-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Combining Processor Virtualization and
Component-Based Engineering in C for Many-Core
Heterogeneous Embedded MPSoCs

Erven Rohou, Andrea Carlo Ornstein, Ali Erdem Ozcan, Marco Cornero

» To cite this version:

Erven Rohou, Andrea Carlo Ornstein, Ali Erdem Ozcan, Marco Cornero. Combining Processor Virtu-
alization and Component-Based Engineering in C for Many-Core Heterogeneous Embedded MPSoCs.
Second Workshop on Programming Models for Emerging Architectures, Sep 2010, Vienne, Austria.
inria-00589691

HAL Id: inria-00589691
https://hal.inria.fr /inria-00589691
Submitted on 30 Apr 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://core.ac.uk/display/49992041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00589691
https://hal.archives-ouvertes.fr

Combining Processor Virtualization and Component-Based Engineering in C
for Many-Core Heterogeneous Embedded MPSoCs

Erven Rohou*, Andrea C. OrnsteinT, Ali Erdem OzcanT, and Marco Cornero?

*INRIA, TSTMicroelectronics, *ST-Ericsson

Abstract

The design of embedded systems is driven by strong
constraints in terms of performance, silicon area and
power consumption, as well as pressure on the cost and
time-to-market. This has three consequences: 1) many-core
systems are becoming mainstream, but there is still no sat-
isfactory approach for distributing software applications
on these platforms; 2) these systems integrate heteroge-
neous processors for efficiency reasons, thus programming
them requires complex compilation environments; 3) hard-
ware resources are precious and low-level languages are
still a must to exploit them fully. These factors negatively
impact the programmability of many-core platforms and
limit our ability to address the challenges of the next
decade.

This paper devises a new programming approach lever-
aging processor virtualization and component-based soft-
ware engineering paradigms to address these issues all
together. We present a programming model based on C for
developing fine grain component-based applications and
a toolset that compiles them into a processor-independent
bytecode representation that can be deployed on hetero-
geneous MPSoCs. We also discuss the effectiveness of this
approach and present future directions that will have a key
role in addressing the above challenges.

I. Introduction

Compared to the general purpose computing world, em-
bedded consumer systems are characterized by particularly
stringent efficiency requirements in terms of performance,
power and area. SoC (System-on-Chip) vendors used to
design application specific hardware components (IPs)
controlled by a host processor for implementing complex
operations. This process is no longer valid because of to-
day’s technological and market constraints. Non-recurring
engineering costs of silicon manufacturing are becoming

so high that the same IP must be reused in many products.
Short time-to-market also plays in favor of reuse. In other
words, hardware needs to be more programmable. In this
context, the design of software-based solution substituting
the hardware IPs becomes one of the most critical topics
of the overall production process of SoCs.

Problem Statement Unfortunately, designing software
systems for those constrained platforms is a complex issue.
The reasons can be categorized as follows.

1) Large scale multi-processing is a must. For almost
30 years, general purpose processors as well as embedded
systems followed Moore’s law. Performance used to “au-
tomatically” double every 18-24 months. However, since
2002, diminishing performance return, as well as increas-
ing power consumption, and the approaching “temperature
wall” made the microprocessor industry follow a new path
for performance: the multicore approach. While it is true
that embedded system have always been heterogeneous
multicores, several studies take parallelism to unprece-
dented levels and forecast thousands of cores on a chip
by the end of the next decade [1], [2]. Programming
distributed applications has always been difficult, even
in general purpose computing, because of the lack of
convenient programming abstractions and tools [3]. The
situation is worse for SoC platforms, with minimum run-
time support, and no alternative to low-level programming
languages. This has always constituted a big barrier to
the productivity. Given the new order of magnitude of
cores, the exploitation of the available hardware is a major
challenge of the coming decade.

2) Heterogeneity is unavoidable. Although the homoge-
neization of hardware platforms aims at reducing produc-
tion costs, modern embedded platforms continue to inte-
grate heterogeneous computing nodes (e.g. DSP, VLIW,
etc.) for several reasons. First, suitable hardware support
(i.e. instruction sets, data representation, etc.) is key to
satisfying the performance requirements of different kinds
of applications executed on a single chip. Second, these
computing nodes are always evolving to enjoy the best



technological solutions in the market. Beside evolving
architectures, heterogeneity is a source of difficulties since
it requires the software development kits (compilers, de-
buggers, profilers, etc.) to be ported and maintained, and
the developers to be trained on them. Tools for different
cores are likely to come from different vendors and to use
different technologies, yielding to integration problems.
The source code is likely to be written with conditional
compilation directives (#1ifdef) in order to adapt to each
compiler and to best exploit each architecture. While they
are of no theoretical nature, these issues are a significant
burden (and cost) to software companies.

