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Closed-form solutions for the Euclidean

calibration of a stereo rig

G. Csurka, D. Demirdjian, A. Ruf, and R. Horaud

INRIA Rhône-Alpes, 655 Av. de l'Europe, 38330 Montbonnot Saint Martin, France

Abstract. In this paper we describe a method for estimating the in-
ternal parameters of the left and right cameras associated with a stereo
image pair. The stereo pair has known epipolar geometry and therefore
3-D projective reconstruction of pairs of matched image points is avail-
able. The stereo pair is allowed to move and hence there is a collineation
relating the two projective reconstructions computed before and after
the motion. We show that this collineation has similar but di�erent pa-
rameterizations for general and ground-plane rigid motions and we make
explicit the relationship between the internal camera parameters and
such a collineation. We devise a practical method for recovering four
camera parameters from a single general motion or three camera param-
eters from a single ground-plane motion. Numerous experiments with
simulated, calibrated and natural data validate the calibration method.

1 Introduction

Traditional stereo vision systems use a single image pair to provide projective,
a�ne, or Euclidean reconstruction. It has been clear that redundancy o�ered by
further image pairs can signi�cantly increase the quality and stability of visual
reconstructions. Nevertheless, if the visual task is to recover metric structure,
there are problems because both the intrinsic parameters (of the left and right
cameras) and extrinsic ones (relative position and orientation of the two cameras)
can vary over time. This is particularly critical when an active stereo head is
being used. It is therefore important to be able to re-calibrate the stereo rig
over time and over a small number of motions without using any special purpose
calibration device.

A number of authors investigated the relationship between projective, a�ne,
and metric spaces in conjunction with a single camera undergoing rigid motions
[10,6,7,13,15]. In [14] it is shown that there are many critical situations for which
metric structure cannot be recovered. When image pairs are available one may
use additional constraints. A�ne structure can be recovered from either pure
translations [12], pure rotations [2] or ground-plane motions [1] of a stereo rig.
For general motions, a�ne structure can be estimated from the eigenvector of
a 3-D collineation [17] and metric structure can be estimated from two general
motions [3]. Furthermore, in [8] it is shown that a�ne structure is an intrinsic
property of a rigid stereo rig and that it can be easily recovered by combining
any number of general motions.



In this paper we develop closed-form solutions for the self-calibration of a
stereo rig from a single general or ground-plane motion. The basic assumption
is that the stereo rig has the same internal and external parameters before and
after the motion. More precisely, let P1 and P2 be two projective reconstructions
obtained with an uncalibrated stereo rig before and after a rigid motion. These
two reconstructions, i.e., a set of 3-D points, are related by a 4�4 collineation
H12 which is related to the rigid motion D12 by ([17,3]):

H12 ' H�1
PED12HPE (1)

As it will be shown below, an immediate consequence of this similarity re-
lationship is that H12 can be factorized as �J��1 where J is a real Jordan
canonical form. We prove that this factorization is not unique and we show how
to parameterize all such factorizations and how to estimate them in practice.
Furthermore, we show that there exists a relationship between the left (or right)
camera parameters and all possible factorizations of H12.

More precisely, let K be the upper triangular matrix associated with the left
camera such that K33 = 1. We will show that (i) in the case of a general motion
the matrixKK> is parameterized by a pencil of conics and that (ii) for a ground-
plane motion KK> is parameterized by a linear combination of three conics.
Therefore, one constraint onto the entries of K is su�cient to estimate four
intrinsic parameters from a single motion and two constraints onto the entries
of K are necessary for estimating three intrinsic parameters from a single planar
motion. As a consequence, a camera with zero image skew can be calibrated
from a general motion and a camera with zero image skew and known aspect
ratio can in turn be calibrated from one ground-plane motion.

