-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Construction auto-stabilisante d’un arbre couvrant de
poids minimum
Lélia Blin, Shlomi Dolev, Maria Potop-Butucaru, Stephane Rovedakis

» To cite this version:

Lélia Blin, Shlomi Dolev, Maria Potop-Butucaru, Stephane Rovedakis. Construction auto-stabilisante
d’un arbre couvrant de poids minimum. 13es Rencontres Francophones sur les Aspects Algorithmiques
de Télécommunications (AlgoTel), May 2011, Cap Estérel, France. inria-00587591

HAL 1d: inria-00587591
https://hal.inria.fr /inria-00587591

Submitted on 20 Apr 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/49993907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00587591
https://hal.archives-ouvertes.fr

Construction auto-stabilisante d’'un arbre
couvrant de poids minimum?

L. Blinl and S. Dole¥ and M. Potop-Butucafiand S. Rovedakfs

lUniversité d’Evry-Val d’Essonne, 91000 Evry, France. 6iENRS UMR 7606, France.

2Department of Computer Science, Ben-Gurion UniversithefNegev, Beer-Sheva, 84105, Israel.

SUniversité Pierre & Marie Curie - Paris 6, 75005 Paris, Fraa. LIP6-CNRS UMR 7606, INRIA REGAL, France.
4L aboratoire CEDRIC-EA1395 - CNAM, 292 Rue St Martin, 7514fisPCedex 03, France.

L'arbre couvrant de poids minimum offre une solution de aget ayant le double avantage de donner une structure de
communication simple et économique. Dans ce papier, ndgeptons un nouvel algorithme auto-stabilisant pour la
construction d’un arbre couvrant de poids minimum dans stesye distribué et asynchrone. Notre solution améliore
I'existant en permettant d'atteindre un meilleur compremitre le temps de convergen€n?), et la complexité

en mémoire nécessaire sur chaque noeud du re€étg’n). Le temps de convergence est amélioré d’un facteur
multiplicatif ©(n) au prix d’'un facteur multiplicatif deD(logn) sur la mémoire. La clé de volte de ce travail est
I'utilisation d’'une méthode de nommage auto-stabilisgmérmettant d’identifier pour toute paire de noeuds le plus
proche ancétre commun dans l'arbre.

Keywords: Algorithme distribué, Auto-stabilisation, Construgtid’arbre couvrant de poids minimum.

1 Introduction

Since its introduction in a centralized context, the minimspanning tree (or MST) problem gained a
benchmark status in distributed computing thanks to thérsdmwvork of Gallager, Humblet and Spira [GHS83].

The emergence of large scale and dynamic systems, ofteacsubjtransient faults, revives the study
of scalable and self-stabilizing algorithms.sBalablealgorithm does not rely on any global parameter of
the systemd.g.upper bound on the number of nodes or the diameSalf:-stabilizatiorintroduced first by
Dijkstra in [Dij74] deals with the ability of a system to reea from catastrophic situation (i.e., the global
state may be arbitrarily far from a legal state) without exé (e.g, human) intervention in finite time.

Although there already exists self-stabilizing solutidosthe MST construction, none of them consi-
dered the extension of the Gallager, Humblet and Spira #lfigor(GHS) to self-stabilizing settings. In-
terestingly, this algorithm unifies the best propertiesdesigning large scale MSTs : it is fast and totally
decentralized and it does not rely on any global paramettreo$ystem. Our work proposes an extension
of this algorithm to self-stabilizing settings. Our extEmsuses only logarithmic memory and preserves all
the good characteristics of the original solution in terrheamvergence time and scalability.

Related Works. Gupta and Srimani presented in [GS03] the first self-stabii algorithm for the MST
problem. This MST construction is based on the computatf@il shortest paths (for a certain cost func-
tion) between all pairs of nodes. The time complexity anmeuahby the authorg)(n) stays only in the
particular synchronous settings considered by the autasynchronous setting the complexityign?)
rounds. A different approach was proposed by Higham andy[idh01]. The algorithm checks every edge
whether it eventually belongs to the MST or not. The memosdusy each node i©(logn) bits, but the
information exchanged between neighboring nodes is of@G{zdogn) bits, thus only slightly improving
that of [GS03]. Its computation is expensive in large scgtgesns. The time complexity of this approach
is O(mD) rounds wheren andD are the number of edges and the diameter of the network ridsggd.e.,
O(n®) rounds in the worst case.

