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Invariants of Six Points and Projective

Reconstruction from Three Uncalibrated Images
Long QUAN

Abstract— There are three projective invariants of a set of siz
points in general position in space. It is well known that these
invariants cannot be recovered from one image, however an in-
variant relationship does ezxist between space invariants and im-
age invariants. This invariant relationship is first derived for a
single image. Then this invariant relationship is used to derive
the space invariants, when multiple images are available.

This paper establishes that the minimum number of images for
computing these invariants is three, and the computation of in-
variants of siz points from three images can have as many as
three solutions. Algorithms are presented for computing these
invariants in closed form.

The accuracy and stability with respect to image noise, selection
of the triplets of images and distance between viewing positions
are studied both through real and simulated images.
Applications of these invariants are also presented. Both the
results of Faugeras [1] and Hartley et al. [2] for projective
reconstruction and Sturm’s method [3] for epipolar geometry
determination from two uncalibrated images with at least seven
points are extended to the case of three uncalibrated images with
only siz points.

Keywords  invariant, projective reconstruction, epipolar geom-
etry, uncalibrated images, projective geometry, self-calibration.

I. INTRODUCTION

Geometric invariants are playing a more and more impor-
tant role in machine vision applications. A lot of work for
recognition and shape description using invariants has al-
ready been reported, for instance ¢f. the collection book
[4] and [5], [6], [1], [7], [8], [9], [10], [2], [11], [12]. Most of
the invariants [13], [14] are derived for planar objects using
geometric entities such as points, lines and conics, since in
this case, there exists a plane projective transformation be-
tween object and image space. Plane projective geometry
provides an ideal mathematical tool for describing this. As
for general geometric configurations in space, it has been
shown that it is not possible to estimate invariants from a
single image [15], except for some constraint geometric con-
figurations [16]. Therefore, one (cf. [17], [1], [2], [11], [18])
basically deals with space projective invariants from two
images, provided that the epipolar geometry, or the funda-
mental matrix [19], [20] of the two images is determined «
priori.

This paper is concerned with the computation of the in-
variants of sets of six points in space from three images
taken with uncalibrated cameras, assuming that the cor-
respondences between image points are known. The main
new results obtained in this paper are that the minimum
number of images for computing the invariants of six points
is three; and the computation of invariants from three im-
ages can have as many as three solutions. All solutions
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are given in closed form. As a consequence of these re-
sults, both Sturm’s method for epipolar geometry deter-
mination and projective reconstruction of Faugeras [1] and
Hartley et al. [2] developed for two uncalibrated images is
extended to the case of three uncalibrated images. Inter-
estingly, in both two-camera and three-camera cases, the
maximum number of solutions is three from the minimal
data, i.e. six points for three images and seven points for
two images. Also, with the help of such results, it may
be established that the method of camera self-calibration
proposed by Maybank and Faugeras [21] can be achieved
with only six points of three images taken by the camera.
Part of this work was also presented in [22].

Barrett et al. [17] have considered invariants from mul-
tiple images in order to solve the ”transfer problem” in
photogrammetry. Faugeras [1] and Hartley et al. [2] have
shown that a set of points in 3D can be reconstructed up
to a collineation from the point correspondences of two im-
ages taken with uncalibrated cameras. Similar results are
presented by Mohr et al. in [6] for general multiple uncal-
ibrated images using numerical minimization techniques.
This permits the computation of projective invariants for
sets of points visible from two or more images. In [6], [11],
it is mentioned that it might be possible to get invariants
from three images, however no explicit solutions are ob-
tained. For other sets of geometric entities, invariants are
obtained from two images and some experimental results
are presented in [9], [11], [18]. However all these approaches
using only two images are essentially based on the a prior:
determination of the epipolar geometry of the two images.
The epipolar geometry may be algebraically determined,
up to three solutions, with a minimum of seven points by
Sturm’s method [3], [19] or other equivalent algebraic meth-
ods based on the matrix representation of the epipolar ge-
ometry [23], [19]. However, Sturm’s method is numerically
unstable [20]. When more than eight points are available,
numerical minimization methods are used to determine it.
Therefore, to compute the invariants of six points, the cor-
respondences of more than six points are needed for two
images.

In comparison with related work, the method proposed in
this paper does not need to first estimate the epipolar ge-
ometry between cameras, only the correspondences of six
points are necessary, however a third image is needed to
get algebraic solutions.

The development of this work is largely inspired by the old
mathematical work on invariants of Coble [24] and the more
recent work of Faugeras [1]. We assume that readers are
familiar with elementary projective geometry and invariant
theory, which can be found in [25], [24], [26], [27].

The paper is organized as follows. In Section II, the invari-



ants of the set of six points in space are briefly reviewed.
Then in Section III we will show that although invariants of
a general set of points can not be obtained from one image,
there exists a simple invariant relationship between the in-
variants of the set of 6 points in space and the invariants
of their projected points in an image. Later in Section IV,
this invariant relationship for one image will be applied to
three images to compute invariants in space. Applications
of the computation of invariants for projective reconstruc-
tion, epipolar geometry determination and self-calibration
are discussed in Section V. Experimental results for the
stability of these invariants and projective reconstruction
are presented in Section VI. Future directions are discussed
in Section VII.

II. REVIEW OF INVARIANTS OF SIX POINTS IN SPACE

Given a set of points or other kind of geometric configu-
rations, the number of invariants is, roughly speaking, the
difference between the dimension of the configuration and
the dimension of the transformation group that acts on the
configuration, if the dimension of the isotropy group of the
configuration is null (¢f. [9], [4]). For a set of 6 points in
P3| there are 3 x 6 — (16 — 1) = 3 absolute invariants under
the action of general linear group GL(3) in P3. Since each
point in P32 has 3 degrees of freedom, the dimension of a set
of 6 points is 3 x 6 = 18. The transformation group GL(3)
is represented by a 4 x 4 matrix up to a scaling factor, its
dimension is 4 x 4 — 1 = 15.

