
HAL Id: inria-00589714
https://hal.inria.fr/inria-00589714

Submitted on 30 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Realizability of Dynamic MSC Languages
Benedikt Bollig, Loïc Hélouët

To cite this version:
Benedikt Bollig, Loïc Hélouët. Realizability of Dynamic MSC Languages. International Computer
Science Symposium in Russia, Jun 2010, Kazan, Russia. �inria-00589714�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49992018?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00589714
https://hal.archives-ouvertes.fr

Realizability of Dynamic MSC Languages★

Benedikt Bollig1 and Loïc Hélouët2

1 LSV, ENS Cachan, CNRS, INRIA, France
2 IRISA, INRIA, Rennes, France

Abstract. We introduce dynamic communicating automata (DCA), an extension of com-
municating finite-state machines that allows for dynamic creation of processes. Their be-
havior can be described as sets of message sequence charts (MSCs). We consider the
realizability problem for DCA: given a dynamic MSC grammar (a high-level MSC spec-
ification), is there a DCA defining the same set of MSCs? We show that this problem
is EXPTIME-complete. Moreover, we identify a class of realizable grammars that can be
implemented by finite DCA. V

er
si

on
:
A

u
gu

st
4,

20
10

1 Introduction

Requirements engineering with scenario-based visual languages such as message sequence
charts (MSCs) is a well established practice in industry. However, the requirements phase
usually stops when a sufficiently large finite base of scenarios covering expected situations
of the modeled system has been created. Although more elaborated formalisms have been
proposed, such as HMSCs [RGG96], compositional MSCs [GMP03], or causal MSCs
[GGH+09], requirements frequently consist in a finite set of scenarios over a fixed finite
set of processes. The existing higher-level constructs are often neglected. A possible reason
might be that, in view of their huge expressive power, MSC specifications are not always
realizable in terms of an implementable. As a part of the effort spent in the requirements
design is lost when designers start implementing a system, scenarios remain confined to
expressions of finite examples, and the higher-level constructs are rarely used. Another
reason that may prevent designers from using high-level scenarios is that most models
depict the interactions of an a priori fixed set of processes.

Nowadays, however, many applications rely on threads, and most protocols are de-
signed for an open world, where all the participating actors are not known in ad-
vance. Example domains include mobile computing and ad-hoc networks. A first step
towards MSCs over an evolving set of processes was made by Leucker, Madhusudan, and
Mukhopadhyay [LMM02]. Their fork-and-join MSC grammars allow for dynamic creation
of processes and have good properties, such as decidability of MSO model checking. How-
ever, it remains unclear how to implement fork-and-join MSC grammars. In particular,
a corresponding automata model with a clear behavioral semantics based on MSCs is
missing. However, dynamic process creation and its realizability are two important issues
that must be considered jointly.

★ Partly supported by the projects ANR-06-SETI-003 DOTS and ARCUS Île de France-Inde.

This paper introduces dynamic communicating automata (DCA) as a model of pro-
grams with process creation. It is very much inspired by the message-passing program-
ming language Erlang [Arm07]. Like Erlang, a DCA has three communication primitives:

(1) a new process can be spawned,
(2) a message can be sent to an already existing process, and
(3) a message can be received from an existing process.

Processes are identified by means of process variables, whose values can change dynami-
cally during an execution of an automaton and be updated when a message is received.
A message is sent through bidirectional unbounded FIFO channels, which are available
to any pair of existing processes. Our model extends classical communicating finite-state
machines [BZ83], which allow only for actions of the form (2) and (3) and serve as an
implementation model for HMSCs or compositional MSCs.

In a second step, we propose dynamic MSC grammars as a specification language.
They are inspired by the fork-and-join grammars from [LMM02] but closer to an im-
plementation. We keep the main idea of [LMM02]: when unfolding a grammar, MSCs
are concatenated on the basis of finitely many process identifiers. While, in [LMM02],
the location of identifiers can be changed by means of a very general and powerful split-
operator, our grammars consider an identifier as a pebble, which can be moved locally
within one single MSC. In addition to process identifiers, we introduce a new means of
process identification that allows for a more concise description of some protocols.

Given an implementation model and a specification formalism, the realizability prob-
lem consists in asking whether a given specification comes with a corresponding imple-
mentation. Realizability for MSC languages has been extensively studied in the setting
of a fixed number of processes [AEY05,Loh03,AMKN05]. In a dynamic framework where
dynamic MSC grammars are seen as specifications and DCA as distributed implementa-
tions, we have to consider a new aspect of realizability, which we call proximity realizabil-
ity. This notion requires that two processes know each other at the time of (asynchronous)
communication. We show that checking proximity realizability is EXPTIME-complete.
Note that the representation of the behavior of each process may require infinitely many
states (due to the nature of languages generated by the grammar), and that the notion
of proximity realizability does not take into account the local structure of a process. The
next step is then to identify a class of dynamic MSC grammars that is realizable in terms
of finite DCA.

The paper is organized as follows: In Section 2, we recall some basic concepts needed
throughout the paper such as trees and tree automata. Section 3 introduces MSCs, which
constitute the semantics of dynamic communicating automata and dynamic MSC gram-
mars. The latter two are presented in Sections 4 and 5, respectively. In Section 6, we
define realizability formally and show that the corresponding decision problem (as well
as emptiness of grammars) is EXPTIME-complete. In the proofs, we make use of the
tree-automata framework that we settled in Section 2. Section 7 presents a subclass of
our grammars, local MSC grammars, and shows how they can be implemented automat-
ically in terms of finite DCA. Finally, in Sections 9 and 8, we give an overview of related
work and some directions for future work.

2

This article is a revised and extended version of [BH10].

2 Preliminaries

In this section, we settle some notation and basic concepts such as trees and tree au-
tomata.

A (finite) alphabet is a (finite, respectively) nonempty set. For an alphabet � , the set
of finite words over � is denoted by � ∗. It includes the empty word ". For words u, v ∈ � ∗,
we let u.v denote the concatenation uv of u and v. In particular, u." = ".u = u.

For a set P , we let idP denote {(p, p) ∣ p ∈ P} or, if required, the identity mapping
on P . If R is a binary relation, we write R ↾ P to denote R ∩ (P × P). Moreover,
↾ serves as the usual restriction operator for functions and structures. We set R−1 =
{(p′, p) ∣ (p, p′) ∈ R} and, for any p, R(p) = {p′ ∣ (p, p′) ∈ R}. Given binary relations
R1, R2 ⊆ P × P , we denote their product, as usual, by R1 ∘ R2 ⊆ P × P . Similarly, the
composition of two mappings �1, �2 : P → P is denoted �1 ∘ �2 : P → P and defined by
(�1 ∘ �2)(p) = �2(�1(p)) for all p ∈ P .

Trees and tree automata A ranked alphabet is a pair
 = (�, arity) where � is a
finite alphabet and arity : � → 2N assigns to a ∈ � a nonempty finite set arity(a) ⊆ N of
arities. We call
 binary if arity(a) ⊆ {0, 2} for all a ∈ � . It is unary if arity(a) ⊆ {0, 1}
for all a ∈ � .

A tree over the ranked alphabet
 = (�, arity) is a pair t = (domt, val t). Its domain,
domt ⊆ {1, 2, . . .}

∗, is a nonempty finite prefix-closed set of nodes where, for all u ∈ domt

and 0 < i < j, u.j ∈ domt implies u.i ∈ domt. The node " is called root, and a node u

is a successor of a node v if u = v.i for some i. Moreover, val t : domt → � such that,
for all u ∈ domt, the number of successors of u is in arity(val t(u)). A node without any
successor is a leaf. Otherwise, it is an inner node.

A tree automaton over
 is a triple A = (Q,←, F) where Q is a nonempty finite set
of states, F ⊆ Q is the set of final states, and ← ⊆ Q×� ×

∪

i∈NQi is a finite transition
relation. A run of A on a tree t = (domt, val t) over
 is a mapping run : domt → Q such
that, for all nodes u ∈ domt, say, with n successors, we have

run(u)
valt(u)
← (run(u.1), . . . , run(u.n)) .

The run is accepting if run(") ∈ F . The language of A, denoted by L(A), is the set of
trees t over
 such that there is an accepting run of A on t. It is well known that checking
emptiness of L(A) can be done in time O(∣Q∣ ⋅ (∣Q∣ ⋅ ∣←∣)). Moreover, determinization
and complementation generally cause an exponential blow up.

We will later consider decision problems for dynamic MSC grammars and establish
lower bounds by reductions from the intersection problem for tree automata.

Problem 1. Intersection for tree automata:

Instance: Binary ranked alphabet
; n ≥ 1; tree automata A1, . . . ,An over
.
Question: Is L(A1) ∩ . . . ∩ L(An) empty?

3

When we later move to so-called local grammars, a lower bound can be established using
a variant of the former problem where a unary ranked alphabet is used. Then, tree
automata actually reduce to finite automata.

Problem 2. Intersection for finite automata:

Instance: Unary ranked alphabet
; n ≥ 1; tree automata A1, . . . ,An over
.
Question: Is L(A1) ∩ . . . ∩ L(An) empty?

The complexity of both problems is well-known:

Theorem 3 ([Sei94]). Intersection for tree automata is EXPTIME-complete.

Theorem 4 ([Koz77]). Intersection for finite automata is PSPACE-complete.

3 Message Sequence Charts

A message sequence chart (MSC) consists of a number of processes (or threads). Each
process p is represented by a totally ordered set of events Ep. The total order is given
by a direct successor relation ≺proc. An event is labeled by its type. The minimal ele-
ment of each thread is labeled with start. Subsequent events can then execute send (!),
receive (?), or spawn (spawn) actions. The relation ≺msg associates each send event with
a corresponding receive event on a different thread. The exchange of messages between
two threads has to conform with a FIFO policy. Similarly, ≺spawn relates a spawn event
e ∈ Ep with the (unique) start action of a different thread q ∕= p, meaning that p has
created q.

Definition 5 (MSC). An MSC is a tuple M = (P, (Ep)p∈P ,≺, �) where

(a) P ⊆ N = {0, 1, . . .} is a nonempty finite set of processes,
(b) the Ep are disjoint nonempty finite sets of events (we let E :=

∪

p∈P Ep),
(c) � : E → {!, ?, spawn, start} assigns a type to each event, and
(d) ≺ = (≺proc,≺spawn,≺msg) where ≺proc,≺spawn,≺msg are binary relations on E.

There are further requirements:

(1) ≤ := (≺proc ∪ ≺spawn ∪ ≺msg)
∗ is a partial order,

(2) (E,≤) has a unique minimal element, denoted by start(M),
(3) �−1(start) = {e ∈ E ∣ there is no e′ ∈ E such that e′ ≺proc e},
(4) ≺proc ⊆

∪

p∈P(Ep × Ep),
(5) for each p ∈ P, ≺proc ∩ (Ep ×Ep) is the direct-successor relation of some total order

on Ep,
(6) ≺spawn induces a bijection between �−1(spawn) and �−1(start) ∖ {start(M)},
(7) ≺msg induces a bijection between �−1(!) and �−1(?) satisfying the following (FIFO):

for e1, e2 ∈ Ep and ê1, ê2 ∈ Eq with e1 ≺msg ê1 and e2 ≺msg ê2, both p ∕= q and
e1 ≤ e2 iff ê1 ≤ ê2.

4

In Figure 1, M is an MSC with set of processes P = {1, 2, 3, 4}. An MSC can be
seen as one single execution of a distributed system. To generate infinite collections of
MSCs, specification formalisms usually provide a concatenation operator. It will allow
us to append to an MSC a partial MSC, which does not necessarily have start events on
each process.

Definition 6 (partial MSC). Let M = (P, (Ep)p∈P ,≺, �) be an MSC and let E′ ⊆ E

be a nonempty set satisfying E′ = {e ∈ E ∣ (e, e′) ∈ ≺msg ∪ ≺spawn ∪ ≤
−1 for some e′ ∈

E′} (i.e., E′ is an upward-closed set containing only complete messages and spawning
pairs). Then, the restriction of M to E′ is called a partial MSC (PMSC). In particular,
the new process set is {p ∈ P ∣ E′ ∩ Ep ∕= ∅}.

The set of PMSCs is denoted by ℙ, the set of MSCs by M. Consider Figure 1. It depicts
the simple MSC Ip, with one event on process p ∈ N. Moreover, M1 and M2 are both
PMSCs, but not MSCs. Thus, we have M1,M2 ∈ ℙ ∖M.

Let M = (P, (Ep)p∈P ,≺, �) be a PMSC. For e ∈ E, we denote by loc(e) the unique
process p ∈ P such that e ∈ Ep. If M is not clear from the context, we rather write
locM (e). In other words, event e is located on process loc(e). For every p ∈ P , there are a
unique minimal and a unique maximal event in the total order (Ep,≤ ∩ (Ep×Ep)), which
we denote by minp(M) and maxp(M), respectively. We also set min(M) = {minp(M) ∣
p ∈ P} and max(M) = {maxp(M) ∣ p ∈ P}. For e ∈ E∖min(M), we set pred(e) to be the
predecessor of e, i.e., the unique event e′ such that e′ ≺proc e. For e ∈ min(M), pred(e)
remains undefined. We let Proc(M) = P . By Free(M), we denote the set of processes
p ∈ P such that �−1(start) ∩ Ep = ∅. Finally, Bound(M) = P ∖ Free(M). Intuitively,
free processes of a PMSC M are processes that are not initiated in M . In Figure 1,
Bound(Ip) = {p}, Free(M1) = {1}, Free(M2) = {1, 2}, and Bound(M) = {1, 2, 3, 4}. In
particular, Free(N) = ∅ for every MSC N .

Visually, concatenation of PMSCs corresponds to drawing identical processes one
below the other. For i = 1, 2, let M i = (P i, (Ei

p)p∈Pi ,≺i, �i) be PMSCs. Consider the
structure M = (P, (Ep)p∈P ,≺, �) where

– P = P1 ∪ P2,

– Ep = E1
p ⊎ E2

p for all p ∈ P (assuming Ei
p = ∅ if p ∕∈ P i),

– ≺proc = ≺
1
proc ∪ ≺

2
proc ∪ {(maxp(M

1),minp(M
2)) ∣ p ∈ P1 ∩ P2},

– ≺msg = ≺1
msg ∪ ≺

2
msg , and

– � = �1 ∪ �2 (with the obvious meaning).