3) Physical resources are precious. Embedding soft-
ware in consumer systems has always been a challenge
for satisfying the performance requirements on top of
limited constrained physical resources. Even though an
unprecedented number of cores is expected soon, silicon
area (be it CPU or memory) directly translates into cost.
Each core must be as efficient as possible. Henceforth,
software developers are still not free to enjoy high-level
programming languages and run-time environments such
as garbage collectors, exception handlers, and rich li-
braries. This results in many applications being coded from
scratch and reduces the productivity while increasing the
maintenance, support and evolution costs.

These issues motivate many language-oriented research
projects [4], [5]. However, some pragmatic concerns
(legacy, efficiency, toolset availability, etc.) make industrial
solutions evolve with small steps. In particular, since
many multimedia processors do not support higher level
languages such as C++ or Java, the C language remains
the de facto standard, although it does not sufficiently deal
with heterogeneity and multi-processing issues. Indeed,
the C language implies the use of different development
kits (compiler, debugger, etc.), potentially coming from
different vendors, for each processor. Beside the over-
head related to their installation and maintenance, these
tools may behave differently (command-line flags, error
messages, etc.), and may imply the source code to be
specialized for their own header files, intrinsics and library
functions!. In addition, the lack of specific abstractions
for application distribution makes plain C programs very
difficult to deploy efficiently on multiple processors.

Contribution In the past, some research and industrial
proposals partially addressed these issues. On the one
hand, processor virtualization provided a way of dealing
with heterogeneous target platforms. On the other hand,
component-based software engineering approach improved
the software modularity and contributed to the develop-
ment of distributed systems.

The main contribution of this paper is the design

I Target-specific source-code specialization makes the code difficult to
maintain and hinders debugging on the workstation.

and implementation of a toolset combining these two
paradigms, for the C language, in order to start ad-
dressing the above issues all together. Using this toolset,
legacy code written in C can be encapsulated into well-
defined components programming model with limited re-
engineering effort. These components can then be com-
posed using an Architecture Description Language (ADL)
that describes the software architecture of the system, and
compiled into a target independent bytecode representa-
tion. Using this toolset, programmers can develop reusable
binary component libraries that can be used by system
architects for composing applications to be deployed on
heterogeneous multiprocessor SoC (MPSoC). Newly de-
veloped components, on the other hand, can be envisioned
either in C or in any higher-level language that can be
compiled to the bytecode representation.

In addition, the combination of component-based design
with such a target independent bytecode representation
opens various perspectives that leverage the performance
of embedded systems. First, the design flexibility can
be increased by mapping components on heterogeneous
processors at deployment time. In particular, this lets
programmers deal with memory hierarchy as an orthog-
onal issue. Second, important memory and performance
optimizations can be obtained by on-board generation of
interface-specific communication bridges between remote
components.

Outline This paper is organized as follows. Section II
overviews the paradigms we propose to combine, and it
presents the state-of-the-art on these domains. Section III
presents our proposal. Section IV discusses its effective-
ness and presents some ideas that we will investigate in
future work. Finally, we conclude in Section V.

II. Related Work

This paper proposes a new methodology and toolset for
programming heterogeneous MPSoCs in the C language.
We build upon previous works on processor virtualization
and component based software engineering. This section
reviews previous work related to both paradigms.

A. Processor Virtualization

Processor virtualization first appeared for deploying
programs on computers connected through the Internet,
and became a well established technique for dealing with
the processor heterogeneity. While the traditional compila-
tion flow consists in compiling program sources into binary
objects that can be natively executed on a given processor,
processor virtualization splits that flow in two parts. The
first part — the front-end — compiles the program source
code into a processor-independent bytecode representation.



The second part — the back-end — provides an execution
platform to run this bytecode on a given processor. The
back-end may either be a virtual machine interpreting the
bytecode or a dynamic compiler translating the processor-
independent bytecode to native binary at load time or
run time in order to improve the execution performance.
This split of the compilation flow has many benefits for
dealing with the heterogeneity issue. First, developers
can use the same development kit for compiling their
programs on their workstation and debugging them on the
platform. Second, the same bytecode can be loaded on a
heterogeneous MPSoC, and the decision of the processor
on which it will execute can be postponed until run
time. Finally, split-compilation lets the back-end apply
aggressive optimizations thanks to additional information
computed offline by the front-end [6].

