicitly interprets the function
using RECORD_STATE. It is thus possible to create a plugin
by providing only a list of function prototypes.

C. The source to source compiler

The creation of a plugin suitable for EZTRACE relies on
a source to source compiler that interprets the script and
generates the C files described in Section IV-A. The compiler
fills template files with the information contained in the script.
It generates the source codes that instrument the functions
provided by the user and that interpret events during the post-
mortem phase.

In order to minimize the overhead of the function instru-
mentation, unnecessary recording of events are avoided; if
the script specifies that a function should be interpreted by
increasing a variable in the output trace, only one event is
recorded during the event collection phase.

D. Discussion about the script language

The script language provides a convenient way to create
EZTRACE plugins. By simply listing the functions to instru-
ment it is possible to create a minimal plugin that shows the
function calls during an application execution. The interpreta-
tion keywords allow the user to describe more precisely the
generation of the output trace while minimizing the overhead
of the instrumentation of functions. In most cases, it is thus
possible to describe how to depict a function call in the output
trace.

The small set of interpretation keywords permits acting on
all the trace modifiers provided by the trace formats. Thus,
the simplicity of the script language does not restrict the
possibilities of event interpretation. Moreover, since the source
to source compiler generates C files, it is possible to use
them as a basis and to modify them in order to control more
precisely the interpretation of a function.

Creating a plugin for EZTRACE can thus be achieved easily
by providing a set of functions to instrument. The interpreta-
tion of function calls can be controlled precisely. As a result,



Method Open MPI VampirTrace EZTrace # of events
Automatic 4.99 6.12 5.68 121 000
Manual 4.99 5.71 5.67 80 800

TABLE I
RESULTS OF THE 16-BYTES LATENCY TEST

the script language is powerful enough for generating plugins
for most users, while leaving the possibility for the advanced
users to analyze more precisely an application execution.

V. EVALUATION

When analyzing the performance of an application with a
framework such as EZTRACE, it is important that the appli-
cation run during which the data is collected is representative
of usual runs.Thus, the analysis framework should not modify
the behavior of the application; the overhead of instrumenting
the application should be as inexpensive as possible.

In this Section, we assess the impact on performance of
using EZTRACE. We evaluate the raw performance of the
dlsym and DYNINST mechanisms before comparing EZ-
TRACE with VAMPIRTRACE on application kernels. Then we
show how the script language described in Section IV-B can
be used for analyzing the NAS SP kernel.

The results that we show in this Section were mea-
sured on the CLUSTER0 platform that is composed of 32
nodes. Each box is equipped with two 2.2 GHz dual-core
OPTERON (2214 HE) CPUs featuring 4 GB of memory. These
nodes are running Linux 2.6.32 and are connected through
MYRINET MYRI-10G NICs. These results were obtained
using OPEN MPI [24]. We compare EZTRACE with VAM-
PIRTRACE in its 5.9 version.

A. Overhead of trace collection

In order to evaluate the overhead of collecting event during
the execution of an application, we use a MPI ping pong pro-
gram. We measure the latency obtained for 16-bytes messages.

We run this program with automatic and manual instrumen-
tation and we compare to the performance obtained without
any instrumentation. The automatic instrumentation is ob-
tained by using VAMPIRTRACE MPI trace capabilities and the
EZTRACE MPI plugin. For VAMPIRTRACE, the program is
linked against the VAMPIRTRACE library so that it uses its
hooks to MPI functions, while EZTRACE uses the dlsym
mechanism for intercepting calls to MPI functions.

The manual instrumentation with VAMPIRTRACE is
obtained by adding calls to VT_USER_START and
VT_USER_END when invoking MPI_Send and MPI_Recv.
The automatic instrumentation of MPI functions is disabled
by setting the VT_MPITRACE environment variable to no.
For EZTRACE, we use the script language described in
Section IV-B for instrumenting manually with DYNINST the
functions that send and receive messages.

Table I shows the results that we obtained for automatic
and manual instrumentation. Using VAMPIRTRACE automatic
function tracing causes an overhead of 1.1 µs while the manual

instrumentation degrades the latency by 700 ns. This difference
is due to VAMPIRTRACE’s handling of these function. The
manual instrumentation generates events at the entry and the
exit of functions while VAMPIRTRACE MPI hooks also create
SendMessage or ReceiveMessage events. Recording one event
with VAMPIRTRACE thus costs approximately 350 ns.

