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ABSTRACT

Clinical evaluation of skin treatments consists of two steps.

First, the degree of the disease is measured clinically on a

group of patients by dermatologists. Then, a statistical test is

used on obtained set of measures to determine the treatment

efficacy. In this paper, a method is proposed to automatically

measure the severity of skin hyperpigmentation. After a clas-

sification step, an objective function is designed in order to

obtain an optimal linear combination of bands defining the

severity criterion. Then a hypothesis test is deployed on this

combination to quantify treatment efficacy.

Index Terms— hypothesis tests, t-test, multispectral,

skin, hyperpigmentation

1. INTRODUCTION

One of the steps to evaluate the efficacy of a therapeutic so-

lution is to perform measurements on a series of patients who

received the studied treatment. In parallel another treatment

is tested on another group of people or on the same group of

patients on another skin area. This second treatment is the

reference one for the studied pathology or a placebo. In the

following we will use the word ‘vehicle’ to refer to this treat-

ment. For facial hyper-pigmentation, for each studied treat-

ment, a group of Ne patients receives the treatment on one

cheek and the vehicle on the other. To this end patients are

selected to have the same hyper-pigmentation severity on the

two cheeks. Then severity measurements are taken at differ-

ent time t along the treatment period. The standard method

for assessing effects of each treatment is to clinically scale the

disease severity of patients one by one with several dermatol-

ogists. This protocol is expensive, long and tedious. Further-

more it is especially prone to the variability of measures that

manifests as soon as these are performed by a human being.

To make the process more reliable, we propose an im-

age processing tool that quantifies automatically the disease

severity, and then, evaluates the treatment efficacy. To this

end, multi-spectral images are used. The process can be split-

ted in three steps: classification, severity measurement, sta-

tistical analysis of the results. To classify skin images of

hyper-pigmentation, several algorithms have been proposed

in the literature. The benchmark is the CIEL∗a∗b decom-

position [1] using color images. The L∗ component or the

ITA index [2] calculated with components L∗ and b∗ allows

to describe the pigmentation. To introduce the spectral infor-

mation, an algorithm proposed in [3] performs a source sep-

aration of the melanin and haemoglobin components from an

empirical analysis of their absorption. Methods based on im-

age processing techniques have been proposed in [4, 5] to per-

form a classification of healthy/pathological areas with multi-

spectral images.

Once the healthy and the pathological areas are classified, a

criterion has to be defined. This criterion computes the ‘dark-

ness’ of the skin. So, values of this criterion on both healthy

and pathological areas provide the severity measurements. To

define this criterion, only the spectral information is consid-

ered. It is then characterized by a vector λ such that the mea-

sure or darkness for pixel p is a linear combination of spectral

bands b:

Mp =

Nb
∑

i=1

λibp,i, (1)

with Mp the value of the criterion at pixel p, Nb the total num-

ber of bands in the multi-spectral image and λi the ist coeffi-

cient of the linear combination λ = {λ1, ..., λNb
}. Since the

severity on each patient at every measurement time t is calcu-

lated, a hypothesis test is deployed to measure if the severity

of the disease evolves significantly. The used test is a Stu-

dent test (t-test) [6] which quantifies the deviation of the mean

value between two distributions:

Zt,t0(t) =
X̄(t)− X̄(t0)
√

σ2(t)
Ne

+ σ2(t0)
Ne

, (2)

where X̄ and σ are the mean value and the standard devia-

tion of the two distributions respectively. In our application, a

distribution is a set of severity measurements on Ne patients.

The t-test is performed between a measure at time t and at the

baseline at the time t0. The null hypothesis is: “The mean



value of the distribution does not evolve from t0 to t”. If the

probability of false alarm (p-value) of the test is bellow 0.05
the null hypothesis is rejected. And, the lower the p-value,

the higher statistically is the deviation between the mean val-

ues of the two distributions, and the treatment is proved to be

efficient.

The paper is organised as follows. The second section

defines the normalization of the data to measure the disease

severity. The third section describes the objective function

proposed to find an optimum severity criterion per treatment.

Then the fourth section shows the obtained results and a com-

parison with the benchmark method.