The method described in this paper has several advantages over previous
stereo calibration approaches. The �rst advantage is that a�ne calibration is
not necessary prior to metric calibration as it is done with strati�ed approaches.
This is particularly important for ground-planemotions for which a�ne structure
has proved di�cult to obtain. The second advantage is that all the computations
are based on linear algebra techniques such as singular value decomposition.
The third advantage is that, while a single motion is su�cient to calibrate,
several motions can be combined in conjunction with a standard outliers rejection
method in order to estimate the calibration parameters more robustly.

1.1 Paper organization

The remainder of the paper is organized as follows. Section 2 brie
y recalls the
camera model and makes explicit the structure of KK> for a camera with zero
skew and for a camera with zero skew and known aspect ratio. Section 3 recalls
the mathematical properties associated with equation (1). Section 4 describes
the real Jordan factorization of matrix H12, analyses this factorization from a
geometrical point of view, shows how to parameterize all possible factorizations,
and describes a method to compute these factorizations in practice. Section 5
shows how to perform Euclidean calibration from the real Jordan factorization



of H12 for general and ground-plane motions. Section 6 validates the method
with simulated and real data and Section 7 discusses the method in the light of
the experimental results obtained so far.

2 Camera model and the absolute conic

A pinhole camera projects a point M from the 3-D projective space onto a
point m of the 2-D projective plane. This projection can be written as m '
PM , where P is a 3�4 homogeneous matrix of rank equal to 3 and the sign '
designates the projective equality { equality up to a scale factor. If we restrict
the 3-D projective space to the Euclidean space, then it is well known that P
can be written as:

PE = K
�
R t

�
=
�
KR Kt

�
(2)

where R and t describe the orientation and the position of the camera in the
chosen Euclidean frame. If we consider the standard camera frame as the 3-D
Euclidean frame (the origin is the center of projection, the xy-plane is parallel to
the image plane and the z-axis points towards the visible scene), the projection
matrix becomes1 PE =

�
K 03

�
.

The most general form for the matrix of intrinsic parameters K is:

K =

0
@� r u0
0 k� v0
0 0 1

1
A (3)

where � is the horizontal scale factor, k is the ratio between the vertical and hor-
izontal scale factors, r is the image skew and u0 and v0 are the image coordinates
of the center of projection.

The relation between the matrix K and the image of the absolute conic is
C ' K�>K�1 [4]. Let us make explicit the dual of this conic, i.e., A = C�>:

A ' KK> =

0
@�2 + r2 + u20 rk� + u0v0 u0

rk�+ u0v0 k2�2 + v20 v0
u0 v0 1

1
A (4)

This means that A is symmetric and if we want to �x the scale factor (A is
de�ned up to a scale) such that A = KK>, we need that A33 = 1.

Equation (3) describes a �ve-parameter camera. It will be useful to consider
camera models with a reduced set of intrinsic parameters, as follows:

{ four-parameter camera with r = 0 (image skew), which means that the image
is a rectangle { a sensible assumption. In this case the dual conic becomes:

A 'KK> =

0
@�2 + u20 u0v0 u0

u0v0 k2�2 + v20 v0
u0 v0 1

1
A (5)

1 We denote by 0n the n-vector containing n zeros.



which provides an additional constraint on the entries of A, i.e. A12 �
A13A23 = 0.

{ three-parameter camera with r = 0 and k (aspect ratio) having a known
value; for instance the value of k can be obtained from the physical size of a
pixel. Therefore there is an additional constraint on the entries of A:

k2(A11 �A2
12)� (A2

23 �A22) = 0

3 Rigid motion of a stereo rig

A stereo rig is composed of two cameras �xed together. Let P and P0 be
the projection matrices of the left and right cameras. We can choose without
loss of generality a projective basis BP such that2 P =

�
I3 03

�
. In this case

P0 =
�
H1 + e0a>; �e0

�
[11], where H1 is the in�nite homography between the

left and right images, e0 is the right epipole, a an arbitrary 3-vector and � is
an arbitrary scale factor. It was shown in [8] that the 4-vector

�
a
> �

�
has a

simple but important geometric interpretation, namely it is the plane of in�nity
associated with the stereo pair. However, this plane is not used throughout this
paper.