These 3 invariants can be formed and interpreted differ-
ently. For instance, following invariant theory, invariants
can be expressed by linear combinations of products of the
determinants of 4 by 4 matrix whose columns are the ho-
mogeneous coordinates of the points. This is mainly a
domain of symmetric functions of the coordinates of the
points. The invariants formed this way can be symmetric,
therefore independent of the order in which the points are
taken. Sometimes, half symmetric functions are also used.
Coble [24] was interested in studying the invariants of asso-
ciated sets of points between spaces of different dimensions.
Using the six half symmetrical Jourbet’s functions, he in-
vestigated the complete system of the (relative) invariants
of six points of different dimension. We will not go fur-
ther into his work, as it is rather complicated and involves
concepts beyond the scope of this paper.

Another way is to consider twisted cubics [25], since there
is a unique twisted cubic that passes through the given 6
general points in P3. Any 4 points of a twisted cubic de-
fine a cross ratio, therefore a subordinate one-dimensional
projective geometry is induced on any twisted cubic. So
the 3 invariants of the set of 6 points can be taken as the
3 independent cross ratios of the sets of 4 points on the
twisted cubic. Or more algebraically, we can consider the
invariants of cubic forms. Cubic forms in P3 have 5 alge-
braically independent relative invariants of degree 8, 16, 24,
32, 40 (cf. [27]). Three absolute invariants can be derived
from these 5 relative invariants. However the expressions
for these invariants are very complicated polynomials.
One of the simplest ways to consider these 3 invariants is by

considering the 3 non-homogeneous projective coordinates
of any sixth point with respect to a projective basis defined
by any 5 of them. In the following, we will consider these
invariants, since it seems to us that this is the simplest way
to deal with them, and also because this methodology has
been succeesfully used in [7], [1], [28], [8], [18], particularly
by Faugeras in [1]. Obviously, these non homogeneous pro-
jective coordinates admit direct cross-ratio interpretation

[25].

I1I. INVARIANT RELATIONSHIP OF SIX POINTS FROM
ONE IMAGE

A. Canonical representation of 6 points in space

Given any six points {F;,i = 1,...,6} in P2, in view of
the fundamental theorem for projective space, any five of
them, no 3 of them collinear and no 4 of them coplanar,
can be given preassigned coordinates, thus we can assign
them the canonical projective coordinates as follows

(1 ,,,)T,(()Ol())
(0,0,0,1)T and (1,1,1, 1)T.

This uniquely determines a space collineation Ajy4,

det(Aqxa) # 0, which transforms the original 5 points

into this canonical basis. And for the sixth point, it is

transformed into its projective coordinates (X,Y, 7, T)T

by A4xa. Therefore,

XY : Z:7T gives the 3 independent absolute invariants
of 6 points.

B. Canonical representation of 6 image points

The projections of these six points onto an image {p;,1 =
1,...,6} are usually given in non-homogeneous coordinates

(z, )T ,i=1,...,6

take any 4 of them, no 3 of them collinear, and assign them
the canonical projective coordinates in P?
(1,0,0)7,(0,1,0)7,(0,0, )", and (1,1, )7,
A plane collineation Asys, det(Asxs) # 0, can be uniquely
determined. Azyxs transforms the fifth and sixth points into
(us,vs, ws)T and (us, vs, ws)T . Therefore,
us : U5 - ws and ug : vg : wg give the 4 independent
absolute invariants of 6 image points.

The algebraic determination of Asyx3 can be found in Ap-
pendix.

C. Projection between space and image plane

If we assume a perspective projection as the camera model,
then object space may be considered as embedded in P3
and image space embedded in P2. The camera performs
the projection from P3 upon P2, and this projection can
be represented by a 3 x 4 matrix Csx4 of rank 3 whose
kernel is the projection center. The relation between the
points P; in P3 and p; in P? can be written as

Aipi = Caxa b,



where p; and F; are in homogeneous coordinates. i.e.

X;

U €11 C12 €13 Ci14 \7

K3

Ai Ui = C21 €22 C23 C24 7.
k3

wy €31 €32 (€33 C34 T

K3

This can be rewritten in ratio form hiding the scaling factor

Aia

(11X + c12Yi + c13Z; + c14T;) -
(c21X; + €22Yi + ca3Zi + c24T;) :
(c31X; + e32Yi + c33Zi + ca4L;) (1)

U; -V LWy =

For each point, as u;, v; and w; can not all be zero, two in-
dependent equations can always be derived from (1). These
equations express nothing else than the collinearity of the
space points and their corresponding image points. This is
a projective property which is preserved by any projective
transformation.

The calibration process consists of the determination of all
the parameters ¢;; of the projection matrix C3x4. As we are
assuming that we are working with uncalibrated images, it
is meant that C3yxq4 1s totally unknown.

D. Elimination of camera parameters c;;

For a set of 6 points in image and in space, when the cor-
respondences p; «— P;, for i =1,...,6, are given as

(1,0,0)7 = (1,0,0,0)7,
0,1,007 < (0,1,0,0)7,
0,0,1)T < (0,0,1,0)7,
(1,1,H)T < (0,0,0,1)7,
(U5,U5,U)5)T — (1,1,1,1)T,
(U6, Vs, 'WG)T — (X, Y, Z, T)T,

this leads to 12 = 2 x 6 equations from (1). All entries ¢;;
of ('3 4 are unknowns, as we assumed that the camera was
uncalibrated. Since Csyx4 is defined up to a scaling factor,
it counts for 3 x4—1 = 11 unknowns. So there still remains
one (1 = 12 — 11) independent equation after eliminating
all unknown camera parameters c;;.

Substituting all canonical projective coordinates of the 6
points in image and in space into equations (1). Then elim-
inating c;;, we obtain the following homogeneous equation
between X,Y, 7, T and {(u;, v;, w;), for i = 5,6},

'LUG(U5 — ’U5)XY +
'U5(’06 — 'wg)XT +
'U5('w6 — u6)YT +

176(’LU5 — U5)XZ +
U6(1}5 — w5)YZ + (2)
'wg,(u6 — ’UG)ZT =

E. Invariant interpretation of the equation

The above equation (2) will be arranged and interpreted
as an invariant relationship between the relative invariants
of P3 and those of P? as follows.

If i; and I; denote respectively

i1 = we(us — vs),
1y = UG(ws — us),

iz = us(ve — weg),
is = ug(vs — ws),
i5 = U5(w6 — ug),
is = ws(ug — vg),
and
L=XY, L=X7 1I3=XT,
IL,=YZ Is=YT, Is=271T,

then 7; and /; can be interpreted as respectively the relative
invariants of 6 points in P? (image) and those of 6 points
in P3 (space).

