
HAL Id: inria-00587717
https://hal.inria.fr/inria-00587717

Submitted on 21 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Characterization of graphs and digraphs with small
process number

David Coudert, Jean-Sébastien Sereni

To cite this version:
David Coudert, Jean-Sébastien Sereni. Characterization of graphs and digraphs with small
process number. Discrete Applied Mathematics, Elsevier, 2011, 159 (11), pp.1094-1109.
�10.1016/j.dam.2011.03.010�. �inria-00587717�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49993795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00587717
https://hal.archives-ouvertes.fr

Characterization of graphs and digraphs with small process number

David Coudert
MASCOTTE, INRIA, I3S, CNRS, Univ. Nice Sophia

Sophia Antipolis, France
david.coudert@inria.fr

Jean-Sébastien Sereni
CNRS (LIAFA, Université Denis Diderot)

Paris, France
and

Department of Applied Mathematics (KAM)
Charles University

Prague, Czech Republic.
sereni@kam.mff.cuni.cz

April 21, 2011

Abstract

We introduce the process number of a digraph as a tool to study rerouting issues in wdm
networks. This parameter is closely related to the vertex separation (or pathwidth). We consider
the recognition and the characterization of (di)graphs with small process number. In particular,
we give a linear time algorithm to recognize (and process) graphs with process number at most
2, along with a characterization in terms of forbidden minors, and a structural description. As
for digraphs with process number 2, we exhibit a characterization that allows one to recognize
(and process) them in polynomial time.

Keywords: Rerouting, process number, vertex separation, pathwidth.

1 Introduction

In connection oriented networks such as Wavelength Division Multiplexing (wdm) networks, each
connection request — called a lightpath in this context — is assigned a route in the network
and a wavelength, under the constraint that two lightpaths sharing a link must have different
wavelengths. Network operators have to change regularly (e.g., on a hourly or daily basis) the
routing of the ligthpaths to improve the usage of resources with the evolution of the traffic patterns
(addition and deletion of lightpaths), thereby reducing the blocking probability, or to stop using
a particular link before a maintenance operation. For example, in Fig. 1 the new lightpath (3,6)
cannot be accepted without modifying the routing of the lightpath (5,6). Another example is
given in Fig. 2: a maintenance operation has to be performed on the link {5, 8}. With the initial
routing of Fig. 2(a), the lightpath u has to be rerouted. However, there is no available route from
node 4 to node 5 in the network with the current routing of lightpaths v, w, x, and y. Hence,

1

2 3 4 5 61

1

2

(a) Routing of lightpaths (1,3), (1,4), and (5,6)

2 3 4 5 61

1

2

(b) Routing of lightpaths (1,3), (1,4), (5,6) and
(3,6)

Figure 1: Example of a blocked lightpath in a wdm network. The network topology is a 6-node-
path with 2 wavelengths. In Fig. 1(a), the lightpath (3,6) will be rejected although the routing of
Fig. 1(b) is possible, up to the rerouting of lightpath (5,6).

7 8 9

6

32

54

1

u

v w

y

x

(a) Routing R.

7 8 9

6

32

54

1

yu

v w

x

(b) Routing R′.

x

v

u w

(c) Dependency digraph D.

Figure 2: Figs. 2(a) and 2(b) give two routings, R and R′, for the set of lightpaths {u, v, w, x, y} on
the 3× 3 grid. Each link of the grid is symmetric and has capacity 1 (i.e., a single wavelength) in
both directions. Fig. 2(c) presents the dependency digraph for switching from routing R to routing
R′.

lightpaths other than u also have to be rerouted so as to obtain an appropriate routing, like the
one shown in Fig. 2(b). Therefore, a maintenance operation on a particular link of the network
may impact more lightpaths than those using that link. This raises several questions, including
“how to compute the new routing knowing the current one?” and “how to perform the effective
switching of lightpaths from the current routing to the target routing?”. These questions arise in
various connection oriented technological contexts such as circuit-switched telephone networks [1],
wdm networks [20, 22, 2, 7, 9], or Multi-Protocol Label Switching (mpls) networks [3, 16, 19].

Such questions have been widely addressed in the literature (See the surveys [29, 30]). A
classical approach is based on the Move-To-Vacant (MTV) scheme [20, 22, 7]. It consists of a
sequence of switching of lightpaths. Basically, the scheme is to choose a lightpath, compute a new
route for it using available resources, move the lightpath to this new route and repeat with another
lightpath until the measure of an appropriate cost function reaches a certain threshold (e.g., overall
usage of resources, availability of a desired route). The difficulties here are thus to guarantee the
convergence of the algorithm and to control the number of route changes (or convergence time).
Integer linear programs to address this problem have been proposed [31, 19] as well as heuristic
algorithms [20, 22, 16, 3, 4, 7]. However, such a scheme would work for the example of Fig. 1,
but fail for the example of Fig. 2 since no such sequence exists in this case. Following previous

2

works [15], we consider in this paper a different approach: we assume that both the initial and
final routings are given and we focus on determining the best strategy to switch lightpaths from
the initial routing to the final one, possibly with interrupting some lightpaths.

The concepts of make-before-break and break-before-make have been standardized for mpls
networks. A make-before-break consists in establishing the new route using available resources
before effectively switching the lightpath, while a break-before-make starts by interrupting the
lightpath before establishing the new route. Previous approaches have only considered the usage
of make-before-break, but as we can see with the example of Fig. 2, it is not sufficient to switch
lightpaths from one routing to another. On the other hand, if we are allowed to perform a break-
before-make on lightpath x, then it is possible to reroute lightpaths u, v, and w using make-before-
break’s, as shown in Fig. 3.

To model the problem, Jose and Somani [15] have introduced the notion of dependency digraphs.
Given a wdm network, a set of lightpaths I and two different routings for it in the network, R and
R′, the dependency digraph D = (V,E) has one vertex for each lightpath with different routes in
R and R′, and there is an arc in E from vertex u ∈ V to vertex v ∈ V if the routing of u in R′ aims
to use resources that are in use by v in R, i.e., if R′(u) ∩ R(v) 6= ∅, where R(u) is the routing of
the lightpath u in R. In other words, an arc (u, v) ∈ E models the fact that the lightpath v must
be switched before the lightpath u. In the example of Fig. 1, the dependency digraph contains
the single vertex associated with the lightpath (5,6) and no arcs. In the example of Fig. 2, the
dependency digraph is more complex and is given in Fig. 2(c).

When the dependency digraph is acyclic (a directed acyclic graph, dag), the scheduling of the
sequence of rerouting is straightforward and no break-before-make is needed. Indeed, a vertex v of
the dependency digraph without outneighbors means that the resources needed by the lightpath v
in the new routing are available. So it can be switched directly using a make-before-break, as it is
for instance the case in Fig. 1. Now, the lightpath associated with a vertex u of the dag will be
switched after the switching of all the outneighbors of u, and so the sequence of switching starts
from the leafs and finishes at the roots.

However, as can be seen in Fig. 2(c), the dependency digraph may contain cycles, in which
case the use of break-before-make is required. When we break (or interrupt) a lightpath, the
corresponding resources are released and can be used by other lightpaths. To model the usage of
break-before-make, we introduce the notion of agents. Placing an agent on a vertex (we then say
that the vertex is covered by an agent) of the dependency digraph models the fact that we interrupt
the associated lightpath. Furthermore, a lightpath can be rerouted if each of the outneighbors of
the associated vertex in the dependency digraph either has already been rerouted or is covered by
an agent. In the example of Fig. 3, placing an agent on vertex x allows us to reroute w, and then
v, u, and finally x. For convenience, we say that a vertex u of the dependency digraph has been
processed if the associated lightpath has been rerouted, and a vertex can be processed if and only
if all its outneighbors are either processed or covered by an agent.

The role of an agent in the dependency digraph, and so the role of break-before-make’s, is to
break dependency cycles. Jose and Somani [15] proposed a heuristic algorithm to minimize the
number of agents needed to break all the cycles. In fact, they actually design a heuristic algorithm
for the minimum feedback vertex set (mfvs) problem [14], that is the size of a smallest set X of
vertices such that every directed cycle contains a vertex of X. Following an earlier work [10], we
consider the objective of minimizing the number of agents simultaneously placed in the dependency
digraph. When all outneighbors of a vertex u covered by an agent are either processed or covered

3

7 8 9

6

32

54

1

u

v w

y

x

x

v

u w

(a) Initial routing and dependency digraph from rout-
ing R to routing R′.

7 8 9

6

32

54

1

u

v w

y

v

u w

x

(b) Put an agent on vertex x, i.e., break request x.

7 8 9

6

32

54

1

u

v

y

w
v

u w

x

(c) Process vertex w, i.e., reroute request w.

