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Filter Transformations for Shift-Insensitive Feature Detection
Miles Hansard and Radu Horaud

INRIA Rhône-Alpes

Introduction

◮ Visual filters can be modelled by derivatives Gk of the Gaussian function.

◮ The combined responses characterize the local structure of the image.

◮ This Gaussian jet representation is convenient because it is:
⊲ Steerable: Get any Gk(x , σ, θ) from Gk(x , σ, θ1) · · ·Gk(x , σ, θk+1).
⊲ Dimensionally separable, hence easily defined in 2D and 3D.
⊲ The natural code for typical image features (ridges, blobs, etc).

◮ But what about complex cells, cf. the Gabor ‘energy model’?
◮ Can the jet be made insensitive to small shifts of the image?

Replica Filters

◮ Let F⋆(x , u) be a family of ideal filters, shifted by u.

◮ These can be Taylor-approximated from F⋆(x , 0) and its derivatives.
◮ In particular, choose the edge-templates F⋆(x , u) = G1(x − u, σ).

◮ Now define the replica filters, F ≈ F⋆, from the D th-order jet:

F (x , u) =

D−1
∑

k=0

−uk

k!
Gk+1(x , σ)

◮ Problems: Unstable, and nature of the approximation is unclear.
◮ Solution: Allow polynomial weights Pk(u), and solve by least-squares.

Impulse Response

◮ Schematic representation:
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◮ More derivatives are needed in practice (see ‘Filter Construction’ box).

◮ The interval of approximation is ± ρ σ, with ρ = 1.5 here.

◮ Note that the family of replica filters is continuous (only 7 shown).

Neural Implementation

◮ The linear-response vector is qj = Fj · s, one value for each shift.

◮ A neurally plausible ‘soft-max’ is used to compute the envelope:

q⋆ =
∑

j wj |qj| ≈ max |qj|

◮ The weights are defined by a nonlinearity and normalization:

wj = exp
(

µ|qj|
)

/

∑

j exp
(

µ|qj|
)

Matrix Formulation

◮ F : Replica filters (rows) P : Polynomials (columns)

G : Gaussian derivatives (rows) M : Monomials (columns)

s : Input signal (column) C : Estimated coefficients

◮ The defining equations are:

F = PG where P = MC

◮ The ‘filter design’ problem is to estimate C , given ideal filters F⋆.

◮ Least-squares solution is the pseudo-inverse of a Kronecker product:

vec(C ) =
(

GT⊗ M
)+

vec(F⋆)

◮ The replica response q is a linear transformation of the jet response Gs:

q = Fs = P(Gs)

Complete Example
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Two-Dimensional Filters

◮ The image gradient at 2D position x, and scale σ, is estimated as:

∇S(x) =
[

G1(x , σ, 0) · S , G1(x , σ, π/2) · S
]

◮ The replica filters can find the local maximum of the gradient:

u⋆ = arg max
u ∈F

∣

∣∇S(x + u)
∣

∣ where F = { u : |u| < ρσ }

◮ The disk F is the receptive field of the mechanism.

Natural Image Experiments

◮ Make a coarse (∼1% pixels) random sampling of the gradient.

◮ Compare ∇S(x) to ∇S(x + u⋆), using σ = 3 pixels and ρ = 1.5.

◮ Split each distribution at P
(

|∇S |< t
)

= 0.75; plot strong vectors in red.
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◮ The undersampled structure is better represented by ∇S(x + u⋆).

◮ The true gradient distribution is bi-modal (boundaries plus texture).

◮ But the randomly-placed filters are unlikely to fall on the boundaries.

◮ If x is within ρ σ of an edge, then |∇S(x + u⋆)| ≫ |∇S(x)|.

Conclusions

◮ A shift-insensitive response can be obtained from the Gaussian jet.

◮ The signal structure can be represented geometrically.

◮ The new model is steerable, and works in any number of dimensions.

◮ High-order filters, as seen in neural data, are needed in the jet basis.
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