Given a stereo rig with two projection matrices P and P0, it is possible to
compute the 3-D projective coordinates of a point M in the basis BP from the
equations m ' PM and m0 ' P0M , where m and m0 are the projections of
M onto the left and right images.

If we restrict the projective space to the Euclidean space and choose as basis
BE the standard camera frame associated with the �rst camera, P and P0 are
given by:

PE =
�
K 03

�
and P0E =

�
K0R K0

t
�

where K and K0 are the matrices of left and right intrinsic camera parameters,
R and t describe the orientation and position of the right camera frame with
respect to the left camera frame. The equationsm ' PEME andm0 ' P0EME

allow the estimation of ME { the 3-D Euclidean coordinates of a 3-D point in
the basis BE .

It is straightforward to show that, ifHPE represents the collineation between
the projective basis BP and the Euclidean frame BE , i.e., ME ' HPEM , we
have the followings relations:

P ' PEHPE and P0 ' P0EHPE

Indeed, from PM 'm ' PEME ' PEHPEM it results that P ' PEHPE .
The basic assumption throughout the paper is that the stereo rig performs

a series of rigid motions and that during these motions K,K0, R, and t remain
constant, as shown in Figure 1. As the bases BP and BE are related to the

2 We denote by In the n� n matrix of identity.
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Fig. 1. Rigid motion of a stereo rig.

stereo rig we can again use them to compute N and NE , the projective and
Euclidean representations of the same physical point after the motion. Clearly,
the relationship between the projective and Euclidean representations before the
motion holds after the motion, NE 'HPEN .

Let D12 be the 4�4 matrix describing the rigid motion performed by the
stereo rig. We have NE = D12ME and by substituting ME and NE with
HPEM and HPEN we obtain:

N 'H�1
PED12HPEM

Consequently, the collineation between the two projective reconstructions (before
and after the motion) (M andN) is related to the rigid motion by the following
formula:

H12 ' H�1
PED12HPE (6)

In order to get rid of the scale factor one may normalize H12 by dividing each
term with sign(trace(H12))

4

p
det(H12). With this normalization \'" becomes

\=" and the eigenvalues of H12 and of D12 are the same. In what follows we
assume that H12 has been normalized.

The following proposition proved in [8] makes explicit the structure of HPE

under the choice of the bases BP and BE :

Proposition 1. The 4�4 collineation HPE allowing the conversion of a pro-
jective reconstruction (basis BP ) obtained with a stereo rig into an Euclidean
reconstruction (basis BE) has the following structure:

HPE =

�
K�1 03
a
> �

�
(7)

where K is the matrix of intrinsic parameters of the left camera and
�
a
> �

�
is

the equation of the plane at in�nity in the projective basis BP .



4 Algebraic preliminaries

In this section we make explicit some algebraic properties of the 4�4 collineation
H12 which are direct consequences of equation (6).

The displacement matrix D12 has the form:

D =

�
R12 t12

0>3 1

�
(8)

where R12 is a 3�3 rotation matrix and t12 represents the translation. Therefore
the eigenvalues of D12 are fe

i�; e�i�; 1; 1g.
A key issue with our approach is the distinction between the algebraic mul-

tiplicity of an eigenvalue and its geometric multiplicity. We recall the following
de�nitions (see [16,9]):

De�nition 2. Let � be an eigenvalue of a matrix. Its algebraic multiplicity
is the number of times that it occurs as a root of the corresponding characteristic
polynomial.

De�nition 3. The geometric multiplicity of an eigenvalue � is the dimension
of the eigenspace associated with the eigenvalue �.

In the case of a rigid displacement the algebraic multiplicity of the eigenvalue
� = 1 is, in general, equal to 2 (it is equal to 4 if � = 0). However its geometric
multiplicity depends on whether the rigid motion is a screw or not and is equal
to:

{ 1 in the case of general displacement, i.e., there is a translation along the
screw axis

{ 2 in the case of planar motion (there is no translation along the axis or
rotation).