7 8 9

6

32

54

1

u

y

v w

u w

v

x

(d) Process vertex v, i.e., reroute request v.

7 8 9

6

32

54

1

y

v w

u
u w

v

x

(e) Process vertex u, i.e., reroute request u.

7 8 9

6

32

54

1

yu

v w

x

u w

v

x

(f) Remove the agent from vertex x and process it,
i.e., restore and route request x.

Figure 3: Processing of the example of Fig. 2: processed vertices are in gray and vertices covered
by an agent are in black. In Fig. 3(b), every vertex has at least one outneighbor in the initial
state, so we must put an agent on some vertex. We choose vertex x in Fig. 3(b). Since vertex w
now satisfies that all its outneighbors are either processed or covered by an agent, we process it
in Fig. 3(c). Then we can process vertex v in Fig. 3(d) and vertex u in Fig. 3(e). Finally, we can
process vertex x in Fig. 3(f), which frees the agent.

by an agent, then we can process u and release the agent, which can after be reused for another
vertex if needed. The motivation here is to reduce the amount of traffic simultaneously blocked in
the network, and so to keep the throughput of the network as high as possible at any step of the
reconfiguration process.

While independent switching of requests can be made simultaneously, we consider, for matter of
exposition, that only one request is switched per unit of time. So only one vertex of the dependency

4

digraph is processed per unit of time. Also, observe that once covered by an agent, a vertex cannot
recover its original state: it has to be processed. Nevertheless, it may be covered by the agent as
long as desired. Processing a vertex covered by an agent frees the agent, so that it can immediately
be used to cover another vertex. The digraph is processed when all its vertices have been processed.
A process strategy is a sequence of the three following actions that leads to rerouting all the requests
with respect to the constraints represented by the dependency digraph D.

(R1) Put an agent on a vertex (interrupt a connection).

(R2) Remove an agent from a vertex if each of its outneighbors is either processed or occupied by
an agent (reroute a connection to its final route when destination resources are available).
The vertex is now processed (the connection has been rerouted).

(R3) Process a vertex if all its outneighbors are occupied by an agent (destination resources are
available, and so the connection can be rerouted).

If we do not want to use any agents, then such a vertex ordering exists if and only if the digraph is
acyclic; and in this case a processing order can be found in linear time. On the contrary, if we can
use an arbitrary large number of agents, then we can first cover all the vertices by agents and next
process them in any order. We aim at minimizing the number of agents simultaneously in use. The
process number pn(D) of a digraph D is the minimum number of agents for which there exists a
process strategy for D. Notice that the process number is upper bounded by mfvs(D). A process
strategy that uses p (at most p, at least p, respectively) agents is a p-process strategy ((≤ p)-process
strategy, (≥ p)-process strategy, respectively).

The problem of determining the process number of a given dependency digraph has been proved
to be NP-complete and APX-complete [10]. In this paper, we focus on the problem of recognition
and characterization of digraphs and graphs with small process numbers. We start in Section 2 by
recalling some general results on the process number, its links with other graph invariants like the
node search number, and how to define it as a cops-and-robber game. Then, in Section 3, we first
identify graphs with connectivity equal to the process number (Theorem 4). Then, we characterize
graphs with process number at most 2 in terms of excluded minors. Techniques used to this end
are close to those of Megiddo et al. [21], who gave the forbidden minors for graphs with search
number at most 2. We also provide a structural description (Theorem 9), from which we design
an algorithm to recognize (and, if possible, 2-process) such graphs in linear time in the number of
edges (Subsection 3.1.2). We turn to digraphs in Section 4. We characterize digraphs with process
number at most 2 (Proposition 17), and show how to recognize whether a graph D has process
number at most 2 (and if yes how to process it) in time O

(
n2(n + m)

)
, where n is the number of

vertices of D, and m its number of arcs (Proposition 20). We conclude the paper in Section 5 with
some open problems and directions for future works.

Let us give some notations before going further. The outneighborhood of X in D is

N+(X) := {v ∈ V | there exists u ∈ X such that (u, v) ∈ A} ,

The strict outneighborhood of X in D is

SN+
D(X) := N+

D (X) \X.

The (strict) outneighborhood of a vertex x ∈ V is the (strict) outneighborhood of {x}, and the
(strict) outneighborhood of a subgraph is the (strict) outneighborhood of its vertex set. The

5

inneighborhood of X is N−D (X) := N+
D′(X) where D′ is obtained from D by reversing the direction

of every arc. In all these notations, the subscript may be omitted if there is no risk of confusion.

2 General results on the process number

First, notice that the dependency digraph may contain loops. It may occur when the original and
final routes of a lightpath use the same wavelength on the same link of the network. In such cases,
and depending on the specificities of the router nodes of the network, it is not always possible to
establish the new route before switching the lightpath. So a break-before-make might be required.

Observation 1. Adding loops to the vertices of a digraph D increases the process number by at
most 1.

Proof. Consider a pn(D)-process strategy for D, let L be the order in which the vertices are
processed, and let D∗ be the digraph obtained from D by adding a loop to each vertex. Since
adding a loop to a vertex v forces to cover v by an agent before processing it, we can process D∗

following L using at most one extra agent: it suffices to ensure that an agent is placed on a vertex
before processing it. So, pn(D∗) ≤ pn(D) + 1.

Let us note that the bound of Observation 1 cannot be further reduced in general. For instance,
the process number of a directed symmetric path (on at least 4 vertices) is 2, and adding a loop on
each vertex yields a digraph with process number 2. On the opposite, the process number of the
digraph of Figure 2(c) is 1 but adding a loop on w yields a digraph with process number 2.

It is straightforward to construct a loopless digraph D′ such that pn(D) = pn(D′), replacing
each loop with a 2-cycle. Hence, unless stated otherwise, we consider in the sequel loopless digraphs.
When D is symmetric, we work for convenience on the underlying undirected graph G = (V,E).
So each undirected graph of this paper is to be seen as a symmetric digraph.

An important invariant for digraphs and graphs is the notion of vertex separation. Let D =
(V,A) be a digraph and X a subset of its vertices. A layout L of D is an ordering of the vertices,
i.e., a one-to-one correspondence between V and {1, 2, · · · , |V |}. The vertex separation of (D,L) is
vsL(D), the maximum over all indices i ∈ {1, 2, · · · , |V |} of the size of the strict outneighborhood of
{L−1(1), L−1(2), · · · , L−1(i)}. The vertex separation vs(D) of D is the minimum, over all orderings
L, of vsL(D). This notion naturally extends to undirected graphs: the vertex separation of an
undirected graph is the vertex separation of the corresponding symmetric digraph. Kinnersley [17]
proved that the vertex separation of any undirected graph equals its pathwidth, an important
invariant of graphs introduced by Robertson and Seymour [23].

The following result establishes a close link between the vertex separation and the process
number of a digraph. It was first proved by Coudert et al. [10], but we recall the proof here for
completeness.

Proposition 2 ([10]). For every digraph D, vs(D) 6 pn(D) 6 vs(D) + 1.

Proof. Consider a p-process strategy for D, and let L be the order in which the vertices are pro-
cessed. Observe that if the strategy is stopped just after the ith vertex has been processed, then
any non-processed vertex having a processed inneighbor must be covered by an agent. As this is
true for every i ∈ {1, 2, · · · , |V |}, this exactly means that the vertex separation of (D,L) is p, so
vs(D) 6 pn(D).

6

Let L be an ordering of the vertices of D, and let vsL(D) be the vertex separation of (D,L).
We consider the process strategy for D that consists of processing the vertices in the increasing
order induced by L. At any time, let P be the set of processed vertices and let M be the set of
vertices covered by an agent. At each step, we ensure that M equals the strict outneighborhood of
P in D.

The first vertex can be processed by covering its at most vsL(D) neighbors by agents. Suppose
that i > 1 vertices have been processed, and let v be the next vertex to be processed. If v /∈ M ,
then as the vertex separation of (D,L) is vsL(D) we infer that |M ∪ (N+(v) \ P)| 6 vsL(D). So
we can put an agent over all the outneighbors of v that are not in M ∪P and process v. This uses
at most vsL(D) agents simultaneously. If v ∈ M , then |M \ {v} ∪ (N+(v) \ P)| 6 vsL(D). Thus,
putting an agent over all the outneighbors of v not in M ∪P uses at most, and possibly, vsL(D)+1
agents simultaneously. Hence, pn(D) 6 vsL(D) + 1.

As determining the vertex separation of an arbitrary graph is APX-complete [12], the preceding
result shows that the process number problem also is.

