
HAL Id: inria-00587591
https://hal.inria.fr/inria-00587591

Submitted on 20 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Construction auto-stabilisante d’un arbre couvrant de
poids minimum

Lélia Blin, Shlomi Dolev, Maria Potop-Butucaru, Stephane Rovedakis

To cite this version:
Lélia Blin, Shlomi Dolev, Maria Potop-Butucaru, Stephane Rovedakis. Construction auto-stabilisante
d’un arbre couvrant de poids minimum. 13es Rencontres Francophones sur les Aspects Algorithmiques
de Télécommunications (AlgoTel), May 2011, Cap Estérel, France. �inria-00587591�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49993907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00587591
https://hal.archives-ouvertes.fr

Construction auto-stabilisante d’un arbre
couvrant de poids minimum†

L. Blin1 and S. Dolev2 and M. Potop-Butucaru3 and S. Rovedakis4

1Université d’Evry-Val d’Essonne, 91000 Evry, France. LIP6-CNRS UMR 7606, France.
2Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
3Université Pierre & Marie Curie - Paris 6, 75005 Paris, France. LIP6-CNRS UMR 7606, INRIA REGAL, France.
4Laboratoire CEDRIC-EA1395 - CNAM, 292 Rue St Martin, 75141 Paris Cedex 03, France.

L’arbre couvrant de poids minimum offre une solution de routage ayant le double avantage de donner une structure de
communication simple et économique. Dans ce papier, nous présentons un nouvel algorithme auto-stabilisant pour la
construction d’un arbre couvrant de poids minimum dans un système distribué et asynchrone. Notre solution améliore
l’existant en permettant d’atteindre un meilleur compromis entre le temps de convergence,O(n2), et la complexité
en mémoire nécessaire sur chaque noeud du réseau,O(log2n). Le temps de convergence est amélioré d’un facteur
multiplicatif Θ(n) au prix d’un facteur multiplicatif deO(logn) sur la mémoire. La clé de voûte de ce travail est
l’utilisation d’une méthode de nommage auto-stabilisante permettant d’identifier pour toute paire de noeuds le plus
proche ancêtre commun dans l’arbre.

Keywords: Algorithme distribué, Auto-stabilisation, Construction d’arbre couvrant de poids minimum.

1 Introduction
Since its introduction in a centralized context, the minimum spanning tree (or MST) problem gained a

benchmark status in distributed computing thanks to the seminal work of Gallager, Humblet and Spira [GHS83].
The emergence of large scale and dynamic systems, often subject to transient faults, revives the study

of scalable and self-stabilizing algorithms. Ascalablealgorithm does not rely on any global parameter of
the system (e.g.upper bound on the number of nodes or the diameter).Self-stabilizationintroduced first by
Dijkstra in [Dij74] deals with the ability of a system to recover from catastrophic situation (i.e., the global
state may be arbitrarily far from a legal state) without external (e.g., human) intervention in finite time.

Although there already exists self-stabilizing solutionsfor the MST construction, none of them consi-
dered the extension of the Gallager, Humblet and Spira algorithm (GHS) to self-stabilizing settings. In-
terestingly, this algorithm unifies the best properties fordesigning large scale MSTs : it is fast and totally
decentralized and it does not rely on any global parameter ofthe system. Our work proposes an extension
of this algorithm to self-stabilizing settings. Our extension uses only logarithmic memory and preserves all
the good characteristics of the original solution in terms of convergence time and scalability.

Related Works. Gupta and Srimani presented in [GS03] the first self-stabilizing algorithm for the MST
problem. This MST construction is based on the computation of all shortest paths (for a certain cost func-
tion) between all pairs of nodes. The time complexity announced by the authors,O(n) stays only in the
particular synchronous settings considered by the authors, in asynchronous setting the complexity isΩ(n2)
rounds. A different approach was proposed by Higham and Liang [HL01]. The algorithm checks every edge
whether it eventually belongs to the MST or not. The memory used by each node isO(logn) bits, but the
information exchanged between neighboring nodes is of sizeO(nlogn) bits, thus only slightly improving
that of [GS03]. Its computation is expensive in large scale systems. The time complexity of this approach
is O(mD) rounds wheremandD are the number of edges and the diameter of the network respectively, i.e.,
O(n3) rounds in the worst case.

