
HAL Id: inria-00590700
https://hal.inria.fr/inria-00590700

Submitted on 4 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Utilizing Event-B for Domain Engineering: A Critical
Analysis

Atif Mashkoor, Jean-Pierre Jacquot

To cite this version:
Atif Mashkoor, Jean-Pierre Jacquot. Utilizing Event-B for Domain Engineering: A Critical Analysis.
Requirements Engineering, Springer Verlag, 2011. �inria-00590700�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49991109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00590700
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Utilizing Event-B for Domain Engineering: A

Critical Analysis

Received: date / Accepted: date

Abstract This paper presents our experience of modeling land transportation
domain in the formal framework of Event-B. Well-specified requirements are
crucial for good software design; they depend on the understanding of the do-
main. Thus, domain engineering becomes an essential activity. The possibility
to have a formal model of a domain, consistent with the use of formal meth-
ods for developing critical software working within it, is an important issue.
Safety-critical domains, like transportation, exhibit interesting features, such
as high levels of non-determinism, complex interactions, stringent safety prop-
erties, multifaceted timing attributes, etc. The formal representation of these
features is a challenging task. We explore the possibility of utilizing Event-B
as a domain engineering tool. We discuss the problems we faced during this
exercise and how we tackled them. Special attention is devoted to the issue
of the validation of the model, in particular with a technique based on the
animation of specifications. Event-B is mature enough to be an effective tool
to model domains except in some areas, temporal properties mainly, where
more work is still needed.

Keywords Domain engineering · Formal methods · Event-B · Animation ·
Brama

1 Introduction

Domain engineering is a methodology to document the facts of a particular
domain. A domain model, which is the outcome of the domain engineering
phase, defines the key concepts of a particular domain, such as major entities,
their inter-relationships, static and dynamic properties, functions, events, and
behaviors. According to [15], the main activities of the domain engineering
phase are: domain analysis, domain design, and domain simulation. While

2

the domain analysis identifies and captures the domain facts, the latter two
concern the translation of these facts into system requirements.

The principle of understanding the domain before specifying the require-
ments is crucial to software engineering. The idea of having enough details
about the environment in which the designed product is assumed to oper-
ate is already established in other engineering disciplines. In older engineering
disciplines such as aeronautics, electronics, or chemistry, engineers know the
domains of their respective fields. By contrast, in software engineering, sys-
tems are sometimes developed by people with an incomplete knowledge of their
particular domain. Unsurprisingly, the requirements of such systems may be
flawed although their correctness is a crucial issue.

System engineering is a methodology to transform users requirements into
a system which best satisfies them. There are numerous reasons to perform
domain engineering prior to system engineering. For instance, it identifies,
models, constructs, catalogs, and disseminates the system scope, it helps stake-
holders understand the system requirements better, it can be effectively used
to verify that the system meets essential properties, and so on. Furthermore,
domain engineering in a formal framework gives practitioners an effective grasp
on concepts such as verifiability and validity of requirements.

We present here our preliminary experience with the engineering of a com-
plex domain using Event-B. Event-B [3] is an evolution of the classical B
method [2] for system-level modeling and analysis of large reactive and dis-
tributed systems. We believe that the use of Event-B is equally suitable for
modeling environments and domains where such systems are assumed to work.

The domain under consideration for this work is land transportation. This
domain presents a lot of interesting features to push the use of Event-B to some
of its limits. For instance, we want to model vehicles moving independently, to
understand their interaction when there is no explicit communication between
vehicles, or to analyze situations where traffic jams occur. We had a simplified
version of the road traffic domain in mind when specifying and the model
reflects this. Since the model does not assume specific features of the vehicles
or of their control, it is most likely usable for other systems such as train
systems or baggage conveyors.

We developed our model in the spirit embedded in Event-B. We liberally
used refinements, both of machines and of contexts. We give a great deal of
attention to proofs. Consequently, we now have a specification of the transport
domain where all proof-obligations have been discharged. We also had special
interest in the validation of the model which was achieved by our innovative
use of animation of specifications.