2. DATA AND NORMALISATION

For each treatment, the data set of a study is composed of Ne

patients. Each patient has two treatments, the active prod-

uct and the vehicle, in two different areas. Thus there are

two multispectral images per patient. After classification of

healthy and pathological areas, an average spectrum is com-

puted for each region. Then, four spectra are obtained per pa-

tient and per time measurement: the healthy and pathological

spectra for the active product and for the vehicle. It comes that

two normalizations are needed to compute a severity value

from a criterion M . The first one is computed to normalize

the criterion measurement between healthy and pathological

area, and the second to normalize the measurement of the ac-

tive treatment by the vehicle. For the healthy/pathological

normalization there are two possibilities:

det = µMh
− µMp

(3)

and

det =
µMh

− µMp

µMh

, (4)

where det denotes the severity of the disease for the patient e

at the measurement time t, and µMh
and µMp

are respectively

the average measurement of the darkness due to the criterion

M on the healthy and the pathological area respectively. The

equation (4) seems to be the best choice as it computes a de-

viation percentage of the pathological area with respect to the

healthy one. Nevertheless, the quotient introduces additive

noise. And as the two quantities µMh
and µMp

are homoge-

neous the normalization defined in equation (3) is preferred.

A second normalization is needed to compare the active

treatment and the vehicle. With the two images taken from the

same patient, there is again the two possible normalizations:

De
t = d

e,A
t − d

e,V
t (5)

and

De
t =

d
e,A
t − d

e,V
t

d
e,V
t

, (6)

where d
e,A
t and d

e,V
t are the severities measured at the time

t on the patient e on the image concerned by the active treat-

ment A, and the vehicle treatment V respectively. For the

same reason as above, the chosen normalization is the one of

equation (5). Then the final measurement of the severity ac-

cording to the studied treatment A compared to the reference

treatment V is:

De
t = (µMh,A − µMp,A)− (µMh,V − µMp,V ) (7)

It can be noticed that this normalization is linear.

3. THE OBJECTIVE FUNCTION

To determine the severity De
t of the patient e at the time t, a

criterion M is needed. In this section, we propose to define

an objective function to automatically estimate a criterion M

which is optimal to describe the treatment effects. If a treat-

ment has an effect, the deviation between the healthy and the

pathological areas decreases from the measurement times t to

t + dt. So, the best criterion will be the one which describes

this evolution with the finest scale. This is why, we design

an objective function that maximises both the deviation be-

tween healthy and pathological areas and the deviation of the

severity between time measurements:

∆
t−t0

[

1

Ne

Ne
∑

e=1

[

D
e,M
t

]

]

, (8)

where ∆ is the differential between the initial time t0 and the

time t:

∆
t−t0

(Xt) = Xt0 −Xt. (9)

Since the objective is to maximize the deviation men-

tioned above for any measurement time t with respect to the

criterion M, the optimisation problem can be summarized by:

λ̂ = argmax
λ

f(λ), (10)

where f is the objective function defined by:

f(λ) =

Nt
∑

t=t0+dt

{

∆
t−t0

[

1

Ne

Ne
∑

e=1

[

D
e,λ
t

]

]}

(11)

where λ is the vector of coefficients defining the criterion M

and Nt the number of time measures. To optimize the expres-

sion given by equation (10), the geometric simplex method is

used [7].

As the final value which quantifies the efficacy of a treat-

ment comes from a t-test one can propose to directly mini-

mize the p-value of the t-test. Nevertheless, the obtained spec-

trum will be correlated neither with the disease, non with the

treatment effect. That’s why we prefer not to do so.



4. EXPERIMENTAL RESULTS

4.1. The data set

The used data are 384 multispectral images taken from 48

patients during 3 months with one measure at the first visit

and one every month. Multi-spectral images contain 18 bands

in the visible and near infra-red spectra. The group of 48

patients is partitioned in 3 sub-groups of 16 patients. Each

sub-group corresponds to a specific tested treatment.

4.2. The treatments

The first treatment is the benchmark for skin pigmentation.

We will note it St. The two other treatments are from the same

product with two different doses. It is the tested product. The

two treatments will be called Ad2 and Ad3 where d stand for

dose and d2 < d3. A is written for Active. For the vehicle,

we use the active product with a low dose. We will note it

Ad1 with d1 < d2. Thus on the 3 groups we measure the

treatments St vs Ad1, Ad2 vs Ad1 and Ad3 vs Ad1.

4.3. The baseline

To analyse our method, we use the L∗ measure from the

CIEL∗a∗b. To obtain L∗, a spectral integration algorithm

projects the multi-spectral image to the XY Z colours space.