If M is a PMSC, then we set M1 ∘M2 := M . Otherwise, M1 ∘M2 is undefined (e.g., if
some p ∈ P2 has a start event and E1

p ∕= ∅). Concatenation is illustrated in Figure 5.
In the context of partial orders, it is natural to consider linearizations, which extend

a partial order to a total order. Actually, a linearization can be considered as a word over
an infinite alphabet

� = {!(p, q) , ?(p, q) , spawn(p, q) ∣ p, q ∈ N with p ∕= q} .

5

p

startIp

1 2

spawn startM1

1 2

? !M2

M 1 2 3 4

start

spawn start

spawn start

spawn start

? !

? !

? !

? !

Fig. 1. (Partial) message sequence charts

For a PMSC M = (P, (Ep)p∈P ,≺, �), we let poset(M) be the �-labeled partial order
(E′,≤′, �′) where E′ = E ∖ �−1(start), ≤′ = ≤ ∩ (E′ × E′), and �′ : E′ → � such that,
for all (e, ê) ∈ ≺spawn, we have �′(e) = spawn(loc(e), loc(ê)), and, for all (e, ê) ∈ ≺msg,
both �′(e) = !(loc(e), loc(ê)) and �′(ê) = ?(loc(e), loc(ê)). The set Lin(poset(M)) of
linearizations of poset(M) is defined as usual as a subset of �∗. For example,

spawn(1, 2) spawn(2, 3) spawn(3, 4) !(4, 3) !(4, 1) ?(4, 3) !(3, 2) ?(3, 2) !(2, 1) ?(2, 1) ?(4, 1)

spawn(1, 2) spawn(2, 3) spawn(3, 4) !(4, 3) ?(4, 3) !(3, 2) ?(3, 2) !(2, 1) ?(2, 1) !(4, 1) ?(4, 1)

are two linearization of the MSC M from Figure 1. I.e., they are both contained in
Lin(poset(M)).

In the following, we do not distinguish PMSCs that differ only in their event names.3

Moreover, we say that two PMSCs are isomorphic if the one can be obtained from the
other via renaming of processes. A renaming is a bijective mapping � : N→ N. Applied
to a PMSC M = (P, (Ep)p∈P ,≺, �), we obtain M� = (�(P), (E�−1(p))p∈�(P),≺, �). With
this, PMSCs M and N are said to be isomorphic if N = M� for some renaming �. The
isomorphism class of M is denoted [M]. For a set L of PMSCs, we let [L] =

∪

M∈L[M].
We call L closed if L = [L].

4 Dynamic Communicating Automata

Dynamic communicating automata (DCA) extend classical communicating finite-state
machines [BZ83]. They allow for the dynamic creation of processes, and asynchronous
FIFO communication between them. Note that most of existing dynamic models lack
such asynchronous communication (see Section 8 for some references). Each process p

holds a set of process variables. Their values represent process identities that p remembers

3 Alternatively, we could require that the events of a process p are named (p, 1), (p, 2), . . . , (p, n), starting
with the minimal and ending up in the maximal one.

6

s0

s1 s2

s3

s4

s5 s6

x1 ← spawn(s0, (self, self, x3))

x2 ! (m, (self, x2, x3))

x2 ! (m, (x1, x2, x3))

x1 ? (m, ∅)

x1 ? (m, {x1})

x3 ! (m, (x1, x2, x3))

Fig. 2. A dynamic communicating automaton

at a given time, and they allow p to communicate with them. This model is close to the
threading mechanism in programming languages such as JAVA and Erlang, but also
borrows elements of the routing mechanisms in protocols implemented over partially
connected mesh topologies. Threads will be represented by dynamically created copies
of the same automaton. At creation time, the creating thread will pass known process
identities to the created thread. A thread can communicate with another one if both
threads know each other, i.e., they have kept their identities in memory. This mechanism
is chosen to preserve the partial-order concurrency of MSCs, which provide the semantics
of DCA. Thus, channels are private and, in particular, a receiving process has to know
the sending process.

We introduce DCA with an example. The DCA in Figure 2 comes with sets of process
variables X = {x1, x2, x3}, messages Msg = {m}, states Q = {s0, . . . , s6} where s0 is
the initial state, final states F = {s3, s4, s6}, and transitions, which are labeled with
actions. Each process associates with every variable in X the identity of an existing
process. At the beginning, there is one process, say 1. Moreover, all process variables
have value 1, i.e., (x1, x2, x3) = (1, 1, 1). When process 1 moves from s0 to s1, it executes
x1 ← spawn(s0, (self, self, x3)), which creates a new process, say 2, starting in s0. In the
creating process, we obtain x1 = 2. In process 2, on the other hand, we initially have
(x1, x2, x3) = (1, 1, 1). So far, this scenario is captured by the first three events in the
MSC M of Figure 1. Process 2 itself might now spawn a new process 3, which, in turn,
can create a process 4 in which we initially have (x1, x2, x3) = (3, 3, 1). Now assume
that, instead of spawning a new process, 4 moves to state s5 so that it sends the message
(m, (4, 3, 1)) to process 3. Recall that process 3 is in state s1 with (x1, x2, x3) = (4, 2, 1).
Thus, 3 can execute x1 ? (m, {x1}): it receives (m, (4, 3, 1)) and sets x1 to 4, whereas
variables x2 and x2 are not touched. We then have (x1, x2, x3) = (4, 2, 1) on process 3.
The DCA accepts, e.g., the behavior M depicted in Figure 1.

Let us formally define syntax and semantics of DCA. Note that, apart from spawn,
send, and receive actions, a DCA will also provide a renaming primitive, which allows a
process to reorder its variables.

7

Definition 7 (dynamic communicating automaton). A dynamic communicating
automaton (DCA) is a tuple A = (X,Msg , Q,�, �, F) where

– X is a set of process variables,

– Msg is a set of messages,

– Q is a set of states,

– � ∈ Q is the initial state,

– F ⊆ Q is the set of final states, and

– � ⊆ Q×ActA ×Q is the set of transitions.

Here, ActA is the set of actions, which are of the form

– x← spawn(s, �) (spawn action),

– x ! (m, �) (send action),

– x ? (m,Y) (receive action), and

– rn(�) (variable renaming)

where x ∈ X, s ∈ Q, � : (X ⊎ {self})X , � : X → X, Y ⊆ X, and m ∈ Msg.

We say that A is finite if X, Msg, and Q are finite.

Operational semantics We first define the semantics of a DCA as a word language
over �. It is actually the language of an infinite transition system. We will later argue
that this language is the set of linearizations of some set of MSCs and therefore yields a
natural semantics in terms of MSCs.

Let A = (X,Msg , Q,�, �, F) be some DCA. A configuration of A is a quadruple
(P, state, proc, ch) where P ⊆ N is a nonempty finite set of active processes (or identities),
state : P → Q maps each active process to its current state, proc : P → PX contains
the identities that are known to some process, and ch : (P × P) → (Msg × PX)∗ keeps
track of the channels contents. The configurations of A are collected in ConfA. We
define a global transition relation =⇒A ⊆ ConfA × (� ∪ {"}) × ConfA as follows: For
a ∈ � ∪ {"}, c = (P, state, proc, ch) ∈ ConfA, and c′ = (P ′, state ′, proc′, ch ′) ∈ ConfA,
we let (c, a, c′) ∈ =⇒A if there are p ∈ P and p̂ ∈ N with p ∕= p̂ (the process executing a

and the communication partner or spawned process), x ∈ X, s0 ∈ Q, � : (X ⊎ {self})X ,
Y ⊆ X, � : X → X, and (s, b, s′) ∈ � such that state(p) = s, and one of the cases in
Figure 3 holds (c and c′ coincide for all values that are not specified below a line).

An initial configuration is of the form ({p}, p 7→ �, proc, (p, p) 7→ ") ∈ ConfA for
some p ∈ N where proc(p)[x] = p for all x ∈ X. A configuration (P, state, proc, ch)
is final if state(p) ∈ F for all p ∈ P , and ch(p, q) = " for all (p, q) ∈ P × P . A
run of DCA A on a word w ∈ �∗ is an alternating sequence c0, a1, c1, . . . , an, cn of
configurations ci ∈ ConfA and letters ai ∈ � ∪ {"} such that w = a1.a2 . . . an, c0 is
an initial configuration and, for every i ∈ {1, . . . , n}, (ci−1, ai, ci) ∈ =⇒A. The run is
accepting if cn is a final configuration. The word language of A, denoted ℒ(A), is the set
of words w ∈ �∗ such that there is an accepting run of A on w.

8

spawn
a = spawn(p, p̂) b = x← spawn(s0, �)

P ′ = P ⊎ {p̂}
state ′(p) = s′

state ′(p̂) = s0

ch ′(q, q′) = "

if p̂ ∈ {q, q′}
proc′(p)[x] = p̂

proc′(p̂)[y] =

{

proc(p)[�[y]] if �[y] ∕= self

p if �[y] = self

for all y ∈ X

send
a = !(p, p̂) b = x ! (m, �) p̂ = proc(p)[x]

state ′(p) = s′ ch ′(p, p̂) = (m,).ch(p, p̂)

where ∈ PX with

[y] =

{

proc(p)[�[y]] if �[y] ∕= self

p if �[y] = self

receive
a = ?(p̂, p) b = x ? (m,Y) p̂ = proc(p)[x]

state ′(p) = s′ there is ∈ PX such that
[

ch(p̂, p) = ch ′(p̂, p).(m,)
∧ for all y ∈ Y, proc′(p)[y] = [y]

]

renaming
a = " b = rn(�)

state ′(p) = s′ proc′(p)[y] = proc(p)[�(y)]
for all y ∈ X

Fig. 3. Global transition relation of a DCA

Partial-order semantics Alternatively, the semantics of DCAA = (X,Msg , Q,�, �, F)
can be given directly for MSCs. This semantics abstracts from channel contents and will
be easier to cope with in proofs that deal with MSCs.

For an MSC M = (P, (Ep)p∈P ,≺, �), an MSC run of A on M is a pair (state, proc)
where state : E → Q and proc : E → PX . Intuitively, state(e) is the state of process
loc(e) reached after executing e, and state(e)[x] is the value of x ∈ X after the execution
of e. We require that

– state(start(M)) = �,

– proc(start(M))[x] = loc(start(M)) for all x ∈ X,

– for all e0, e, ê ∈ E such that e0 ≺proc e ≺spawn ê, there are n ≥ 0 and n+1 transitions

(s0, rn(�1), s1), . . . , (sn−1, rn(�n), sn), (sn, x̂← spawn(ŝ, �), s) ∈ �

such that state(e0) = s0, state(e) = s, state(ê) = ŝ, proc(e)[y] = proc(e0)[(�1 ∘
. . . ∘ �n)(y)] for all y ∈ X ∖ {x̂}, proc(e)[x̂] = loc(ê), proc(ê)[y] = proc(e)[�(y)] if
�(y) ∕= self, and proc(ê)[y] = loc(e) if �(y) = self,

9

– for all e0, ê0, e, ê ∈ E such that e0 ≺proc e ≺msg ê and ê0 ≺proc ê, there are transitions

(s0, rn(�1), s1), . . . , (sn−1, rn(�n), sn), (sn, x̂ ! (m, �), s) ∈ �

(ŝ0, rn(�̂1), ŝ1), . . . , (ŝℓ−1, rn(�̂ℓ), ŝℓ), (ŝℓ, x ? (m,Y), ŝ) ∈ �

such that state(e0) = s0, state(ê0) = ŝ0, state(e) = s, state(ê) = ŝ, proc(e)[x̂] =
loc(ê), proc(ê)[x] = loc(e), proc(e)[y] = proc(e0)[(�1 ∘ . . . ∘�n)(y)] for all y ∈ X ∖ {x̂},
and, for all y ∈ X,

proc(ê)[y] =

⎧

⎨

⎩

loc(e) if y ∈ Y and �(y) = self

proc(e)[�(y)] if y ∈ Y and �(y) ∕= self

proc(ê0)[(�̂1 ∘ . . . ∘ �̂ℓ)(y)] if y ∕∈ Y

The MSC run is accepting if {state(maxp(M)) ∣ p ∈ P} ⊆ F . The (MSC) language of A
is L(A) := {M ∈ M ∣ there is an accepting MSC run of A on M}. It is easy to see that
[L(A)] = L(A).

Consider the finite DCA A from Figure 2. For n ≥ 2, suppose that M(n) denotes the
MSC where an initial phase creates processes 1, . . . , n, whereupon n sends a message to
n− 1, which is relayed back to process 1, followed by a message from n to 1. Thus, M(4)
is precisely the MSC M from Figure 1. Then, we have L(A) = [{M(n) ∣ n ≥ 2}].

It is standard to show that the operational and the partial-order semantics of DCA
coincide:

Proposition 8. For a DCA A, we have

– L(A) = {M ∈M ∣ Lin(poset(M)) ⊆ ℒ(A)} and, equivalently,

– ℒ(A) =
∪

M∈L(A) Lin(poset(M)).

DCA actually generalize the classical setting of communicating finite-state machines
[BZ83]. To simulate them, the starting process spawns the required number of processes
and broadcasts their identities to any other process.

5 Dynamic MSC Grammars

In this section, we introduce dynamic MSC grammars. They are inspired by the grammars
from [LMM02], but take into account that we want to implement them in terms of DCA.
We keep the main idea of [LMM02] and use process identifiers to tag active processes in a
given context. Their concrete usage is different, though, and allows us to define protocols
such as the language of the DCA from Figure 2 in a more compact way.

Let us start with an example. Figure 4 depicts a dynamic MSC grammar with non-
terminals N = {S,A,B}, start symbol S, process identifiers � = {�1, �2}, and five
rules. Any rule has a left-hand side (a non-terminal), and a right-hand side (a sequence
of non-terminals and PMSCs). In a derivation, the left-hand side can be replaced with the
right-hand side. This replacement, however, depends on a more subtle structure of a rule.