During this modeling, we gathered many observations about the use of
Event-B on several levels: language, tools, methods, and so on. This paper
aims at sharing the salient points of our experience.

The presentation of the paper is organized as follows: the next section
presents the main motivation for this paper followed by a section on language,
techniques and tools we have used. Then we present the domain description
and the specification. Sections 5 and 6 describe the lessons which we learned

Utilizing Event-B for Domain Engineering: A Critical Analysis 3

while specifying and validating our domain model respectively. In the end, we
present the related work and finally we conclude our paper in section 8 with
some proposed future work.

2 Motivation

Most customers express their requirements either in natural language or in
terms of scenarios. Most of the requirements engineering methodologies are
therefore non-formal or semi formal. One of the problems with less formal
techniques is that they may be ambiguous, which makes the requirements
engineering phase error-prone.

With the help of well-defined syntax and semantics, formal specifications
can concisely express the software requirements. However, due to their com-
plex structures and mathematical contents, they are difficult to read and un-
derstand for customers. Actually, formal specifications may sometimes not be
able to intuitively reflect the concepts and behaviors of systems in the real
world. The conventional issue of validation may therefore impair the require-
ments engineering phase.

An earlier involvement of customers and use of formal techniques in soft-
ware development may be a solution to the aforementioned requirements en-
gineering problems and a domain model is the right artifact to start with. A
formal domain model precisely specifies the domain facts and with the help
of techniques such as animation, we can demonstrate the model to customers
for their timely feedback. Thus, we can build a “mental-bridge” between com-
plex formal specifications and their perception in the real-world. Our rigorous
validation technique, discussed later in the paper, is based on animation and
involves customers in the software development process right from the start;
consequently errors can be detected right on the spot.

3 Language, Technique and Tool

3.1 Event-B

Event-B is a formal language for modeling and reasoning about large reactive
and distributed systems. Event-B is based on set theory and standard first-
order predicate logic. Event-B is provided with tool support in the form of a
platform for writing and proving specifications called Rodin1.

An Event-B model is composed of two constructs: machine and context.
Machines, which define the dynamic behavior of the model, contain the system
variables, invariants, variants, and events. Variables are typed, their values
may be integers, sets, relations, functions or any other set-theoretical con-
struct. Invariants define the state space of the variables and their safety prop-
erties. Variants are related to the correction of refinements.

1 http://rodin-b-sharp.sourceforge.net

4

An event, which defines a transition from one state to another, can be
defined as a binary relation built on the state set. This relation is composed
of the guards and actions of the event. A guard is a predicate and all the
guards together construct the domain of the corresponding relation. An ac-
tion is an assignment statement to a state variable and is achieved by a gener-
alized substitution. Combined together, all the actions form the range of the
corresponding relation. The actions of a particular event are executed simulta-
neously and non-deterministically. Contexts, which define the static elements
of the model, contain carrier sets, constants, axioms, and theorems. The last
two are predicates expressed within the notation of first-order logic and set
theory.

There are several relationships between machines and contexts: refinement,
extension, and visibility. A machine can be a refinement of one, and only one,
machine. It then contains a more detailed or concrete description of the model.
A context can extend one, and only one, context. It contains the static pieces of
information of a model associated to a refinement. A machine can see several
contexts, that is, use their names and properties; a context can be seen by
several machines.

Event-B embeds the concept of refinement which is then the basic element
of specification development processes. A refinement consists in introducing
either new variables or new events. When appropriate, an abstraction invari-
ant, often called gluing-invariant, relates the new variables to the abstract
ones. Individual events can also be refined by strengthening their guards and
adding actions to the new variables. The same abstract event can be refined
into several concrete ones. New events can be introduced, too. Formally, they
are refinements of the SKIP event. Most often, new events express how an
abstract event is decomposed by a sequence of more concrete events. Such a
decomposition may lead to a divergent model: a model where the sequence
of concrete events never reaches its end and then prevents the abstract event
from firing. Variants may be explicitly introduced to guarantee the absence of
divergence. They are natural number expressions on the state of the model.
When declared as “convergent,” concrete events must strictly decrease the
variant; when declared as “anticipated,” they must not increase the variant.