†La version longue de ce papier a été publié à la conférence DISC 2010 et est supporté par le projetANR SHAMAN.

L. Blin and S. Dolev and M. Potop-Butucaru and S. Rovedakis

a priori knowledge space complexity convergence
time

[GS03] network size and O(nlogn) Ω(n2)
the nodes in the network

[HL01] upper bound on diameter O(logn) O(n3)
+messages of sizeO(nlogn)

[BPBRT09] none O(logn) O(n3)

This paper and [BDPBR10] none O(log2n) O(n2)

TAB. 1: Distributed Self-Stabilizing algorithms for the MST problem

The main drawback of these solutions is its lack of scalability since each node has to know and maintain
global parameter of the system (network size, diameter, ...). In [BPBRT09] we proposed a self-stabilizing
loop-free algorithm for the MST problem. The proposed solution improves on the memory space usage
since each participant needs onlyO(logn) bits while preserving the same time complexity as the algorithm
in [HL01].

Contributions. Our contribution published also in [BDPBR10] is therefore twofold. We propose for the
first time in self-stabilizing settings aO(log2n) bits scheme for computing the nearest common ancestor.
Furthermore, based on this scheme, we describe a new self-stabilizing algorithm for the MST problem. An
exhaustive state of art is proposed in Table 1. Our algorithmdoes not make any assumption on the network
size (including upper bounds) or the existence of an a prioriknown root. Moreover, to our knowledge our
solution has the best existing space/time compromise over the existing self-stabilizing MST solutions. The
convergence time isO(n2) asynchronous rounds and the memory space per node isO(log2n) bits.

2 Model and notations
We consider an undirected weighted connected networkG = (V,E,w) whereV is the set of nodes,E is

the set of edges andw : E → N is a positive cost function. We noten the number of nodes in the network
(i.e., |V| = n). Nodes represent processors and edges represent bidirectional communication links. Each
nodev has a unique identifier notedIdv. The processors asynchronously execute their programs consisting
of a set of local variables and a finite set of rules.

In the sequel we consider the system can start in any configuration. That is, the local state of a node (the
value of the local variables of the node and the state of its program counter) can be corrupted. We don’t
make any assumption on the bound of corrupted nodes. In the worst case all the nodes in the system may
start in a corrupted configuration. In order to tackle these faults we use self-stabilization techniques [Dol00].

3 Our self-stabilizing solution to MST problem
The central notion in the GHS approach [GHS83] is the notion of fragment. A fragment is a partial

spanning tree of the graph, i.e., a fragment is a tree which spans a subset of nodes. Anoutgoing edgeof a
fragmentF is an edge with a unique endpoint inF. Theminimum-weight outgoing edgeof a fragmentF is
the outgoing edge ofF with minimum weight, denoted in the following asMEF . In the GHS construction,
initially each node is a fragment. For each fragmentF , the GHS algorithm identifies theMEF and merges
the two fragments endpoints ofMEF . The merging process is recursively repeated until a singlefragment
remains, which is a MST.

Our solution combines both the blue and red rules [ST83]. Theblue rule application needs that each node
identifies its own fragment. The red rule requires that nodesidentify the fundamental cycle corresponding
to every adjacent non-tree-edge. In both cases, we use a self-stabilizing labeling scheme (see Section 3.1)
which provides at each node a distinct informative label such that the nearest common ancestor of two nodes
can be identified based only on the labels of these nodes. Thus, the advantage of this labeling is twofold.
First the labeling helps nodes to identify their fragments.Second, given any non-tree edgee= (u,v), the
path in the tree going fromu to the nearest common ancestor ofu andv, then from there tov, and finally
back tou by traversinge, constitute thefundamental cycle Ce.