Therefore there are distinct calibration solutions for these two types of motion.
Given matrix H12 similar to D12, its eigenvalues are fe

i�; e�i�; 1; 1g as well.
From [9] we have the following proposition.

Proposition 4. Let 
 be a matrix with its eigenvalues equal to fei�; e�i�; 1; 1g.
Then there exists a non-singular matrix � such that:


 = �

0
BB@
cos(�) � sin(�) 0 0
sin(�) cos(�) 0 0
0 0 1 "
0 0 0 1

1
CCA��1 = �J"�

�1 (9)

where " = 1, if the geometric multiplicity of the double eigenvalue � = 1 is 1,
J" = J1, and " = 0 if the geometric multiplicity of the double eigenvalue � = 1
is equal to 2, J" = J0.



Furthermore, if 
 = D is a displacement, � = � is of form:

� =

�
Q� t�

0>3 1

�
(10)

where Q� is an orthogonal matrix, i.e � is a rotation or a re
ection followed
by a translation.

Since J" is the matrix associated with the real Jordan canonical form, the
factorizations introduced in the proposition above are called real Jordan factor-
izations.

4.1 Non uniqueness of the real Jordan factorization

The real Jordan factorization described above is not unique. This non unicity is
of crucial importance for our calibration method and we are going to give some
insights into this property.

Proposition 5. The real Jordan factorization of a matrix 
 is not unique.
Moreover, 
 = �J"�

�1 and 
 = �0J"�
0�1 are real Jordan factorizations if

and only if there exists a matrix M commuting with J", i.e. MJ" = J"M, such
that �0 = �M.

Proof: For any M commuting with J", we have 
 = �J"MM�1��1 =
�MJ"(�M)�1.

Conversely, if
 = �J"�
�1 = �0J"�

0�1, results that��1�0J" = J"(�
�1�0)�1.

Hence ��1�0 =M commutes with J".

�

By making explicit the matrix equality MJ" = J"M, it is easy to derive the
structure of M:

{ if " = 1 (general motion), M = Mg has 4 degrees of freedom and can be
written as:

Mg =

0
BB@
� �� 0 0
� � 0 0
0 0 
 !

0 0 0 


1
CCA (11)

{ if " = 0 (planar motion), M =Mp has 6 degrees of freedom and the form:

Mp =

0
BB@
� �� 0 0
� � 0 0
0 0 
 !

0 0 � �

1
CCA (12)



{ if 
 is a displacement, i.e. 
 = �J"�
�1, �M, must be of form (10). Using

this constraint we obtain:

Md =

0
BB@

cos( ) sin( ) 0 0
� sin( ) cos( ) 0 0

0 0 �1 !
0 0 0 1

1
CCA =

�
Qz tz

0>3 1

�
(13)

4.2 The real Jordan factorization of a collineation

The real Jordan factorization will be used to decompose matrixH12 which maps
two projective reconstructions obtained with the stereo rig before and after the
motion. It is therefore important to describe how to obtain one such a factor-
ization.

Proposition 6. Let fei�; e�i�; 1; 1g be the eigenvalues of H12 and let v1;v2 be
the eigenvectors associated with ei� and e�i�.

(i) If the eigenvalue � = 1 has geometric multiplicity equal to 1, let u3 be the
eigenvector associated with this eigenvalue and we obtain the following real
Jordan factorization:

H12 =
�
u1 u2 u3 w

�
J1
�
u1 u2 u3 w

��1
= �gJ1�

�1
g (14)

where u1 = v1 + v2, u2 = i(v1 � v2) are two real vectors and vector w is
de�ned by3

w =

�
(H12 � I3)

�1
u3

w4

�
(15)

with w4 chosen such that det(u1;u2;u3;w) 6= 0.
(ii) If the eigenvalue � = 1 has geometric multiplicity equal to 2 let the vectors

fu3;u4g be a basis of the associated eigenspace and in this case the following
real Jordan factorization is obtained:

H12 =
�
u1 u2 u3 u4

�
J0
�
u1 u2 u3 u4

��1
= �pJ0�

�1
p (16)

Proof: We show (ii) �rst. From H12v1 = (cos(�) + i sin(�))v1 and H12v2 =
(cos(�) � i sin(�))v2, by simple addition and subtraction results:�

H12u1 = cos(�)u1 + sin(�)u2
H12u2 = � sin(�)u1 + cos(�)u2

(17)

Furthermore H12u3 = u3, H12u4 = u4 and writing together with (17), using
matrix notation, gives:

H12

�
u1 u2 u3 u4

�
=
�
u1 u2 u3 u4

�
0
BB@
cos(�) � sin(�) 0 0
sin(�) cos(�) 0 0
0 0 1 0
0 0 0 1

1
CCA

3 We denoted by A the 3� 3 upper left block of a 4 � 4 matrix A and by a the �rst
3 components ot the 4 vector a.



which is equivalent to (16).
Second we prove (i). By combining equation (17) withH12u3 = u3 we obtain:

H12

�
u1 u2 u3

�
=
�
u1 u2 u3

�0@cos(�) � sin(�) 0
sin(�) cos(�) 0
0 0 1

1
A

By inspecting equation (14), we notice that w must verify:

H12w = u3 +w (18)

The rank of H12 � I4 is equal to 3. We can assume that det(H12 � I3) 6= 0
and construct the vector given by equation (15). If det(H12 � I3) = 0, we can
consider an other 3� 3 block of the matrix H12 and apply the same method.

�

Consequently, one way to compute a real Jordan factorization of a 4�4
collineation H12 is to compute its eigenvalues and associated eigenvectors. In
practiceH12 is estimated from image measurements and therefore it is corrupted
by noise. This noise can considerably perturbate the eigenvalues and eigenvectors
of H12 [16].

Therefore we devised a simple method for computing the column vectors
of matrix � without computing explicitly the eigenvalues of H12. The latter
is estimated up to a scale factor but after normalization one may notice that
the trace has a simple form trace (H12) = 2 + 2 cos(�). Therefore, we have

cos(�) = trace(H)�2
2 and sin(�) =

p
1� cos(�)2. Finally, from equation (17) we

obtain: �
H12 � cos(�)I4 � sin(�)I4

sin(�)I4 H12 � cos(�)

��
u1

u2

�
= 08

which yields a solution for u1 and u2.
The eigenspace corresponding to the eigenvalue 1 is given by (H12 � I4)u =

04. In the noise-less case the rank of H12 � I4 is equal to 3. However, when
the data are corrupted by noise det(H12 � I4) 6= 0 and an approximate solu-
tion must be found. In practice the singular value decomposition of H12 � I4
allows to compute the eigenspace associated with the unit eigenvalue. If there is
one small singular value, the geometric multiplicity is one and u3 is the vector
corresponding to this singular value. If there are two small singular values, the
geometric multiplicity is 2 and the two associated vectors are u3 and u4.

5 Euclidean calibration

We come back now to the basic equation associated with the rigid motion of
a stereo rig H12 = H�1

PED12HPE . Consider �rst a real Jordan factorization of



D12, i.e D12 = �J��1. We obtain all the factorization by multiplying � with
Md, equation (13):

D12 = �MdJ"(�Md)
�1

Consider now a real Jordan factorization of H12 obtained as described in
Section 4.2. Again we multiply by matrixM to obtain all possible factorizations
of H12, i.e. H12 = �MJ"(�M)�1.