10

S −→

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1

spawn start
�2

A

? !

B

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

S −→

0

B

B

B

B

B

B

B

B

B

B

B

B

@

�1

spawn start
�2

? !

B

1

C

C

C

C

C

C

C

C

C

C

C

C

A

B −→

0

B

B

B

@

�1 �2

? !

1

C

C

C

A

A −→

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�2

spawn start
�2

A

? !

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A −→

0

B

B

B

B

B

B

B

B

B

@

�2

spawn start
�2

? !

1

C

C

C

C

C

C

C

C

C

A

Fig. 4. A dynamic MSC grammar

The bottom left one, for example, is actually of the form A −→f � with � =ℳ1.A.ℳ2,
where f is a function that maps the first process of �, which is considered free, to the
process identifier �2. This indicates where � has to be inserted when replacing A in a
configuration. To illustrate this, consider a derivation as depicted in Figure 6, which is
a sequence of configurations, each consisting of an upper and a lower part. The upper
part is a named MSC [LMM02], an MSC where some processes are tagged with process
identifiers. The lower part, a sequence of PMSCs and non-terminals, is subject to further
evaluation. In the second configuration, which is of the form (M, A.�) (with named MSC
M), replacing A with � requires a renaming � of processes: the first process of �, tagged
with �2, takes the identity of the second process of M, which also carries �2. The other
process of � is considered newly created and obtains a fresh identity. Thereafter, A can
be replaced with �� so that we obtain a configuration of the form (M,ℳ.),ℳ being a
PMSC. The next configuration is (M ∘ ℳ,) where the concatenation M ∘ ℳ is simply
performed on the basis of process names and does not include any further renaming.
Process identifiers might migrate, though. Actually, ℳ is a pair (M,�) where M is
a PMSC and � partially maps process identifiers � to process pairs (p, q), allowing �

to change its location from p to q during concatenation (cf. the third configuration in
Figure 6, where �2 has moved from the second to the third process).

We now formalize the components of a dynamic MSC grammar. Let � be a nonempty
and finite set of process identifiers.

Definition 9 (named MSC). A named MSC over � is a pair (M, �) where M is an
MSC and � : � → Proc(M).

Definition 10 (migration PMSC). A migration PMSC over � is a pair (M,�) where
M is a PMSC with Free(M) ∕= ∅, and � : � ⇀ Free(M)×Proc(M) is a partial mapping.

11

�1

1
�2

2

start

spawn start

? !

2 3 4
�2

spawn start

�2

spawn start

!?

(M,�)

(N, �)
�1

1 2 3
�2

4

start

spawn start

? !

spawn start

spawn start

? !

(N ′, �′) = (N, �) ∘ (M,�)

Fig. 5. Concatenation

We denote by nM the set of named MSCs and by mℙ the set of migration PMSCs over
� (we assume that � is clear from the context). We let M range over named MSCs and
ℳ over migration PMSCs. For M = (N, �) ∈ nM andℳ = (M,�) ∈ mℙ, we may write
Proc(M) and Proc(ℳ) to denote, respectively, Proc(N) and Proc(M).

A derivation of a dynamic MSC grammar is a sequence of configurations (M, �).
The named MSC M represents the scenario that has been executed so far, and � is a
sequence of non-terminals and migration PMSCs that will be evaluated later, proceeding
from left to right. If � =ℳ. for some migration PMSCℳ, then the next configuration
is (M ∘ ℳ,). However, the concatenation M ∘ ℳ is defined only if M and ℳ are
compatible. Formally, we define a partial operation _ ∘_ : nM × mℙ ⇀ nM as follows:
Let (N, �) ∈ nM and (M,�) ∈ mℙ. Then, (N, �)∘(M,�) is defined if N ∘M is defined and
contained in M, and, for all � ∈ � such that �(�) = (p, q) is defined, we have �(�) = p.
If defined, we set (N, �) ∘ (M,�) := (N ′, � ′) where N ′ = N ∘M , � ′(�) = �(�) if �(�) is
undefined, and � ′(�) = q if �(�) = (p, q) is defined.

Concatenation is illustrated in Figure 5. The set of process identifiers is {�1, �2}. We
have �(�1) = 1 and �(�2) = 2. Moreover, �(�2) = (2, 4) whereas �(�1) is undefined. In
the resulting named MSC, we have � ′(�1) = 1 and � ′(�2) = 4.

We already mentioned that, in a configuration (M, A.), replacing non-terminal A
with a sequence � includes a renaming of processes to make sure that those that are
free in � and carry identifier � have the same name as an existing process of M car-
rying �. In other words, processes that occur free in � take identities of processes
from M. To be able to distinguish between free and bound processes in �, we intro-
duce the notion of an expression. Let N be a set of non-terminals, and � be a set
of process identifiers. An expression over N and � is a sequence � ∈ (mℙ ∪ N)∗

of the form u0.(M1, �1).u1 . . . (Mk, �k).uk, k ≥ 1 and ui ∈ N
∗, such that M(�) :=

M1 ∘ . . . ∘ Mk ∈ ℙ. We let Proc(�) := Proc(M(�)), Free(�) := Free(M(�)), and
Bound(�) := Bound(M(�)).

12

0

B

B

B

B

B

B

B

B

B

@

�2

�1

start

S

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

start

spawn start

A

? !

B

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

start

spawn start

spawn start

? !

? !

B

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

start

spawn start

spawn start

? !

? !

? !

"

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Fig. 6. A derivation

Definition 11 (dynamic MSC grammar). A dynamic MSC grammar is a quadruple
G = (�,N , S,−→) where � and N and are nonempty finite sets of process identifiers
and non-terminals, S ∈ N is the start non-terminal, and −→ is a finite set of rules. A
rule is a triple r = (A,�, f) where A ∈ N is a non-terminal, � is an expression over N
and � with Free(�) ∕= ∅, and f : Free(�)→ � is injective. We may write r as A −→f �.

In the sequel, let ∣G∣ := ∣�∣+
∑

A−→f�
(∣�∣+ ∣M(�)∣) be the size of G (∣�∣ denoting

the length of � as a word and ∣M(�)∣ the number of events of M(�)). Moreover, we set
Proc(G) :=

∪

A−→f�
Proc(�).

A renaming � (recall that � is a bijective mapping from N to N) can be applied
to migration PMSCs and expressions as follows. For a migration PMSC ℳ = (M,�)
with M = (P, (Ep)p∈P ,≺, �), we let ℳ� = (M�,��) where ��(�) = (�(p), �(q)) if
�(�) = (p, q) is defined; otherwise, ��(�) is undefined. For a rule r = (A,�, f) with
� = u0.ℳ1.u1 . . .ℳk.uk, we set r� := (A,��, f�) where �� = u0.ℳ1�.u1 . . .ℳk�.uk is
a new expression and f�(q) = f(�−1(q)) for q ∈ Free(��).

A configuration of a dynamic MSC grammar G = (�,N , S,−→) is a pair (M, �)
where M ∈ nM and � ∈ (mℙ ∪ N)∗. If � = ", then the configuration is said to be
final. Let ConfG be the set of configurations of G. A configuration is initial if it is of
the form ((Ip, �), S) for some p ∈ N, where Ip is depicted in Figure 1 and �(�) = p for
all � ∈ �. The semantics of G is given as the set of (named) MSCs appearing in final
configurations that can be derived from an initial configuration by means of relations
r

=⇒G ⊆ ConfG × ConfG (for every rule r) and
e

=⇒G ⊆ ConfG × ConfG (where e stands
for “evaluate”):

– For configurations C = (M, A.) and C′ = (M, �.) with M = (M, �), r ∈ −→, and a
renaming �, we let C

r
=⇒
�

G C
′ if r� = (A,�, f), �(f(p)) = p for all p ∈ Free(�), and

Proc(M) ∩ Bound(�) = ∅. Moreover, we let
r

=⇒G =
∪

� renaming

r
=⇒
�

G.

13

– For configurations C = (M,ℳ.) and C′ = (M′,), we let C
e

=⇒G C
′ if M′ = M ∘ ℳ

(in particular, M ∘ℳ must be defined).

We define =⇒G to be
e

=⇒G ∪
∪

r∈−→
r

=⇒G. The language of G is the set

L(G) := {M ∈M ∣ C0 =⇒
∗
G ((M, �), ") for some initial configuration C0 and �} .

Let us formalize the grammar G = (�,N , S,−→) as depicted in Figure 4. Given
the PMSCs M1 and M2 from Figure 1, we let ℳ1 = (M1, �1), ℳ2 = (M2, �2), and
ℳ12 = (M1 ∘M2, �1) be migration PMSCs with �1(�1), �2(�1), �2(�2) undefined and
�1(�2) = (1, 2). We have

S −→fS ℳ1.A.ℳ2.B S −→fS ℳ12.B B −→fB ℳ2

A −→fA ℳ1.A.ℳ2 A −→fA ℳ12

where fS(1) = fB(1) = �1 and fA(1) = fB(2) = �2. Recall that =⇒∗
G is illustrated in

Figure 6. In a configuration, the part above a first non-terminal (if there is any) illustrates
a named MSC. Note that L(G) = L(A) for the DCA A from Figure 2.

6 Realizability of Dynamic MSC Grammars

In this section, we introduce our notion of realizability. An MSC language L is realizable if
it is recognized by some DCA. If that DCA can do with at most B ≥ 1 process variables,
then L is called B-realizable.

Definition 12 (realizable). Let L ⊆ M be an MSC language. We call L (proximity)
realizable if there is a DCA A such that L = L(A). For B ≥ 1, we say that L is B-
realizable if there is a DCA A = (X,Msg , Q,�, �, F) such that L = L(A) and ∣X∣ ≤ B.

A dynamic MSC grammar G is (B-)realizable if so is L(G). Moreover, we call an MSC
M realizable if so is [M].

For example, the MSC M from Figure 1 is 3-realizable. To implement M , a process
must keep in memory its left and its right neighbor. Moreover, in the spawning phase, it
remembers process 1 (to communicate it eventually to process 4). In the second phase,
it can forget about 1 and keep in mind process 4 (to communicate it to process 1). Two
process variables are actually not sufficient so that M is not 2-realizable. The MSC from
Figure 7 is not realizable, as process 1 sends a message to process 3, which is unknown
to 1: there is no way to communicate the identity of 3 to 1. Adding a message from
2 (which knows 3) to 1 makes the MSC 2-realizable (Figure 8). The (closure of the)
language depicted in Figure 9, n ranging over N, is realizable, though not by a finite
DCA. Indeed, our definition of realizability does not make any assumption on the set
of states nor the set of messages in a DCA. As a consequence, realizability of a set of
MSCs actually reduces to realizability of each MSC in that set (see Lemma 15 below).
In turn, realizability of a single MSC can be reduced to the question if events can be
consistently labeled with processes known after their execution such that subsequent

14

1 2 3

start

spawn start

spawnstart

?!

Fig. 7. not realizable

1 2 3

start

spawn start

spawnstart

? !

?!

Fig. 8. 2-realizable

1 2 3 4

start

spawn start

spawn start

spawn start

...
...

...
...

n

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

n

n

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

n

Fig. 9. A realizable MSC language

events communicate only with these known processes. This will be elaborated formally
in the following.

Let M = (P, (Ep)p∈P ,≺, �) be a PMSC and let K ⊆ ((N ∖ Bound(M)) × (N ∖
Bound(M))) ∖ idN be a finite relation. Intuitively, K represents some “is-known-to”
relation for processes that are already active, before it comes to the execution of M . Let
P = {p ∈ N ∣ (p, p̂) ∈ K ∪ K−1 for some p̂ ∈ N} be the set of those active processes.
Let � : E → 2P ∪P be some mapping. We will define when � correctly captures the
transmission of process identities in M , i.e., �(e) contains only processes that loc(e) may
know after the execution of e. For e ∈ E, let �pred (e) denote �(pred(e)) if pred(e) is
defined, and K−1(loc(e)), otherwise. We call � a knowledge mapping for M under K if
the following hold:

(a) M ∈M implies �(start(M)) ⊆ ∅

(b) for all (e, ê) ∈ ≺spawn, both

{

�(e) ⊆ �pred (e) ∪ {loc(ê)} and

�(ê) ⊆ �pred (e) ∪ {loc(e)}

(c) for all (e, ê) ∈ ≺msg, both

{

�(e) ⊆ �pred (e) and

�(ê) ⊆ (�pred (e) ∪ �pred (ê) ∪ {loc(e)}) ∖ {loc(ê)}

Moreover, � is called

– B-bounded (for B ≥ 1) if ∣�(e)∣ ≤ B for all e ∈ E,

– valid (for K) if, for all (e, ê) ∈ ≺msg, both loc(ê) ∈ �pred (e) and loc(e) ∈ �pred (ê).

15

When we replace, in the three items (a), (b), and (c), the subset relations ⊆ by :=, we
obtain the inductive definition of the maximal knowledge mapping for M under K, which
we denote by �K

M . Moreover, �M will denote �∅
M .

Figure 10 exemplifies the mapping �M of an MSC M . Note that this mapping is valid
and 2-bounded.

1 2 3

∅

{1, 3}
spawn

{1, 2}

spawn

{2, 3} {1, 3}

{1, 2}{2, 3}

{2} {1}

Fig. 10. The knowledge mapping �M of an MSC M

Lemma 13. Let M ∈ M and B ≥ 1. Then, M is B-realizable iff there is a knowledge
mapping � for M under ∅ such that � is B-bounded and valid.

Proof. Let M ∈ M be realizable. There are a DCA A = (X,Msg , Q,�, �, F) and an
accepting MSC run (proc, state) of A on M . One can readily verify that the mapping
� : E → P given by �(e) = {proc(e)[x] ∣ x ∈ X} ∖ {loc(e)} is a valid knowledge mapping
for M under ∅. Obviously, � is ∣X∣-bounded.