The Java framework defines a bytecode-based virtual
machine and a standard library for the Java language. The
lightweight version of Java, namely Java Micro Edition,
has been widely accepted in heterogeneous embedded
systems in order to provide complementary capabilities,
like games for cell phones or TV guides for set-top-boxes.
Its use remains constrained to the host processor for the
non-critical part of the application. Components models are
supported (see Section II-B), but the C language cannot be
compiled to the Java bytecode.

LLVM [7] is a compiler framework that defines a low-
level code representation appropriate for program analysis
and transformation. This representation is intended to be
processor- and input language-independent, and well suited
for optimized code generation. Many languages, including
C, can be compiled to LLVM. However, the representation
is at a lower level than CLI. In addition, it has not been
standardized, and, as such, is subject to changes.

The Common Language Infrastructure (CLI) [8] is an
international standard that defines a rich virtualization
environment for the execution of applications written in
multiple languages. Beside the .NET Framework and the
.NET Micro Framework provided by Microsoft, there exist
several open-source programming environments based on
CLI. Component models are supported. We have previ-
ously contributed GCC4CLI [9], a C compiler that gen-
erates efficient CLI code for embedded systems. We have
shown that CLI is an appropriate format for the deployment
of embedded software, in terms of both code size [10] and
performance [11]. We also demonstrated several flexible
compilation flows from C to CLI [12].

B. Component-based Software Engineering

Although the foundations of composing the software
systems by assembling components appeared very early
[13], component-based programming has been widely ac-

cepted as a new programming paradigm in the last decade
for succeeding the object-oriented programming [14]. In
a nutshell, component-based programming is about struc-
turing the software modules as independent components
that fulfill well-defined specifications in terms of client (re-
quired services) and server (provided services) interfaces.
The strong encapsulation of data and behavior and the cap-
ture of the software architecture in terms of components,
interfaces and their interconnections makes this approach
suitable for distributing complex applications on multiple
processors. Furthermore, these features allow the use of
many appropriate design tools supporting the assembly, the
verification and the distributed deployment of components
using a description of the software architecture (ADL).

Many component models have been used in general
purpose computing during the last decade for improving
program modularity and managing software distribution.
The most adopted ones include the COM family (COM,
COM+, DCOM) from Microsoft, the CORBA Component
Model (CCM) from OMG, the Enterprise Java Beans
(EJB) from Sun Microsystems and the Open Services
Gateway Initiative from OSGI Alliance. These component
models are in general tailored for powerful workstation
environments and most of the services that they implement
(e.g consistency, security, failure recovery, etc.) fit neither
the requirements nor the computational budget of MPSoCs.

Component-based programming has also appeared in
embedded platforms in recent years. Real Time Software
Components [15] (RTSC) from Texas Instruments provides
an ADL toolset based on JavaScript and a packaging
format for building modular system software from com-
ponent libraries. OpenMAX [16] from Khronos provides
a component-based middleware for easing the integration
of audio/video codecs for building complex multimedia
applications. Both models are based on the C language,
and aim at improving the software reuse. Nevertheless,
they are designed for single processor systems.

There exist other component technologies especially
designed for MPSoCs. DSOC [17] is a light-weight imple-
mentation of CORBA. It provides a toolset that generates
middleware components in hardware for accelerating inter-
processor communications over a given network on chip.
Cecilia [18] is a C-based implementation of the Fractal
Component Model [19] and provides a deployment envi-
ronment for distributing multimedia components on hetero-
geneous MPSoC platforms. In addition, Cecilia provides
an extensible ADL toolset [20] that allows the integration
of new code generation features by third party developers.
Khronos recently proposed a new standard, called Open
Computing Language (OpenCL) [21], for programming
parallel graphics applications. OpenCL provides extensions
to the C language for mapping the program data to a
hierarchical memory architecture and for using a standard



interface to vectorial instructions. Therefore, it requires
either the Clang OpenCL compiler combined with the
special runtime support for its bytecode on the target
processors, or the target C compiler to be modified for
supporting these extensions.