Replacing D12 and H12 in H12 = H�1
PED12HPE , results:

�MJ"(�M)�1 =H�1
PE�MdJ"(H

�1
PE�Md)

�1

We immediately obtain H�1
PE�Md = �M and, from equations (7), (10) and

(13), results:�
K 03

� 1
�
a
>K 1

�

��
Q� t�

0>3 1

��
Qz tz

0>3 1

�
=

�
KQ�Qz �

� �

�
Furthermore, by considering only the upper-left 3�3 block matrices in this

equation one obtains KQ�Qz = (�M) and �nally the orthogonality of matrices
Q� and Qz leads to the following relationship:

KK> = (KQ�Qz)(KQ�Qz)
> = (�M) (�M)> (19)

5.1 General motion

For a general motion the structure of matrix M is given by equations (14) and
(11) and we have:

�gMg =
�
�u1 + �u2 �u2 � �u1 
u3 !u3 + 
w

�
The dual of the image of the absolute conic becomes in this case:

KK> = (�gMg)(�gMg)
> = (�2 + �2)| {z }

�

(u1u
>

1 + u2u
>

2 ) + 
2|{z}
�

u3u
>

3 (20)

where ui = (ui1; ui2; ui3)
> for each ui = (ui1; ui2; ui3; ui4)

>, i = 1; 2; 3.
Note that KK> depends merely on vectors u1;u2;u3 which have already

been estimated and on two further positive parameters � � 0 and � � 0. There-
fore, in order to estimate A = KK> from a single movement two additional
constraints are needed. As it was shown in Section 2, a four-parameter camera
has exactly two constraints associated with the entries of A, namely:�

A33 = 1
A12 �A13A23 = 0

(21)

By combining (20) with (21) obtain the following solutions for � and �:

� = �

Q2
j=1(u

j
1u

3
2 � u

3
1u

j
2)Q2

j=1(u
3
3(u

j
1u

3
1 + u

j
2u

3
2)� u

j
3((u

3
1)
2 + (u32)

2))

� =
1� �(u33)

2

(u31)
2 + (u32)

2
(22)



where uji is the j
th component of ui. Notice that one must check the sign of �

and � since they must be, strictly positives by de�nition.
Once � and � are computed, one may determine KK> and compute the in-

trinsic parameters either directly from equation (5) or by Cholesky factorization.

5.2 Planar motion

We consider now the case of a planar motion. In this case the structure of matrix
M is de�ned by equation (12) and the structure of matrix � is given by equation
(16), i.e., matrices Mp and �p. Hence:

�pMp =
�
�u1 + �u2 �u2 � �u1 
u3 + �u4 !u3 + �u4

�
and we obtain for the dual of the image of the absolute conic:

KK> = (�pMp)(�pMp)
> = (�2 + �2)| {z }

�

(u1u
>

1 + u2u
>

2 ) (23)

+ 
2|{z}
�

�
u3u

>

3 + (
�



)|{z}

�

(u3u
>

4 + u4u
>

3 ) + (
�2


2
)|{z}

�2

u4u
>

4

�

In this case, A = KK> is de�ned by vectors u1;u2;u3;u4 and by three
undetermined parameters �; � and �. Since we have three unknown parameters,
we need 3 constraints onA in order to calibrate the camera with a single motion.
A three-parameter camera has the following three constraints associated with it
(see Section 2): 8<

:
A33 = 1
A12 �A13A23 = 0
k2(A11 �A2

12)� (A2
23 �A22) = 0

(24)

By combining (23) with (24) we obtain the following formulae for � > 0, � > 0
and � 6= 0:

� = �
k2n1(u33m

1 � u13m
3) + n2(u33m

2 � u23m
3)

k2n1(u34m
1 � u14m

3) + n2(u34m
2 � u24m

3)

� =

 
k2m3n1u14 +m3n2u24 � u

3
4(m

1n1k2 +m2n2)

km3(u13(u
3
4m

1 � u14m
3)� u23(u

3
4m

2 � u24m
3) + u33(u

2
4m

1 � u14m
2))

!2

� =
1� �(u33 + �u34)

2

m3
(25)

with j 2 f1; 2; 3g, mj = uj1u
3
1 + u

j
2u

3
2 and n

j = uj1u
3
2 � u

3
1u

j
2.

Once � , � and � are thus computed and if the constraint � > 0 is veri�ed, one
can determine the three camera parameters either in closed-form or by Cholesky
factorization.