Conversely, let M = (P, (Ep)p∈P ,≺, �) ∈ M and � be a B-bounded valid knowledge
mapping for M under ∅. We construct a DCA A = (X,Msg , Q,�, �, F) such that ∣X∣ ≤
B and L(A) = [M] as follows: Q = E, � = start(M), F = max(M), Msg = ≺msg,
and X = {xi ∣ i ∈ {1, . . . , B}}. Let us turn to �. For all i ∈ {1, . . . , B}, Y ⊆ X,
� ∈ (X⊎{self})X , and e0, e, ê0, ê ∈ E with e0 ≺proc e ≺msg ê and ê0 ≺proc ê, we introduce
transitions (e0, xi ! ((e, ê), �), e) and (ê0, xi ? ((e, ê), �), ê). Finally, for all i ∈ {1, . . . , B},
� ∈ (X ⊎ {self})X , and e0, e, ê ∈ E with e0 ≺proc e ≺spawn ê, we introduce a transition
(e0, xi ← spawn(ê, �), e). ⊓⊔

Note that the DCA that we construct in the proof of the previous lemma is non-
deterministic and basically guesses a correct assignment of process variables. We point
out that we could likewise construct a deterministic and deadlock-free automaton, which,
however, is not needed for our result.

Lemma 14. Let M ∈M. Then, M is realizable iff �M is a valid knowledge mapping.

Proof. Let M = (P, (Ep)p∈P ,≺, �) ∈ M be realizable. Then, there are a DCA A =
(X,Msg , Q,�, �, F) and an accepting MSC run (proc, state) of A on M . It can be easily
checked that, for all e ∈ E, {proc(e)[x] ∣ x ∈ X} ∖ {loc(e)} ⊆ �M (e). From the latter, we
can deduce that �M is valid.

16

Let �M be a valid knowledge mapping for M ∈M. Then, �M is ∣P∣-bounded and, by
Lemma 13, realizable. ⊓⊔

Lemma 15. Let L ⊆M be closed. Then, L is realizable iff every MSC in L is realizable.

Proof. Suppose L is realizable and let M = (P, (Ep)p∈P ,≺, �) ∈ L. Then, there is a DCA
A = (X,Msg , Q,�, �, F) with L(A) = L. In particular, there is an accepting MSC run
(proc, state) of A on M . Again, for all e ∈ E, {proc(e)[x] ∣ x ∈ X} ∖ {loc(e)} ⊆ �M (e) so
that �M is valid. By Lemma 14, M is realizable.

Then, there are a DCA A with L(A) = L and an accepting run of A on (some
linearization of) M . Clearly, this run can be added to the state information of A to
ensure that only M can be executed. Thus, M is realizable as well.

Now suppose that, for every M ∈ L, M is realizable, i.e., there is a DCA AM =
(XM ,MsgM , QM , �M , �M , FM) such that L(AM) = [M]. We assume that MsgM ∩
MsgN = QM ∩ QN = ∅ for any two distinct MSCs M,N ∈ L. One can construct
a DCA A = (X,Msg , Q,�, �, F) with L(A) = L as follows: X =

∪

M∈LXM , Msg =
∪

M∈LMsgM , Q =
∪

M∈LQM ⊎{�}, F =
∪

M∈L FM ∪{� ∣ I0 ∈ L}, and � =
∪

M∈L�M ∪
{(�, rn(idX), �M) ∣ M ∈ L}. The idea is that, starting in �, the DCA A chooses an MSC
M ∈ L to be executed. As states and messages are disjoint, transitions cannot be “mixed”
anymore during an execution so that M is indeed executed. ⊓⊔

Lemma 16. Let L ⊆M be closed and let B ≥ 1. Then, L is B-realizable iff every MSC
in L is B-realizable.

Proof. Suppose L is B-realizable. There is a DCA A with set of process variables X such
that ∣X∣ ≤ B and L(A) = L. For M = (P, (Ep)p∈P ,≺, �) ∈ L, there is an accepting
run (proc, state) of A on M . One can check that the mapping � : E → P given by
�(e) = {proc(e)[x] ∣ x ∈ X} ∖ {loc(e)} is a B-bounded valid knowledge mapping for M

under ∅. By Lemma 13, M is B-realizable.
For the reverse direction, we can simply use the construction of a DCA from Lemma 15,

assuming XM = XN and ∣XM ∣ ≤ B for every all M,N ∈ L. ⊓⊔

We are interested in two decision problems for dynamic MSC grammars, addressing
emptiness and realizability:

Problem 17. Emptiness for dynamic MSC grammars:

Instance: Dynamic MSC grammar G.
Question: Is L(G) empty?

Problem 18. Realizability for dynamic MSC grammars:

Instance: Dynamic MSC grammar G.
Question: Is G realizable?

In the following, we will proof the following two theorems, which establish the precise
complexity of the above problems:

Theorem 19. Emptiness for dynamic MSC grammars is EXPTIME-complete.

17

�1 �2

1 2 3

start

spawn start

spawnstart

M

�1 �2

1 2 3

CM

�1 �2

1 2

red(CM)

�1

�1

1 p

!?

ℳp = (Mp, �p)

�2

�1

1 2 3

CM ∘ℳ2
= next(M,ℳ2)

1 2

KM2

Fig. 11. Communication structures

Theorem 20. Realizability for dynamic MSC grammars is EXPTIME-complete.

We establish lower and upper bounds for these problems separately, in terms of several
propositions.

In the proof of both theorems, we will make use of bounded abstractions of both
named MSCs and migration PMSCs in terms of communication structures. Accordingly, a
communication structure reflects either the current communication topology, comprising
the currently active processes as well as a binary “is known to”-relation between processes,
or the message flow that takes place within a PMSC.

Let � be a nonempty finite set of process identifiers. A communication structure
over � is a tuple C = (P,K, ℓ) where P ⊆ N is a nonempty finite set of nodes, K ⊆
(P × P) ∖ idP , and ℓ : � → P . Intuitively, any node represents a process and (p, q) ∈ K

means that process p is known to process q, or p has communicated some information to
q. The mapping ℓ associates with every process identifier a process. We call C reduced if
ℓ(�) = P , i.e., every process carries at least one process identifier. By red(C), we denote
the restriction of C to ℓ(�), which is thus a reduced communication structure. The set of
communication structures over � is denoted by CS(�). Three communication structures
are depicted in Figure 11. Hereby, the top right structure is the only reduced one.

Recall that the basic operation in a derivation of a grammar is concatenation of a
named MSC and a migration PMSC. Fortunately, applicability and realizability of the
PMSC only depend on (a restriction of) the communication structure associated with
the named MSC.

For a PMSC M = (P, (Ep)p∈P ,≺, �), we let

KM = {(loc(e), loc(ê)) ∣ (e, ê) ∈ (≺spawn ∪ ≺
−1
spawn ∪ ≺proc ∪ ≺msg)

+} ∖ idP .

Abusing notation, we may also write KM or Kℳ to denote KM if M = (M, �) ∈ nM
or, respectively, ℳ = (M,�) ∈ mℙ. One can easily check that KM can be described in
terms of �M as follows:

18

Remark 21. We have KM = {(p, q) ∈ (P × P) ∖ idP ∣ p ∈ �M (maxq(M))}.

Now let M = (M, �) be a named MSC over �. We set CM to be the communication
structure (Proc(M),KM , �). Again, we refer to Figure 11 for an example.

Suppose the system is in a configuration that is reflected by a communication struc-
ture C = (P,K, ℓ). Then, a migration PMSC ℳ = (M,�) with M = (P, (Ep)p∈P ,≺, �)
is said to be applicable at C, written C ⊢ ℳ, if

– Free(M) ⊆ P ,
– Bound(M) ∩ P = ∅, and
– for all � ∈ � such that �(�) = (p, q) is defined, we have ℓ(�) = p.

The intuition behind this definition is that concatenation is defined. This is reflected by
the following lemma, which follows directly from the definitions.

Lemma 22. Let M = (N, �) be a named MSC and ℳ = (M,�) be a migration PMSC.
Furthermore, let P ⊆ Proc(N) such that �(�) ∪ (Proc(N) ∩ Proc(M)) ⊆ P . Then,
M ∘ℳ is defined iff CM ↾ P ⊢ ℳ.

We refine the previous definition and say that PMSC ℳ = (M,�) is realizable at
C = (P,K, ℓ), written C ⊩ℳ, if both C ⊢ ℳ and �K

M is valid. Consider Figure 11. We
have CM ⊢ ℳ3, but CM ∕⊩ℳ3. Indeed, the MSC in M ∘ℳ3 is not realizable:

Lemma 23. Let M = (N, �) be a named MSC and ℳ = (M,�) be a migration PMSC
such that M ∘ℳ is defined. Moreover, let P ⊆ Proc(N) such that �(�) ∪ (Proc(N) ∩
Proc(M)) ⊆ P . Then, N ∘M is realizable iff both N is realizable and CM ↾ P ⊩ℳ.

Proof. Suppose N ∘M is realizable. By Lemma 14, �N∘M is a valid knowledge mapping
and so is the restriction �N of �N∘M to events from N . Thus, the MSC N is realizable.

By Lemma 22, CM ↾ P ⊢ ℳ. It remains to verify that �
KN ∩ (P×P)
M is valid. But by

Remark 21 and the definition of �KN

M , we obtain that �
KN

M is the restriction of �N∘M to

events of M . As �N∘M is valid and Proc(N) ∩ Proc(M) ⊆ P , �
KN ∩ (P×P)
M is valid, too.

For the converse direction, suppose that N is realizable and CM ↾ P ⊩ ℳ. The

former implies that �N is valid. By CM ↾ P ⊩ℳ, �
KN ∩ (P×P)
M is valid as well. Clearly,

the union of �N and �
KN ∩ (P×P)
M is a valid knowledge mapping. ⊓⊔

So far, communication structures were used as abstractions of named MSCs. In the
following, we show that they can also reflect migration PMSCs and their communication
flow.

For relations K1,K2 ⊆ (N×N) ∖ idN, we set

K1 ⊙K2 = K1 ∪K2 ∪ (K1 ∘K2) ∖ idN .

Note that ⊙ is associative.
As we defined concatenation of a named MSC and a migration PMSC, we can also

apply a migration PMSC to a communication structure directly. To this aim, we define a

19

partial mapping next , which takes as arguments a communication structure C = (P,K, ℓ)
and a migration PMSCℳ = (M,�) ∈ mℙ. Then, next(C,ℳ) is defined iff C ⊢ ℳ, i.e.,
ℳ is applicable at C. In that case, we set next(C,ℳ) to be the communication structure
(P ′,K ′, ℓ′) (over �) where

– P ′ = P ∪ Proc(M),
– K ′ = K ⊙KM ,
– ℓ′(�) = ℓ(�) if �(�) is undefined, and ℓ′(�) = q if �(�) = (p, q) is defined.

The following lemma is an easy observation:

Lemma 24. Let M and M ′ be PMSCs and P ⊆ Proc(M) ∪ Proc(M ′) such that M ∘M ′

is defined and Proc(M) ∩ Proc(M ′) ⊆ P . Then, the following hold:

(a) KM ∘M ′ = KM ⊙KM ′

(b) KM ∘M ′ ↾ (P ∪ Proc(M)) = KM ⊙ (KM ′ ↾ P)
(c) KM ∘M ′ ↾ (P ∪ Proc(M ′)) = (KM ↾ P)⊙KM ′

We obtain, as a corollary from the previous lemma, that a communication structure
is a faithful abstraction of a named MSC wrt. concatenation, as illustrated in Figure 11.

Corollary 25. Let M = (N, �) be a named MSC and ℳ be a migration PMSC such
that M ∘ ℳ is defined. Moreover, let P ⊆ Proc(M) such that �(�) ∪ (Proc(M) ∩
Proc(ℳ)) ⊆ P . Then, next(CM ↾ P,ℳ) = CM ∘ℳ ↾ (P ∪ Proc(ℳ)).

We are now prepared to prove Theorems 19 and 20 stating that emptiness and realiz-
ability for dynamic MSC grammars are EXPTIME-complete. We first show containment
in EXPTIME (Proposition 26) and then the hardness result (Proposition 31).

Proposition 26. Emptiness and realizability for dynamic MSC grammars are both in
EXPTIME.

Proof. Let G = (�,N , S,−→) be a dynamic MSC grammar. To answer the first question
(L(G) = ∅ ?), we build a tree automaton AG that accepts all parse trees of G that
correspond to successful derivations of G. Thus, we have L(AG) = ∅ iff L(G) = ∅. To
answer the second question (Is L(G) realizable ?), we build a tree automaton ℬG for
those parse trees that correspond to a successful derivation of a non-realizable MSC.
According to Lemma 15, L(G) is realizable iff all MSCs in L(G) are realizable. Thus,
L(G) is realizable iff L(ℬG) = ∅.

Note that ℬG will actually be just a slight extension of AG. To illustrate their idea, we
use the dynamic MSC grammar G from Figure 4. The left-hand side of Figure 12 depicts
the parse tree t of G that corresponds to the derivation from Figure 6. We, therefore,
call t legal. Note that, for technical reasons, the function f from a rule A −→f � is
located at its non-terminal A. The crucial point of the construction is to record, during
a derivation, only a bounded amount of information on (1) the current configuration of
a system and (2) the flow of information in a migration PMSC. This information will be

20

S, fS

ℳ1

A, fA

ℳ2

B, fB

ℳ12

ℳ2

�2
�1

�1 �2

�2
�1

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

�1 �2

C0

C1

D0

D1

D0

D′
1

�2−→

←−

�2−→
←−

←−

Fig. 12. A legal parse tree of G and a run of AG/ℬG

provided in terms of communication structures. The right-hand side of Figure 12 depicts
a run of AG/ℬG on t. States, which are assigned to nodes, are framed by a rectangle. A
state is hence either a pair of communication structures (together with a non-terminal,
which is omitted), or a migration PMSC that occurs in G.

Our automaton works bottom-up. Consider the upper right leaf of the run tree,
which is labeled with its state ℳ12. Suppose that, when it comes to executing ℳ12,
the current communication structure C0 of the system contains two processes carrying
�1 and �2, respectively, that know each other (represented by the two edges). Indeed,
ℳ12 is applicable at C0, and when we applyℳ12, the outcome will be a new structure,
C1 = next(C0,ℳ12), with a newly created process that collects process identifier �2.
Henceforth, the process carrying �1 is known to that carrying �2, but the converse does
not hold. In the figure, names of nodes are omitted; instead, identical nodes are combined
by a dotted line. We conclude that applying A −→fA ℳ12 has the effect of transforming
C0 into C1. This transformation is uniquely described by a communication structure
C ′
1 (the second structure in the state of node 2, with “known-to-relation” Kℳ12

), which
captures the information flow in ℳ12.