The pathwidth of a graph is also its node-search number, and is closely related to other graph-
searching invariants [5, 27]. Indeed, the process number in undirected graphs can be defined in
terms of a cops-and-robber game, in which a team of agents aims to catch an invisible and infinitely
fast fugitive. The main difference with the node search number is that with the process number, a
vertex can be processed if all its neighbors are covered by an agent. Consequently, the fugitive is
caught not only when it occupies the same vertex as an agent, but also when it is surrounded by
agents. Furthermore, a process strategy is, by the definition, a monotone game. Further study of
the links between the process number, the vertex separation and also the search number has been
performed recently [10, 26]. We refer the reader to the recent survey of Fomin and Thilikos about
graph-searching [13].

The next proposition characterizes the optimal process-strategies for digraphs whose process
number is different from their vertex separation.

Proposition 3. For any digraph D, there exists a pn(D)-process strategy such that each vertex is
covered by an agent before being processed if and only if pn(D) = vs(D) + 1.

Proof. Suppose that the digraph D has a pn(D)-process strategy such that each vertex is covered
by an agent before being processed. Let v1, v2, · · · , vn be an enumeration of the vertices of D in the
order in which they are processed. For each i ∈ {1, 2, · · · , n}, we set Xi := {v1, v2, · · · , vi}. Stop
the strategy just before the vertex vi is processed. All the vertices in the strict outneighborhood
of Xi must be covered by agents, and so is also vi. Therefore,

∣∣SN+(Xi)
∣∣ 6 pn(D) − 1 for each

i ∈ {1, 2, · · · , n}, and hence vs(D) 6 pn(D)− 1. So, vs(D) = pn(D)− 1 by Proposition 2.
Conversely, suppose that pn(D) = vs(D)+1. Let H be the digraph obtained from D by adding

a loop to each vertex that does not have one already. Thus, any strategy that processes H must
cover each vertex by an agent before processing it. Moreover, vs(H) = vs(D) and pn(D) 6 pn(H).
Since pn(H) 6 vs(H) + 1 by Proposition 2, we infer that pn(H) = pn(D). Therefore, any pn(D)-
strategy for H is a pn(D)-strategy for D that covers each vertex by an agent before processing it,
as wanted.

7

3 Symmetric digraphs

Recall that for convenience, we work on the underlying undirected graphs of symmetric digraphs.
Given an undirected graph G = (V,E), the neighborhood NG(v) of a vertex v ∈ V is the set of all
the vertices adjacent to v in G. We start by characterizing graphs the connectivity of which equals
the process number.

Theorem 4. A p-connected graph G can be p-processed if and only if there exists a vertex v of
degree p such that G−N(v) is an independent set.

Proof. Let G be a p-connected graph. If there is a set of p vertices of G the deletion of which
induces an independent set, then G has process number at most p (and hence exactly p since the
minimum degree of G is at least p).

Conversely, let G be a p-connected graph with pn(G) = p and consider a p-process strategy
for G. Stop the strategy just before processing the first vertex v. Thus, all the neighbors of v are
covered by agents. By the p-connectivity, G has minimum degree p. Consequently, v has degree
exactly p. Let X be the set of vertices the neighborhood of which is contained in N(v) — and
hence is exactly N(v), by the p-connectivity. Without loss of generality, we can assume that the
first steps of the strategy consist in processing all the vertices of X. If all the vertices not in N(v)
have been processed, then the set N(v) fulfills the desired condition.

Otherwise, there exists a vertex w /∈ X ∪N(v). Define z to be the next vertex to be processed.
Since the strategy uses p agents and all the vertices of X have already been processed, we deduce
that z ∈ N(v). Moreover, N(z) ⊂ X ∪N(v). Thus, N(X ∪{z}) ⊆ X ∪N(v). Consequently, N(v)\
{z} is a set of p− 1 vertices the deletion of which disconnects w from A∪ {z}; a contradiction.

The class of graphs with process number at most p is closed under the operation of taking
minors. Indeed, assume that there exists a p-process strategy for a given graph G. Let G′ be the
minor of G obtained by contracting the edge uv into a single vertex w. Without loss of generality,
suppose that u is processed before v — hence v is covered by an agent when u is processed. Apply
the strategy to G′. The first step concerning the vertices u and v is to cover v by an agent. Instead,
put an agent on w. The remaining of the strategy can then be applied, ignoring the processing
of u, and processing w instead of v. Thus, G′ also has process number at most p. We formalize
this as an observation.

Observation 5. Let G be a graph and H a minor of G. Then pn(G) > pn(H).

We focus on graphs with small process number. The first interesting case is when p is 2, since
only independent sets can be 0-processed and only the stars have process number exactly 1. We
note here that Bodlaender proved that every minor-closed class of graphs that does not contain all
planar graphs has a linear time recognition algorithm [6]. This result follows from a linear time
algorithm that determines whether a graph has treewidth, or pathwidth, at most k, and if so finds
a tree decomposition, or a path decomposition, of width at most k, respectively. However, this
algorithm is rather impracticable [24].

3.1 Graphs with process number 2

In this section, we characterize graphs with process number at most 2. As pointed out in the
introduction, Megiddo et al. [21] gave the list of forbidden minors for graphs with search number

8

(a) K4 (b) H0 (c) H1 (d) H2 (e) C5

Figure 4: Some minor-obstructions for 2-processed graphs.

at most 2. We use similar techniques. Nevertheless, graphs with process number at most 2 can
have search number 3, and hence some extra work is needed to find the list of forbidden minors
in our case. Next, we derive from the characterization an algorithm to recognize and process such
graphs, which is linear (in the number of nodes and edges) in time and space.

3.1.1 Characterization of graphs with process number 2

We start by exhibiting two families M1 and M2 of graphs (15 graphs in total) with process number
greater than 2. We then prove that a graph has process number at most 2 if and only if none of
its minors is in M1 ∪M2. This is obtained via a structural characterization of those graphs. The
next lemma follows from Observations 5 and a straightforward checking.

Lemma 6. Let J be one of the graphs of Fig. 4. Every graph with a J-minor has process number
at least 3.

We now give a technical lemma, which is a direct analogue of a lemma for pathwidth. We do
not state it in full generality, since we only need the following particular case.

Lemma 7. Let G be a graph and v a vertex of G. If G−v has (at least) three connected components
with process number p then pn(G) > p.

Proof. Suppose on the contrary that pn(G) = p, and consider a p-process strategy of G. For
convenience Let J1, J2 and J3 be three components of G − v each of process number p. Observe
that if an agent covers a vertex of Ji + v, then there is at least one vertex of Ji + v covered by an
agent until all the vertices of Ji + v are processed.

Up to relabeling the components, we may assume that Ji is the ith component among J1, J2, J3
to have p of its vertices covered by agents (each of them must reach such a state since pn(Ji) = p).
Stop the strategy when p vertices of J2 are covered by agents. Then, no vertex of J1 is covered by
an agent, which implies that all the vertices of J1 are processed (by our choice of the ordering of
the components Ji and the remark above). Consequently, either a vertex of J3 + v is covered by
an agent, or all the vertices of J3 are processed. The former is impossible since we consider a p-
process strategy of G, and so is the latter by our ordering of the components Ji. This contradiction
concludes the proof.

Our next lemma exhibits another family of graphs with process number greater than 2. It
directly follows from Observation 5 and Lemma 7.

Lemma 8. Let J consist of three graphs J1, J2, J3 chosen among Ta, Tb, Tc and merged at vertex
(see Fig. 5). Every graph with a J-minor has process number at least 3.

9

(a) Ta (b) Tb (c) Tc

(d) T1 (e) T2

Figure 5: T1 and T2 are two of the ten non-isomorphic minor-obstructions for 2-processed graphs
obtained using three subgraphs chosen among Ta, Tb and Tc merged at vertex .

Let M1 be the collection of graphs depicted in Fig. 4 and let M2 be the collection of graphs
defined in Fig. 5. We observe that if a graph G has a cut-vertex v such that at least three components
of G−v are not stars, then G necessarily contains a minor in M2. This is true because a connected
graph that is not a star contains either a cycle, or a path on at least four vertices. This observation
is used several times in the sequel.

Given a vertex u of a graph G, a subgraph H of G − u is attached to u if the strict outneigh-
borhood of H in G is {u}. We can now give a complete characterization of graphs that can be
2-processed. Statement (c) of the following theorem is illustrated in Fig. 6.

u1 u2

u4

S1
4

u6

z17

z47S2
4

u3

z14

Figure 6: A typical graph with process number 2.

Theorem 9. For every connected graph G = (V,E), the following assertions are equivalent.