Instrumenting the application using EZTRACE dlsym or
DYNINST mechanisms causes an overhead of 700 ns. In both
cases, events are recorded at the entry and the exit of functions.
The EZTRACE pre-defined MPI plugin creates the SendMes-
sage and ReceiveMessage during the post-mortem analysis
phase, avoiding additional overhead during the execution of
the application. Recording an event with EZTRACE thus costs
350 ns, just as with VAMPIRTRACE.

EZTRACE generates the same number of events as VAM-
PIRTRACE in both cases. However, the output traces obtained
with manual and automatic instrumentation do not contain the
same number of events. This is due to the way VAMPIRTRACE
and EZTRACE work. While the manual instrumentation only
results in EnterFunction and LeaveFunction events, the MPI
modules also generate SendMessage and RecvMessage events.

The overhead of recording an event with EZTRACE is
the same as with VAMPIRTRACE. However, EZTRACE limits
its instrumentation to the minimum. Only entry and exit of
functions are recorded, leaving the interpretation of these
events – the creation of SendMessage or ReceiveMessages –
to the post-mortem analysis phase.

B. NAS parallel benchmarks

Beside the previous raw performance experiments, we also
evaluate NAS [25] application kernels. The experiments were
carried out with 4 computing processes on Class A and 32
processes on Class B. Kernels requiring a square number of
processes – BT and SP – were run on 36 processes for Class
B. We used 8 machines (9 for BT and SP on Class B) for these
experiments. Thus, during the Class A measurements only one
process runs on a node, whereas for the Class B experiments
4 processes are executed on each node.

Table II summarizes the results that we obtained. The
number of OTF events generated by the LU kernel for Class B
is not available due to problems in the current implementation
that cause EZTRACE to crash during the post-mortem analysis
in this case. The results show that instrumenting the kernels
with VAMPIRTRACE or EZTRACE causes little variation in the
execution time. In all cases, the difference is less than 2 %.
The numbers of events show that intensive event recording –
such as during the MG kernel for Class B – does not affect
the performance significantly.

C. Analysis of an application

We used the script language described in section IV-B for
instrumenting the SP kernel from the NAS Parallel Benchmark
suite. This FORTRAN program, based on MPI, solves scalar
pentadiagonal systems of equations.

The SP kernel calls the adi function at each iteration. This
function invokes the copy_faces function that exchanges



Kernel Class # Processes OpenMPI VampirTrace EZTrace # Events # Events / s
Execution (s) Overhead Execution (s) Overhead

BT A 4 70.57 70.58 0.01 % 70.39 -0.26 % 58 120 825
CG A 4 2.64 2.68 1.52 % 2.68 1.52 % 33 624 12 546
EP A 4 9.61 9.69 0.83 % 9.72 1.14 % 48 5
FT A 4 6.63 6.67 0.55 % 6.62 -0.20 % 144 22
IS A 4 0.63 0.64 2.13 % 0.62 -1.06 % 299 482
LU A 4 42.08 42.15 0.17 % 41.39 -1.64 % 508 360 12 282
MG A 4 5.04 5.06 0.46 % 5.07 0.66 % 15 096 2978
SP A 4 166.25 165.94 -0.18 % 166.32 0.04 % 115 704 696
BT B 36 26.08 25.83 -0.97 % 26.37 1.10 % 1 565 064 59 350
CG B 32 16.29 16.46 1.02 % 16.60 1.88 % 3 198 272 192 667
EP B 32 4.81 4.79 -0.42 % 4.76 -1.04 % 384 81
FT B 32 11.76 11.61 -1.30 % 11.55 -1.81 % 2 944 255
IS B 32 0.97 0.96 -1.03 % 0.96 -1.03 % 2 427 2 580
LU B 32 33.75 34.11 1.07 % 33.67 -0.24 % – –
MG B 32 2.14 2.16 0.78 % 2.13 -0.62 % 450 528 215 515
SP B 36 51.18 51.98 1.57 % 52.07 1.75 % 3 120 120 59 922

TABLE II
NAS PARALLEL BENCHMARK PERFORMANCE FOR CLASS A AND B

� �
BEGIN_MODULE
NAME plugin_nas_sp
DESC "Plugin for the NAS SP kernel"
LANGUAGE FORTRAN
TYPE APPLICATION

adi()
BEGIN
EVENT("New loop")

END

copy_faces()
txinvr()
x_solve()
y_solve()
z_solve()
add()

END_MODULE� �
Fig. 8. Plugin used for the NAS SP kernel.

data with the neighboring processes. It then calls txinvr
for performing a matrix-vector multiplication, x_solve, that
computes a solution in the x-direction, as well as y_solve
and z_solve that do the same for y and z directions.