TLa version longue de ce papier a été publié a la conéer@iSC 2010 et est supporté par le préj&R SHAMAN

L. Blin and S. Dolev and M. Potop-Butucaru and S. Rovedakis

a priori knowledge space complexity convergence

time

[GS03] network size and O(nlogn) Q(n?)
the nodes in the networ}
[HLO1] upper bound on diameter O(logn) o(n®)
+messages of sizé(nlogn)

[BPBRT09] none O(logn) o(n®)
This paper and [BDPBR10] none O(log?n) 0o(n?)

TAB. 1: Distributed Self-Stabilizing algorithms for the MST prebi

The main drawback of these solutions is its lack of scalgtsince each node has to know and maintain
global parameter of the system (network size, diametgr|n.[BPBRTO09] we proposed a self-stabilizing
loop-free algorithm for the MST problem. The proposed sotuimproves on the memory space usage
since each participant needs oflylogn) bits while preserving the same time complexity as the allgori
in [HLO1].

Contributions. Our contribution published also in [BDPBR10] is therefom@told. We propose for the
first time in self-stabilizing settings @(log?n) bits scheme for computing the nearest common ancestor.
Furthermore, based on this scheme, we describe a new akilizhg algorithm for the MST problem. An
exhaustive state of art is proposed in Table 1. Our algordbes not make any assumption on the network
size (including upper bounds) or the existence of an a pkiwoivn root. Moreover, to our knowledge our
solution has the best existing space/time compromise beegxisting self-stabilizing MST solutions. The
convergence time i©(n?) asynchronous rounds and the memory space per ndigdig® n) bits.

2 Model and notations

We consider an undirected weighted connected net@ok(V, E,w) whereV is the set of nodef is
the set of edges andl: E — N is a positive cost function. We notethe number of nodes in the network
(i.e., V| = n). Nodes represent processors and edges represent hatisactommunication links. Each
nodev has a unique identifier notéd,. The processors asynchronously execute their progranssstiong
of a set of local variables and a finite set of rules.

In the sequel we consider the system can start in any confignrdhat is, the local state of a node (the
value of the local variables of the node and the state of iigiam counter) can be corrupted. We don’t
make any assumption on the bound of corrupted nodes. In th&t wase all the nodes in the system may
startin a corrupted configuration. In order to tackle thasét$ we use self-stabilization techniques [Dol00].

3 Our self-stabilizing solution to MST problem

The central notion in the GHS approach [GHS83] is the notibfragment A fragment is a partial
spanning tree of the graph, i.e., a fragment is a tree whiahsp subset of nodes. Anitgoing edgef a
fragmentF is an edge with a unique endpointin Theminimum-weight outgoing ed@é a fragment is
the outgoing edge df with minimum weight, denoted in the following &&¢. In the GHS construction,
initially each node is a fragment. For each fragménthe GHS algorithm identifies theéEx and merges
the two fragments endpoints &Er. The merging process is recursively repeated until a sifiglgment
remains, which is a MST.

Our solution combines both the blue and red rules [ST83].blhe rule application needs that each node
identifies its own fragment. The red rule requires that nadestify the fundamental cycle corresponding
to every adjacent non-tree-edge. In both cases, we use-stahilizing labeling scheme (see Section 3.1)
which provides at each node a distinct informative labehgbat the nearest common ancestor of two nodes
can be identified based only on the labels of these nodes, Thriadvantage of this labeling is twofold.
First the labeling helps nodes to identify their fragme®iscond, given any non-tree edge- (u,v), the
path in the tree going frora to the nearest common ancestoandyv, then from there tw, and finally
back tou by traversingg, constitute théundamental cycle C

Construction auto-stabilisante d'un arbre couvrant degmminimum

3.1 Self-stabilizing Nearest Common Ancestor Labeling scheme

Our labeling scheme uses the notiondefivyandlight edges introduced in [HT84]. In a treehaavy
edge is an edge between a nadand its largest subtree. The other edges betwesrd its other children
are tagged alight edges. We extend this edge designation to the nodes, aviedalledheavy nodéf the
edge with its parent is a heavy edge, otherwigecalledlight node Moreover, the root of a tree is a heavy
node. The idea of the scheme is as follows. A tree is recuysigded into disjoint paths : theeavy paths
and thelight pathswhich contain only heavy and light edges respectively.