{ij,j=1,...,6} are defined up to a common multiplier, so
they are only relative invariants of the 6 points of the image.
The 5 ratios iy : iy : i3 : 44 : 5 : i are (absolute) projective
invariants. Since (by the arguments of Section II) for the
set of 6 points in P2, there are 4 = 2 x 6 — 8 indepen-
dent projective invariants, therefore the relative invariants
{ij,j = 1,...,6} are not independent and are subject to
one (1 =5 —4) additional constraint which is

1 +io + i3+ ig +i5 + 16 = 0.

This can be checked from the above definition of i;.
{I;,j = 1,...,6} are relative invariants of P2, only the 5
ratios Iy : I : I3 : Iy : I5 : Ig are projective invariants
in space. Since there are only 3 independent absolute in-
variants, [; are subject to two additional constraints which
are, by inspection of the definition of I;,

L I L L

L I ™ L I
An independent set of three absolute invariants in space
could be taken to be

1 Y

2— ﬁ——:—and == =_.

T I T Is T
The set of invariants {«, 8,7} is equivalent to X : Y : 7 :
T.
Then the invariant relation (2) is simply expressed as a
bilinear homogeneous relation,

1y + il + 1303 + 4y +i515 + isls = 0. (3)

This relationship is of course independent of any camera
parameters, therefore it can be used for any uncalibrated
images. This clearly shows that the 3D invariants can not
be computed from one single image, since we have only
one invariant relationship for three independent invariants.
This invariant relationship can be used in two different
ways:

o to verify whether a given set of points is present in a
model base. That means [; can be computed from the
model base and i; from the image, then the invariant rela-
tion can be used to check for the presence of the model in
the image.

¢ to compute 3D invariants from more than one image, this
leads to the following section.



IV. COMPUTATION OF THE INVARIANTS OF SIX POINTS
FROM THREE IMAGES

In this section, we will focus on how to find the absolute
invariants of 6 points in space, i.e. {«, 3,7} or equivalently
X :Y : Z:T from more than one image. To do this, it is
assumed that the 6 point correspondences through images
have already been established.

So from a set of six point in one image, the homogeneous
invariant relation (3) can be written in X, Y, Z, T as

UXY 4+ 0 X2+ i3 XT +0uYZ +i5YT 41627 =0,

with coefficients ¢; computed from image points. As there
are only 3 independent invariants for a set of 6 points, we
might hope to solve for these 3 invariants if 3 images of
the set of 6 points are available. The three homogeneous
quadratic equations in X, Y, Z, T from three images can
be written as follows.

Fo= iVxy +ixz 40 xr
+ilvz+iyr iz =0, (4)
Fo o= iPXY +iPx7+i0xT
+ivz+iPvyr+iPzr =0,  (5)
Fs = Xy +iPx7+iPXxT

+iPvz+i®yr+iPzr =0,  (6)
here the superscripts (j), j = 1, 2, 3, distinguish the invari-
ant quantities of different images.

A. Mazimum number of possible solutions

Each equation represents a quadratic surface which has
rank 3. These quadratic forms have no X?, Y2, 72 T?
terms. That means that the quadratic surface goes through
the vertices of the tetrahedron of reference whose coordi-
nates are (0,0,0,1)7, (0,0,1,0)%, (0,1,0,0)%, (1,0,0,0)T.
This is easily verified by substituting these points in the
equations. In addition, as the coefficients of the quadratic
form iU) are subject to the following relations,

i)+ i) i) il i) =0, for j=1,2,3,

so all the equations (4), (5) and (6) necessarily pass through
the unit point (1,1,1,1)%.
According to Bezout’s Theorem, three quadratic surfaces
must meet in 8§ = 2 x 2 x 2 points. Since they already pass
through the five known points, so only 3 = 8 — 5 common
points remain. Therefore,
the mazimum number of solutions for X .Y : 7 :T is
three.

B. Find X/T by solving a cubic equation

Now, let us try to explicit these 3 solutions. For instance,
if we want to solve for X/T', the two resultants G; and G
obtained by eliminating Z between F; and F3 and between
Fy and F3 are homogeneous polynomialsin X, Y and T of
degree 3:

G = VXY 4+ eVXY 4 XY T + x0T
+ el XT? 4 VY T YT =0, ()
Go = XY + VXY 4 XY T + X

+eIXT? + YT 4 Py T2 =0, (8)

whose coefficients are still subject to

) 4 o) o) 4 D) g ) ) D) g for = 1,2,

where

(J) _ (J+1) (J) (J) gJ'H)

e(]) (J+1) é]) (J) (J+1)

e(]) _ Z(]‘H) (J) _ (J) (J+1)
U5

e(]) _ Z(]+1) (J) (J) (J+1)

e(]) _ Z(]+1) (J) (J) (J+1)
g

e(]) _ (]+1) (J) (J) (J+1)

This is due to the fact that the point (1, 1, )7 is still on the
two cubic curves. The resultant obtained by eliminating Y
between G; and G» is a homogeneous polynomial in X, T'
of degree 8, which can be factorized as,

XT(X —T)(by X% 4+ b XT + b3T%)(ay X>
+ as X?T 4 asXT? + a4 T?).

It is evident that the linear factors lead to trivial solu-
tions. The solution X = 0 corresponds to the common
points (0,0,0,1)%, (0,0,1,0) and (0,1,0,0)%. The solu-
tion 7' = 0 corresponds to the common points (1,0, 0,0)7,
(0,1,0,0)T and (0,0,1,0)T. The solution X = T corre-
sponds to the common point (1,1,1,1)%.

Now, let us have a close-look at the coefficients of the

quadratic factor by X2 + bo XT + b3T2,
by (2)Zg2)’
by = il i 4Dl
bs = is?il?

i,

which depend only on the invariant quantities of the points
of the second image, so the zeros of the quadratic factor
are the parasite solutions introduced by elimination using
resultants, they are not the zeros of {Fy, Fo, F5}. Thus,
the only nontrivial solutions for X/T" are those of the cubic
equation,

C=ar1 X? 4+ as X?*T + a3 XT? + ayT° = 0. (9)

The implicit expressions for a; (quite long) can be easily
obtained with Maple. The cubic equation may be solved al-
gebraically by Cardano’s formula, either for X/T or T/X.
The choice between solving X/T or T/ X depends on the es-
timation of the moduli of the roots. According to Cauchy’s
Theorem, the moduli of the roots of cubic equations are
bounded by the following,

(1 4 marlloel Jaal}

|a]

maz{|ai|, |as|}
|aa|

If the modulus is large enough, that means T is near to

0, in this case it would be better to solve for its reciprocal

T/X instead of X/T.