6 Experimental results

In a �rst series of experiments, the above developed methods are evaluated on
synthetic image data in order to quantitatively study the accuracy of calibration
as a function of image noise, and the type of movements considered. A second
experiment compares the results of self-calibration and standard o�-line cali-
bration on images of a particular calibration grid. The third experiment is to
validate the use of our method for self-calibration of a stereo rig in an unknown
real-word scene.

6.1 Synthetic data

Synthetic stereo images showing a scene of about 40 3-D points are generated
for �ve di�erent points of view. The internal parameters of the two cameras were
kept �xed, such that projective reconstruction using [5] with the same projection
matrices results in a representation of the scene in one and the same projective
frame related to the stereo rig.

The di�erent viewpoints are related by rigid motions of the rig and the conju-
gate collineationsHii+1 from position i to i+1 of projective space are estimated
by the linear method presented in [8]. General screw motions and restricted pla-
nar motions are considered as camera motions, in order to comparatively study
the performance of the respective methods of self-calibration.

The in
uence of image noise is evaluated by adding arti�cial Gaussian noise
with standard deviation varying from 0.3 to 2 pixels. In order to obtain signi�cant
results, closed-form self-calibration is performed for each single movement in the
sequence and the average value of each parameter over the sequence is considered.
For each parameter we compute the relative error between the estimated values
��u; k

�; u�0; v
�
0 and the true values �u; k; u0; v0:

�� =
j �u � ��u j

j �u j
; �k =

j k � k� j

j k j
; �u =

j u0 � u�0 j

j u0 j
and �v =

j v0 � v�0 j

j v0 j

and for the principal point additionally the relative Euclidean distance between
the points (u�0; v

�
0) and (u0; v0) is considered:

�u;v =

s
(u0 � u�0)

2 + (v0 � v�0)
2

u20 + v20

The median of the relative errors over 100 trial runs is depicted in Fig-
ure 2 which demonstrates that accuracy of self-calibration degrades monotoni-
cally nicely with increasing measurement noise. Furthermore, calibration in the
case of planar motion compares favorably with the case of general motion, given
that a priori estimates of the �xed parameters (skew and aspect ratio) are in the
vicinity of the true values.

Obviously, the estimates of the principal point (u0; v0) are less stable than
those of the scale factors (�u; k). On the one hand, the instability of the principal
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Fig. 2. Relative error in estimates of the intrinsic parameter from four general dis-
placements (left) and four planar motions (right) at di�erent noise levels.
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Fig. 3. The relative error in intrinsic parameters using an increasing number of motions.

point is an intrinsic problem of camera calibration from noisy image measure-
ments and was observed with most of the existing algorithms. On the other
hand, an inaccurate principal point barely a�ects Euclidean reconstruction, as
outlined in [8].

To quantify the possible gain in accuracy from combining several motions,
closed-form self-calibration is performed over one to seven movements out of
trajectories consisting of either a general motion or a planar motion. From 100
trial at a noise level of 1 pixel, the �rst i movements of the trajectory were taken
to calibrate and estimate the parameters by their average values. Figure 3 shows
the evolution of the relative errors as a function of the number of motions which
are considered.

Obviously, using several motions instead of a of a single motion does not
improve the accuracy associated with the estimation of �u and barely improves
the accuracy associated with u0; v0 or k.



left camera right camera

Method � k u0 v0 � k u0 v0

O�-line calibration 1534 .996 270 265 1520 .996 264 271

General motion 1550 .988 278 300 1533 .988 256 277

Planar motion 1570 k
? 261 291 1561 k

? 291 296

Table 1. Results for the left and right camera parameters using o�-line calibration and
self-calibration. The results shown are means of several motions. We used k

? = :996 as
known value for planar motions.