C. Combining Virtualization and Component-
based Engineering in C

While several approaches have been proposed both for
processor virtualization and for component-based software
engineering, to the best of our knowledge there is no prior
art considering their combination with the C language.

We believe that this combination provides a promising
groundwork for addressing the code generation challenges
of the decade to come. That is, (¢) component-based
software engineering provides a suitable way of structuring
software systems to be deployed on distributed systems,
such as MPSoCs, (i7) virtualization helps dealing with
the heterogeneity of target platforms without imposing the
burden of binary compatibility on hardware designers, and
(¢4¢) the C language, which is the de facto standard for
programming embedded systems, allows writing low-level
code without any expensive run-time dependencies.

III. Our Proposal

Our proposal, namely Virtual Components for SoC
(VC4SoC), consists in a programming toolset that enables
target-independent component-based programming in C.
The generated libraries are for deployment on heteroge-
neous MPSoCs. We first review the VC4SoC compilation
flow. Then, we present its key features including the binary
layout of components, the programming model used for
implementing them in C, and the specific linker that maps
the component implementations to the binary layout.

A. Compilation Flow

As depicted in Fig.1, the development flow with
VC4SoC consists of two parts: front-end and back-end.
The front-end compiles source components into binary
component libraries. It runs on a workstation. The back-
end is about the composition of applications from binary
component libraries. It runs either on a workstation for
static mapping of applications on a target platform, or on
board to enjoy dynamic mapping at deployment time.

The front-end development starts with the specification
of components (0). Two specific languages are involved to
improve the robustness of these specifications compared
to hand-written C header files. First, a strongly-typed
Interface Definition Language (IDL) specifies the methods
that can be used for the interaction between components.

‘Application

‘Component
‘specification

ont
Component
@ skeleton

H . @

Component

implementation
)

Composition
glue

E

Application

Workstation /
Target Board

o Bg
Skel/Impl
Linker

Workstation Binary GLI

component

Fig. 1. Overview of the compilation flow

The IDL allows many static verifications to be done and
part of the interaction code to be generated. Second, an
Architecture Description Language (ADL) specifies the set
of interfaces that are provided and required by components,
as well as their interconnections. The expressiveness of
the ADL eases the description of complex composition
schemes. Static verifications can be performed and the glue
code to assemble the components can be generated.
These specification files are used for generating two
separate files. The skeleton of the component is generated
in CLI (1) in respect to its architecture specification.
This skeleton defines the binary layout of a CLI object
representing the component without the implementation
of its interfaces. The implementation is provided by the
programmer in C using a lightweight programming model
based on standard pre-processing macros. These macros
are used to access component’s members such as client in-
terfaces or private data fields. This implementation is com-
pleted with a generated header file containing the values of
these macros, according to the architecture specifications
(2). The implementation source files are then compiled
to CLI (3) using a C-to-CLI compiler [9], [12]. Finally,
a specific linker, described in Section III-B3 merges the
skeleton of the component with its implementation (4).
The role of the back-end is to compose applications
from a binary component library output by the front-
end. The input driving this process is an ADL description
specifying the top-level architecture of the application to be
composed. Based on this description and the architecture
specifications reflected by the binary components in CLI,
the back-end generates the glue code that is required for
assembling the application components and mapping them
to the target execution platform (5). A typical example for
glue code generated within the context of MPSoCs may be
the inter-processor communication channels implementing
the interactions between remote components. The glue
code is directly generated in CLI on the target platform



interface foo(this) { @
.
¥ bar(this) {
> foo() .
i
@
\ interface
—

g add()

add(this) {

+

server interfaces

sub()

sub({ this})

[ClientItFAttr(1)]] 3

clientltf1 >

[ClientitfAttr(12)]]

clientltf2 >

SOOBLIDUL JUIND

context (this) @

[PrivateData]

datal

data2

Fig. 2. Binary structure of a componentin CLI

using lightweight bytecode manipulation tools such as
Cecil [22]. Finally, a merger tool can be used for gathering
the components that go on to the same processor in order
to optimize their deployment on the target platform (6).

B. Component model

VC4SoC is based on the Cecilia Component Frame-
work? [18], a lightweight implementation of the Fractal
Component Model [24], [25] dedicated to the development
of embedded applications and systems. This section first
presents the binary layout of VC4SoC components. Then it
describes the programming model and the linker tool that
is designed for encapsulating standard C programs into
these components.