To label the nodes in a trek, the size of each subtree is needed to identify heavy edgeschatlevel
of T. To this end, each nodemaintains a variable namesize, which is a pair of integers : (i) a local
estimation of the size of the subtree rooted/,aand (ii) the identifier ofv’'s child in the largest subtree.
These information are used o identify the heavy edge leading to a child. The computatibsize, is
processed in a bottom-up fashion. A leaf ned&s no child, thereforeize = (1, L). Moreover, each node
vin T maintains a pointer towards its parent stored in varipple

Based on the heavy and light nodes in a ffg@ising locally variablesize), each node can compute its
label in a top-down fashion. The label of a nodgtored in variablé, is a list of pair of integers. Each pair
of the list contains : (i) the identifier of a node, and (ii) ttistance to the root of the heavy path. The oot
of a fragment has a label equal(ldy, 0), respectively the identifier afand the distance to itself, otherwise
it corrects its label. When a nodes tagged by its parent as a heavy node (8i2g [1] = Idy), thenu takes
the label of its parent but it increases by one the distantbeolast pair of the parent label. For example,
if the label ofu’s parent is(3,1)(2,0) thenu’s label is equal td3,1)(2,1). When a node is tagged by its
parentv as a light node (i.esize [1] # Idy), thenu becomes the root of a heavy path and it takes the label
of its parent to which it adds a pair of integers composedsafigntifier and a zero distance. For example,
if the label ofu’'s parent is(3,1)(2,0) andu’s identifier is 14 thenu's label is equal td3,1)(2,0)(14,0). A
heavy or light node with a locally incorrect label can cotiigxlabel using the one of its parent in the tree.

The labels given by this scheme to the nodes of a tree can leeeardollowing a lexicographic order.
Given two nodesl, v in a treeT, the label of thenearest common ancestof u andv is obtained by taking
the smallest (following the lexicographic order) commort geonsidering node identifiers) betwegrand
4y. For example, if the label af (resp.v) is (3,2)(13,0) (resp.(3,1)(2,1)) then the common part iS3, 2)
and(3,1) which gives(3,1) for the nearest common ancestor labeld@ndv.

3.2 Self-stabilizing algorithm for the minimum spanning tree problem

In this section we describe our self-stabilizing algoritfon constructing the minimum spanning tree.
our algorithm executes two phases : the first phase correetgxisting structure (Tree, cycle) and the
second phase merges the fragments. Our algorithm uses tBea@ptoach to merge the fragments using
minimum outgoing edges to construct a spanning tree, aretetethe edge of maximum weight in each
fundamental cycle to recover from invalid configurationsbbth cases, it uses the labeling algorithm to
identify fragments and fundamental cycles. In the follagyimergingoperations have a higher priority
than therecoveringoperations. That is, the system recovers from an invalidigoration iff no merging
operation is possible.

The minimum weighted edge. According to the labeling scheme described in Section 3vénga (cor-
rect) fragmenf any nodev € F is able to locally detect among its neighbors the ones whatbriy toF
by comparing the labels. To this endgomputes the nearest common ancestor with its neighborsidé
no common ancestor with a neighho(i.e., the labels are totally distinct) thenbelongs to a fragment
different thanv's fragment, otherwise andv are in the same fragment.

Each fragment computes its minimum outgoing edge in a botipfiashion. To this end, each node sends
to its parent the outgoing edge of minimum weight among ija@ht edges and edges sent by children. To
store the information related to an outgoing eége (X,y), each node maintains a variablenwe, which
is a pair of values : (i) the weight of edgeand (ii) the label of the common ancestoncéndy. When
the root of the fragment has computed its outgoing edgleminimum weight (i.e., the minimum outgoing
edge of the fragment), then it can start a merging operatiesdribed in Paragraph "Fragments merging”).
The edgee belongs to a MST and can be used to perform a merging betwedwthadjacent fragments.