(a) pn(G) ≤ 2;

(b) No minor of G is in M1 ∪M2;

(c) There exists a partition (U,Z, T) of V such that

– U = {u1, · · · , ur} and Z =
{
zji

∣∣∣ 1 6 i 6 r and 1 6 j 6 ki

}
where k1, · · · , kr are non-

negative integers;

10

– each connected component of G[T] is a star S`
i , for some ` ∈ N and i ∈ {1, 2, · · · , r},

which is attached in G to the vertex ui of U ;

– each vertex zji ∈ Z has degree 2 in G, and its two neighbors are ui and ui+1; and

– N(ui) ∩ U ⊆ {ui−1, ui+1}, and if ki = 0 then ui+1 ∈ N(ui).

Proof. The fact that (a) implies (b) follows from Lemmas 6 and 8. Let us show now that (b) implies
(c).

We prove the assertion by induction on the number of vertices of G, the result being true if G
has at most 3 vertices.

Suppose first that G is 2-connected. Thus, G contains a cycle of length 3 or 4, because G has
no C5-minor. Assume that G contains a 3-cycle C. Note that condition (c) holds if G = C, so
let w be a vertex of G not in C. As G is 2-connected, there exists two paths from w to C that
intersect only on w. As G has no C5-minor, these two paths must be edges. Thus, w has two
neighbors u and u′ in C. Let v be the third vertex of C. Then, v is not adjacent to w since G has
no K4-minor. Moreover, the vertices v and w have degree 2 in G since G contains no H1-minor.
Therefore, G consists of the edge uu′ and some vertices of degree 2 adjacent to both u and u′, and
hence G fulfills condition (c). Assume now that G has no 3-cycle, hence G has an induced 4-cycle
C. If G is a 4-cycle, then the conclusion follows, so let us assume that w is a vertex of G not in
C. We deduce as before that w has at least 2-neighbors in C because G is 2-connected and has no
C5-minor. Since G has no 3-cycle, w has exactly 2 neighbors in C, which are not adjacent. So w
cannot have degree more than 2 in G, for otherwise G would contain an H0-minor. Consequently,
we infer that G consists of a 4-cycle uvu′v′ and some vertices of degree 2 adjacent to both u and
u′, and hence G satisfies condition (c).

We assume now that G has a cut-vertex w. Let X1, X2, · · ·Xb be the connected components of
G−w, and for each index i set Di := Xi +w. (Note that b > 2 since w is a cut-vertex.) If each Xi

is a star, then setting r := 1 and u1 := w shows that G satisfies (c). So we assume that X1 is not a
star. As observed earlier, at most two components Xi may not be stars since no minor of G is in
M1 ∪M2.

We assume first that only X1 is not a star. By the induction hypothesis, D1 fulfills condition
(c), so we let U ′ := {u′1, u′2, · · · , u′s}, Z ′ and T ′ be as stated in condition (c). Observe that we can
moreover assume that each vertex u′i with 1 < i < s is a cut-vertex of D1 such that exactly two
components of D1 − u′i are not stars. In particular, for i ∈ {1, s} the vertex u′i has a neighbor not
in U ′ ∪ Z ′. We now consider several cases regarding whether w ∈ U ′, w ∈ Z ′ or w ∈ T ′.

If w ∈ U ′ then the graph G fulfills condition (c), the components X2, · · · , Xn being just addi-
tional stars attached to w.

Second, suppose that w ∈ Z ′, and let u′i and u′i+1 be the two neighbours of w in D1. Notice
that one of u′i and u′i+1 has degree 2 in G, for otherwise G would contain H1 or H2 as a minor. By
symmetry, we may assume that u′i+1 has degree 2. As a result, if u′iu

′
i+1 is an edge then i + 1 = s.

Hence, setting U := (U ′ \ {u′s}) ∪ {w} and Z := (Z ′ \ {w}) ∪ {u′s} shows that G fulfills condition
(c). On the other hand, if u′i and u′i+1 are not adjacent, then since X1 is a connected component
of G−w there exists a vertex z′i 6= w of degree 2 that is adjacent to both u′i and u′i+1. Notice that
there is only one such vertex, for otherwise G would have an H1-minor. Furthermore, since G does
not contain H0 as a minor, we deduce that u′i has degree 2 in G. Consequently, X1 is a star on 3
vertices; a contradiction.

Finally, assume that w ∈ T ′. So, w belongs to a star S′ attached to u′i for some i ∈ {1, · · · , s}.
Suppose that w cannot be considered as the center of S′. Then, by our assumption on U ′ and

11

because no minor of G is in M2, we infer that i ∈ {1, s}, say i = 1. Next, there exists a vertex of
S′ − w that is adjacent to u1, since w is not a cut-vertex of D1. As a consequence, wu′1 is not an
edge of G, for otherwise H0, H1 or H2 would be a minor of G. Let w′ be the center of S′. Setting
U := U ′ ∪ {w,w′} yields the desired conclusion. If w is the center of S′, then a similar argument
(with w = w′) applies if i ∈ {1, s}. So, suppose that 1 < i < s. In this case, the subgraph induced
by ∪j>2Di is a star since no minor of G is in M2. Thus, G has the asserted structure.

It remains to deal with the case where another component Xi, say X2, is not a star. We
assert that there exists a decomposition (U1, Z1, T1) of D1 as in condition (c), with the extra-
condition that w is the vertex u1 of U1. This would yield the sought result, since then a similar
decomposition (U2, Z2, T2) of D2 exists (by symmetry), and hence setting U := U1∪U2, Z := Z1∪Z2

and T := T1 ∪ T2 would show that G fulfills condition (c), as wanted.
To see that the assertion holds, we consider a decomposition (U ′, Z ′, T ′) of D1 as in the previous

case, i.e., U ′ := {u′1, · · · , u′s}, Z ′ and T ′ are as given by condition (c) applied to the graph D1. We
make the same assumption on U ′, i.e., every vertex u′i with 1 < i < s is a cut-vertex of D1 and
exactly two components of D1 − u′i are not stars.

It follows that if w ∈ U ′ then w = u′i with i ∈ {1, s}, since every vertex u′j with 1 < j < s is a
cut-vertex of D1. So we now assume that w /∈ U ′.

We assert that w /∈ Z ′. To see this, suppose on the contrary that w ∈ Z ′ and let u′i and u′i+1 be
the two neighbors of w in D1. First, note that ui and ui+1 are adjacent, for otherwise both of them
would have degree 2 (since G has no H0-minor), and hence X1 would be a star; a contradiction.
As as a result, since G has no H1- or H2-minor, one of ui and ui+1 has degree 2. This contradicts
our choice of the decomposition (U ′, Z ′, T ′).

Consequently, w belongs to a star S′ attached to a vertex u′i of U ′. We infer that i ∈ {1, s} by
condition (b), for otherwise u′i would be a cut-vertex of G such that three connected components
of G − u′i are not stars (recall that X2 is not a star); a contradiction. By symmetry, assume that
i = 1. If w is a center of S′, then we set u0 := w. This yields the sought decomposition of D1:
the vertices of S′ adjacent only to w are stars attached to it, and those adjacent to both w and u1
become vertices zj0. And if w cannot be considered as the center of S′, then let w′ be the center of
S′. As previously, we know that there is a vertex of S −w adjacent to u1. Therefore, w cannot be
adjacent to u1. Thus, setting u0 := w′ and u−1 := w yields the sought decomposition of D1.

It remains to show that (c) implies (a). The graph G can be 2-processed as follows. (1) Cover
u1 by an agent and set i := 1; (2) While i < r: process all stars S`

i (this uses a second agent, which

is freed at the end), cover ui+1 by an agent, process all vertices zji , process the vertex ui (which
frees an agent) and increment i; (3) Process ur.

Theorem 9 directly implies the following corollary.

Corollary 10. Given two graphs H and H ′ that can be 2-processed and their corresponding vertices
u1, u2, . . . , ur for H and u′1, u

′
2, . . . , u

′
s for H ′, the graph G built from the union of H and H ′ and

where the vertices ur and u′1 are merged can be 2-processed.

3.1.2 An algorithm to recognize graphs with process number at most 2

We present a linear (in the number of nodes and edges) time and space complexity algorithm for
deciding whether a graph can be 2-processed. We use the notations of Theorem 9. The idea of
the algorithm is as follows. First, we note that we can decide whether a graph is a star in time

12

O(|N(v)|+ |N(w)|), where v is any vertex of that graph and w ∈ N(v), since one of them must
be a center of the star. Then, if we are given the vertex u1 of condition (c) of Theorem 9, we can
process all attached stars in time linear in their size, next identify the vertex u2, and so process the
whole graph. Also, starting from vertex ui and thanks to Corollary 10, we can identify in linear
time the vertex u1. Thus, the core of the algorithm is, starting from any vertex v, to identify in
linear time a vertex ui, which is done using a proper analysis of the sizes of the neighborhood at
distance 1 and the neighborhood at distance 2 of v.