Figure 8 shows the script we used for analyzing the SP
kernel. The generated plugin instruments the functions called
during each iteration and, in order to locate more easily the
beginning of iterations, a “New loop” event is generated when
adi is called.

Instrumenting the SP kernel with VAMPIRTRACE re-
quires modifying its source code by inserting calls to
VT_USER_START and VT_USER_STOP. This instrumenta-
tion adds 24 lines of codes in 7 differents files. Using an
EZTRACE script for instrumenting the application thus permits
regrouping all the instrumentation code in a single file while
only requiring a few lines of instructions.

With EZTRACE we run the SP kernel with 4 processes on

New loop New loop

copy_faces txinvr addy_solve

x_solve z_solve

Fig. 9. Execution pattern of NAS SP

Class W. The output trace shows the repeated pattern depicted
in Figure 9. The output trace also reveals which functions are
the more time consuming. In this experiment, 32 % of the
execution time was spent in the copy_faces function, each
of the x_solve, y_solve and z_solve functions took
20 % of the time whereas less than 5 % of the time was spent
in the txinvr and add functions. Analyzing an application
with EZTRACE thus provides useful clues on which functions
are worth optimizing: in the case of the SP kernel, tuning the
txinvr function is likely to bring little improvement and
the application developer should focus on the copy_faces,
x_solve, y_solve or z_solve functions.

This experiment shows that the script language provided
by EZTRACE allows users to analyze an application with
little effort. Creating a plugin only requires a few lines of
script and the application does not need to be modified nor
recompiled. A simple plugin allows EZTRACE to reveal the
general execution pattern of an application, to locate the time
consuming functions and to gather statistics on the application
execution.

VI. CONCLUSION AND FUTURE WORKS

Modern applications are more and more sophisticated by the
use of different programming models like MPI, OpenMP or
pthread but also because of modern architectures of supercom-



puters which include different units of computations like cores
and accelerators, hierarchical levels of caches and memory
and sometimes different networks. All these characteristics
make it more and more difficult to efficiently exploit current
supercomputers. Application developers thus need convenient
tools for understanding the performance of their programs and
to detect the phases that can be improved. Several tools offer
the capability to trace one or several components, usually MPI
and OpenMP, but tracing a set of user-defined functions can
be tedious and requires users to modify the source code of the
application. The second problem is how to analyze these data.
There are many ways to interpret an execution trace depending
on what is being searched for.

We proposed in this paper a generic framework for ap-
plication analysis based on two steps. During the execution
of the program, a set of functions specified by plugins are
instrumented and trace files are generated. After the appli-
cation run, a post-mortem analysis interprets the traces. This
also permits generating execution traces with a low impact on
the performance of the application while allowing refinement
of the analysis after the program run. The selection of the
information we are interested in gives a precise analysis of
the trace without surfeit of information. The script language
developed with EZTRACE provides a simple way for the
user to describe which functions he/she wants to follow and
how to analyze the data collected. This way a simple user
as well as an expert can easily generate a new plugin to
study what is time consuming in his/her application or why
one scheduling is better than another. The experiments on
NAS benchmarks show that the overhead on the application
execution is less than two percent and the use of binary files
to collect information makes it small. These files can later be
interpreted in different ways regarding what is interesting for
the user. The evaluation also shows that the script language
provided by EZTRACE permits users to easily analyze an
application without modifying its source code.

EZTRACE is available as an open source project online [26].
Our future work is to integrate hardware counters collected
by libraries such as PAPI [16] into our trace generation to
follow the evolution of these counters during execution. We
also plan to extend the plugin generator language to take this
into account and to provide to the user a simple way to access
these counters via this language.

REFERENCES

[1] S. Graham, P. Kessler, and M. Mckusick, “Gprof: A call graph execution
profiler,” ACM Sigplan Notices, vol. 17, no. 6, pp. 120–126, 1982.

[2] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. Müller, and W. Nagel, “The Vampir Performance Analysis Tool-Set,”
Tools for High Performance Computing, pp. 139–155, 2008.

[3] V. Pillet, J. Labarta, T. Cortes, and S. Girona, “Paraver: A tool to visual-
ize and analyze parallel code,” in Transputer and occam developments:
WoTUG-18: proceedings of the 187th world occam and Transputer User
Group Technical Meeting, 9th-13th April 1995, Manchester, UK. Ios
Pr Inc, 1995, p. 17.

[4] “Visual Trace Explorer.” [Online]. Available: http://vite.gforge.inria.fr/

[5] V. Danjean, R. Namyst, and P. Wacrenier, “An efficient multi-level
trace toolkit for multi-threaded applications,” Euro-Par 2005 Parallel
Processing, pp. 166–175, 2005.