Therefore, (C0, A, C
′
1) is a state that can be assigned to the (A, fA)-labeled node, as

actually done in our example run. To end up with finitely many states, it is important

21

here that the first structure C0 of a state (C0, A, C
′
1) is reduced meaning that it restricts to

nodes carrying process identifiers. The structure C ′
1, however, might keep some unlabeled

nodes, but only those that stem from previously labeled ones. Hence, the set of states of
AG will be finite, though exponential in ∣G∣. Like elements of mℙ, a triple (C0, A, C

′
1) can

be applicable at (and be applied to) a communication structure. For example, the states
that label the successors of the root transform D0 into D1, using a transformation that
is described by D1 as well. Now, we can reduce D1 to D′

1 by removing the middle node,
as it does not carry a process identifier nor does it arise from an identifier-carrying node.
Thus, (D0, S,D

′
1) is the state assigned to the root. It is final, as D0 consists of only one

process, which carries all the process identifiers. A final state at the root ensures that
the run tree represents a derivation that starts in the initial configuration gathering all
process identifiers, and ends in a realizable MSC.

Let mℙG denote the set of migration PMSCs that occur in some rule of G, and
let ℱG = {(A, f) ∣ A −→f �}. In the following, we consider trees and tree automata
over the ranked alphabet
 = (�, arity) with � = ℱG ∪ mℙG and, for (A, f) ∈ ℱG,
arity((A, f)) = {∣�∣ ∣ A −→f �} and, forℳ∈ mℙG, arity(ℳ) = {0}.

A parse tree of G is a tree t = (domt, val t) over
 such that

– val t(") ∈ ℱG,
– for all u ∈ domt, val t(u) ∈ mℙG iff u is a leaf, and
– for all u ∈ domt with val t(u) = (A, f) ∈ ℱG, there is an expression � = a1 . . . an such

that A −→f � is a rule, u has n successors, and, for all i ∈ {1, . . . , n},
∙ val t(u.i) = ai if ai ∈ mℙG and
∙ val t(u.i) = (ai, fi) for some fi, otherwise.

If the parse tree t has n inner nodes, then it gives rise to a sequence �t = r1 . . . rn ∈ −→
∗ of

rules as follows. Suppose u1, . . . , un is the enumeration of all inner nodes according to the
preorder traversal of t (e.g., ", 2, 21, 23, 42, 5 is a preorder traversal). Suppose furthermore
that ui has ni successors and that val t(ui) = (Ai, fi). Then, ri = (Ai, a1 . . . ani

, fi) where,
for j ∈ {1, . . . , ni}, aj = val t(ui.j) if val t(ui.j) ∈ mℙG, and aj = A if val t(ui.j) =
(A, f) ∈ ℱG. We say that path tree t is legal if val t(") = (S, f) for some f and, given

�t = r1 . . . rn, we have that C0
r1=⇒G

e
=⇒∗

G . . .
rn=⇒G

e
=⇒∗

G ((M, �), ") for some initial
configuration C0, M ∈ M, and �. Note that, given t, M is uniquely determined up to
isomorphism (i.e., modulo renaming of processes and events). Let us pick one MSC from
that isomorphism class and denote it by M(t).

The tree automaton 퓐G . We will first construct AG = (Q,←, F) over
 with

L(AG) = {t ∣ t is a legal parse tree of G} .

States assigned to leaves must be taken from mℙG. The other states, which will be
associated with inner nodes, are composed of communication structures, which carry the
finite amount of information needed to infer which processes are known to/communicate
with other processes. A state of the tree automaton AG is now either an element from
mℙG or a triple (C,A,C ′) where A ∈ N , C = (P,K, ℓ) is a reduced communication

22

structure, and C ′ = (P ′,K ′, ℓ′) is a communication structure such that P ⊆ P ′ ⊆
{1, . . . , 2∣�∣}. We set Q to be the set of all those states. The number of communication
structures whose processes form a subset of {1, . . . , 2∣�∣} is smaller than 26∣�∣2+2∣�∣.
Hence, we have ∣Q∣ ≤ ∣mℙG∣ + 212∣�∣2+4∣�∣ ⋅ ∣N ∣, which is exponential in ∣G∣. We let F

be the set of triples (C, S,C ′) ∈ Q such that C consists of one single process (carrying
all the process identifiers).

Towards the transitions of AG, we define relations ⇝,⇝
�
⊆ CS(�) × (Q ∪ mℙ) ×

CS(�) (where � is any renaming), which were illustrated in Figure 12. Let C = (P,K, ℓ)
and C ′ = (P ′,K ′, ℓ′) be communication structures and s ∈ Q.

(a) For s = (M,�) ∈ mℙ and a renaming � , we let C
s
⇝
�

C ′ if next(C, s�) = C ′ (in

particular, C ⊢ s�).

(b) For a renaming � and s = (Ċ, A, C̊) with Ċ = (Ṗ , K̇, ℓ̇) and C̊ = (P̊ , K̊, ℓ̊), we let

C
s
⇝
�

C ′ if (renaming is applied to communication structures and its components in

the expected manner)

∙ red(C) = Ċ� , (1)

∙ (P̊ � ∖ Ṗ �) ∩ P = ∅, (2)

∙ P ′ = P ∪ P̊ � , (3)

∙ K ′ = K ⊙ K̊� , and (4)

∙ ℓ′(�) = ℓ̊�(�). (5)

We write C
s
⇝ C ′ if C

s
⇝
�
C ′ for some � .

Let us construct the transitions of AG. For s ∈ Q, let Ks denote KM if s = (M,�) ∈
mℙG. If s = (C,A, (P,K, ℓ)), we set Ks = K.

(a) For everyℳ∈ mℙG, we have a transitionℳ
ℳ
← ().

(b) For a state s = (Ċ, A, C̊) with Ċ = (Ṗ , K̇, ℓ̇) and C̊ = (P̊ , K̊, ℓ̊), and a rule r =
(A,�, f) with � = a1 . . . ak (ai ∈ N ∪mℙ), we have a transition

s
(A,f)
← (s1, . . . , sk)

if there are renamings �, �1, . . . , �k such that

∙ for all p ∈ Free(��), ℓ̇(f�(p)) = p, (6)

∙ Bound(��) ∩ Ṗ = ∅, (7)

∙ for all i ∈ {1, . . . , k}, if ai ∈ N , then si = (Ci, ai, C
′
i) for some Ci, C

′
i, (8)

∙ for all i ∈ {1, . . . , k}, if ai ∕∈ N , then si = ai and �i = �, (9)

∙ Ċ
s1
⇝
�1

. . .
sk
⇝
�k

C ′ for some C ′ = (P ′,K ′, ℓ′) such that (10)

− P̊ = ℓ(�) ∪ ℓ′(�),

− K̊ = (Ks1�1 ⊙ . . .⊙Ksk�k) ↾ P̊ , and

− ℓ̊ = ℓ′ ↾ P̊ .

23

We say that (�, �1, . . . , �k) is a witness for s
(A,f)
← (s1, . . . , sk). The transition relation

of AG can be constructed in exponential time. Indeed, we have to check, for every rule
(A,�, f) and every assignment of states to positions in �, whether communication struc-
tures exist that justify the assignment wrt. the relation ⇝. It is easy to see that, hereby,
we can restrict to communication structures (P,K, ℓ) with P ⊆ {1, . . . , ∣�∣+∣�∣m} where
m = max{∣Proc(�)∣ ∣ A −→f �}. Once the communication structures have been chosen,

checking if the relations
s
⇝ hold can be done in polynomial time.

Correctness of AG. We will now show the correctness of our construction of AG, i.e.,
that L(AG) = {t ∣ t is a legal parse tree of G}. Clearly, L(AG) contains only parse trees
of G. Now, equality follows from Facts 27 and 28, which we state in the following.

Fact 27. Let t be a parse tree of G, say with �t = r1 . . . rn ∈ −→
+, let M = (N, �) ∈ nM

and M
′ = (N ′, � ′) ∈ nM, and let P ⊆ Proc(N) such that �(�) ⊆ P . Consider the

following statements:

1. (M, A)
r1=⇒G

e
=⇒∗

G . . .
rn=⇒G

e
=⇒∗

G (M′, ")

2. there is a run run of AG on t such that CM ↾ P
run(")
⇝ CM′ ↾ (P ∪ � ′(�))

Then, 1. implies 2.

Proof. Suppose 1. holds with

(M, A)
r1=⇒
�

G
e

=⇒∗
G . . .

rn=⇒G
e

=⇒∗
G (M′, ")

and intermediate configurations (M, A) = C0, . . . , Cnt = (M′, ") (nt being the number of
nodes in t). Moreover, suppose (M1,ℳ1.�1) . . . (M�,ℳ�.��) is the projection of C0 . . . Cnt

onto those configurations whose second component starts with a migration PMSCℳi =
(Mi, �i). Note that � is the number of leaves of t. In particular, �� = ", M

′ = M ∘
ℳ1 ∘ . . . ∘ ℳ�, and, for i ∈ {1, . . . , �}, Mi = (Ni, �i) = M ∘ ℳ1 ∘ . . . ∘ ℳi. Assume
r1 = (A,�, f) with � = a1 . . . ak, C = CM = (P,K, ℓ), and C ′ = CM′ = (P ′,K ′, ℓ′).

We define run by induction on the tree structure of t. Let i ∈ {1, . . . , k}. If ai ∈ mℙ,
then we set run(i) = ai. If ai ∈ N , then we suppose run(i) to be given inductively. So
let us define run("). Let first Ċ = (Ṗ , K̇, ℓ̇) = CM ↾ �(�) and C̊ = (P̊ , K̊, ℓ̊) with

– P̊ = �(�) ∪ � ′(�),

– K̊ = (KM1
⊙ . . .⊙KM�

) ↾ P̊ , and

– ℓ̊ = � ′.

Now, suppose � to be any renaming such that P̊ � ⊆ {1, . . . , 2∣�∣}. We set run(") =

(Ċ�, A, C̊�). With this definition, for �(�) ⊆ P , we indeed have CM ↾ P
run(")
⇝
�−1

CM′ ↾

24

(P ∪ � ′(�)), as one can easily verify (1)–(5). In particular, using Lemma 24, we obtain

K ′ ↾ (P ∪ � ′(�)) = KN ′ ↾ (P ∪ � ′(�))

= (K ⊙KM1
⊙ . . .⊙KM�

) ↾ (P ∪ � ′(�))

= K ↾ P ⊙ [(KM1
⊙ . . .⊙KM�

) ↾ (�(�) ∪ � ′(�))]

= K ↾ P ⊙ K̊

= K ↾ P ⊙ (K̊�)�−1

so that (4) is satisfied.

Next, we will verify that run(")
(A,f)
← (run(1), . . . , run(k)). Let 1 ≤ i1 < . . . < im ≤ k

be the indices i with ai ∈ N . Moreover, let 1 ≤ first1 ≤ last1 < . . . < firstm ≤ lastm ≤ �

be the indices such thatℳfirstj
, . . . ,ℳlastj is the subsequence ofℳ1, . . . ,ℳ� derived in

the subtree rooted at ij . Using Lemma 24, Corollary 25, and the induction hypothesis,
we obtain:

CM

ℳ1
⇝ . . .

ℳfirst1−1

⇝ CMfirst1−1

run(i1)
⇝
�i1

CMlast1
↾ Proc(Mfirst1−1) ∪ �last1(�)
︸ ︷︷ ︸

R1
ℳlast1+1

⇝ . . .
ℳfirst2−1

⇝ CMfirst2−1
↾ R1 ∪ Proc(ℳlast1+1) ∪ . . . ∪ Proc(ℳfirst2−1)
︸ ︷︷ ︸

P2
run(i2)
⇝
�i2

CMlast2
↾ P2 ∪ �last2(�)
︸ ︷︷ ︸

R2...

run(im)
⇝
�im

CMlastm
↾ Pm ∪ �lastm(�)
︸ ︷︷ ︸

Rm
ℳlastm+1

⇝ . . .
ℳ�
⇝ CM�

↾ Rm ∪ Proc(ℳlastm+1) ∪ . . . ∪ Proc(ℳ�)
︸ ︷︷ ︸

Pm+1

for some renamings �i1 , . . . , �im . For i ∈ {1, . . . , k} such that ai is a migration PMSC, let
�i = idN. From the above, we deduce

CM ↾ �(�)
s1
⇝
�1

. . .
sk
⇝
�k

CM�
↾ (Pm+1 ∖ (Proc(M) ∖ �(�)))

Thus, (� ∘ �, �1 ∘ �, . . . , �k ∘ �) is a witness for run(")
(A,f)
← (run(1), . . . , run(k)). ♢

The next fact will establish the reverse direction of Fact 27.

Fact 28. Let t be a parse tree of G and run be a run of AG on t. Suppose �t = r1 . . . rn ∈
−→+ with r1 = (A,�, f). Let M = (N, �) ∈ nM and P ⊆ Proc(N) such that �(�) ⊆ P .

25

Moreover, let C ′ = (P ′,K ′, ℓ′) be a communication structure such that P ′ ∩ (Proc(M) ∖
P) = ∅. Consider the following statements:

1. CM ↾ P
run(")
⇝ C ′

2. (M, A)
r1=⇒G

e
=⇒∗

G . . .
rn=⇒G

e
=⇒∗

G (M′, ") for some M
′ = (N ′, � ′) with C ′ = CM′ ↾

(P ∪ � ′(�))

Then, 1. implies 2.