Before going into details, we need some more ground work. We show that deciding whether a
graph can be 2-processed can be done in linear time. To this end, we first note in Proposition 11
that we can decide very efficiently if a graph can be 1-processed, and in Proposition 12 that we can
decide in linear time if a 2-connected graph can be 2-processed.

From now on, we assume that a vertex v of G contains the list N(v) of its neighbors, its degree, a
Boolean variable v.active set to false if the vertex is covered by an agent or if it has been processed,
and an integer — or a pointer — v.tag, which is set to w if the vertex v is visited while processing
the vertex w. We also assume that we can access any vertex of G in constant time, and finally
that nei(v, w) is a function that returns in constant time 1 if v ∈ N(w) and 0 otherwise. More
precisely, the function nei uses an array of size |V (G)| initialized to 0. Neighbors of v are set to 1
at the beginning of the processing phase and set back to 0 at the end of the processing phase which
can thus be done in time O(|N(v)|). So, the overall cost due to the management of nei for all the
vertices ui (see Theorem 9) is linear in the size of G.

Proposition 11. Given a graph G and a vertex v, we can decide in time O(|N(v)|+ |N(w)|) if G
can be 1-processed or not, where w is any neighbor of v.

Proof. Since a star has at most one vertex of degree greater than 1, it is sufficient to check that:

• if |N(v)| > 1, then every neighbor of v has degree 1. This can be checked in time O(|N(v)|);

• if |N(v)| = 1, then the unique neighbor w of v cannot have neighbors of degree greater than
1, which can be checked in time O(|N(w)|).

So, overall, the time complexity is O(|N(v)|+ |N(w)|).

Proposition 12. Given a 2-connected graph G, we can decide in linear time if G can be 2-processed.

Proof. Let n > 3 be the order of G. By Theorem 4, a graph with no-cutvertex can be 2-processed
if and only if it is either K2,n−2 or K2,n−2 plus an edge joining the two vertices of the bipartition
of size 2.

Now, checking that G is one of the two aforementioned graphs is done as follows. We choose
three arbitrary vertices of G. One of them must have degree 2 and we call u1 and u2 its neighbors.
Now it remains to check that the neighborhood of each vertex v ∈ V \ {u1, u2} is exactly {u1, u2}.
This procedure is linear in time.

Proposition 13. Given a graph G, we can check in linear time if pn(G) ≤ 2.

Proof. The proof consists of three steps. We use the notation of the assertion (c) of Theorem 9.
(1) First, we prove that if we are given a graph G and a vertex w, then we can decide in linear

time if G can be 2-processed under the constraint that w is the vertex u1 of the assertion (c)
of Theorem 9. To this end, let us analyze the algorithm described at the end of the proof of

13

Theorem 9. We set u1 := w, and we suppose that we are at step i > 1 of the loop. Recall that
non-active vertices are ignored.

• Cover the vertex ui by an agent: We just have to set the Boolean variable ui.active to false.

• Remove from G all subgraphs of kind S`
i : First, we have to determine which neighbors of

ui belong to the stars S`
i and which belong to U or Z. According to Proposition 11 we can

decide whether a neighbor v of ui belongs to a star or not in time O(|N(v)|+ |N(u)|), where
u is a neighbor of v, if any. Note that we consider the degree of v and u minus nei(ui, v) and
nei(ui, u), respectively. Simultaneously, we place a tag on all neighbors of v and u, to avoid
double checking. If v belongs to a star, we process it in time O(|N(v)|+ |N(u)|), setting the
Boolean variables active to false. So edges of stars will be visited twice during the processing
of ui. We also visit all edges incident to ui+1 once.

• Determine the vertex ui+1 and process all vertices zji : To determine ui+1, we have to check

that all remaining active neighbors of ui of degree 1 (i.e., vertices zji , if any) have the same
neighbor, which should also be the remaining neighbor of degree greater than 1. (Note that
there is such a neighbor for otherwise the previous step would have processed all the neighbors
of w.) Then it remains to process the vertices zji . To this end, we first cover ui+1 by an agent.
During this step, we visit all the remaining neighbors of ui once.

• Process the vertex ui, which frees an agent.

A graph G satisfies the assertion (c) of Theorem 9 with the vertex w being the vertex u1 if and
only if this algorithm processes the whole graph. Note that the algorithm fails if more than one
vertex is a candidate to be the vertex ui+1.

Overall, each edge of G is visited twice and a constant number of operations are performed for
each vertex. So we can process G in linear time.

(2) According to the previous step and Corollary 10, given a graph G and a vertex ui, we can
check in linear time if G can be 2-processed or not. Indeed, we process all subgraphs of G attached
to ui that can be 1-processed. Now, if G − ui has more than two components, then G cannot
be 2-processed, and the algorithm returns false. If G − ui has no connected components, then
pn(G) ≤ 2; while if it has only one connected component H, then we apply step (1) on H + ui
with w = ui. Otherwise, let H and H ′ be the two components of G − ui. We set J := H + ui
and J ′ := H ′ + ui. Let UJ = {uJ1 , · · · , uJt } and UJ ′

= {uJ ′
1 , · · · , uJ ′

t′ } be the vertices given by
Theorem 9(c) applied to J and J ′, respectively.

As observed in the proof of Theorem 9, the graph G has process number at most 2 if and only
if J and J ′ both satisfy the assertion (c) of Theorem 9 with ui being considered as the vertex uJ1
and the vertex uJ

′
1 . Thus, we apply step (1) on J with uJ1 = ui. If step (1) succeeds then we apply

step (1) on J ′ with uJ
′

1 = ui. Then G can be 2-processed if and only if this last step succeeds.

(3) It remains to find a vertex ui in G. We explain now a procedure that returns a vertex
which can safely be considered as one of the vertices ui, provided that G fulfills condition (c) of
Theorem 9. To this end, choose the vertex w of maximum degree of G. If vertex w has degree 2,
then G is either a path or a cycle and step (2) will give a correct answer with ui := w. If |N(w)| > 2,
then w is either the center of a star or a vertex ui. Notice that the vertices of degree greater than
2 of G are contained in U ∪ T . Moreover, they induce a forest, each tree of the forest being a

14

path of order at least 1 with an arbitrary number of vertices adjacent to precisely one vertex of the
path. In particular, w is at distance at most 2 of one of the vertices ui. For i ∈ {1, 2}, let ki be
the number of vertices of degree at least 3 that are at distance i of w. Let xi be such a vertex, for
i ∈ {1, 2}, if any. The following follows from our observations.

• If k1 + k2 = 0, then the procedure can safely return ui = w.

• If k1 = 1, then (at least) one of w or x1 can safely be returned as being a vertex ui. So, it is
sufficient to check if the subgraph of G − {w} containing x1 is a star. If it is the case, then
the procedure returns w and otherwise x1.

• The case where k1 = 0 and k2 = 1 is similar to the previous one, with x2 playing the role of
x1.

• If k1 ≥ 2, then w can be considered to be a vertex ui.

• if k1 = 0 and k2 > 2 then again w can be considered as a vertex ui.

To sum-up, we can find in linear time a vertex of U , which allows us to check in linear time if
G can be 2-processed. This concludes the proof.

A precise description of an algorithm to recognize graphs with process number 2 (and obtain a
2-process strategy, if any) is given by Algorithms 1, 2, 3, 4 and 5.

15

Algorithm 1 Function Test-2-process-from

Require: a connected graph G and a vertex u covered by an agent.
Ensure: returns succeed if the graph G can be 2-processed with first covering u by an agent.
1: w.active← false

2: CC2 ← false {CC2 indicates if a connected component that cannot be 1-processed has already
been found.}

3: for all v ∈ N(u) such that v.active and v.tag 6= u do
4: if Is-Star(G, v, u, u) then
5: Process-Star(G, v, u)
6: else if not CC2 then
7: CC2 ← true

8: else
9: return failed

10: if not CC2 then
11: return succeed

12: FC ← false {FC indicates if we have found a candidate for the next vertex to be visited, ui+1}
13: for all v ∈ N(u) such that v.active do
14: if not FC then
15: if |N(v)| = 2 then
16: u′ ← N(v)− {u}
17: else
18: u′ ← v
19: FC ← true

20: else if (|N(v)| = 2 and N(v)− {u} 6= {u′}) or (|N(v)| > 2 and v 6= u′) then
21: return failed

22: u.active← false

23: return Test-2-process-from(G, u′)

Algorithm 2 Function Is-Star

Require: a graph G, a vertex w that should belong to a star, a vertex u that should not be
considered in the neighborhoods, and a tag t.