Construction auto-stabilisante d’un arbre couvrant de poids minimum

3.1 Self-stabilizing Nearest Common Ancestor Labeling scheme

Our labeling scheme uses the notions ofheavyandlight edges introduced in [HT84]. In a tree, aheavy
edge is an edge between a nodeu and its largest subtree. The other edges betweenu and its other children
are tagged aslight edges. We extend this edge designation to the nodes, a nodev is calledheavy nodeif the
edge with its parent is a heavy edge, otherwisev is calledlight node. Moreover, the root of a tree is a heavy
node. The idea of the scheme is as follows. A tree is recursively divided into disjoint paths : theheavy paths
and thelight pathswhich contain only heavy and light edges respectively.

To label the nodes in a treeT, the size of each subtree is needed to identify heavy edges ateach level
of T. To this end, each nodev maintains a variable namedsizev which is a pair of integers : (i) a local
estimation of the size of the subtree rooted atv, and (ii) the identifier ofv’s child in the largest subtree.
These information are used byv to identify the heavy edge leading to a child. The computation of sizev is
processed in a bottom-up fashion. A leaf nodev has no child, thereforesizev = (1,⊥). Moreover, each node
v in T maintains a pointer towards its parent stored in variablepv.

Based on the heavy and light nodes in a treeT (using locally variablesizev), each nodev can compute its
label in a top-down fashion. The label of a nodev stored in variableℓv is a list of pair of integers. Each pair
of the list contains : (i) the identifier of a node, and (ii) thedistance to the root of the heavy path. The rootv
of a fragment has a label equal to(Idv,0), respectively the identifier ofv and the distance to itself, otherwise
it corrects its label. When a nodeu is tagged by its parent as a heavy node (i.e.,sizepv

[1] = Idu), thenu takes
the label of its parent but it increases by one the distance ofthe last pair of the parent label. For example,
if the label ofu’s parent is(3,1)(2,0) thenu’s label is equal to(3,1)(2,1). When a nodeu is tagged by its
parentv as a light node (i.e.,sizepv

[1] 6= Idu), thenu becomes the root of a heavy path and it takes the label
of its parent to which it adds a pair of integers composed of its identifier and a zero distance. For example,
if the label ofu’s parent is(3,1)(2,0) andu’s identifier is 14 thenu’s label is equal to(3,1)(2,0)(14,0). A
heavy or light node with a locally incorrect label can correct its label using the one of its parent in the tree.

The labels given by this scheme to the nodes of a tree can be ordered following a lexicographic order.
Given two nodesu,v in a treeT, the label of thenearest common ancestorof u andv is obtained by taking
the smallest (following the lexicographic order) common part (considering node identifiers) betweenℓu and
ℓv. For example, if the label ofu (resp.v) is (3,2)(13,0) (resp.(3,1)(2,1)) then the common part is(3,2)
and(3,1) which gives(3,1) for the nearest common ancestor label foru andv.

3.2 Self-stabilizing algorithm for the minimum spanning tree problem
In this section we describe our self-stabilizing algorithmfor constructing the minimum spanning tree.

our algorithm executes two phases : the first phase corrects the existing structure (Tree, cycle) and the
second phase merges the fragments. Our algorithm uses the GHS approach to merge the fragments using
minimum outgoing edges to construct a spanning tree, and deletes the edge of maximum weight in each
fundamental cycle to recover from invalid configurations. In both cases, it uses the labeling algorithm to
identify fragments and fundamental cycles. In the following, mergingoperations have a higher priority
than therecoveringoperations. That is, the system recovers from an invalid configuration iff no merging
operation is possible.

The minimum weighted edge. According to the labeling scheme described in Section 3.1, given a (cor-
rect) fragmentF any nodev∈ F is able to locally detect among its neighbors the ones which belong toF
by comparing the labels. To this end,v computes the nearest common ancestor with its neighbors. Ifv has
no common ancestor with a neighboru (i.e., the labels are totally distinct) thenu belongs to a fragment
different thanv’s fragment, otherwiseu andv are in the same fragment.

Each fragment computes its minimum outgoing edge in a bottom-up fashion. To this end, each node sends
to its parent the outgoing edge of minimum weight among its adjacent edges and edges sent by children. To
store the information related to an outgoing edgee= (x,y), each nodev maintains a variablemwev which
is a pair of values : (i) the weight of edgee, and (ii) the label of the common ancestor ofx andy. When
the root of the fragment has computed its outgoing edgeeof minimum weight (i.e., the minimum outgoing
edge of the fragment), then it can start a merging operation (described in Paragraph ”Fragments merging”).
The edgee belongs to a MST and can be used to perform a merging between the two adjacent fragments.