1) Binary layout: VC4SoC provides a cost-effective
implementation of components based on unmanaged CLI
structures. As depicted in Fig.2, a component at run time
consists of a data structure in addition to the implementa-
tion of its methods. This is similar to the native layout of
a C++ object. The main part of this data structure, namely
component context, contains fields for implementing the
set of client interfaces of the component as well as its
private data members. In addition, the component context
inherits interface structures for each of its server inter-
faces. These interface structures contain pointers giving
access to the implementation of the methods implemented
by the component.

In addition to the above functional fields, the component
context structure is annotated with CLI metadata attributes
giving supplementary information about the component’s
architecture (e.g. interface names, component name, etc.)
This information is required by the back-end of the
VC4SoC infrastructure for composing applications from

2Cecilia was formerly called Think [23].

binary component libraries. This metadata can be removed
at run time to save memory or be kept to enjoy reflective
programming.

Note that only the component context needs to be
duplicated when a new instance of a component is created.
Hence, the performance overhead of VC4SoC components
is comparable to C++ objects, and is expected to be even
less since they require only unmanaged CLI structures.

2) Programming model: VC4SoC defines a program-
ming model for encapsulating standard C programs into
the above component model. This programming model
consists of few pre-processing macros that define handles
for linking the implementation code written by the pro-
grammer with the skeleton code generated by the ADL
compiler.

Fig.3-b illustrates the implementation of a simple
component printing a message on a printer interface.
PRIVATE_DATA and DATA macros used for declaring
and accessing the instance data structure of the component,
respectively. The METHOD macro is used for declaring the
implementation of a method provided by the component.
Finally, the CLTIENT macro is used for referencing a client
to be invoked.

The implementation code depicted in Fig.3-b needs to
be completed with the definition of the above macros to
become a correct C program. For that purpose, the front-
end of the VC4SoC compiler generates a header file from
the ADL of the component. As depicted in Fig.3-a, this
header file starts with the definition of PRIVATE_DATA
macro which defines the component context structure and
declares an instance of the latter (_this variable). DATA
and CLIENT macros define accesses to this context
variable. The METHOD macro mangles the name of the
implemented method with the name interface and the
component to which it belongs to avoid name clashes.

Careful readers may have noticed that the type defini-
tions in the above header file do not match the binary
layout presented in Fig.2. In particular, the component
context does not inherit from the server interface structures
and the global definition of _this variable makes the
component a singleton instance. Indeed, these are place-
holders (fake definitions) intended to be substituted at link-
time time by the component skeleton, generated in CLIL
These placeholders are used for two reasons: first, they
complete the implementation code and make it legal C
code, that can be compiled with a standard C compiler;
and second, they mark some fields with specific compiler
attributes (e.g. ClientInterface) so that these fields can be
easily located by the skeleton/implementation linker.

The benefits of generating the component skeletons in
CLI rather than in C are twofold. First, CLI provides native
support for modeling component interfaces and annotating
data structures with additional information. This way,



#define PRIVATE_DATA \
MyComp_data_t ; \
typedef struct { \

struct Printer p; \

MyComp_data_t data; \
} MyComp_context; \
MyComp_context _this \

__attribute__ ((cli))

#define METHOD(itf , meth) \
__attribute__ ((cli)) MyComp_##itf##_##meth

#define CLIENT _this

#define DATA _this.data

(@

typedef struct {
char xmessage;
} PRIVATE_DATA;
int METHOD(m, main) (){
DATA. message = "hello_world”;
CLIENT .p. print (DATA. message );
}
(b)

public interface MainInterface {
int main ()
}

public interface Printer{
void print(string msg);

[PrivateDataStructure ]

struct MyComp_data_t {} ;

public unsafe struct MyComp_context
: MainInterface{
[ClientInterface ("p”)]

Printer p ;

[PrivateData]
MyComp_data_t data;

public int main(){return 0;}

(c)

Fig. 3. Excerpt of hand-written and generated files. (a) Generated header file, (b) hand-written
component implementation, (c) generated component skeleton.

the architecture information is natively embedded in the
binary, without the need for any adhoc extension. Second,
CLI enables the inheritance of interface structures within
data structures for modeling the interfaces implemented by
an object. As depicted in Fig.3-c3, the component skeleton
uses these features for defining the component context
structure matching exactly the binary layout presented in
Section III-B1. On the other hand, empty bodies are gen-
erated for component’s private data members and method
implementations. The latters are intended to be filled with
the information coming from component’s implementation
by the linker described in the following section.