Proof. Let C = (P,K, ℓ) = CM ↾ P and let run(") = (Ċ, A, C̊) where Ċ = (Ṗ , K̇, ℓ̇) and

C̊ = (P̊ , K̊, ℓ̊). Suppose � is a renaming. We will actually show that CM ↾ P
run(")
⇝
�

C ′

implies the following stronger statement: There are a named MSC M
′ = (N ′, � ′) and

configurations C0, . . . , Cnt of G (nt being the number of nodes of t) such that

– C ′ = CM′ ↾ P ′ where P ′ = P ∪ � ′(�),

– (M, A)
r1=⇒G

e
=⇒∗

G . . .
rn=⇒G

e
=⇒∗

G (M′, ") with intermediate configurations (M, A) =
C0, . . . , Cnt = (M′, "), and

– K̊� = (KM1
⊙ . . . ⊙ KM�

) ↾ (ℓ(�) ∪ ℓ′(�)) where (M1,ℳ1.�1) . . . (M�,ℳ�.��) is
the projection of C0 . . . Cnt onto those configurations whose second component starts
with a migration PMSCℳi = (Mi, �i) (in particular, � is the number of leaves in t,
�� = ", and M

′ = M ∘ℳ1 ∘ . . . ∘ℳ�).

Again, we proceed by induction on the tree structure of �t. So suppose C
run(")
⇝
�

C ′. Assume

r1 = (A,�, f) where � = a1 . . . ak. Then, we have that run(")
(A,f)
← (run(1), . . . , run(k))

(with run(") = (Ċ, A, C̊)) is a transition of AG. By definition of ←, there is a witness
(�, �1, . . . , �k) for that transition. Consider the renaming � = �∘� . Note that �(Free(�)) ⊆
�(�). Due to (6), for every p ∈ Free(��),

ℓ(f�(p)) = ℓ(f(�−1(�−1(p)))

= �(ℓ̇(f(�−1(�−1(p))))

= �(�−1(p)) = p

As we defined � such that Proc(M) ∩ Bound(��) = ∅. We can deduce (M, A)
r1=⇒
�

G

(M, ��).
Let 1 ≤ i1 < . . . < im ≤ k be the indices i with ai ∈ N . We have

Ċ = C0
run(1)
⇝
�1

C1
run(2)
⇝
�2

. . .
run(k)
⇝
�k

Ck

for some C0, . . . , Ck. For i ∈ {0, . . . , k}, we set Di = (Pi,Ki, ℓi) = Ci� and, if i ≥ 1 and
ai ∈ mℙ,ℳi = ai�. We have

D0
ℳ1
⇝
idN

. . .
ℳi1−1

⇝
idN

Di1−1
run(i1)
⇝

�i1∘�
Di1

ℳi1+1

⇝
idN

. . .
ℳim−1

⇝
idN

Dim−1
run(im)
⇝

�im∘�
Dim

ℳim+1

⇝
idN

. . .
ℳk
⇝
idN

Dk

26

This implies next(Dj−1,ℳj) = Dj for all j ∈ {1, . . . , i1−1}. By Lemmas 22 and 24, one
obtains

(M, A)
r1=⇒G (M, (a1 . . . ak)�)

e
=⇒∗

G (M ∘ℳ1 ∘ . . . ∘ℳi1−1, (ai1 . . . ak)�)

Letting M1 = M ∘ ℳ1 ∘ . . . ∘ ℳi1−1, we also have Di1−1 = CM1
(Corollary 25). If

m = 0 (i.e., there is no non-terminal symbol), then we are done. Otherwise, ai1 ∈ N . By
induction hypothesis, there are configurations C10 , . . . , C

1
n1

of G (n1 being the number of
nodes in the subtree of t with root i1) with projection N 1

1 . . .N 1
ℎ1

with the appropriate
properties. In particular, there is d1 ∈ {2, . . . , n} such that

(M1, (ai1 . . . ak)�)
r2=⇒G

e
=⇒∗

G . . .
rd1=⇒G

e
=⇒∗

G (M1 ∘ N
1
1 ∘ . . . ∘ N

1
ℎ1
, (ai1+1 . . . ak)�)

and Di1 = CN1
↾ Pi1 where N1 = M1 ∘ N

1
1 ∘ . . . ∘ N

1
ℎ1

. Finally, Krun(i1)(�i1 ∘ �) =
(KN 1

1
⊙ . . .⊙KN 1

ℎ1

) ↾ (ℓi1−1(�) ∪ ℓi1(�)). Continuing this scheme, we obtain

(M, A)
r1=⇒G

e
=⇒∗

G (M ∘ℳ1 ∘ . . . ∘ℳi1−1
︸ ︷︷ ︸

, (ai1 . . . ak)�)

M1
r2=⇒G

e
=⇒∗

G . . .
rd1=⇒G

e
=⇒∗

G (M1 ∘ N
1
1 ∘ . . . ∘ N

1
ℎ1

︸ ︷︷ ︸
, (ai1+1 . . . ak)�)

N1
e

=⇒∗
G (N1 ∘ℳi1+1 ∘ . . . ∘ℳi2−1

︸ ︷︷ ︸
, (ai2 . . . ak)�)

M2...
rdm−1+1

=⇒G
e

=⇒∗
G . . .

rdm = rn
=⇒ G

e
=⇒∗

G (Mm ∘ N
m
1 ∘ . . . ∘ N

m
ℎm

︸ ︷︷ ︸
, (aim+1 . . . ak)�)

Nm
e

=⇒∗
G (Nm ∘ℳim+1 ∘ . . . ∘ℳk

︸ ︷︷ ︸
, ")

M
′

and, for j = 1, . . . ,m, Krun(ij)(�ij ∘�) = (KN 1
j
⊙ . . .⊙KN 1

ℎj

) ↾ (ℓij−1(�) ∪ ℓij (�)). Thus,

K̊� =Kℳ1
⊙ . . .⊙Kℳi1−1

⊙
m⊙

j=1

(Krun(ij)(�ij ∘ �)⊙Kℳij+1
⊙ . . .⊙Kℳij+1−1

)

↾ (ℓ0(�) ∪ ℓk(�))

=Kℳ1
⊙ . . .⊙Kℳi1−1

⊙
m⊙

j=1

(KN 1
j
⊙ . . .⊙KN 1

ℎj

⊙Kℳij+1
⊙ . . .⊙Kℳij+1−1

)

↾ (ℓ0(�) ∪ ℓk(�))

where we set im+1 = k + 1. Moreover, repeatedly applying Lemma 24 and the induction
hypothesis, we deduce Dk = CM′ ↾ P ′ so that we are done. ♢

27

Now let t be a parse tree from L(AG) and run be an accepting run of AG on t. Then,
run(") is of the form (C1, S, C2) such that C1 contains one single process. Thus, there

is an initial configuration (M, S) such that CM

run(")
⇝ C ′ for some C ′. By Fact 28, we

conclude that t is legal. Conversely, using Fact 27, we obtain that any legal parse tree of
G is accepted by AG.

The tree automaton 퓑G . Let us build ℬG = (Q′,⇐, F ′) over
 with

L(ℬG) = {t ∣ t is a legal parse tree of G such that M(t) is not realizable} .

The tree automaton ℬG actually builds on AG = (Q,←, F) and just adds a flag con-
struction to determine when the MSC belonging to a parse tree is not realizable. We set
Q′ = Q × {0, 1}. The second component of a state is a flag that changes to 1 once the
concatenation of a communication structure and a migration PMSC is not realizable, in
the sense of Lemma 23. Thus, F ′ = F × {1}. We define the transitions as follows:

(a) For everyℳ∈ mℙG, we have a transitionℳ
ℳ
⇐ ().

(b) For a rule r = (A,�, f), say with ∣�∣ = k ≥ 1, states s, s1, . . . , sk ∈ Q of AG with

s = (Ċ, A, C̊), and flag values b, b1, . . . , bk ∈ {0, 1}, we have a transition (s, b)
(A,f)
⇐

((s1, b1), . . . , (sn, bn)) if there are renamings �, �1, . . . , �k such that

∙ s
(A,f)
← (s1, . . . , sn),

∙ (�, �1, . . . , �k) is a witness for s
(A,f)
← (s1, . . . , sn), and

∙ b = b1 ∨ . . . ∨ bn ∨
[
∃C, i ∈ {1, . . . , k} :

(
si ∈ mℙ ∧ Ċ

s1
⇝
�1

. . .
si−1

⇝
�i−1

C ∕⊩ si
)]

.

Correctness of ℬG. Correctness of ℬG is shown using (the proofs of) Facts 27 and 28 as
well as Lemma 23.

So let t ∈ L(ℬG) be a legal parse tree and run = (run1, run2) be an accepting run
of ℬG on t. In particular, run1 is an accepting run of AG on t and run2 : domt → {0, 1}

with run2(") = 1. Suppose �t = r1 . . . rn ∈ −→
+. Due to Fact 28, (M, S)

r1=⇒G
e

=⇒∗
G

. . .
rn=⇒G

e
=⇒∗

G (M′, ") for some M = (N, �),M′ = (N ′, � ′) such that (M, S) is an initial
configuration. Letℳ1 = (M1, �1), . . . ,ℳ� = (M�, ��) be the corresponding sequence of
migration PMSCs, i.e., t has � dedicated leaves, say v1, . . . , v�, and M

′ = M ∘ ℳ1 ∘
. . . ∘ ℳ�. Note that run1(vi) is a renaming ofℳi. Now let u ∈ domt be a node such that
run2(u) = 1 and run2(ui) = 0 for all the children u1, . . . , uk of u. There are a witness

(�, �1, . . . , �k) for the transition run1(u)
(A,f)
← (run1(u1), . . . , run1(uk)), a communication

structure C, and indices i ∈ {1, . . . , k} and j ∈ {1, . . . , �} such that run1(ui) ∈ mℙ,

ui = vj , and Ċ
run1(u1)
⇝
�1

. . .
run1(ui−1)
⇝
�i−1

C ∕⊩ run1(ui). Using Facts 27 and Facts 28 as well

as Lemma 23, we obtain that C ∕⊩ run1(ui) iff (N ∘M1 ∘ . . . ∘Mj−1) ∘Mj is realizable.
We conclude that N ′ ∈ [M(t)] is not realizable.

Conversely, let t be a legal parse tree of G such that M(t) is not realizable. Suppose
�t = r1 . . . rn ∈ −→

+. We have t ∈ L(AG), i.e., there is an accepting run run1 of AG

28

on t. By Fact 28, (M, S)
r1=⇒G

e
=⇒∗

G . . .
rn=⇒G

e
=⇒∗

G (M′, ") for some M = (N, �) and
M

′ = (N ′, � ′) such that (M, S) is an initial configuration. Moreover, N ′ ∈ [M(t)]. Again,
let ℳ1 = (M1, �1), . . . ,ℳ� = (M�, ��) be the corresponding sequence of migration
PMSCs, i.e., t has � dedicated leaves, say v1, . . . , v�, and M

′ = M ∘ℳ1 ∘ . . . ∘ℳ�. To
construct an accepting run of ℬG on t, let I ⊆ {1, . . . , �} be the set of indices i such
that CM∘ℳ1∘...∘ℳi−1

∕⊩ℳi. By Lemma 23, as N ′ is not realizable, I is not empty. We
construct a mapping run2 : domt → {0, 1} as follows: for u ∈ domt, let run2(u) = 1 iff
there are i ∈ I and u′ ∕= " such that vi = uu′ (i.e., u is an ancestor of vi). One can easily
verify that run = (run1, run2) is an accepting run of ℬG on t.

This concludes the correctness proof of ℬG.

As emptiness of L(AG) and L(ℬG) can be checked in exponential time wrt. ∣G∣, we
conclude that checking both emptiness and realizability for dynamic MSC grammars are
in EXPTIME. ⊓⊔

Let us point out a crucial property of dynamic MSC grammars that we can extract
from the previous proof.

Corollary 29. Let G = (�,N , S,−→) be a realizable dynamic MSC grammar. Then,
L(G) is (∣Proc(G)∣+ a ⋅ ∣�∣)-realizable where a = max{∣�∣ ∣ A −→f �}.

Proof. The MSC associated with a legal parse tree is basically the concatenation of
the MSCs that label the leaves, up to some renaming. The communication structure C

that precedes such an MSC M (and which is actually not part of the run but uniquely
determined up to renaming) is the system structure just before executing M as far as it
concerns processes that can communicate with processes from M . There might be other
processes at the execution time, but none of them is needed by processes from M to
fulfill their communication obligations. As C contains at most B = m+a ⋅ ∣�∣ processes,
we can provide M with a B-bounded valid knowledge mapping. By Lemmas 13 and 16,
L(G) is B-realizable. ⊓⊔

Remark 30. We can also construct a tree automaton ℬ′G such that L(ℬ′G) = {t ∣ t is a
legal parse tree of G such that M(t) is realizable}. To obtain ℬ′G, we simply take AG,

but define, for s = (M,�) ∈ mℙG, C
s
⇝ C ′ if next(C, s) = C ′ and C ⊩ s. We have

L(AG)∖L(ℬ
′
G) = ∅ iff L(G) is realizable, However, the corresponding decision procedure

needs doubly exponential time.

Now let us show the hardness parts of Theorems 19 and 20.

Proposition 31. Both problems, emptiness and realizability for dynamic MSC gram-
mars, are EXPTIME-hard.

Proof. We first show hardness for emptiness, by reduction from the intersection problem
for tree automata. So let
 = (�, arity) be a binary ranked alphabet, n ≥ 1, and Ai =
(Qi,←i, Fi), i ∈ {1, . . . , n}, be tree automata over
. Without loss of generality, we will

29

S1 −→

0

B

B

B

B

B

@

�1

spawn start
s, �2

S2

1

C

C

C

C

C

A

Si −→

0

B

B

B

B

B

@

�1 �2

! ?
s

Si+1

1

C

C

C

C

C

A

Sn −→

0

B

B

B

B

B

@

�1 �2

! ?
s

A1

1

C

C

C

C

C

A

for all s ∈ F1 for all i ∈ {2, . . . , n− 1} and s ∈ Fi for all s ∈ Fn

A1 −→

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

? !
s

! ?
s1

Aa
2

B1

! ?
s2

A1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Aa
i −→

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

? !
s

! ?
s1

Aa
i+1

Bi

! ?
s2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Aa
n+1 −→

0

B

B

B

B

B

@

�1 �2

! ?