Then the transformation from XY Z space to CIEL∗a∗b

space allows us to extract the L∗ component.

4.4. The results

To avoid some bias due to the classification algorithm, patho-

logical and healthy areas are manually selected on each im-

age. Those areas are manually registered to be in correspon-

dence for each patient along the time sequence. Fig. 2 shows

the p-values obtained by the criterion computed with the op-

timization method. P-values below 0.05 are highlighted with

bold. The tested product with a d1 dose has an efficacy equiv-

alent to the standard treatment St. The null hypothesis of

the t-test is accepted with a high p-value for all the time se-

quences. When the dose of the product A increases, it effect

should increase and the higher the dose, the longer the effect.

The p-values of the t-test with the doses Ad2 and Ad3 de-

scribe well this behaviour. The criterion is adapted to quan-

tify hyper-pigmentation. Fig. 3 summarizes the p-value of

the same test but with the Luminance (L∗) as a criterion. This

test shows despite that St and Ad1 are equivalent, for higher

doses of A, the p-values do not reflect as well as previously

the treatment effect. Indeed, for the first measurement, after

one month, the effect is not visible; the p-values are above

0.05. Then, along the time sequence, even if the p-values for

the treatment Ad3 follow the expected variations, the p-values

variations for Ad2 are less coherent since they decrease under

the 0.05 threshold and then goes back above this threshold.

Thus, the conclusions are that the proposed criterion obtained

by optimisation is more sensitive to small variations than the

standard criterion L∗. To illustrate this sensitivity, we show

in Fig. 1 an example of the evolution of one patient that der-

matologists estimate cured at the end of the treatment. As

one can see, the measurement follows precisely the disease

evolution.

We propose now an interpretation of the criteria. The Lu-

minance is obtained from the component Y , by spectral inte-

gration on the multi-spectral images. As a result, L∗ in the

proposed process is equivalent to use the bands combination

Y shown in Fig. 5. Fig. 4 represents the λ coefficients de-

pending on the wavelength obtained by the proposed method.

All the obtained criteria have similar shapes but with small

variations due to there optimality to each treatment. If we

compare the obtained criterion curves with the absorbency

curves of melanin and haemoglobin (see Fig. 6) it can be no-

ticed that there is a link between the two. In fact, coefficients

of linear combinations are high, in absolute value, when the

deviation between haemoglobin and melanin absorbency is

high. This observation explains why the proposed method is

more efficient to describe the effect of a treatment. When L∗

measures only the middle of the spectrum, the objective func-

tion allows to select adapted spectral bands.

t0: severity = -8.84 t1: severity = -7.25

t2: severity = -3.06 t3: severity = -1.73

Fig. 1. Illustration of the treatment effect measurement with

the proposed method for the treatment Ad3.

t1 − t0 t2 − t0 t3 − t0

St vs Ad1 4.027 10−1 6.545 10−1 2.867 10−1

Ad2 vs Ad1 1.158 10
−2

4.379 10
−3

3.573 10
−3

Ad3 vs Ad1 2.240 10
−2

5.282 10
−3

5.458 10
−4

Fig. 2. P-values obtained by minimizing the objective func-

tion on a spectrum from 400 to 700 nm.



t1 − t0 t2 − t0 t3 − t0

St vs Ad1 9.209 10−1 5.977 10−1 9.07110−1

Ad2 vs Ad1 2.577 10−1
1.478 10

−2
8.625 10

−2

Ad3 vs Ad1 1.072 10−1
4.833 10

−3
2.996 10

−5

Fig. 3. P-values obtained with the Luminance (L∗) as the

darkness measure.

Fig. 4. Coefficients of bands computed by the minimisation

of the objective function for every couple of tested treatments.

Fig. 5. Coefficient of the linear combination of spectral band

to obtain the XYZ decomposition depending on the wave-

length.

Fig. 6. Absorbency curves of melanin and haemoglobin de-

pending on the wavelength.

5. CONCLUSION

In this paper, we have proposed a method to automatically

evaluate the efficacy of treatments with multi-spectral images.

The optimization of an objective function allows to find an op-

timal spectral metric for each tested treatment. We show that

such a metric gives a better analysis of the treatments than

the standard method. In future work, the spatial information

will be studied. In fact, only the spectral information of the

average value of a lesion has been exploited. The spatial dis-

tribution can give information on the disease and it evolution.
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