X
<|l=|<1
| <1+



C. FindY : Z : T linearly for a given X/T

Y : Z : T should be solved for each given X : T. As the
equations are symmetricin X, Y, Z and T', we could obtain
other similar cubic equations for the other two independent
absolute invariants, for instance, Y/T and Z/T or any other
ratios if necessary. However, doing this would lead to much
more than 3 solution sets which is not desirable. We expect
to obtain unique Y : Z : T for each given X : T

By eliminating Y2 between G; and Go, we obtain the fol-
lowing homogeneous polynomial

H = (aX?+ X T+ e3XT? + e T3)Y
+ X(di1 X%+ do XT + dsTHT, (10)

where

o = eDelD _ (2D

ey = (2) <1> (2) <1)+ (2) (1) _ () (1)

o5 = (2) <1) (2) <1> <2> <1)+6<2> <1)

o = (2) <1) <2> <1>
and

dy = Pl — e,

dy = ()()+(2)(1)
dy =~ 4 D

ONCINONCS

Any zero of H is also a zero of G; and Gs, as H is a linear
combination of G; and G5 with polynomial coefficients, and
‘H belongs to the ideal generated by G; and Gs.

‘H can be considered as a linear homogeneous polynomial
in Y and T for a given X/T. Therefore a unique Y : T is
guaranteed from this equation for each given a« = X : T,

Y T= —a(d1a2 +doa+ds): (cla?’ + cqa? + cza + C4).

Foragiven X : Y :T,)saya = X/T and g =Y/T, 72 : T
is uniquely determined by one of the equations (4), (5) or
(6), for instance taking (4), we have
7:T=—(Map+iPa+i"8) : (iPa + i g+ i)
In conclusion, only at most three solutions exist for X : Y :
Z : T, hence we establish the following.
Given a set of 6 point correspondences in 3 images taken by
uncalibrated cameras, there are at most 3 solutions for the
three invariants associated to the set of 6 points in space,
such solutions can be found in closed form.

D. Summary of computation

The computation of the invariants of six points can be sum-
marized in the following simple algorithm.

1. Compute the plane collineation Asxs (¢f. Appendix)
such that 4 of the 6 points of each image go to the canonical
projective basis. Apply this collineation to the remaining
two points to obtain

{ugj) @) w(]) fori=5,6 and j = 1,2,3};

2. Compute the relative invariants of each image
(i), for j=1,2,3and k=1,...6}

from the above transformed image points;

3. Solve the cubic equation (9) C =0 for o = X/T;

4. For each «, solve the linear equation (10) H = 0 for
B=Y/T;

5. For each a and (3, solve the linear equation (4) F; = 0
for vy = Z/T.

E. Remark

We can note that instead of solving {F, Fa, F3} for X :
Y : Z . T, we can equivalently solve

{00 40T + i I + i L 4 i T + i T = 0
{0 4+ 00 + i8I + i L+ i T + i T = 0
<3>I + 1(3)1 + 1(3)13 + z<3>1 + 1(3)15 +i s =0
Lls— Il =0
11]6 - 1314 == 0

for the ratios I; : Is : Iz : I3 : I5 : Is.

They meet in 4 = 1 x 1 x 1 x 2 X 2 intersection points in
P>3. As the sum of the coefficients is zero, they meet in
the common unit point (1,1,1,1,1,1)7, so only 3 solutions
remain. The same results, cubic equation, can be obtained
by a little more symbolic computation.

We also note that when 5 images are available, a linear so-
lution for the ratios I7 : Iy : I3 : I4 : I5 : Ig is possible while
ignoring the quadratic constraints Iy Is = Iy 15 = I3l4.

V. APPLICATIONS OF THE INVARIANTS

In this section, we are exploring some interesting applica-
tions that may be provided by the computed invariants of
six points. The most important is undoubtly the complete
determination of the projection matrices of the three cam-
eras. This gives the most complete projectively invariant
description of the three cameras. It follows that projective
reconstruction as has been achieved by Faugeras [1] and
Hartley et al. [2] and the determination of epipolar trans-
formation by Sturm’s method [3] are extended to the case
of three uncalibrated cameras with fewer points.

A. Complete determination of projection matrices C':]);M

In the case of two uncalibrated cameras, Faugeras [1] used
epipolar geometry to determine the projection matrix up
to projective transformations. Here, in the case of three
uncalibrated images, as the projective coordinates of the
sixth point is algebraically determined. It means that 6
points both in P? and P3 are known up to respectively
a plane and a space collineation. It turns out that the
projection matrix C§]X)4 for each camera can be completely
determined.

For each camera, the correspondences of 6 points between
P? and P3 result in 2 x 6 = 12 linear homogeneous equa-
tions in the 3 x 4 = 12 entries ¢;; that count only for
11 unknowns due to a common scaling factor. One of



the 12 equations has been used to derive the invariant re-
lationship (3) (¢f. Section III-D), which was then used
to compute the invariants. Therefore, there remain only
12 — 1 = 11 independent linear equations which matches
the 11 unknowns of the projection matrix. After some sim-
ple algebra, the projection matrix for the j-th camera can
be written as follows,

where
) =R 1,
= o 1,
cgé) = ng)k(j) -1

and k() can be taken as either

(ugj) - ,ng) + 'wéj)a _ ,u(Gj),y
ugJ)

3

WD uDl)y

(uéj) _ véj)) + ,UéJ)a _ ug)ﬁ

WD o — u@0@)g

bl

which are equivalent due to the invariant relationship (3).

B. Projective reconstruction

The complete determination of projection matrices implies
that given any point correspondence in images, the corre-
sponding point in space can be reconstructed in P up to a
collineation. In fact, projective reconstruction is equivalent
to the computation of the projective invariants of the sets
of points.