The semantics of refinement are given by proof obligations. Proving a re-
finement correct amounts to proving that concrete events maintain the in-
variant of the abstract model, maintain the abstraction invariant, and, when
appropriate, decrease variants monotonically.

In practice, it is often useful to think in terms of reification of variables
and of decomposition of an event into several smaller ones. This point of view
helped us to organize the development steps and to get a better rationale for
each refinement.

Utilizing Event-B for Domain Engineering: A Critical Analysis 5

3.2 Animation

The main goal behind animation is to demonstrate the requirements narrated
in the specification document. This demonstration facilitates the understand-
ing and correction of complex specifications. It is an approach which lets the
specifier analyze the specification against possible sets of behavioral scenarios.
These behavioral scenarios, which in turn are sequences of events, constitute
the behavior of the specification. For instance, different scenarios can happen
when a vehicle crosses an intersection, depending on whether other vehicles
are already on or approaching the intersection.

To use the animation for validation purposes, all typical behavioral scenar-
ios of the specification should be analyzed. The behavioral scenarios, which
define the functional behaviors of the system through a sequential execution
of events, are animated by feeding some initial values to animators at startup.
These startup values may not be required by animators which provide these
values to specifications themselves. During the animation, we can observe
whether the scenario runs as expected, without violating invariants, guards
or post-conditions. The animation process is continued until all the scenarios
are exhausted or some error perturbs the intended course of events.

In an ideal world, all typical scenarios should be animated. However, de-
pending upon cost and timing constraints, conducting animation on selective
scenarios, which are considered critical for the validation of the specification,
may be an effective approach.

3.3 Brama

Brama [42] is an animator for Event-B specifications. It is an Eclipse based
plug-in for the Event-B platform Rodin. Brama can be used in two comple-
mentary modes. Either Brama can be manually controlled from within the
Rodin interface or it can be connected to a Flash2 graphical interface through
a communication server; it then acts as the engine which controls the graphical
effects.

figure 1 shows the standard Rodin interface of Brama. It provides us with a
simple, but effective, visualization of the behavior through two windows which
synthesize the current state of the animation. On the left hand side, we can see
all the events and which of them are enabled, that is, their guard is true. On
the right hand side, we can read the values of the state variables. An enabled
event is fired by simply clicking on it. As the tabs indicate in the lower part
of the window, it is possible to visualize the current state of the animation
on different refinements. The buttons allow for adapting the visualization and
editing values which act as parameters for the events.

A typical animation session begins by setting the values of the constants
in the different contexts seen (either directly or transitively) by the animated
machine. Then, the user must fire the INITIALISATION event, which is, at

2 Flash is a registered trademark of Adobe Systems Inc.

6

Fig. 1 The Brama animator for Rodin

that time, the only enabled event. After this, the user plays the animation by
firing the events until there are no more enabled events, or the system enters a
steady loop, or an error occurs (broken invariant or a substitution that Brama
does not know how to compute).

A graphical interface can be connected to Brama in the form of a Flash
application and events can be directly fired from there. A mechanism of ob-
servers is provided. Expressions and predicates can be individually monitored
and their value is communicated to the Flash program each time it changes.
Last, a scheduler mechanism is provided for the automatic firing of events.

4 Domain Description

4.1 Domain overview

Our work takes place within the framework of the projects TACOS3 and
CRISTAL4. These projects aim at studying new transportation systems using
autonomous and self-service vehicles known as CyCabs [5]. CyCabs are small
computer-controlled electric cars. They can move in three modes: driven by
a human, driven by their inboard computer, or within a platoon. In this last
mode, several CyCabs assemble as a train without material connections be-
tween the cars. Except for the leader which can be manually driven, platoon

3 http://tacos.loria.fr
4 http://www.projet-cristal.org

Utilizing Event-B for Domain Engineering: A Critical Analysis 7

members are controlled by systems which aim at keeping cars as close as pos-
sible to each other and at following as closely as possible the trajectory of the
leader. CyCabs can be used as the basis of a car-sharing system in urban areas.
There are several scenarios on the operation of such systems. All share two
important features. CyCabs will move in the public space, possibly on dedi-
cated lanes, and will have strong interactions with other road users. Driverless
moving modes and platooning are necessary for providing customers with new
services, such as transient buses, relocation of CyCabs between stations in
order to adjust vehicles and parking availability during the course of the day.
These features imply that systems and vehicles need to be certified.