3) Skeleton/implementation linker: As described pre-
viously, during the first part of the compilation flow, the
hand-written implementation in C is compiled to CLI, and
the skeleton is directly generated in CLI. They still need
to be linked together in order to form a binary component.
This is done by a specific linker which completes the
binary skeleton file with the information coming from the
implementation file.

The steps of this link process are as follows.

1) The definition of the private data members of the
component is copied from the implementation file
into the skeleton. This operation is straightforward
since all data members are gathered in a data struc-
ture definition whose name conforms to a convention
translated by the PRIVATE_DATA macro.

2) The method bodies are copied from the implementa-
tion file into the skeleton. This operation is straight-
forward as well since the methods to be copied are
annotated using specific attributes (e.g. c11i attribute

3Note that, for readability purposes, we used C# syntax to illustrate
the generated skeleton. The actual skeleton is directly generated in CLI.

in Fig. 3-a).

3) In each method body, references to the fake _this
variable are replaced by accesses to private data
members defined in the first step. This way, the
singleton content definition that uses a global context
variable _this (Fig. 3-b) is turned into standard
CLI containing method implementations from which
multiple instances can be created at run time.

4) Finally, a new argument is added to each method call
found in method bodies in order to specify the target
of the invocation. The convention used for translating
the CLIENT macro helps the recognition of whether
the call is directed to the component itself or to a
one of its client interfaces.

Note that, the skeleton/implementation linker is
processor-independent since it only manipulates the CLI
representation. Moreover, its implementation required lim-
ited effort thanks to the use of an existing CLI manipula-
tion tool, namely Cecil. Such a CLI manipulation tool can
also be used in the back-end of the compilation flow in
order to implement optimizations such the removal of CLI
attributes and the merge of multiple components into one.

IV. Discussion
A. Analysis

We have implemented the VC4SoC compiler as an
extension of the Fractal ADL Compiler [20]. It accepts as
input a top-level architecture description of the assembly
of components for building an application. The output is an
executable object in CLI. This object can then be executed
on any CLI-compliant platform.



Exhaustive performance analysis would have to be
performed on different heterogeneous MPSoC platforms
for verifying that applications of interest developed using
VC4SoC do not raise significant overheads in terms of exe-
cution time and memory footprint. Yet, previous results on
component-based programming and processor virtualiza-
tion paradigms — both well established — have separately
demonstrated that they have acceptable overheads within
the context of embedded systems. In particular, Ozcan et
al. [26] has shown that the fine-grained component-based
re-engineering of an H.264 video decoder using the Fractal
Component Model in C resulted in 1.5% overhead in ex-
ecution time and about 7% overhead in memory footprint
while easing notably the distribution of the decoder on
multiple processors. The potential direct cost is similar
to the penalty object-oriented languages incur. Moreover,
Fassino et al. [23] has shown that modular design with
component-based programming may also result in better
performance by designing on-demand software systems.
Efficient CLI code can be generated from the C lan-
guage [10], [11], and robust and flexible compilers and
toolchains are available. The performance achieved with
these schemes is similar to native code [9], [12].

It is also important to note that the performance of
applications developed with VC4SoC is extremely related
to the performance of the target execution platform. Pre-
vious studies [27] show that, in the case of DSP or VLIW
processors, advanced just-in-time compilation techniques
may result in even more optimized code compared to static
native compilation.

A limited performance penalty must also be contrasted
with the significant gain in productivity and the additional
flexibility brought by our approach.

Our proposal does not directly address memory hi-
erarchy issues. However, we provide the means for the
programmer to postpone the processor mapping decisions
until deployment time, when the actual memory hierarchy
is known. In this respect, we do not provide the policy, but
the tools to implement it.

B. Limitations

The approach we presented in this paper has two
main limitations that may impact the reuse of existing
legacy. The first one is related to the use of a specific
C compiler (GCC4CLI [9]) that we extended to recognize
some annotations. In particular, we took advantage of the
GCC attribute mechanism. Legacy code that uses language
extensions or compiler features from another vendor might
be a problem, even though we feel that our contribution to
the simplification of the development environment makes
the porting worth the effort in many cases. In any way,
annotations are essentially used as markers that must be

propagated unmodified in the CLI representation. Any
other mechanism that achieves this goal can be considered.
For example, we preferred attributes over pragmas simply
because the GCC internals discourage the use of pragmas.