Given the point correspondences (ul(-]), ‘UZ(»J), wZ(J))T and the
projection matrices C§]X)4, for j = 1,2,3, we can write two
linear homogeneous equations for the unknows X;,Y;, 7Z;, T;
of each point for each image as follows,

“’5])0(1]1))(2 _ ugj)Cng)Zz + (wl(.’/') _ UEJ))TZ — 07
wz('])c(;;yi _ vE”céQZi + (u,z(y) _ UZ(-]))Ti -0.

With three images j = 1,2, 3, a linear system of 6 homoge-
neous equations is obtained. An algebraic solution can be
found by solving any three of them. A numerical solution
can also be found by solving this over-determined linear
system. Therefore we establish the following result which
can be considered as an extension to the recent work of
Faugeras [1] and Hartley et al. [2] for reconstruction from
two uncalibrated images.

Given a set of n > 6 point correspondences in 3 images
taken by uncalibrated cameras, the set of points can be re-
constructed in P3 up to a collineation.

The reconstruction may have as many as three different
solutions from the minimal data of six points.

Notice that this result reduces the number of points needed
to have a projective reconstruction to the strict minimum
of six.

C. Determination of the epipolar geometry

Another consequence of the complete determination of the
projection matrices is that the epipolar geometry of any
pair of the three cameras can be computed with only 6
point correspondences.

Given a set of 6 point correspondences in 3 images taken
by uncalibrated cameras, the epipolar geometry of any pair
of cameras can be determined, up to at most 3 solutions.
This can be compared with Sturm’s method [29], [3], rein-
troduced into computer vision in [30], [21], [19], which is of
great importance for two uncalibrated cameras. Based on
projective geometry, Sturm’s method yields at most three
solutions in general for the epipolar geometry, which are
three of the nine points of intersection of two cubic plane
curves.

Note that although the two approaches developed respec-
tively for the two-camera and the three-camera cases lead
to equivalent results, the parametrizations used in two
cases are different. Sturm directly used the epipolar trans-
formation as the parameters for the two uncalibrated cam-
eras, while we used the projective structure of the point
set in space as parameters for the three uncalibrated cam-
eras. The underlying equations of the parametrization for
the three-camera case are simpler, hence a better numeri-
cal stability might be expected. This is to be confirmed by
the experimental results presented in Section VI.

For extracting the epipolar geometry from any given pair
of projection matrices, one can refer, for instance, to [1]
for more details. Here we are content with the following
results.

¢ The epipole in the j-th image with respect to the i-th
camera €;; is given by

€1 = C’é&hker((f-éil)
= (1—=hy,1—hy,1—h3)T,
where ' '
T U )
O R O R A O
11 22 33

¢ The epipolar geometry between ¢-th and j-th cameras,
represented by the fundamental matrix Fj; [19] (the gen-
eralization of the essential matrix [23]) is given by

Fij = lej]09(05))
0 —ha(hg —1)  ha(ha — 1)
= hi(hs — 1) 0 —ha(hy —1) |,
—hi(hy — 1) ha(hy — 1) 0

where [ej;] is the anti-symmetric matrix associated to ej;,
and Csy3 is the left 3 x 3 sub-matrix of the 3 x 4 matrix
03x4~

D. Camera self-calibration

The above results can also be applied to the camera self-
calibration proposed by Maybank and Faugeras [21]. Ac-
cording to [21], [19], [20], from point correspondences of



three uncalibrated images and the associated epipolar ge-
ometries, one can calibrate and therefore obtain a Eu-
clidean reconstruction (only up to a global scaling factor),
if we suppose that all three images are taken by the same
uncalibrated camera.

Using Sturm’s method or other equivalent algebraic meth-
ods for estimating the epipolar geometries for each pair
of three cameras, one needs a minimum number of seven
points to do that. While using the method presented above
which considers the three cameras as a whole, the epipolar
geometries of any pair of three cameras can be computed
with only six points. Therefore, we can make the following
statement.

A camera can be self-calibrated with a minimum of 6 point
correspondences in 3 images.

V1. EXPERIMENTAL RESULTS

The theoretical results presented above for the computa-
tion of the invariants of 6 points have been implemented.
The accuracy and stability of the invariants with respect to
various factors such as pixel errors, selection of the triplet
of images and positions of the camera are studied both for
simulated and real images. The computation should be ac-
curate and stable in order for the invariants to be useful
for vision applications. The three invariants used for ex-
periments are a = X : T, =Y :T and v =7 : T. The
application for projective reconstruction is also presented.

A. The experiment with simulated images
A.1 Simulation set-up

We will first simulate a number of images in which a set of
6 points in space is projected. The simulation is set up as
follows.

o First, a real camera is calibrated (¢f. [31], [6], [32]).
This is done by placing a known object of about 50cm3
in front of the camera. The camera is then moved through
9 different viewing positions, spaced at 10 degree intervals
around the calibration object. The intervals between the
first 3 views are slightly bigger than the second 3 views,
and the second 3 views bigger than the third 3 ones. This
creates 9 calibration matrices which are subsequently used
in the simulation.

¢ With these 9 calibration matrices as our perfect cam-
eras, we project several sets of 6 known points into these 9
synthetic images.

o Finally the projected positions of the points in the im-
ages are perturbed by varying levels of noise of uniform
distribution.

o As the positions of the 6 simulated points in space are
known in advance, their invariants are computed by the
method given in Section II. These invariants are compared
with those calculated from the simulated image data.

In this way, the realism of simulation is preserved, and the
image noise can be quantitatively controlled as well in order
to observe its influence.

The results that will be presented in the following tables are
obtained from the set of 6 points whose (Euclidean) coor-

dinates are (2.0, 0.0,12.0)7 (0.0,6.0,0.0)7 (12.0,0.0, 14.0)*

(0.0,6.0,6.0)7 (=1.5,19.5,0.0)7 and (0.0,12.0,12.0)7 (the
unit is in em). The other sets of 6 points are also simulated
with the same calibration matrices and they have similar
numerical behavior and will not be presented in the tables.

A.2 Stability w.r.t. the selection of the triplets of images

Table I shows the effect of choosing different triplets of syn-
thetic images on the stability of the 3 invariants. All images
points are perturbed by a uniform noise of £1.5 pixels. In
the case where the solution is unique, the computed value
is followed by a * in the tables. When multiple solutions
occur, the one that is the closest to the ground truth value
is selected.