Ensure: returns true if w belong to a star and false otherwise. All visited vertices receive tag t.
1: c← w
2: if |N(u)| − nei(u,w) = 1 then
3: c← N(w)− {u}
4: c.tag← u
5: bool← true

6: for all v ∈ N(c)− {u} do
7: if |N(v)| − nei(u, v) > 1 then
8: bool← false

9: v.tag← t
10: return bool

16

Algorithm 3 Procedure Process-Star

Require: a graph G, a vertex w that belongs to a star and a vertex u that should not be considered
in the neighborhoods.

Ensure: Inactivate all vertices of the star attached to w except u.
1: c← w
2: if |N(u)| − nei(u,w) = 1 then
3: c← N(w)− {u}
4: for all v ∈ N(c)− {u} do
5: v.active← false

Algorithm 4 Function First-Vertex

Require: a connected graph G.
Ensure: Returns a vertex of U (i.e., such that there exists a decomposition of G in which the

vertex returned belongs to U if pn(G) 6 2). {We first choose the vertex of maximum degree of
G.}

1: Let x0 be a vertex of G
2: for all v ∈ V (G) do
3: if |N(x0)| < |N(v)| then
4: x0 ← v
{Then we count the number of vertices of degree ≥ 3 at distance i of x0 for i ∈ {1, 2}.}

5: if |N(x0)| ≥ 3 then
6: k1 ← 0, k2 ← 0
7: for all v ∈ N(x0) do
8: if |N(v)| ≥ 3 then
9: x1 ← v

10: k1 ← k1 + 1
11: for all v ∈ N(N(x0))− {x0} do
12: if |N(v)| ≥ 3 then
13: x2 ← v
14: k2 ← k2 + 1

{Finally we decide whether x0, x1 or x2 should be returned.}
15: if k1 = 1 and Is-Star(G, x0, x1) then
16: u← x1
17: else if k1 = 0 and k2 = 1 and Is-Star(G, u, x2) then
18: u← x2
19: else
20: u← x0
21: return u

17

Algorithm 5 Main procedure to 2-process graphs

Require: a graph G.
Ensure: returns true if G can be 2-processed and false otherwise.
1: w ← First-Vertex(G)
2: Initialize nei to 0 and set neighbors of w to 1 O(n)
3: w.active← false, bool← false, tag← 0
4: for all v ∈ N(w) such that v.active and v.tag 6= w do
5: if Is-Star(G, v,w, tag) then
6: Process-Star(G, v,w)
7: else
8: tag← tag + 1
9: if tag > 0 and tag < 3 then

10: for all v ∈ N(w) such that v.tag = 1 do
11: v.active← false

12: x← v
13: w.active← true

14: bool← Test-2-process-from(G,w)
15: if tag = 2 and bool and x.tag = 1 then
16: for all v ∈ N(w) such that v.tag = 1 do
17: v.active← true

18: w.active← true

19: bool← Test-2-process-from(G,w)
20: return bool

18

4 Digraphs

In this section we characterize the classes of directed graphs with process number at most 2. We
start with some preliminary remarks.

A digraph can be 0-processed if and only if it has no cycles, that is if it is a dag. In particular
a direct path can be 0-processed. Using a Depth First Search [8], one can check in linear time
whether a digraph is acyclic.

Lemma 14. For any digraph D, the process number of D is equal to the maximum of the process
numbers of its strongly connected components.

Proof. Let dag-C be the acyclic digraph of the strongly connected components of D, i.e., each
vertex of dag-C corresponds to a strongly connected component of D, and there is an arc from a
vertex u to a vertex v if and only if there is an arc between the corresponding strongly connected
components in D. We can process each strongly connected component of D separately, in the order
induced by dag-C.

4.1 Digraphs with process number 1

First, observe that a strongly connected digraph D can be 1-processed if and only if there exists
a vertex u such that D − {u} is a dag. In other words, a strongly connected digraph D can be
1-processed if and only if it has a minimum feedback vertex set of size 1. This can be checked in
linear time [28, 25]. From this follows that we can characterize digraphs that can be 1-processed,
since a digraph D′ obtained from a digraph D by contracting each strongly connected component
Si to a vertex si is a dag. Thus, the following is true.

Lemma 15. A digraph D can be 1-processed if and only if each of its strongly connected components
can be 1-processed.

Forthwith a simple algorithm that decides in linear time and space complexity if a digraph can
be 1-processed. This algorithm is an alternative to the algorithms of Shamir [28] and Rosen [25],
which better fits our setting. In particular, it can compute the minimum feedback vertex set of
1-processed digraphs in linear time.

Proposition 16. Given a digraph D with n vertices and m arcs, deciding whether D can be 1-
processed can be done in time and space complexity O(n + m).

Proof. We assume in this proof that D is a strongly connected digraph. Otherwise, we identify each
strongly connected component in time O(n + m) using a Depth First Search (dfs) and next we
apply the following algorithm on each strongly connected component without changing the overall
complexity.

We use the observation that a strongly connected digraph D has process number 1 if and only
if there is a vertex v such that D−v is a dag. The following shows how to determine whether such
a vertex exists, and find one, if any, in time O(n + m).

Since D is strongly connected, it contains a directed cycle C := x1x2 . . . xkx1 and so the vertex
v must be one of the vertices xi. We maintain a list L of vertices that are candidates to be the
vertex v. To this end, we define L to be an array of k integers, initialized to 0. A vertex xi of C is
valid if L[i] is 0.

19

Suppose that there exists a directed path xiy1y2 . . . y`xj with V (C) disjoint from {y1, y2, . . . , y`},
for some non-negative integer `. (If ` = 0, then it means that there is an arc from xi to xj .) If
i < j then none of the vertices xi+1, xi+2, . . . , xj−1 can be the sought vertex v. If j < i then none
of the vertices xi+1, · · · , xk, x1, · · · , xj−1 can be the sought vertex v.

For i from 1 to k, we run a dfs rooted at xi, in which we consider neither the outneighbors of
the vertices of V (C) \ {xi}, nor the outneighbors of the vertices already visited during a previous
dfs. For each vertex, we record the step in which it is first visited, i.e., we record i if the vertex
was first visited during the dfs rooted at xi. Consider the step i ∈ {1, 2, · · · , k}.

If the dfs reaches a vertex xj , then we set L[`] := i for each ` from j− 1 down to i+ 1 (modulo
k). Note that if j = i, then it means that only xi remains valid, and so we can directly set v := xi
and returns true if and only if D − xi is a dag.

If xi is still valid and the dfs reaches a vertex already visited during some step j with j < i,
then we set L[`] := i for ` from j down to 1 and from k down to i + 1.

To cope with the complexity requirement, we make the vertices not valid in a backward way
and stop when a vertex that has been removed previously is found. So doing, each cell of L is
modified once, and we test in total at most O(m) times if a vertex is still valid. So the cost due to
maintaining the list of valid candidates during the algorithm is O(n + m).

Observe that if a vertex xi ∈ V (C) is still valid once all the dfs are performed, then all the
directed cycles of D that intersect C contain xi. Thus, if L is non-empty then it suffices to return
true if and only if D − xi is a dag. If L contains no valid vertices, then we can conclude that for
each i ∈ {1, 2, · · · , k}, the digraph D− xi contains a directed cycle, and consequently D cannot be
1-processed.

Overall this algorithm takes time O(n + m). First, we can find a cycle in time O(n), for example
by choosing a starting vertex and moving to the first neighbor until we reach a vertex that has
already been visited. Second, we visit each arc of D once during the dfs. So this part takes time
O(m). Also, the total cost due to L is O(n + m). Finally, we can check whether a subgraph of D
is a dag in time O(n + m) using a dfs.

The space complexity is linear since except the size of the graph, a dfs needs only a stack,
which can be implemented using an integer array of size n, and the list of candidates uses an array
of size at most n.

4.2 Digraphs with process number 2

Our aim in this subsection is to present a polynomial-time recognition algorithm for digraphs with
process number 2.

Let D be a digraph and let w be one of its vertices. We say that D is a (2, w)-digraph if there
exists an (6 2)-process strategy to process D, the first step of which is to cover w by an agent.
Thus, a digraph can be 2-processed if and only if it is a (2, w)-digraph for some vertex w (see
Fig. 7(b)). First, we show how to determine efficiently whether D is a (2, w)-digraph for a given
vertex w.

Proposition 17. Let D be a (weakly) connected digraph and let w be one of its vertices. The digraph
D is a (2, w)-digraph if and only if the digraph D − w can be partitioned into two subdigraphs H
and H ′ satisfying the following conditions.

(i) There exists a vertex w′ of H ′ such that H ′ is a (2, w′)-digraph.

20

w’
H’

Y’ Y

H

w

(a) General shape of a (2, w)-digraph

w w’

Y’

Y
H

H’

(b) Example of a (2, w)-digraph

Figure 7: The general shape and an example of a (2, w)-digraph.