The certification of a vehicle or a system is a process where it is verified
that the vehicle meets minimal requirements which allow it to operate within
a certain domain. These requirements are derived from the expression and
formalization of desirable properties that the whole transport system must
incorporate. The issue for software-controlled vehicles is to have an expression
of these properties amenable to the use of formal verification. The model of the
land transport domain is aimed at, providing us with the formal expression of
these properties.

The model has been defined with the Event-B specification language, fol-
lowing the refinement principles advocated by the B method. We used the
ability of Event-B to combine refinement and incremental enrichment of the
specification. First, a general definition of transportation networks and the act
of moving was given. Then, we introduced properties, one at a time.

Transportation is defined as the movement of people and goods from one
location, called a hub, to another with the use of vehicles. We suppose the
existence of a network composed of stations (hubs where vehicles can stop to
be loaded and unloaded), junctions (hubs where roads join), and paths which
connect stations and junctions together. Movements are constrained by the
topology of the network: a vehicle must follow a sequence of adjacent paths to
travel from its origin to its destination.

The general properties we want to express concerning transportation are
safety and travel time. The first is the idea that collision between vehicles must
be avoided. The second is related to the fact that travel time is at the root of
nearly all decisions made about transportation, either individually or socially.

4.2 Event-B specification

Our current domain model contains one abstract machine and seven refine-
ments. In parallel with the machines, two contexts are being refined. The first
is the context Net, which models the static properties of the network (its
topology, quantities associated to its elements, etc.). The second is the con-
text StartState which helps to set and prove the INITIALISATION event of
the machines.

It is easier to read and understand the specification when the refinements
are grouped into what we call “observation levels.” A leap from one level

8

to the next occurs when we decompose an abstract event into several ones,
corresponding to a finer grain analysis. For instance, the decomposition of the
most abstract travel event into a sequence of path traversing and hub crossing
events corresponds to a change of observation level. Figure 2 summarizes the
four levels:

1. The first level of observation contains the definition of a travel event and
is specified by machines Movement0, Movement1 and Movement2.

2. The second level of observation decomposes travel events into crossHub

and traversePath events. This is specified by machine Movement3.
3. The third level of observation decomposes crossHub events into enterHub,

leaveHub, and wait events. This is specified by machines Movement4 and
Movement5.

4. The fourth level of observation decomposes traversePath events into waitToEnterOnPath,
leaveHub, moveOnPath and waitToMoveOnPath events. This is specified in
Movement6 and Movement7.

Hub

Sn

Hub

Sn

Hub

Sn

Hub

Sn

Hub

Jn

TraversePath
C

rossHub

Travel

Leavehub

Wait

EnterHubWaitToEnterOnPath

LeaveHub

MoveOnPath

WaitToMoveOnPath

Level 1

Level 2

Level 3

Level 4

Fig. 2 Levels of observations

New observation levels were introduced when a property could not be ex-
pressed within the existing levels.

The first level of observation is about setting up the main domain vocab-
ulary and defining the basic properties of the domain. In the context Net and
in its refinements, we define the basic vocabulary of the transportation net-
work, such as nets, hubs, stations, junctions, connections, paths, routes, etc.
In machine Movement0, we abstractly define the travel event as relocation
of a vehicle from one place to another. The further refinements at this level
introduce a finer topology of the network (junctions, stations, paths, routes)
and express the property that travel only occurs between connected stations.

The second level of observation is about the property that travel is con-
strained by the topology of the network. The abstract event is then decom-
posed into three events (startTravel, crossHub and traversePath) which
must occur in a unique sequence to realize a traveling event.