Another experimentation was carried out to test the sta-
bility with respect to the change of one of the 3 images.
Four images 4, 5, 6 and 7 are taken, then all triplets are
selected among the four. Here pixel error is set to +1.5. In
the case of multiple solutions, all 3 possible solutions are
given for each invariant, the solution that corresponds to
the real solution is marked in bold font in Table II. From
this table, we note that sometimes only one real solution is
possible, in this case, it is the unique correct solution. In
the case of existence of multiple solutions, the real solution
is always present independent of the selection of the triplet
and remains numerically stable.

TABLE II
TABLE OF INVARIANTS COMPUTED FROM DIFFERENT TRIPLETS OF
SYNTHETIC IMAGES. WITH £1.5 PIXEL NOISE FOR IMAGE POINTS, ALL
3 SOLUTIONS OF {a, (3,7}, IF THERE ARE, ARE SHOWN IN ORDER TO
ILLUSTRATE THEIR STABILITY.

Image triplet | o = 0.526421 | § = 1.880620 v = 0.745762
—3.779942 0.424841 —1.588062
4,6, 7 0.515372 1.899496 0.744176
15.791148 —0.023215 —8.050262
4,5,6 0.516476 1.899056 0.747555
—2.006199 0.438052 —1.051868
5,6,7 0.515080 1.899593 0.742203
12.874219 —0.414817 —13.899986
4,5, 7 0.516014 1.899551 0.746564

A.3 Stability w.r.t. the pixel errors

For the given triplets of images {1,2,3}, {4,5,6} and
{7,8,9}, different pixel noise (uniformly distributed) is
added to illustrate the influence of the pixel errors.

Tables III, IV and V show that with noise levels up to
+5.5 pixels, the computed invariants remain numerically
stable, so that degradation with the increasing pixel noise
is graceful.

Tables III, IV and V also show that the same invariant com-
puted with completely different triplets of images remains
stable.

From these empirical results, we note that the uniqueness
of solutions depends partly on the positions of the cameras,
for the first and the third triplet, the solutions are always
multiple. For the second one, they are always unique up to
+3.5 pixel error.



TABLE 1
TABLE OF INVARIANTS COMPUTED FROM DIFFERENT TRIPLETS OF SYNTHETIC IMAGES. THE POINTS OF IMAGES ARE NOISED BY £1.5 PIXEL

ERROR, THE INVARIANTS «, 3 AND v ARE COMPUTED FOR EACH DIFFERENT IMAGE TRIPLET. d; ARE THE DIFFERENCES BETWEEN EACH

COMPUTED INVARIANT AND ITS MEAN VALUE. ¢ IS THE STANDARD DEVIATION AND U/m IS THE RATIO OF THE STANDARD DEVIATION TO THE

MEAN VALUE.

Image triplet a = 0.526421 dy [ = 1.880620 do v = 0.745762 ds
1,2,3 0.528183 0.0083 1.877117 -0.018 0.760771 0.0050
4,5,6 0.516476%* -0.0034 1.899056* 0.0035 0.747555%* -0.0082
1,3,5 0.524387 0.0045 1.889926 -0.0056 0.760802* 0.0051
5,7,9 0.514523* -0.0053 1.899576* 0.0041 0.739840* -0.016
1,4, 8 0.520458 -0.00053 1.900477 0.0050 0.763048 0.0073
2,5,8 0.516762 -0.0032 1.900178 0.0047 0.751696 -0.0040
1,5,9 0.518681 -0.0012 1.902235 0.0067 0.766406 0.011

mean m 0.519924 — 1.895509 — 0.755731 —

o 0.0048 — 0.0090 — 0.0096 —

o/m 0.0092 — 0.0047 — 0.013 —

Ground truth 0.526421 — 1.880620 — 0.745762 —
TABLE IIT

TABLE OF INVARIANTS COMPUTED FROM THE TRIPLET OF SYNTHETIC IMAGES {1, 2, 3}. a,3 AND vy ARE COMPUTED WITH PIXEL ERRORS OF

DIFFERENT LEVELS. d; IS THE DIFFERENCE BETWEEN THE COMPUTED VALUE AND ITS MEAN VALUE.

Noise a = 0.526421 dq £ = 1.880620 do v = 0.745762

+0.5 0.527054 0.00063 1.879408 -0.0012 0.751121 0.0054
+1.5 0.528183 0.0018 1.877117 -0.0035 0.760771 0.015
+2.5 0.529135 0.0027 1.875013 -0.0056 0.769214 0.023
+3.5 0.529938 0.0035 1.873026 -0.0076 0.776658 0.031
+4.5 0.530609 0.0042 1.871119 -0.0095 0.783268 0.038
+5.5 0.531163 0.0047 1.869260 -0.011 0.789171 0.043

TABLE IV

TABLE OF INVARIANTS COMPUTED FROM THE TRIPLET OF SYNTHETIC IMAGES {47 5, 6}. a,3 AND -y ARE COMPUTED WITH PIXEL ERRORS OF

DIFFERENT LEVELS. d; IS THE DIFFERENCE BETWEEN THE COMPUTED VALUE AND ITS MEAN VALUE.

Noise a = 0.526421 dq £ = 1.880620 do v = 0.745762

+0.5 0.523211%* -0.0032 1.886847* 0.0062 0.746559* 0.00080
+1.5 0.516476* -0.0099 1.899056* 0.018 0.747555* 0.0018
+2.5 0.509556* -0.017 1.911075* 0.030 0.748065* 0.0023
+3.5 0.502432% -0.023 1.922747* 0.042 0.748102% 0.0023
+4.5 0.495112 -0.031 1.934272 0.054 0.747731 0.0020
+5.5 0.487509 -0.039 1.945445 0.065 0.746875 0.0011

TABLE V

TABLE OF INVARIANTS COMPUTED FROM THE TRIPLET OF SYNTHETIC IMAGES {7,8,9}. a, 3 AND -y IS COMPUTED WITH PIXEL ERRORS OF

DIFFERENT LEVELS. d; IS THE DIFFERENCE BETWEEN THE COMPUTED VALUE AND ITS MEAN VALUE. NOTE THAT WITH THE SMALLEST PIXEL

ERROR 0.5, THE RESULTS ARE NOT THE BEST ONES.