[6] E. Karrels and E. Lusk, “Performance analysis of MPI programs,” in
Proceedings of the Workshop on Environments and Tools For Parallel
Scientific Computing. SIAM Publications, 1994, pp. 195–200.

[7] J. Vetter and B. de Supinski, “Dynamic software testing of MPI appli-
cations with Umpire,” in Supercomputing, ACM/IEEE 2000 Conference.
IEEE, 2006, p. 51.

[8] S. Bull, “NPTL Stabilization Project,” in Linux Symposium, p. 111.
[9] J. Caubet, J. Gimenez, J. Labarta, L. DeRose, and J. Vetter, “A dynamic

tracing mechanism for performance analysis of OpenMP applications,”
OpenMP Shared Memory Parallel Programming, pp. 53–67, 2001.

[10] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B. de Supinski, “Sca-
laTrace: Scalable compression and replay of communication traces
for high-performance computing,” Journal of Parallel and Distributed
Computing, vol. 69, no. 8, pp. 696–710, 2009.

[11] K. Vijayakumar, F. Mueller, X. Ma, and P. Roth, “Scalable i/o tracing
and analysis,” in Proceedings of the 4th Annual Workshop on Petascale
Data Storage. ACM, 2009, pp. 26–31.

[12] M. Geimer, F. Wolf, B. Wylie, E. Ábrahám, D. Becker, and B. Mohr,
“The Scalasca performance toolset architecture,” Concurrency and Com-
putation: Practice and Experience, vol. 22, no. 6, pp. 702–719, 2010.

[13] S. Shende and A. Malony, “The TAU parallel performance system,”
International Journal of High Performance Computing Applications,
vol. 20, no. 2, p. 287, 2006.

[14] M. Muller, A. Knupfer, M. Jurenz, M. Lieber, H. Brunst, H. Mix, and
W. Nagel, “Developing scalable applications with Vampir, VampirServer
and VampirTrace,” Proceedings of the Minisymposium on Scalability and
Usability of HPC Programming Tools at PARCO, 2007.

[15] B. Buck and J. Hollingsworth, “An API for runtime code patching,”
International Journal of High Performance Computing Applications,
vol. 14, no. 4, pp. 317–329, 2000.

[16] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A portable
programming interface for performance evaluation on modern proces-
sors,” International Journal of High Performance Computing Applica-
tions, vol. 14, no. 3, p. 189, 2000.

[17] M. Schulz, J. Galarowicz, D. Maghrak, W. Hachfeld, D. Montoya,
and S. Cranford, “Open| SpeedShop: An open source infrastructure for
parallel performance analysis,” Scientific Programming, vol. 16, no. 2,
pp. 105–121, 2008.

[18] D. Reed, P. Roth, R. Aydt, K. Shields, L. Tavera, R. Noe, and
B. Schwartz, “Scalable performance analysis: The Pablo performance
analysis environment,” in Scalable Parallel Libraries Conference, 1993.,
Proceedings of the. IEEE, 2002, pp. 104–113.

[19] E. Agullo, J. Demmel, J. Dongarra, B. Hadri, J. Kurzak, J. Langou,
H. Ltaief, P. Luszczek, and S. Tomov, “Numerical linear algebra
on emerging architectures: The PLASMA and MAGMA projects,” in
Journal of Physics: Conference Series, vol. 180. IOP Publishing, 2009,
p. 012037.

[20] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel, “Introducing
the open trace format (OTF),” Computational Science–ICCS 2006, pp.
526–533, 2006.

[21] J. Chassin de Kergommeaux, B. de Oliveira Stein, and G. Mounié, “Pajé
input data Format,” Tech. Rep., 2003.

[22] “GTG: Generic Trace Generator.” [Online]. Available: http://gforge.
inria.fr/projects/gtg/

[23] G. Mercier and J. Clet-Ortega, “Towards an efficient process place-
ment policy for mpi applications in multicore environments,” in Eu-
roPVM/MPI, ser. Lecture Notes in Computer Science, vol. 5759. Espoo,
Finland: Springer, Sep. 2009, pp. 104–115.

[24] E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, J. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine et al., “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
Recent Advances in Parallel Virtual Machine and Message Passing
Interface, pp. 353–377, 2004.

[25] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The NAS parallel benchmarks 2.0,” Tech. Rep., 1995.

[26] “EZTrace: easy to use trace generator.” [Online]. Available: http:
//eztrace.gforge.inria.fr/