The third level of observation is motivated by the introduction of the prop-
erty of non collision at hubs. Such collisions are abstractly defined as the pres-

Utilizing Event-B for Domain Engineering: A Critical Analysis 9

ence of too many vehicles in a hub at the same time. This lead us to decompose
the crossHub event as a sequence of wait, enterHub and leaveHub events.
The choice between wait and enterHub is controlled by the hubLoad (the
number of vehicles present on the hub) and hubCapacity (the maximal num-
ber of vehicles that can be safely present on the hub). The second refinement
at this level corresponds to the introduction of the question of travel time,
which does not require a further observation leap.

The fourth level of observation is associated with the introduction of the
property of non collision on paths (rear-end type of collision). The event
traversePath is decomposed into a sequence of waitToEnterOnPath, leaveHub,
moveOnPath and waitToMoveOnPath events. This models the abstract kine-
matics of the vehicles.

Following are two interesting properties of the domain which we model:

Collision Avoidance: In the real world, collisions are situations that must be
avoided. We chose to model them as a breach of an invariant. A well-behaved
domain is then one where no event breaks the invariant. Since events’ seman-
tics is based on weakest preconditions, the events’ guards are then a good
description of the conditions that a domain must meet to be well-behaved.

In real life, collisions can be classified into three types: front, rear and side.
Front collisions are implicitly prevented by the topology of the network: paths
are oriented and model one-way lanes. Side collisions occur at intersections,
rear collisions on paths. This prompted us to use two disjoint invariants. The
events introduced at the second level made this separation easy to implement.

While a real collision happens when two vehicles are in the same place at
the same time, we chose to model it more abstractly on the hubs. Our definition
relies on the idea that a hub can only carry a fixed number of vehicles at a
time. So, the invariant to maintain is easily written as:

∀ h . h ∈ Hubs ⇒ hubLoad(h) ≤ hubCapacity(h)

where hubLoad is the actual number of vehicles in a hub and hubCapacity

is the maximum number of vehicles allowed in the hub. hubLoad is a func-
tion modified by the events, hubCapacity is a constant property for each hub.
Interestingly, this definition does not require the introduction of time. It ab-
stracts from the kinematics of the vehicles in the hub.

The specification of the absence of rear collision on paths is directly inspired
from the natural definition. The corresponding invariant is:

∀ v1, v2 . v1 ∈ Vehicles ∧ v2 ∈ Vehicles ∧ v1 6= v2 ∧
v1 ∈ dom(vehiclePosition) ∧ v2 ∈ dom(vehiclePosition) ∧
vehiclePath (v1) = vehiclePath(v2) ⇒ vehiclePosition (v1) 6= vehiclePosition (v2)

where vehiclePath signifies the current path of the vehicle and vehiclePosition
is a refinement of the location of a vehicle on the path. This invariant assumes
two facts: vehiclePosition is a partial function whose domain is the set of
vehicles actually engaged on a path, and different paths never share locations.
This last situation would be modeled as a junction.

In a further refinement, positions on paths are modeled as an interval
between integers, starting at 0 and ending at pathLen. This allowed us to

10

introduce the natural concept of safety distance (criticalDistance) that is
used in the guards of the moving events. An instance of such a guard is:

∀ v . v ∈ vehiclesOnPath ∧ vehiclePosition (v) > vehiclePosition (vehicle) ⇒
vehiclePosition (v) − vehiclePosition (vehicle) > criticalDistance

We use integers for positions instead of real numbers because we want our
model to be fully provable within current event-B tools. Presently, the provers
available within Rodin are restricted to integers. The issue of discretization is
a complex one which we have addressed in another work [46].

Time: Time is a very important paramater in the domain of transportation
and our model needs to incorporate it. This parameter is known to be tricky
to define and to use. In fact, our domain suggests the existence of several
flavors of time. One flavor is travel time, where a clock is only observed at
the beginning and at the end of a travel. Another flavor is continuous time
which is used in modeling the kinematics where it controls the movement of
the vehicles.