Noise a = 0.526421 dj £ = 1.880620 do v = 0.745762

+0.5 0.532012 0.0056 1.921869 0.041 0.710370 -0.035
+1.5 0.512018 -0.014 1.858706 -0.022 0.743526 -0.0022
+2.5 0.523644 -0.0028 1.845212 -0.035 0.727474 -0.018
+3.5 0.496563 -0.030 1.930408 0.050 0.718309 -0.027
+4.5 0.502496 -0.024 1.966565 0.086 0.721738 -0.024
+5.5 0.501878 -0.025 1.964701 0.084 0.717939 -0.028

A.4 Stability w.r.t. the distance between cameras

In Table I, the different triplets are ordered in increasing
camera distance order, globally, the accuracy of the com-
puted invariants is slightly improved by increasing camera
distance.

Although the camera distance decreases slightly from
{1,2,3} to {4,5,6} and {7, 8,9}, comparing Tables III, IV

and V, the difference of the accuracy of the computed in-

variants is not significant, this is due to the fact that the
camera distance for those triplets is already favorable.
In the next section, camera distance influence will be dis-

cussed with real image sequences.

B. The experiment with real images

We first experimented over a sequence of 24 real images.
The object spans about 30em in space and is placed in
about 2m from the camera. The camera was turned man-



ually around the object, and images are taken every one
or two degrees. The first 13 images and the last 11 images
have slightly different lighting condition. One gradient im-
age of the sequences is displayed in Figure 1. It isimportant
to note that the images we used are only a small portion,
approximatively 1/4 of the original 512 x 512 images of the
sequence.

o Points are automatically tracked over the sequence and
the location of the points are optimized by a nonlinear sub-
pixel corner detector [33]. The automatic tracker may have
2 or 3 points missing for some images, the missing points
are added by hand. The 6 points used for experimentation
are the visible corners of the two cubic objects, marked by
white circles in Figure 1. Concerning the precision of the
image points, although corner detection is itself subpixel
but the precision of points location can not be considered
as subpixel since we can never guarantee that in different
images a corner comes from the same physical point in
space.

o The dimensions of cubic objects in space are measured
by hand to serve as ground truth for comparison with the
computed invariants. However these ground truth should
be considered relative, since errors in measuring 3D ob-
jects are inevitable. Measurement error was estimated as
+2mm.

The results in Table VI show that the computed invariants
from different triplet of images are stable and usable, ex-
cept for v in the third row. We note that the computation
of v is systematically worse than that of o and g, this is
due to its small modulus, although both have almost the
same magnitude of absolute error, about 0.04, the relative
error is much more important for v than «. This is also
due to error accumulation, since v is found using a and 3.
One possible remedial measure is to change the order of the
computation, or recompute them from the corresponding
original cubic equations.

In this table, we also note the influence of the camera dis-
tances on the stability of the invariants. Since each pair
of neighboring images differs by a rotation of roughly one
degree, the camera distance in Table VI can roughly be
estimated as the rotation angle in degrees with a radius
of two meters. We can see in the table that, globally the
results degrade by decreasing the distance between camera
positions. However the results from the largest distance
do not give the best ones, this can be explained by the
fact that one side of the objects in these extreme positions
are almost tangent to the view line, so the corresponding
corners are not well defined in the images, therefore they
can not be precisely located by the corner detector. The
pixel errors of the points in the extreme images are much
more important than in other images. When the distance
between cameras becomes quite small, for instance 2, cor-
responding to the last 2 rows of the table, the results are
considerably degraded, especially for the triplet of the last
row. When the camera distance is 1, the results are too
bad to be useful, the results are not presented in the table.
Another experiment is performed on a sequence of images
of a wooden house. Three views covering about a 45° ro-

Fig. 1. One gradient image of the sequence. The 6 points marked
by a white circle are used for the experiment.

tation of the camera around the wooden house are taken.
The corners marked in Figure 2 are tracked for the three
images using the same procedure as for the previous im-
age sequence. The 5 reference points are those numbered
2,5,8,10 and 11 in Figure 2. Then with any other point, a
set of 6 points is formed. In Table VII, the computed invari-
ants are compared with that computed by transforming the
estimated Euclidean coordinates (obtained by the method
described in [32]) using the space collineation A4x4 (cf. Ap-
pendix). In the case of unique real solution, the computed
values are followed by a *. In case of multiple solutions,
the one that is the closest to the known value is selected

by hand.

Fig. 2. One of the wooden house image sequence. The points used
for the experiment are marked by white circles.



TABLE VI
TABLE OF INVARIANTS o, 3 AND v COMPUTED FROM THE REAL IMAGE SEQUENCE WITH DIFFERENT TRIPLETS OF IMAGES. IN THE SECOND

COLUMN, camera dist. MEANS THE DISTANCE BETWEEN CAMERA POSITIONS. d; IS THE DIFFERENCE BETWEEN THE COMPUTED VALUE AND THE

MEAN VALUE. ¢ IS THE COMPUTED STANDARD DEVIATION, U/m THE RATIO OF THE STANDARD DEVIATION TO THE MEAN VALUE.

Ima. triplet camera dist. o dy 8 do v ds
1,12, 23 12 3.055932%* -0.032 1.322068%* -0.014 0.044376* -0.014
2,13, 24 12 3.040515 -0.048 1.3321695 -0.0043 0.051376 -0.0065
1,7,13 5 2.981206 -0.11 1.295518 -0.041 0.015540 -0.0424

14, 19, 24 5 3.205979 0.12 1.352756 0.016 0.056934 -0.00097
1, 5,9 4 3.085201* [ -0.0032 1.336204* | -0.00022 0.064528%* 0.0066
13,17, 21 4 3.592866 0.50 1.370506 0.0034 0.053793 -0.0041
14, 18, 22 4 2.976934 -0.11 1.328929 -0.0074 0.049507 -0.0084
2,5,8 3 3.006701%* -0.082 1.359429* 0.023 0.117986* 0.060
3,6,9 3 3.111329* 0.023 1.353453%* 0.017 0.084712%* 0.027
14, 17, 20 3 3.417479 0.33 1.366791 0.030 0.059527 0.0016
16, 19, 22 3 2.497743* -0.59 1.282863%* -0.054 0.038662* -0.019
1, 3,5 2 3.539165 0.45 1.376995 0.041 1.140780 1.08
15,17, 19 2 6.754482%* 3.7 1.509805* 0.17 0.099840* 0.042
mean m - 3.088353 - 1.336426 - 0.057904 -
sd. o - 0.28 - 0.028 - 0.026 -
o/m - 0.091 - 0.021 - 0.45 -
ground truth - 3.155082 - 1.357450 - 0.073426 -
TABLE VII