A1

1

C

C

C

C

C

A

for all s a
←1 (s1, s2) for all i ∈ {2, . . . , n} and s

a
←i (s1, s2) for all a ∈ �2

A1 −→

0

B

B

B

B

B

B

@

�1 s

! ?

Aa
2

1

C

C

C

C

C

C

A

Aa
i −→

0

B

B

B

B

B

B

@

�1 s

! ?

Aa
i+1

1

C

C

C

C

C

C

A

Aa
n+1 −→

0

B

B

B

@

�1 �2

! ?

1

C

C

C

A

for all s a
←1 () for all i ∈ {2, . . . , n} and s

a
←i () for all a ∈ �0

Bi −→

0

B

B

B

@

�1 �2

? !
s

1

C

C

C

A

for all i ∈ {1, . . . , n} and s ∈ Qi

Fig. 13. Encoding of intersection for tree automata

30

actually make some extra assumptions. The sets Qi are required to be pairwise disjoint.
We assume n ≥ 2 and ∣arity)(a)∣ = 1 for all a ∈ � . Set �0 = {a ∈ � ∣ arity(a) = {0}}
and �2 = {a ∈ � ∣ arity(a){2}}. Finally, we assume that, for all i ∈ {1 . . . , n}, s

a
←i ()

implies a ∈ �0, and s
a
←i (s1, s2) implies a ∈ �2.

We construct a DGA G = (�,N , S1,−→) such that L(G) ∕= ∅ iff L(A1) ∩ . . . ∩
L(An) ∕= ∅. First, let � = {�1, �2} ⊎

∪

i∈{1,...,n}Qi. Then, N = {S1, . . . , Sn} ∪ {A1} ∪
∪

a∈� {A
a
2, . . . , A

a
n+1} ∪ {B1, . . . , Bn}. The rules from −→ are given by Figure 13.

The idea behind the grammar is the following. We will need only two processes, which
can be accessed in terms of �1 and �2. The second process holds the “current” states of
each tree automaton. Parse trees will represent the trees that may be accepted by the
tree automata. As we work top-down, starting from the root, the first n rules are applied
to select a final state for each component (first row in Figure 13). Subsequently, we enter
a configuration in which the second process holds exactly one final state for each Ai, and
the first process assembles all the other states. When we apply an A1-rule, we chose a
first transition for A1, provided the letter at the root has arity 2. The first rule in the
second row has the following meaning: We guess a transition s

a
←1 (s1, s2) of A1. The

first migration PMSC checks that s is indeed located on the second process. In exchange,
the second migration PMSC sends the state of the first successor to the second process.
Further below, we will remember that the second successor has to carry state s2; before,
a B1-rule will make sure that all states are located on the first process. Subsequently, we
apply Aa

2, . . . , A
a
n-rules and, in doing so, guess a-transitions for the automata A2, . . . ,An,

respectively. We will end up in a grammar configuration with two A1 symbols. The first
is used to continue the run at the first successor of the run tree to be simulated, the
second, at the bottom of the configuration, is in charge of the second successor. Finally,
in case of a transition of the form s

a
←i (), an Aa

i step will ensure that the current state
of Ai is indeed s.

This shows EXPTIME-hardness of emptiness for DGA. To show hardness of real-
izability, we simply generate a non-realizable MSC like that from Figure 7 before we
run the grammar. Then, the grammar is realizable iff it generates the empty set iff the
intersection of the tree-automata languages is empty. ⊓⊔

Note that the hardness proof of realizability relies on that of the emptiness problem.
We leave open if the result still holds for deadlock-free grammars, where every partial
derivation can be directed to a final configuration.

7 Realizability and Finite Dynamic Communicating Automata

A realizable dynamic MSC grammar is not necessarily implementable as a finite DCA, as
the behavior of a single process needs not be finite-state. We will determine a simple (but
non-trivial) class of dynamic MSC grammars that are finitely realizable. To guarantee
finiteness, we restrict to right-linear rules: a rule r = A −→f � is right-linear if �

is of the form ℳ or ℳ.B. If � is of the form ℳ, we also call r terminal. Our class is
inspired by local-choice HMSCs as introduced in [HJ00]. Local-choice HMSCs are scenario

31

S −→

0

B

B

B

B

B

B

B

B

B

B

B

@

�1

spawn start
�2

? !

A

1

C

C

C

C

C

C

C

C

C

C

C

A

A −→

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�1 �2

spawn start

? !

! ?
�2

? !

A

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A −→

0

B

B

B

@

�1 �2

! ?

1

C

C

C

A

Fig. 14. A local and realizable grammar

descriptions over a fixed number of processes in which every choice of the specification is
taken by a root process for that choice. This root is in charge of executing the minimal
event of every scenario, and the subsequent messages can then be tagged to inform other
processes about the decision. Note that locality allows for a deadlock-free implementation
if the number of processes is fixed [GMSZ06]. This is not guaranteed in our setting.

To adapt the notion of local-choice to dynamic MSC grammars, we essentially replace
“process” in HMSCs by “process identifier”. I.e., the root process that chooses the next
rule to be applied must come with a process identifier � that is active in the current rule.
For a right-linear rule r = A −→f (M,�).�, we set Active(r) = f(Free(M)) ∪ dom(�).

Definition 32. A dynamic MSC grammar (�,N , S,−→) is local if, for every rule r =
A −→f �,

– r is right-linear,

– the partial order of M(�) has a unique minimal event, denoted first(r), and

– there is � ∈ Active(r) such that � =ℳ.B implies that, for all B-rules r′ = B −→g �,
g(loc(first(r′))) = � (we set next_leader(r) = �).

Note that a local grammar is not necessarily realizable. The grammar from Figure 14 is
both local and realizable. We can set next_leader(r) = �1 for all three rules r.

Theorem 33. Both emptiness and realizability for local dynamic MSC grammars are
PSPACE-complete.

Proof. Containment in PSPACE and hardness are easily shown by slight modifications
of the proofs of Propositions 26 and 31. The difference is that we construct finite word
automata instead of tree automata. ⊓⊔

We now establish that every realizable local dynamic MSC grammar is actually real-
ized by a finite DCA:

Theorem 34. Let G be a realizable local dynamic MSC grammar. There is a finite DCA
A = (X,Msg , Q,�, �, F) such that L(A) = L(G). Hereby, ∣X∣ and ∣Msg ∣ are polynomial
in ∣G∣. Moreover, ∣Q∣ and ∣ActA∣ are exponential in ∣G∣.

32

Proof. Let G = (�,N , S,−→) be a local dynamic MSC grammar such that L(G) is
realizable. We assume that any two PMSCs that occur at different places in the grammar
have disjoint sets of events. We will construct a DCA AG such that L(AG) = L(G).

A state of AG will locally keep track of the progress that has been made to imple-
ment a rule. The leader process, i.e., the process that executes the first event of a PMSC,
may choose the next rule and inform its communication partners about this choice. We
pursue a simple strategy of transmitting process identities: When a process p sends a
message to, or spawns process q, then p may communicate to q all identities it knows in
terms of process variables. In turn, a receiving process may update its process variables
at discretion. When a variable is used to address another process, however, one cannot
be sure if it is the “right” one according to the rule that has to be simulated. Actually, a
process has to guess which variable holds the correct identity. However, the subsequent
execution can pass through only if that guess is correct. The reason is that both iden-
tifiers and events of processes are held in local states and are sent in messages so that
communicating processes can be sure to identify each other correctly. Moreover, as the
grammar is realizable, there is, for every M ∈ L(G), at least one execution that allows
AG to simulate M . Note that, as G is right-linear, L(G) is (∣�∣ + ∣Proc(G)∣)-realizable
so that, indeed, ∣�∣+ ∣Proc(G)∣ variables will suffice to implement L(G).

Before we formally define AG, let us give some some useful definitions. Suppose
r = A −→f (M,�).�. For p ∈ Proc(M), q ∈ Free(M), and � ⊆ �, let

Lossr(p) = {� ∈ � ∣ �(�) = (p, p̂) for some p̂ ∕= p}

Gainr(p) = {� ∈ � ∣ �(�) = (p̂, p) for some p̂ ∕= p}

New r(�, p) = (� ∖ Lossr(p)) ∪Gainr(p)

Reqr(q) = {� ∈ � ∣ �(�) = (q, q̂) for some q̂} ∪ {f(q)}

The meaning of the latter two is the following. When a process carries the identifiers
from � and simulates process p in rule r, then it will carry those from New r(�, p) when
it exits r. The set Reqr(q) contains those identifiers that a process must carry when it
enters rule r to simulate q.

A state of our automaton will be a triple s = (r, e′, �) where

– r = (A,�, f) is the rule that is currently processed,
– e′ ∈ Proc(�) is the event that has been executed last by the process being in s, and
– � ⊆ � is the set of process identifiers currently held.

Suppose a process is in state s = (r, e′, �). Intuitively, e′ has just been executed and, if
there is e such that e′ = pred(e), then e is the event that has to be simulated next,
i.e., the next action executed corresponds to the type of e. If, on the other hand,
e′ ∈ max(M(�)), then the next state of the current process depends on a case dis-
tinction. If next_leader(r) ∕∈ �, then the process needs to receive a message (from a
leader) to be informed about the next rule, if any (see transition Rec_Next in Figure 15).
Otherwise, a suitable next rule is chosen by the leader process (see transitions Spawn_Next

and Send_Next).

We can now specify AG = (X,Msg , Q ⊎ {�}, �, �, F) as follows:

33

– X = {x� ∣ � ∈ �} ∪ {xp ∣ p ∈ Proc(G)},

– Msg contains all pairs (r, (e, ê)) where r = (A,�, f) ∈ −→ and (e, ê) is a message
pair in M(�),

– Q contains all triples (r, e, �) as defined above, and

– F contains all (r, e, �) ∈ Q such that r = (A,�, f) is a terminal rule and e ∈
max(M(�)).

The transition relation � is given by Figure 15. Hereby, r and r′ will always stand for rules
r = A −→f (M,�).� and, respectively r′ = A′ −→f ′ (M ′, �′).A′. Moreover, events e and
ê as well as the binary relations ≺msg and ≺spawn refer to the PMSC M = (P, (Ep)p∈P ,≺

, �) that occurs in r. Finally, we say that a rule r is initial if C
r

=⇒G
e

=⇒G C
′ for some

initial configuration C and some C′.

Let us explain the different transition types:

Init A first rule r is chosen.

Spawn Process p spawns a process p̂. In the spawning process, identifier x will henceforth
refer to p̂.

Send In executing e, process p sends a message to p̂. The receiving process is identified
using an arbitrary process variable x ∈ X. We assume that p knows p̂. Thus, there
is indeed a variable identifying p̂. As p sends the event it performs along with the
message, a process can receive it only if it executes the corresponding receive event.

Rec Process p receives a message from process p̂. This includes an agreement on the
current rule r and the communicating events (ê, e) that are simulated. Process p has
the possibility to update some of the process identifiers. The identities of the sender
are correctly identified since the event performed by the sending process is contained
in the message.

Spawn_Next Having executed e′, process loc(e′), which carries the process identifiers in
�′, has fully executed its part (e′ ∈ max(M ′)) and faces a non-terminal symbol A.
As it carries next_leader(r′), it chooses r to be the next rule. For that rule, it indeed
carries all the requested identifiers, i.e., Reqr(p) ⊆ �′. The first event of r being
a spawn event, located on p, a corresponding action is executed. The new process
begins in ê, which is a start event. Starting without any identifier, its identifier set
will be New r(∅, p̂) when it exits r. Moreover, it will be aware of an arbitrary number
of identities known to the spawning process.

Send_Next This transition is very similar to the previous one. The executing process
is the leader in a the new rule r and first performs a send action. In doing so, it
communicates all identities that it knows to the receiving process.

Rec_Next Again, a process loc(e′) has fully executed its part and faces a non-terminal
symbol A. However, it does not carry next_leader(r′) so that it has to wait for the
leader process and receive its choice in terms of a message (possibly from a process
that is not the leader). When the message is received, the process can choose which
of its variables shall be updated.

Renaming At any time, a process can reorder its variables.

34

Init

r initial
first(r) ≺spawn ê

� : (X ⊎ {self})X

a = x← spawn((r, ê,New r(∅, p̂)), �)

�
a
−→ (r,first(r),New r(�, loc(first(r))))

Spawn
e′ ≺proc e ≺spawn ê

� : (X ⊎ {self})X

a = x← spawn((r, ê,New r(∅, p̂)), �)

(r, e′, �)
a
−→ (r, e, �)

Send
e′ ≺proc e ≺msg ê a = x ! ((r, (e, ê)), idX)

(r, e′, �)
a
−→ (r, e, �)

Rec
e′ ≺proc e ê ≺msg e

� ⊆ X

a = x ? ((r, (ê, e)), �)

(r, e′, �)
a
−→ (r, e, �)

Spawn_Next

e = first(r) ≺spawn ê

e′ ∈ max(M ′)
p = loc(e)

� : (X ⊎ {self})X

A′ = A

Reqr(p) ⊆ �′

next_leader(r′) ∈ �′

a = x← spawn((r, ê,New r(∅, p̂)), �)

(r′, e′, �′)
a
−→ (r, e,New r(�

′, p))

Send_Next

e = first(r) ≺msg ê

e′ ∈ max(M ′)
p = loc(e)

A′ = A

Reqr(p) ⊆ �′

next_leader(r′) ∈ �′

a = x ! ((r, (e, ê)), idX)

(r′, e′, �′)
a
−→ (r, e,New r(�

′, p))

Rec_Next

ê ≺msg e ∈ min(M)
e′ ∈ max(M ′)
p = loc(e)

Reqr(p) ⊆ �′

next_leader(r′) ∕∈ �′

a = x ? ((r̂, (ê, e)), �) � ⊆ X

(r′, e′, �′)
a
−→ (r, e,New r(�

′, p))

Renaming
� : X → X

(r, e, �)
rn(�)
−→ (r, e, �)

Fig. 15. Transitions of AG

35

Let us show correctness of our construction, i.e., L(G) = L(AG). The proof is routine
once the inductive argument is grasped, which is based on the partial-order semantics of
DCA.