L. Blin and S. Dolev and M. Potop-Butucaru and S. Rovedakis

When a nodev in fragmentF has no adjacent outgoing edge or outgoing edge sent by a child, thenv
sends to its parent information concerninginternal edgesof F (edges not inF whose extremity nodes are
in F). These edges are sent in a bottom-up fashion inF following fundamental cycles. These information
are used to repair the fragment if necessary (described in Paragraph ”MST correction”).

Fragments merging. When the minimum outgoing edgee= (u,v) of a fragmentFv is computed by the
rootr of Fv, then a merging operation is started byr. To this end, the parent pointers are reversed on the path
betweenr andv in Fv (i.e., following the nodesx in Fv such thatmwex = mwer). During this reorientation
the labels are locked. That is, each nodex on the path betweenr andv (includingr and excludingv) changes
its label to :ℓx := (⊥,⊥). Whenv becomes the root of the fragmentFv it can merge with the fragmentFu.
Note that, the node amongu andv with the smallest identifier becomes the root of the new fragmentF given
by the merging ofFu andFv. After the addition of the outgoing edgee, the labeling process is re-started in
F. The merging phase is repeated until a single fragment is obtained (i.e., there is no outgoing edges of a
fragment).

MST correction. The system can start in any arbitrary configuration, so we must be able to detect incor-
rect fragments (i.e., with an edge part of no MST). Therefore, a nodev with an incoherent parent (which is
not in its neighborhood) or present in a cycle (its label is contained or is inferior to its parent label) becomes
the root of a fragment by setting its parent pointer to void and its label to(Idv,0).

Consider a part of a fragment with no outgoing edge. In this case, each nodev piggy back up information
concerning internal edges (stored in variablemwev). The edges are sent following an order on the label of
the nearest common ancestor associated to edges (the ancestor nearest to the root of fragment first). The
information concerning an internal edgee is sent following the fundamental cycle ofeand its transmission is
stopped at the nearest common ancestor associated toe. If the parentx of a nodev has the same information
with v about an internal edgee and the weight of the edgew(v,x) > w(e) then the edge(v,x) is removed
from the tree, since(v,x) can be the edge of maximum weight in the fundamental cycleCe.

Theorem 1 Starting from any arbitrary configuration our algorithm eventually constructs a minimum
spanning tree in at most O(n2) rounds using O(log2n) bits of memory per node.

Références
[BDPBR10] Lélia Blin, Shlomi Dolev, Maria Gradinariu Potop-Butucaru, and Stephane Rovedakis. Fast

self-stabilizing minimum spanning tree construction - using compact nearest common ances-
tor labeling scheme. InDISC, pages 480–494, 2010.

[BPBRT09] Lélia Blin, Maria Potop-Butucaru, Stephane Rovedakis, and Sébastien Tixeuil. A new self-
stabilizing minimum spanning tree construction with loop-free property. InDISC, pages 407–
422, 2009.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.Commun. ACM,
17(11) :643–644, 1974.

[Dol00] S. Dolev.Self-Stabilization. MIT Press, March 2000.

[GHS83] Robert G. Gallager, Pierre A. Humblet, and Philip M.Spira. A distributed algorithm for
minimum-weight spanning trees.ACM Trans. Program. Lang. Syst., 5(1) :66–77, 1983.

[GS03] Sandeep K. S. Gupta and Pradip K. Srimani. Self-stabilizing multicast protocols for ad hoc
networks.J. Parallel Distrib. Comput., 63(1) :87–96, 2003.

[HL01] Lisa Higham and Zhiying Liang. Self-stabilizing minimum spanning tree construction on
message-passing networks. InDISC, pages 194–208, 2001.

[HT84] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2) :338–355, 1984.

[ST83] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees.J.
Comput. Syst. Sci., 26(3) :362–391, 1983.