TABLE OF INVARIANTS COMPUTED FROM THE THREE IMAGES OF THE WOODEN HOUSE FOR THE DIFFERENT SETS OF 6 POINTS. THE FIRST

] 1 i
COLUMN PRESENTS THE SETS OF NUMBERS OF 6 POINTS. IN THE SECOND COLUMN, « , 3 AND 7y ARE TRANSFORMED KUCLIDEAN COORDINATES

AS GROUND TRUTH. IN THE LAST COLUMN, «, /3 AND ¢ ARE COMPUTED FROM THREE IMAGES.

Set of 6 points known (al,ﬁl,'yl)

computed (a, 3,7)

{1,2,5,8,10,11}

(0.594573, 0.944785, 0.157327)

(0.581565%, 0.925869*, 0.143597%)

{2,3,5,8,10,11}

(0.716795, 0.740667, 0.64426)

(0.714164, 0.739041, 0.662835)

{2,4,7,8,10,11}

(1.68619, 12.7413, 0.970638)

(1.714522, 12.729020, 0.995141)

{2,5,6,8,10,11}

(0.681678, 0.241914, 1.7126)

(0.742775%, 0.325263*, 1.822018%)

{2,5,7,8,10,11}

(-0.22391, 0.225495, 0.858623)

(-0.230072, 0.228533, 0.880303)

{2,5,8,9,10,11}

(0.634079, 0.344556, 3.09316)

(0.705443, 0.448216, 3.303431)

{2,5,8,10,11,12}

(-0.816493, 0.264887, 2.45476)

(-0.849691, 0.233549, 2.523767)

C. The experiment on projective reconstruction

As we have seen in Section V that we can use the invariants
to perform projective reconstruction of a point set from 3
uncalibrated images. We experimented on real images of
the wooden house (see Figure 2). All tracked 46 points of
3 images are used.

Although the theoretical multiplicity of the projective re-
construction is at most three from the minimal data. With
more than the minimum number of points in practice, a
unique solution is always obtained. In this experiment, the
set of 5 reference points is {2,5,8,10,11} (cf. Figure 2).
The sixth point used to compute the projection matrices
is the point numbered 1 in Figure 2, that is the set of 6
points {1,2,5,8,10,11}. Since the invariants of this set of
points are uniquely determined (see the first row of Ta-
ble VII), the projection matrices are uniquely computed
from these invariants, then any other tracked points are
reconstructed from the projection matrices. The projec-
tive reconstruction is then transformed into its Euclidean
representation (see Fig 3) by applying AZX14 (see Appendix)
with the known reference points in order to compare the
result with direct Euclidean reconstruction from 5 images
[32].

Note that during all reconstruction process, we need to

solve only one cubic equation in one variable, all other com-
putational efforts are linear operations.

VII. CONCLUSION

In the first part of the paper, it is shown that the three
invariants of a set of six points in general position in space
can be algebraically computed from three images of these
points. No further information about camera calibration
and epipolar geometry is needed. It is shown that the
maximum number of solutions is three which are all al-
gebraically explicited in closed form.

Compared with the computation of the invariants from two
images, which is essentially based on Sturm’s method using
seven points, the method proposed in this paper needs only
six points of the three images.

The result obtained in this paper has some important con-
sequences. It allows to extend the results of Faugeras [1]
and Hartley et al. [2] for projective reconstruction and
Sturm’s method [3] for determining the epipolar geometry
from two uncalibrated images to the case of three uncali-
brated images with the minimal data of six points instead
of seven. It is also shown that a camera could be self-
calibrated with only six points of three images.

In the second part of the paper, the stability of the invari-



Fig. 3. The rectified projective reconstruction from 3 uncalibrated
images: the points are displayed as stars and the line segments as
solid lines. Fuclidean reconstruction from five images: the points
are dots and the line segments dashed lines. The 5 reference
points used were {2,5,8,10,11} (cf. Fig. 2).

ants is studied via both simulated and real images with
respect to different factors. The computed invariants are
numerically stable both with respect to pixel noise and to
selection of triplet of images if the distance between cam-
eras is not too small. This confirms that our parametriza-
tion has a better numerical behavior than Sturm’s. We
have also successfully applied the method to perform pro-
jective reconstruction of set of points.
We can remark that the way we computed the canon-
ical projective coordinates is not symmetric in the six
points, it is therefore order-dependent. The study of order-
independent invariants has no theoretical problems, how-
ever practically it will produce extremely long and compli-
cated algebraic expression which will compromise numeri-
cal stability.

APPENDIX
Plane collineation AE;S

The plane collineation matrix Ag;S, which transforms the
canonical projective basis in P2,

into four given points: {p; = (z;,v;, 1)T,i=1,...,4},

-1
€ — pip; = A3xs€i,

is given by

£1A423 T2A1a3 3A124
Y1423 Y2A143  Y3Aiaa
Ayga3 Aqaz ANE
where
r; oy 1
Aijk = det €Lj Yj 1
T oy 1

Space collineation AZ;AI

The space collineation matrix AZXl4, which transforms the
canonical projective basis,

,5}:

into five given points, {p; = (z;,y;, 2z, )T, i=1,...

-1
€ — WiP; = Al 4Ci,

is given by
T1As52312 T2A1534 ¥3A1258 TaAiazs
V15234 Y2A1534  Y3Aiasa  Yalio3s
21A52314 221534 23A1254 2413235
As234 A1s34 ANTE Aqa3s
where
T,y oz 1
Z; sz 1
Ai]'klzdet J Yi 7
T Yk 2 1
oy a1

Then Asy3 and A4y 4 can then be obtained from its inverse
either analytically by computing cofactors or numerically
by LU decomposition.
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