The second limitation is related to the use of processor-
independent bytecode. Although the latter is unavoidable
for portability on heterogeneous platforms, the use of in-
line assembly (asm blocks) introducing processor-specific
optimizations in the C code are not supported anymore.
Note that it is still possible to invoke native binary code (li-
braries, or hand-optimized routines) from CLI components
thanks to the pinvoke mechanism [8]. In any case, this latter
approach is superior in terms or software engineering: code
readability, portability, and maintenance.

C. Perspectives

The combination of processor virtualization with
component-based programming opens many perspectives
for embedded applications. Two of them, which we plan
to investigate as future work, are discussed hereafter.

1) On-board component assembly: Current practice
of quality-of-service implementation on MPSoCs consists
of switching between different combinations of statically
linked application mappings according to the application
scenarios executed by the end-user. On heterogeneous
platforms, the number of combinations becomes very
significant. Henceforth, the mapping flexibility is often
limited by the memory budget.

Splitting the compilation life cycle into two phases as
presented in Section III-A is key to break the above limi-
tation. This way, applications can be assembled on board
just before their deployment. Furthermore, as VC4SoC
components can be deployed on any processor, any appli-
cation mapping can be produced at run time from a given
component library.

2) On-board communication adapter generation: Au-
tomatic generation of communication adapters from IDL
descriptions is a well established technique for imple-
menting remote interactions on multi-processor systems.
Nevertheless, current tools designed for the C language
require a workstation to generate and compile such compo-
nents. As a result, programmers must forecast the possible
application mappings on different processors and specify
the interfaces for which adapters must be generated. Yet,
this constitutes an obstacle to the mapping flexibility.

VC4SoC components provide two features that are
key to solve this issue. First, binary components can
be introspected to access their interface specifications.
Second, CLI bytecode can be directly generated on board
using bytecode manipulation tools such as Cecil. Using
these features, communication adapters can be generated
dynamically when they are needed. The combination of



such a tool with an on board component assembler, as
discussed above, may result in a very flexible execution
environment for building performance effective solutions
based on heterogeneous multi-processor platforms.

V. Conclusion

This paper proposes a new programming methodology
and toolset to improve the software development prac-
tice on many-core heterogeneous MPSoCs. Our approach
has its roots in two well established paradigms, namely
component-based software engineering and processor Vvir-
tualization. Using this toolset, programmers can encapsu-
late legacy C code into software components with limited
effort. The use of component-based programming en-
ables the assembly of complex applications from reusable
component libraries and the generation of glue code for
mapping these components on a multi-processor platform.
Thanks to the CLI processor virtualization technology,
binary components that are output by this toolset can
be deployed on any target processor of a heterogeneous
system. Moreover, the latter provides programmers with
an homogeneous development platform by offering them
a single virtual target for all cores present on an MPSoC.
This greatly simplifies the software engineering process
and reduces the burden (thus, the cost) associated with
software development for multiple targets or heterogeneous
targets. We believe that this combination of paradigms
provides a promising groundwork to address the code
generation challenges of the future MPSoC platforms by
defining a framework for the development of C-based
applications for heterogeneous many-core platforms.

Our proposal also opens up several opportunities, which
we will explore as future work. First, it makes it possible to
postpone the deployment choices to run time, giving more
flexibility to system designers. Second, communication
adapters between components can be generated on board,
and precisely tuned for the current mapping, instead of
being statically generated for a given set of envisioned
mappings.

References

[1] K. Asanovié¢, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands,
K. Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams, and
K. Yelik, “The Landscape of Parallel Computing Research: A View
from Berkeley,” EECS Department, University of California at
Berkeley, Tech. Rep. UCB/EECS-2006-183, Dec. 2006.

[2] K. De Bosschere, W. Luk, X. Martorell, N. Navarro, M. O’Boyle,
D. Pnevmatikatos, A. Ramirez, P. Sainrat, A. Seznec, P. Stenstrom,
and O. Temam, High-Performance Embedded Architecture and
Compilation Roadmap, ser. LNCS, 2007, vol. 4050, pp. 5-29.

[3] T. Mattson and M. Wrinn, “Parallel programming: can we please
get it right this time?” in DAC ’08: Proc. 45th Annual Conference
on Design Automation, 2008, pp. 7-11.

[4]

[5

[t}

[9

—

[10]

(1]

(12]

[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

C. Consel, H. Hamdi, L. Réveillere, L. Singaravelu, H. Yu, and
C. Pu, “Spidle: a DSL approach to specifying streaming ap-
plications,” in Proc. 2nd international conference on Generative
programming and component engineering, 2003, pp. 1-17.