Since Event-B lacks an explicit concept of time, we used the timing patterns
for Event-B proposed by Cansell et al [13]. In this technique we use natural
numbers to model time and a special ticTac event to make a global clock
(time) advance.

The modeling of time was motivated by the introduction of the wait event
on the third level. We proceeded in two steps. The first was the introduction
of the notion of a clock and the notion of travel time as a difference between
two readings of the clock. Although technically realized as a refinement of
Movement4, this introduction is logically situated at the first observation level.
The second step was the actual computation of the advance of the clock.

To do this, we modeled the technique used in simulating queue systems. We
introduced a timed event queue (activationTime) which contains the time at
which a moving vehicle must perform an event. The following invariants are
introduced:

activationTime ∈ Vehicles 7→ NAT
activationTime 6= ∅ ⇒ time ≤ min(ran(activationTime))

A new guard is then introduced in the events concerned by time:

vehicle ∈ dom(activationTime) ∧ time = activationTime(vehicle)

The action part of the event modifies the event queue accordingly:

activationTime := activationTime ⊳− {vehicle 7→ time + timeInc}

where timeInc is an increment dependant of the event considered. It can be
a constant, an arbitrary value, or a computation on the event queue.

The timing pattern, as shown by figure 3, is specified by the event ticTac.
A vehicle is introduced into the event queue by the startTravel event. It

is removed from the queue when it reaches its destination.
Elements of an earlier version of this specification are discussed in [33]. A

more recent verified version of our specification is available at the following
web address: http://dedale.loria.fr/?q=re-spec.

Utilizing Event-B for Domain Engineering: A Critical Analysis 11

EVENT ticTac REFINES ticTac =̂

ANY

tic
WHERE

activationTime 6= ∅ ∧ tic = min(ran(activationTime)) ∧ tic > time
THEN

time := tic
END

Fig. 3 Event ticTac

5 Lessons Learned: Specification

5.1 Assumptions vs. requirements

One of the main reasons to use mathematical formalisms and tools is to explic-
itly define the elements of interest. At the time when domain modeling is of
importance, the focus is on “requirements” and “assumptions.” Traditionally,
the former denotes what a particular system is expected to do, and the latter
what the system can expect from its operating environment [47].

In B, which was designed as a language to specify and develop systems,
functional requirements are expressed by invariants. In Event-B, where we
are modeling an environment which controls the system, we cannot locate
the properties of interest as easily. Part of the problem is that it is possible
in Event-B models to mix system and environment properties. While always
expressed as predicates on the state, properties can be found in three places: in
the invariants of the machines, in the axioms of the contexts, or in the guards
of the events. It may be then interesting to relate the type of assumptions with
their location in the text of the specification.

A domain model is composed of different assertions about the particular
domain. So these assertions are used as assumptions by systems operating
within the domain. A system designer uses these written assumptions, but
also unwritten, implicit, assumptions. Of course, the goal of a domain model
is to make explicit as many assumptions as possible which are essential for the
correct operation of a system. In our Event-B models, these could be classified
into structural facts, behavioral laws, and enforceable properties.

Contexts in Event-B are used to describe the constants in a model. So,
they contain all the structural facts. For instance, it is in contexts that a trans-
portation network is described as a set of nodes (hubs) and vertices (paths),
that hubs are partitioned into stations and junctions or that vehicles are con-
strained to bounded speeds, accelerations, and decelerations. Axioms in the
contexts allow us to define the properties of the structure. For instance, routes
are defined as sequences of contiguous paths, with each hub visited only once,
the first path starting from a station, and the last path leading to a station.

Behavioral laws are described by events. More precisely, as assumptions,
they are located in the guards of the events. For instance, the law which states
that travel occurs only between stations, or the one which states a travel

12

is associated to a route are both found in the guards of the travel event,
respectively in Movement1 and Movement2 refinements.

We refer to enforceable properties as those properties which are necessary
to have a well-behaved model. Collision avoidance is high among enforceable
properties in the transport domain, for instance. Such properties fall in be-
tween requirements and assumptions: a system working into the domain can
assume the property, but must guarantee to keep it unbroken. Quite obviously,
such properties are expressed by invariants.