(ii) SN+
D(H + w) ⊆ {w′}.

(iii) Either

• pn(H) = 0; or

• pn(H) = 1 and there exists a (possibly empty) set Y ⊂ V (H) such that N−D ({w′}) ∩
V (H) ⊆ Y , pn(D[Y]) = 0, and (Y, V (H)\Y) is a directed cut of H from Y to V (H)\Y .

Proof. If w has no outneighbors, then D is a (2, w)-digraph if and only if pn(D − w) 6 2. So the
characterization is valid with H being empty and H ′ being D − w. We assume now that w has at
least one outneighbor in D.

Suppose that there exist two subdigraphs H and H ′ as in the statement of the proposition.
The following strategy shows that D is a (2, w)-digraph. Cover w by an agent. If pn(H) = 0, then
cover w′ by an agent, process H and then process w by condition (ii). If pn(H) = 1, then set
Y ′ := V (H) \ Y and process D[Y ′]. As SN+

D(Y ′) ⊆ {w} by by conditions (ii) and (iii), we use at
most one more agent during this processing, and only w is still covered by an agent once D[Y ′] is
processed. Now, cover w′ by an agent and process the vertices of Y , since SN+

D(Y) ⊆ Y ′ ∪ {w,w′}
by condition (ii) and pn(D[Y]) = 0. Hence, in both cases, we have processed H, and w and w′ are
covered by agents. By condition (ii), we can now process w and then finish to process D since H ′

is a (2, w′)-digraph by condition (i).
Conversely, assume that D is a (2, w)-digraph, and consider a corresponding strategy to process

it. Note that at most one outneighbor of w is processed after w, since the first step of the strategy
consists in covering w by an agent. Stop the strategy just before w is processed. We let H be the
subdigraph of D induced by all the vertices processed before w, and H ′ be the complement of H in
D−w. By the definition,

∣∣N+
D (H + w) ∩ V (H ′)

∣∣ 6 1. If
∣∣N+

D (H + w) ∩ V (H ′)
∣∣ = 0 then we define

w′ to be the first vertex of H ′ to be covered by an agent according to the strategy, and otherwise
we define w′ to be the unique outneighbor of H + w in H ′. In this case, the vertex w′ must be
already covered by an agent. As the strategy uses no more than two agents simultaneously, there
are no arcs from H + w to H ′ − w′, and so condition (ii) is fulfilled.

Recall that we consider the strategy only from the first step up to the last step before processing
w. Observe that w is covered by agent during all the steps considered, and if w′ is covered by an
agent at some point, then it stays covered until the last step considered. Consequently, no vertex of

21

X := N−D ({w′})∩V (H) can be covered by an agent at any step considered, and hence pn(D[X]) = 0.
It also follows from this observation that pn(H) 6 1. If pn(H) = 1, then we let vi be the ith vertex
of H to be covered by an agent (hence vi /∈ X). Let Y ′i be the outbranching of vi in H, that is

Y ′i := {h ∈ V (H) | there exists a directed path from vi to h in H} .

We set Y ′ := ∪iY ′i . By the previous observation, we infer that Y ′ ∩X = ∅. Moreover, there are no
arcs from Y ′ to Y := V (H) \ Y ′. Finally, pn(D[Y]) = 0. Thus, condition (iii) is fulfilled.

The remaining part of the strategy ensures that H ′ is a (2, w′)-digraph, as required by condition
(i).

Before using the preceding characterization to derive a polynomial-time recognition algorithm,
we state a useful lemma. Let D be a digraph and let w be a vertex of outdegree at most 1 of D.
Let v be the unique outneighbor of w, if any. The contraction of w consists of removing w, linking
every vertex of N−D (w) to v, and removing any parallel arcs created (but not the loops that may
appear; we do so since parallel arcs are irrelevant regarding the process number, whereas — as
noted in the introduction — loops are not).

Lemma 18. Let D be a digraph and w a vertex of D with exactly one outneighbor v. Let D′ be
obtained by contracting w. Then pn(D) = pn(D′). Moreover, for every vertex u of D, it holds that
D is a (2, u)-digraph if and only if D′ is a (2, u′) digraph with u′ = u if u 6= w and u′ = v otherwise.

Proof. Consider a p-process strategy for D′. Apply it to D with the extra step that w is processed
as soon as v is processed or covered by an agent. This shows that pn(D) 6 p. Conversely, consider
a p-process strategy for D. Note that when w is processed then v is either already processed or
covered by an agent. We apply the strategy to D′, except that if a step covers w by an agent, we
instead cover v (if it is not already covered, or processed). This yields a p-strategy for D′, since
the remark above ensures that we do not use any extra agent in the strategy for D′.

The ’moreover’ part follows from above by a straightforward checking.

Proposition 19. Given a strongly-connected digraph D and a vertex w ∈ V (D), Algorithm 6
decides in time O(n(n + m)) if D is a (2, w)-digraph.

Proof. Let us prove that Algorithm 6 is correct. We assume that each time a vertex is processed,
the neighborhoods of its predecessors are updated and so is the set V 1

D of vertices of out-degree at
most 1.

Suppose first that D is a (2, w)-digraph. We consider the partition (H,H ′) of D − w and the
subset Y ⊆ V (H) given by Proposition 17. We set Y ′ := V (H) \ Y . If pn(H) = 0, then we may
assume that Y = V (H), and hence Y ′ = ∅.

Since pn(H) 6 1 and N+
D (Y ′) ⊆ Y ′ (arcs to w are removed by line 1), lines 2–5 will remove the

whole digraph D[Y ′], because (Y, Y ′) is a directed cut of H. Also, D[Y] is a dag since pn(D[Y]) = 0.
Hence, every leaf vertex u of D[Y] without an arc to w′ will be removed as {u} becomes a strong
component once D[Y ′] is removed. Let Y r ⊆ Y be the remaining part of Y . The digraph D[Y r] is
a dag the leaf vertices of which have for unique outneighbor w′. Thus, line 6 — and so Algorithm 7
— will contract every vertex of Y r into w′, starting from the leaf vertices. Note that H ′ = D2−w.

Now, Algorithm 6 returns failed only if either the vertex w has more than one outneighbor in
H ′ = D2 − w, or it has a unique outneighbor w′ in H ′ but H ′ is not a (2, w′)-digraph. None of
these cases happens by Proposition 17. Therefore, Algorithm 6 returns succeed, as desired.

22

Algorithm 6 Function Is-(2, w)-digraph

Require: a strongly connected digraph D and a vertex w
Ensure: returns succeed if D is a (2, w)-digraph.
1: Cover w by an agent and remove w from the neighborhoods of its predecessors
2: C ← set of strongly connected components of D − w
3: Let dag-C be the dag of strongly connected components
4: while it exists C ∈ C such that C is a leaf of dag-C and pn(C) ≤ 1 do
5: Process C, and so remove it from D − w, C and dag-C
{Let D1 be the remaining digraph}

6: D2 ← Contract-rooted(D1, w)
7: if V (D2) = {w} then
8: return succeed

9: else if
∣∣∣N+

D2
(w)
∣∣∣ = 1 then {we have N+

D2
({w}) = {w′}}

10: return Is-(2, w′)-digraph(D2 − w)
11: else
12: return failed

Algorithm 7 Function Contract-rooted

Require: a connected digraph D and a vertex w of D.
Ensure: returns a reduced digraph, but vertex w being unchanged.
1: Let V 1

D be the set of vertices of D of outdegree at most 1.
2: while V 1

D \ {w} is not empty do
3: Let v be any vertex of V 1

D − {w}, which we remove from V 1
D

4: if N+(v) > 0 then
5: Let u′ be the outneighbor of v
6: for all v′ ∈ N−(v) do
7: N+(v′)← N+(v′) \ {v} ∪ {u′}
8: if |N+(v′)| = 1 then
9: V 1

D ← V 1
D ∪ {v′}

Conversely, suppose now that the algorithm returns succeed for a given digraph D, and let us
prove that D is a (2, w)-digraph. We start by covering w by an agent. The algorithm starts by
removing strongly-connected components that are leaves in dag-C, and have process number at
most 1. We can safely process all these components using at most one other agent, which is freed
at the end. Note that after these steps, the remaining digraph may not be strongly connected
anymore, but the vertex w has outdegree at least 1. Thanks to Lemma 18, we can ignore the
contraction step of line 6. Then, as the algorithm returns succeed, either only w remains, and we
just process w to finish, or w has exactly one outneighbor called w′, and the digraph D2 − w is a
(2, w′)-digraph. Thus, we can cover w′ by an agent, process w and then finish to process D2 − w
using at most two agents simultaneously. This shows that D is a (2, w)-digraph by Lemma 18.