L. Blin and S. Dolev and M. Potop-Butucaru and S. Rovedakis

When a node in fragmentF has no adjacent outgoing edge or outgoing edge sent by g tigdv
sends to its parent information concerninggrnal edge®of F (edges not irfF whose extremity nodes are
in F). These edges are sent in a bottom-up fashida following fundamental cycles. These information
are used to repair the fragment if necessary (describedagReph "MST correction”).

Fragmentsmerging. When the minimum outgoing edge= (u,v) of a fragment, is computed by the
rootr of K, then a merging operation is startedrbyfo this end, the parent pointers are reversed on the path
betweerr andv in F, (i.e., following the nodes in K, such thamwe = mwe). During this reorientation
the labels are locked. Thatis, each nads the path betweenandyv (includingr and excluding) changes

its label to :¢x := (L, L). Whenv becomes the root of the fragméRtit can merge with the fragmef,.

Note that, the node amongandv with the smallest identifier becomes the root of the new fragti given

by the merging of, andF,. After the addition of the outgoing edgethe labeling process is re-started in
F. The merging phase is repeated until a single fragment &irodd (i.e., there is no outgoing edges of a
fragment).

MST correction. The system can start in any arbitrary configuration, so wet imigble to detect incor-
rect fragments (i.e., with an edge part of no MST). Therefamgodev with an incoherent parent (which is
not in its neighborhood) or present in a cycle (its label istamed or is inferior to its parent label) becomes
the root of a fragment by setting its parent pointer to void &slabel to(ldy, 0).

Consider a part of a fragment with no outgoing edge. In thée caach nodepiggy back up information
concerning internal edges (stored in variaiiee). The edges are sent following an order on the label of
the nearest common ancestor associated to edges (theaneesmtest to the root of fragment first). The
information concerning an internal edgis sent following the fundamental cycle®&nd its transmission is
stopped at the nearest common ancestor associagetf the parenk of a nodev has the same information
with v about an internal edgeand the weight of the edge(v,x) > w(e) then the edgév,x) is removed
from the tree, sincév,x) can be the edge of maximum weight in the fundamental dggle

Theorem 1 Starting from any arbitrary configuration our algorithm eweally constructs a minimum
spanning tree in at most(@?) rounds using (1]og2 n) bits of memory per node.

Références

[BDPBR10] Lélia Blin, Shlomi Dolev, Maria Gradinariu PgeButucaru, and Stephane Rovedakis. Fast
self-stabilizing minimum spanning tree construction ngstompact nearest common ances-
tor labeling scheme. IBISC, pages 480—494, 2010.

[BPBRTO09] Lélia Blin, Maria Potop-Butucaru, Stephane BRdakis, and Sébastien Tixeuil. A new self-
stabilizing minimum spanning tree construction with Icfoge property. I'DISC, pages 407—
422, 20009.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems initgpof distributed control.Commun. ACM
17(11) :643-644, 1974.

[Dol00] S. Dolev. Self-StabilizationMIT Press, March 2000.

[GHS83] Robert G. Gallager, Pierre A. Humblet, and Philip $fpiira. A distributed algorithm for
minimum-weight spanning treeACM Trans. Program. Lang. Sysb(1) :66—77, 1983.

[GSO03] Sandeep K. S. Gupta and Pradip K. Srimani. Self{&tatg multicast protocols for ad hoc
networks.J. Parallel Distrib. Comput.63(1) :87-96, 2003.

[HLO1] Lisa Higham and Zhiying Liang. Self-stabilizing mimum spanning tree construction on
message-passing networks.DiSC, pages 194—-208, 2001.

[HT84] Dov Harel and Robert Endre Tarjan. Fast algorithmsfifeding nearest common ancestors.
SIAM J. Comput.13(2) :338—-355, 1984.
[ST83] Daniel Dominic Sleator and Robert Endre Tarjan. Aadsiructure for dynamic treeslJ.

Comput. Syst. S¢i26(3) :362-391, 1983.