W. Thies, M. Karczmarek, and S. P. Amarasinghe, “Streamlt: A
language for streaming applications,” in Proc. 11th International
Conference on Compiler Construction, 2002, pp. 179-196.

A. Cohen and E. Rohou, “Processor virtualization and split com-
pilation for heterogeneous multicore embedded systems,” in Proc.
47th Design Automation Conference (DAC 2010), Jun. 2010.

C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proc. Interna-
tional Symposium on Code Generation and Optimization, 2004.
International Standard ISO/IEC 23271:2006 - Common Language
Infrastructure (CLI), Partitions I to VI, 2nd ed., International
Organization for Standardization and International Electrotechnical
Commission.

R. Costa, A. Ornstein, and E. Rohou, “CLI Back-End in GCC,” in
GCC Developers’ Summit, Ottawa, Canada, Jul. 2007, pp. 111-116.
R. Costa and E. Rohou, “Comparing the size of .NET applications
with native code,” in CODES+ISSS, 2005, pp. 99-104.

M. Cornero, R. Costa, R. Fernandez Pascual, A. Ornstein, and
E. Rohou, “An Experimental Environment Validating the Suitability
of CLI as an Effective Deployment Format for Embedded Systems,”
in International Conference on HiPEAC, ser. LNCS, vol. 4917.
Goteborg, Sweden: Springer Verlag, Jan. 2008, pp. 130-144.

E. Rohou, A. C. Ornstein, and M. Cornero, “CLI-Based Compila-
tion Flows for the C Language,” in Proc. International Conference
on Embedded Computer Systems: Architectures, Modeling and
Simulation, Jul. 2010, pp. 162-169.

M. D. Mcllroy, “Mass produced software components,” in Proc.
NATO Software Engineering Conference, 1968, pp. 138—155.

C. Szyperski, Component software: beyond object-oriented pro-
gramming, 1998.

“Real-Time Software Components,” http://wiki.eclipse.org/DSDP/
RTSC.

“OpenMAX Development Layer API Specification, Version 1.0.1,”
The Khronos Group Inc, Tech. Rep., Jun. 2006.

P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, O. Benny,
D. Lyonnard, B. Lavigueur, and D. Lo, “Distributed object models
for multi-processor SoC’s, with application to low-power multime-
dia wireless systems,” in DATE, 2006, pp. 482-487.

“Cecilia web site,” http:/fractal.objectweb.org/cecilia-site/current/.
E. Bruneton, T. Coupaye, and J.-B. Stefani, “The Fractal Composi-
tion Framework, The ObjectWeb Consortium - Interface Specifica-
tion,” http://www.objectweb.org, June, 2002.

M. Leclercq, A. E. Ozcan, V. Quéma, and J.-B. Stefani, “Supporting
heterogeneous architecture descriptions in an extensible toolset,” in
29th International Conference on Software Engineering, May 2007.
A. Munshi, “The OpenCL specification version 1.0,” Khronos
OpenCL Working Group, Tech. Rep., 2009.04.02.

“Cecil Library,” http://www.mono-project.com/Cecil.

J.-P. Fassino, J.-B. Stefani, J. Lawall, and G. Muller, “THINK:
A Software Framework for Component-based Operating System
Kernels,” in USENIX Annual Technical Conference, 2002.

E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The Fractal Component Model and its Support in Java,” Software
Practice and Experience, special issue on Experiences with Auto-
adaptive and Reconfigurable Systems, vol. 36, pp. 1257-1284, 2006.
E. Bruneton, T. Coupaye, and J.-B. Stefani, “The Fractal Component
Model, v2,” 2003.

A. E. Ozcan, O. Layaida, and J.-B. Stefani, “A Component-
based Approach for MPSoC SW Design: Experience with OS
Customization for H.264 Decoding,” in Proc. 3rd Workshop on
Embedded Systems for Real-Time Multimedia, ESTImedia 2005.
IEEE Computer Society, 2005, pp. 95-100.

B. Dupont de Dinechin, “Inter-Block Scoreboard Scheduling in a
JIT Compiler for VLIW Processors,” in The 14th International
Euro-Par Conference on Parallel and Distributed Computing, Las
Palmas de Gran Canaria, Spain, Aug. 2008.