From dynamic MSC grammar to DCA. Let (N, �) be a named MSC and run =
(state, proc) be an MSC run of the DCA AG on N . For an event e of N , assume that
state(e) = (re, evente, �e) with re = (Ae, (Me, �e).�e, fe). We say that run is compatible
with (N, �) if

– for all e ∈ max(N), evente ∈ max(Me) and �e = �−1(loc(e)),

– for all (p̂, p) ∈ KN ↾ �(�), there is x ∈ X such that proc(maxp(N))[x] = p̂, and

– there is exactly one q ∈ Proc(N) such that next_leader(rmaxq(N)) ∈ �−1(q) (we fix q

in the following).

Now let r = (A, (M,�).�, f) ∈ −→ such that f(loc(first(M))) = q and A = �maxq(N),
and suppose

((N, �), A)
r

=⇒G ((N, �), (M�,�).�)
e

=⇒G ((N ′, � ′), �)

where (N, �) and (N ′, � ′) are named MSCs, � is a renaming, and N ′ = N ∘ M�. Let
E and E′ be the set of events of N and N ′, respectively. In particular, we assume that
E′ ∖ E is the set of events of M . Let (state, proc) be an MSC run of AG on N that is
compatible with (N, �). We define a new mapping state ′ : E′ → Q by

state ′(e) =

⎧

⎨

⎩

state(e) if e ∈ E

(r, e,New r(∅, loc(e))) if e ∕∈ E and locM (e) ∈ Bound(M)

(r, e,New r(�
−1(locN ′(e)), locM (e))) if e ∕∈ E and locM (e) ∈ Free(M)

As N ∘M is ∣X∣-realizable, there is proc′ : E′ → Proc(N ′)X such that (state ′, proc′) is a
run of AG on N ′ and compatible with (N ′, � ′). If we start in an initial configuration of
G, we can successively apply this construction, as its precondition is maintained as an
invariant. Thus, we obtain an accepting run of AG for any derivation in the grammar.
We deduce L(G) ⊆ L(AG).

From DCA to dynamic MSC grammar. Let N = (P, (Ep)p∈P ,≺, �) ∈ L(AG)
and run = (state, proc) be an accepting MSC run of AG on N . For e ∈ E, suppose
state(e) = (re, evente, �e) where re = (Ae, (Me, �e).�e, fe).

We call a configuration ((N ′, � ′), A) of G compatible with run if

– N = N ′ ∘ M for some M with a unique minimal event emin such that we have both
� ′(next_leader(rpred(emin))) = loc(emin) and Aemin

= A (we fix emin in the following),
and

– for all e′ ∈ max(N ′), both evente′ ∈ max(Me′) and �e′ = (� ′)−1(loc(e′)).

According to the definition of AG, if ((N ′, � ′), A) is compatible with run, then there is a
renaming �, with �(p) = � ′(femin

(p)) for all p ∈ Free(Memin
), such that

((N ′, � ′), A)
remin=⇒
�

G
e

=⇒G ((N ′, � ′) ∘ (Memin
, �emin

)�, �emin
) =: C

36

and either N = N ′ ∘Memin
�, or C is compatible with run.

Now let e ∈ E be the first spawn event of N , i.e., start(N) ≺proc e. By the definition
of AG, we have N = Iloc(e) ∘Me� ∘M for some renaming � and PMSC M . In particular,

as re is initial, we have, C
re=⇒
�

G
e

=⇒G ((N ′, � ′), �e) for N ′ = Iloc(e) ∘Me� and suitable

� ′ and initial configuration C. Moreover, for all e′ ∈ max(N ′), evente′ ∈ max(Me′) and
�e′ = (� ′)−1(loc(e′)). In those maximal events, every process is supposed to take a
_Next-transition. Thus, M has a unique minimal event so that �e ∕= " and ((N ′, � ′), �e)
is compatible with run. Continuing this scheme, we derive a valid derivation of N in the
grammar. We deduce L(AG) ⊆ L(G).

This concludes the proof of Theorem 34. ⊓⊔

Remark 35. There are several strategies to reduce the non-determinism inAG that results
from guessing the correct variable to address a process. For instance, one could ensure
that a variable xp, for some bounded process p, always has the correct value in a process
q when q communicates with p. Moreover, the DCA constructed from a realizable and
local grammar is not necessarily deadlock-free, unlike in the case of a fixed number of
processes [GMSZ06]. As future work, it remains to define a notion of a deadlock-free
grammar meaning that every partial derivation can be brought to a successful one.

8 Related Work

Modeling of infinite systems is not a recent problem, and several computation models
have been proposed to handle both the control flow of programs with recursive calls, or
dynamic creation of communicating objects such as threads. One of the older models
are pushdown automata, that allows for the modeling of recursion using a stack. A large
literature is devoted to this model, and we refer the interested reader to [ABB97]. The
recursive state machines (RSM) proposed in [ABE+05] are a related formalism. Note that,
however, these formalisms do not allow for concurrency: stacks in pushdown automata
model the context of a call, but there is a single control flow that is passed to the latest
called procedure. Similarly, in RSMs, the control flow of an execution is confined to the
latest called machine and returns to the call when this machine stops.

Dynamic hierarchical machines (DHM), proposed in [LMSPT03], are hierarchical au-
tomata that allow for dynamic activation of state machines (which can be seen as thread
creation), and communication between these machines. A DHM A1 can send a process
(another DHM A3) to a concurrent DHM A2. After this machine passing, A3 runs either
in parallel with A1 and A2, or inside A2. Communications among machines are syn-
chronous. Furthermore, a machine creation necessarily occurs during a synchronization
of two transitions.

Well-formed communicating recursive state machines [BLP08] (wf-CRS) extend RSMs
with concurrency. Some fork transitions in state machines allow for creation of pools of
concurrent machines that communicate synchronously. When a fork occurs, the execution
of the currently running machine is stopped, and the control flow is split and passed to

37

the newly created threads. When these threads terminate, the control flow is returned to
the calling machine. Communication is synchronous and limited to concurrent threads
created by the same fork.

Dynamic Petri nets [BS01] (DPN for short) are another way to model dynamic cre-
ation of processes. The elements composing DPNs are the usual transitions and places
of colored Petri nets plus higher-level transitions that modify the structure of the net,
by reconfiguring it or appending places and transitions. This model has the expressive
power of the join calculus. However, it does not allow the message ordering needed to
implement FIFO channels.

9 Conclusion and Future Work

We introduced dynamic communicating automata as a model of programs with process
creation and asynchronous communication, and dynamic MSC grammars as a specifi-
cation language. We solved the realizability problem and characterized a class of local
dynamic MSC grammars that can be implemented by finite DCA. This is only a first
step, and several issues regarding dynamic MSC grammars and DCA remain open:

One challenge is to extend the class of dynamic MSC grammars that can be auto-
matically translated into equivalent finite DCA beyond that of right-linear specifications
(and preferably without deadlock). For example, the grammar from Figure 4 is not right-
linear, but realizable by a finite DCA. Similarly, when we add to the second rule of the
grammar of Figure 14 a message from the third to the second process, the resulting
non-right-linear grammar is still finitely realizable.

Moreover, we would like to study regular MSC languages. A nice theory of regular
sets of MSCs over a fixed number of processes has been established [HMK+05] (a set of
MSCs is regular if its linearization language is regular). When extending this notion to
our setting, any regular set of MSCs should have an implementation in terms of a DCA.

The linearizations of a set of (dynamic) MSCs are words over an infinite alphabet.
Those words have been studied in the literature as data words [Seg06]. In particular,
there are some connections between automata and logics [BMS+06], and it would be
interesting to transfer these results to our, more specialized setting. For example, it is an
open question if the linearizations of channel-bounded realizable MSCs can be recognized
by some data automaton with a decidable emptiness problem. This would allow us to
partially decide the satisfiability problem for the two-variable logic from [BMS+06].

Indeed, we think that logics (e.g., MSO logic) may serve as an alternative specifi-
cation language for DCA implementations. There have indeed been several results that
nicely extend the classical (effective) expressive equivalence of MSO and finite automata
to communicating automata over a fixed number of processes [BL06,GKM06,HMK+05].
Moreover, temporal logics have been studied and successfully applied for model checking
[Pel00,BKM10]. An extension to dynamic MSCs could contain a freeze quantifier to store
processes [DL09], as added to LTL in the context of data words. However, a straightfor-
ward extension and a corresponding translation into automata exists for none of these
logics.

38

Last, it remains to explore connections of our formalism with well-established ones
such as series-parallel languages [LW00] and the �-calculus [Mil99]. Notably, a chart se-
mantics has been defined for the latter [BGP08], which might help to apply our automata
model and proof techniques to other specification languages. In [Mey08,WZH10], a no-
tion similar to communication structures is used to identify depth-bounded �-calculus
specifications, which allow for decidable verification problems. It would be interesting to
see if those techniques can be exploited in our setting.

References

ABB97. J. Autebert, J. Berstel, and L Boasson. Context-free languages and pushdown automata. In
Handbook of Formal Languages, volume 1, pages 111–174. Springer, 1997.

ABE+05. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, Thomas W. Reps, and M. Yannakakis.
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst., 27(4):786–818,
2005.

AEY05. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC graphs.
Theoretical Computer Science, 331(1):97–114, 2005.

AMKN05. B. Adsul, M. Mukund, K. Narayan Kumar, and Vasumat Narayanan. Causal closure for
MSC languages. In Proceedings of FSTTCS’05, volume 3821 of Lecture Notes in Computer
Science, pages 335–347. Springer, 2005.

Arm07. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Bookshelf,
2007.

BGP08. J. Borgström, A. D. Gordon, and A. Phillips. A chart semantics for the pi-calculus. Electr.
Notes Theor. Comput. Sci., 194(2):3–29, 2008.

BH10. B. Bollig and L. Hélouët. Realizability of dynamic MSC languages. In Proceedings of CSR’10,
volume 6072 of Lecture Notes in Computer Science, pages 48–59. Springer, 2010.

BKM10. B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-passing
systems. Logical Methods in Computer Science, 2010. To appear.

BL06. B. Bollig and M. Leucker. Message-passing automata are expressively equivalent to EMSO
logic. Theoretical Computer Science, 358(2-3):150–172, 2006.

BLP08. L. Bozzelli, S. La Torre, and A. Peron. Verification of well-formed communicating recursive
state machines. Theoretical Computer Science, 403(2-3):382–405, 2008.

BMS+06. M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-variable logic
on words with data. In Proceedings of LICS’06, pages 7–16. IEEE Computer Society, 2006.

BS01. M. G. Buscemi and V. Sassone. High-level petri nets as type theories in the join calculus.
In Proceedings of FOSSACS’01, volume 2030 of Lecture Notes in Computer Science, pages
104–120. Springer-Verlag, 2001.

BZ83. D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal of the ACM,
30(2), 1983.

DL09. S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. ACM Trans-
actions on Computational Logic, 10(3), 2009.

GGH+09. T. Gazagnaire, B. Genest, L. Hélouët, P. S. Thiagarajan, and S. Yang. Causal message
sequence charts. Theoretical Computer Science, 410(41):4094–4110, 2009.

GKM06. B. Genest, D. Kuske, and A. Muscholl. A Kleene theorem and model checking algorithms for
existentially bounded communicating automata. Information and Computation, 204(6):920–
956, 2006.

GMP03. E.L. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts. STTT,
5(1):78–89, 2003.

GMSZ06. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs: Model-
checking and realizability. Journal on Comp. and System Sciences, 72(4):617–647, 2006.

HJ00. L. Hélouët and C. Jard. Conditions for synthesis of communicating automata from HMSCs.
In Proceedings of FMICS’00, pages 203–224. Springer, 2000.

39

HMK+05. J. G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P. S. Thiagarajan. A
theory of regular MSC languages. Information and Computation, 202(1):1–38, 2005.

Koz77. D. Kozen. Lower bounds for natural proof systems. In SFCS’77: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pages 254–266, 1977.

LMM02. M. Leucker, P. Madhusudan, and S. Mukhopadhyay. Dynamic message sequence charts.
In Proceedings of FSTTCS’02, volume 2556 of Lecture Notes in Computer Science, pages
253–264. Springer, 2002.

LMSPT03. R. Lanotte, A. Maggiolo-Schettini, A. Peron, and S. Tini. Dynamic hierarchical machines.
Fundam. Inform., 54(2-3):237–252, 2003.

Loh03. M. Lohrey. Realizability of high-level message sequence charts: closing the gaps. Theoretical
Computer Science, 309(1-3):529–554, 2003.

LW00. K. Lodaya and P. Weil. Series-parallel languages and the bounded-width property. Theo-
retical Computer Science, 237(2):347–380, 2000.

Mey08. R. Meyer. On boundedness in depth in the �-calculus. In Proceedings of IFIP TCS’08,
volume 273 of IFIP, pages 477–489. Springer-Verlag, 2008.

Mil99. R. Milner. Communicating and mobile systems: the �-calculus. Cambridge University Press,
New York, NY, USA, 1999.

Pel00. D. Peled. Specification and verification of message sequence charts. In Proceedings of
FORTE/PSTV’00, volume 183 of IFIP Conference Proceedings, pages 139–154. Kluwer,
2000.

RGG96. E. Rudolph, P. Graubmann, and J. Grabowski. Tutorial on message sequence charts. Com-
puter Networks and ISDN Systems, 28(12):1629–1641, 1996.

Seg06. Luc Segoufin. Automata and logics for words and trees over an infinite alphabet. In Proceed-
ings of CSL’06, volume 4207 of Lecture Notes in Computer Science, pages 41–57. Springer,
2006.

Sei94. H. Seidl. Haskell overloading is DEXPTIME-complete. Information Processing Letters,
52(2):57–60, 1994.

WZH10. T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded processes.
In Proceedings of FOSSACS’10, volume 6014 of Lecture Notes in Computer Science, pages
94–108, 2010.

40

	Realizability of Dynamic MSC Languages
	Introduction
	Preliminaries
	Message Sequence Charts
	Dynamic Communicating Automata
	Dynamic MSC Grammars
	Realizability of Dynamic MSC Grammars
	Realizability and Finite Dynamic Communicating Automata
	Related Work
	Conclusion and Future Work