6.2 Self-calibration with image pairs of a calibration grid

To justify the applicability of our method for camera self-calibration and to
compare its e�ectiveness with that of standard o�-line methods, calibration is
executed on images of a 3-D calibration grid. It consists of 100 circular target
points, that are evenly distributed on three planes. Their 3-D positions are known
with an accuracy of 0.02 mm, and their image projection are detected and local-
ized at an accuracy of 0.05 pixel. The results of o�-line calibration using [4] and
the results of applying our self-calibration methods to eight stereo image pairs
of the grid are compared in Table 1, for the left and right cameras, respectively.
Even-though no knowledge about 3D scene structure is required, self-calibration
performs, for both types of motions, as well as o�-line calibration.

6.3 On-line self-calibration from image pairs of a 3-D scene

In order to validate the applicability of our method for camera self-calibration
during runtime of a vision-system, i.e. for on-line calibration, we gathered 45
stereo images of a real-world scene from viewpoints which di�er merely by small
motions of the stereo pair. To obtain point correspondences we used the following
stereo tracking algorithm. Interest points are extracted from the �rst pair and
matched between the left and right images. Next, the points in the left image
are tracked, as the stereo rig moves, over the sequence of images associated with
the left camera motion. To obtain point matches associated with the image pair
after the motion, the tracking is guided by the epipolar geometry. This algorithm
makes use of the fact that the epipolar geometry remains unchanged during the
motion of the stereo rig. Figure 4 shows the matches obtained with two image
pairs.

In contrast to the previous experiments, the matched points are no longer
evenly distributed, neither in the image, nor in space. Even worse, mismatches
may be present in the data. Additionally, interest points are no longer extracted
with 0.05 pixel accuracy. Nevertheless, the camera parameters resulting from
self-calibration are within the expected range and the behaviour of the method
is consistent with the results obtained for synthetic data. Figure 5 depicts the
distribution of parameter estimates obtained by closed-form calibration for about
1000 planar or general motions. Table 2 shows the average values of each pa-
rameter set.



Fig. 4. Two image pairs and their matched points.

7 Conclusion

We proposed a method for self-calibration of a stereo rig from a single general or
ground-plane motion. The basic assumption is that the stereo rig has the same
internal and external parameters before and after the motion. In this case the
collineation relating the two projective reconstructions performed at each posi-
tion is conjugated to a displacement. By making explicit the algebraic properties
of such a collineation, we derived a closed-form solution to recover four camera
parameters from a single general motion or three camera parameters from a
single ground-plane motion.

One of the advantages of this approach is that calibration was done with-
out explicitly computing a�ne structure. The second advantage is that all the
computations are based on linear algebra techniques such as singular value de-
composition, and hence it is easy to implement and has low computation cost.
Therefore, it can be included in on-line perception-action cycle, such as visual
servoing.

One remarkable feature of our method is that it performs as well with small
motions as with large ones. This has a crucial practical importance because it
is much easier to �nd matches between images that di�er by a small motion



left camera right camera

Method � k u0 v0 � k u0 v0

O�-line calibration 1534 .996 270 265 1520 .996 264 271

General motion 1531 1.01 255 323 1508 1.05 211 334

Planar motion 1462 k
? 154 246 1464 k

? 143 259

Table 2. Results for the left and right camera parameters using o�-line calibration and
self-calibration. The results shown are means of several motions. We used k

? = :996 as
known value for planar motions.
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Fig. 5. The distributions of the estimated intrinsic parameters.

than for images that are far apart. One inconvenience is, however, that small
motions may sometimes give rise to bad results simply because a rotation matrix
which is closed to the identity matrix does not have the algebraic properties that
are expected by the method. Nevertheless, these \bad" motions can be easily
eliminated by simply checking the conditioning of the collineation H12.

Another source of errors is the sensitivity of the method to the accuracy with
which the interest points are located and matched as well as the 3-D distribution
of these points. This problem has been observed with both synthetic and real
data. Interesting enough, the matrix conditioning analysis outlined above works
well to eliminate such badly distributed data.

In the future we plan to investigate more thoroughly the relationship between
bad calibration and the numerical conditioning of the problem and to combine
closed-form calibration methods with statistically robust methods.
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