The computation time of Algorithm 6 has two parts. The first part concerns the partition
into strongly connected components (line 2) that takes time O(n + m), the construction of dag-C
(line 3) in time O(n), the application on each strongly-connected component of the algorithm of
Proposition 16 for an overall cost in O(n + m) including the update operations of line 5, and finally

23

at most n recursive calls (line 10). Overall this part takes time O(n(n + m)).
The second part concerns Algorithm 7 and the maintenance of the corresponding data struc-

tures. Since the computation time of line 7 depends on the data structures chosen to store the
digraph, we assume that the list of in- (respectively out-) neighbors is stored in an unsorted double
linked list plus an array of size n recording for each neighbor its pointer in the list. Thus, we may
add or remove a vertex of the in- (respectively out-) neighborhood of a vertex in constant time.
Since a vertex may be contracted only once, and since in the worst case it has O(n) predecessors,
this part takes an overall time of O

(
n2
)
.

Finally, the computation time of Algorithm 6 is in O(n(n + m)).

We note that Algorithm 7 can me modified to decide if a strongly connected digraph D can be
1-processed, since it would then be contracted into a single vertex with a loop.

The process number of a digraph is at most p if and only if the process number of each of its
strong components is at most p. Indeed, suppose that each strong component of a digraph D can
be p-processed. The digraph D′ of the strong components of D is acyclic. It suffices to p-process
each strong component of D according to a topological order of D′ to p-process D. Thus, we obtain
the following result thanks to Proposition 19.

Proposition 20. Given a digraph D we can decide in time O
(
n2(n + m)

)
if it can be 2-processed.

5 Conclusion

We modeled a rerouting problem in wdm networks using graph theory. To this end, we introduced
a new (di)graph invariant, the process number, which turns out to be closely related to other well-
studied invariants of (di)graphs. In particular, as Proposition 2 shows, it is a refinement of the
vertex-separation (also called pathwidth in the case of undirected graphs). We also characterized
the (optimal) process strategies of digraphs the process number of which is different from their
vertex separation (Proposition 3).

Our next goal was to characterize and recognize efficiently (di)graphs with small process number.
In particular, we gave a linear time algorithm for recognition of graphs with process number at
most two (Proposition 13, Algorithm 1), as well as a characterization in terms of excluded minors
and a structural description (Theorem 9). For digraphs with process number two, we found a
characterization that allows us to recognize (and process) them in time O

(
n2(n + m)

)
. Finally,

we linked the process number to the connectivity, by determining the graphs with process number
equal to their connectivity (Theorem 4).

As for the excluded minor characterization, we are currently studying [11] graphs with process
number 3. It may be the last case achievable, since we have so far a list of 185266 forbidden minors,
which are highly structured. It is interesting to note that for the pathwidth, such a characterization
has been found up to pathwidth three [18] — for which there are 110 forbidden minors. On the
other hand, the list for pathwidth 4 is not known, but it contains at least 122 millions forbidden
minors and hence is probably out of reach. By Proposition 2, determining the excluded minors for
graphs with process number 3 can be viewed as a scaling of this last problem, in the sense that this
class contains graphs with pathwidth 3 and graphs with pathwidth 4.

Finally, we point out that heuristics have recently been designed to approximate the process
number [9]. It would be interesting to further study this aspect of the question.

24

Acknowledgments

This work has been partially supported by EA EWIN, ANRs AGAPE and DIMAGREEN and the
French Agence Nationale de la Recherche under reference anr 10 jcjc 0204 01.

References

[1] M. Ackroyd. Call repacking in connecting networks. IEEE Transactions on Communications,
27(3):589–591, March 1979.

[2] D. Banerjee and B. Mukherjee. Wavelength-routed optical networks: Linear formulation,
resource budgeting tradeoffs, and a reconfiguration study. IEEE/ACM Transactions on Net-
working, 8(5):598–607, October 2000.

[3] S. Beker, D. Kofman, and N. Puech. Offline MPLS layout design and reconfiguration: Re-
ducing complexity under dynamic traffic conditions. In International Network Optimization
Conference (INOC), pages 61–66, October 2003.

[4] S. Beker, N. Puech, and V. Friderikos. A tabu search heuristic for the off-line MPLS reduced
complexity layout design problem. In IFIP-TC6 Networking Conference (Networking), vol-
ume 3042 of Lecture Notes in Computer Science, pages 514–525, Athens, Greece, May 2004.
Springer.

[5] D. Bienstock, N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a forest. Journal
of Combinatorial Theory, Series B, 52(2):274–283, 1991.

[6] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996.

[7] X. Chu, T. Bu, and X.-Y. Li. A study of lightpath rerouting schemes in wavelength-routed
WDM networks. In IEEE International Conference on Communications (ICC), pages 2400–
2405, Hong-Kong, June 2007. IEEE.

[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT Press, 1990.

[9] D. Coudert, F. Huc, D. Mazauric, N. Nisse, and J-S. Sereni. Reconfiguration of the routing in
WDM networks with two classes of services. In 13th Conference on Optical Network Design
and Modeling (ONDM), Braunschweig, Germany, February 2009. IEEE.

[10] D. Coudert, S. Pérennes, Q.-C. Pham, and J.-S. Sereni. Rerouting requests in wdm networks.
In Septièmes Rencontres Francophones sur les Aspects Algorithmiques des Télécommunications
(AlgoTel’05), pages 17–20, Presqu’̂ıle de Giens, May 2005.

[11] D. Coudert and J.-S. Sereni. Obstruction set for graphs with process number three. in prepa-
ration.

[12] N. Deo, S. Krishnamoorthy, and M. A. Langston. Exact and approximate solutions for the
gate matrix layout problem. IEEE Transactions on Computer-Aided Design, 6:79–84, 1987.

25

[13] Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed graph
searching. Theoretical Computer Science, 399(3):236–245, 2008.

[14] M. Garey and D. Johnson. Computers and Intractability: A Guide to the theory of NP-
completeness. Freeman NY, 1979.

[15] N. Jose and A.K. Somani. Connection rerouting/network reconfiguration. In 4th International
Workshop on Design of Reliable Communication Networks (DRCN), pages 23–30, Banff, Al-
berta, Canada, October 2003. IEEE.

[16] Balázs Gábor Józsa and Márton Makai. On the solution of reroute sequence planning problem
in MPLS networks. Computer Networks, 42(2):199–210, 2003.

[17] N. G. Kinnersley. The vertex separation number of a graph equals its pathwidth. Information
Processing Letters, 42(6):345–350, 1992.

[18] N. G. Kinnersley and M. A. Langston. Obstruction set isolation for the gate matrix layout
problem. Discrete Applied Mathematics, 54(2-3):169–213, 1994.

[19] Olivier Klopfenstein. Rerouting tunnels for MPLS network resource optimization. European
Journal of Operational Research, 188(1):293–312, 2008.

[20] K.-C. Lee and V.O.K. Li. A wavelength rerouting algorithm in wide-area all-optical networks.
IEEE/OSA Journal of Lightwave Technology, 1996.

[21] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. The
complexity of searching a graph. J. Assoc. Comput. Mach., 35(1):18–44, 1988.

[22] G. Mohan and C.S.R. Murthy. A time optimal wavelength rerouting algorithm for dynamic
traffic in WDM networks. IEEE/OSA Journal of Lightwave Technology, 17(3):406–417, March
1999.

[23] N. Robertson and P. D. Seymour. Graph minors. I. Excluding a forest. Journal of Combina-
torial Theory, Series B, 35(1):39–61, 1983.

[24] H. Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut fur
Informatik, Germany, 1998.

[25] B.K. Rosen. Robust linear algorithms for cutsets. Journal of Algorithms, 3(3):205–217, Septem-
ber 1982.

[26] J.-S. Sereni. Colorations de graphes et applications. PhD thesis, École doctorale STIC, Uni-
versité de Nice-Sophia Antipolis, July 2006.

[27] P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.

[28] A. Shamir. A linear time algorithm for finding minimum cutsets in reducible graphs. SIAM
Journal on Computing, 8(4):645–655, 1979.

[29] E.W.M. Wong, A.K.M. Chan, and T.-S.P. Yum. A taxonomy of rerouting in circuit-switched
networks. IEEE Communications Magazine, 37(11):116–122, November 1999.

26

[30] E.W.M. Wong, A.K.M. Chan, and T.-S.P. Yum. Analysis of rerouting in circuit-switched
networks. IEEE/ACM Transactions on Networking, 8(3):419–427, June 2000.

[31] J. Y. Zhang, O. W. W. Yang, J. Wu, and M. Savoie. Optimization of semi-dynamic lightpath
rearrangements in a wdm network. IEEE Journal on Selected Areas in Communications,
25(9):3–17, December 2007.

27