Whether a particular domain assumption should be expressed as a behav-
ioral law or as an enforceable property is a difficult question which has no
clear-cut answer. If we consider the issue of collisions, we used an invariant,
but we could have introduced a special collide event. Formally, there is a
strong relationship between the two descriptions: the guard of the hypothet-
ical collide is the negation of the invariant. The choice between the two
expressions depends on the kind of system one has to develop. For instance,
developers of a road traffic monitoring system will likely prefer to have collide
events since their system will have to deal with such situations. Developers of
a traffic light control system will likely prefer the invariant expression as it is
one of the goals of their system.

Domain models are reference documents. So, they will often be read by
people who need to check some intuitive assumption or to collect assump-
tions relevant to a certain part of the system. It is more difficult to extract
assumptions from a model than to introduce them. This is connected to the
traditional issue of readability of formal texts. Even assuming readers have
an equal command on the formalism as writers, the former need to infer the
semantics that the latter has only to write down.

Structural facts and enforceable properties are expressed by axioms and
invariants respectively, so they are well localized, as a unique syntactic ex-
pression, in the text of the specification. The only confusing problem comes
from the typing formulae which are part of axioms and theorems: most are
purely technical but some convey information that can be seen as assumptions.
For instance, the structural property that a connection belongs to only one
transport network can be written either as

typing obsNetConnections ∈ Connections → Nets
property ∀ c . c ∈ Connections ⇒ card(obsNetConnections[{c}] = 1

or as

typing obsNetConnections ∈ Connections Nets // total injection

The assumption is less conspicuous in the second expression.

The extraction of a behavioral law is the real difficulty. The problem comes
from the scattering of the expression of the law into the guards of several
events. For instance, the assumption that a vehicle moves on a path only
when it has some room to do so is scattered into 4 events.

One way to ease the extraction is to restrict the model development to the
introduction of only one behavioral law per refinement and to document the

Utilizing Event-B for Domain Engineering: A Critical Analysis 13

rationale for the refinement. Since Event-B supports small refinement steps,
there is not much cost in refining slowly.

The very positive side of using Event-B for modeling assumption lies in the
fact that consistency of assumptions can be assessed. When an assumption
is expressed by an invariant, discharging the standard proof-obligations of
Event-B ensures that the assumption is consistent with the model. Failure
to discharge the proof-obligation is not a formal proof of inconsistency, but
can conservatively be interpreted as such. Assumptions expressed as axioms
are in the opposite situation: we can show inconsistency but cannot prove
consistency. In that case, the proof-obligations are restricted to axiom’s well-
formedness and well-typing. This point is further elaborated in the section 5.7
as an observation on the tool.

5.2 Refinements vs. observation levels

Refinements and observation levels are distinct concepts. Refinements are the
cornerstones of the B method. They serve two purposes: methodologically, they
allow specifiers to concretize the specification, and technically, they induce
proof obligations which guarantee the correctness of the development. They
give the development a flat structure which may impair its readability.

Observation levels are a way to provide a specification with a super-structure
which eases its understanding. They reflect either the “natural” structure of
the objects or the structure of the behavior. For instance, the second obser-
vation level in the model reflects the static topology of a network, while the
third level is more about the protocol to cross a hub.

The major advantage of thinking in terms of observation levels becomes
apparent when we introduce a new property. This structure provides us with
a strong guideline. We experienced it with the introduction of time. The vo-
cabulary and abstract constraints (time is ever increasing, for instance) were
defined at the first level since this concerned only travels. Next we jumped
directly to the third level to define the computation because durations could
be associated to events at this level.

5.3 Parallel refinements

While the view of a development as a linear sequence of refinements makes
sense in B where a system is developed, it is far less pertinent in Event-B where
an environment is described. Properties are often independent, at least as far
as their definition is concerned. We experienced this with time and collision
avoidance.

The problem with the linear sequence is that when we introduce a new
property, we need to do this into a complex piece of text. For instance, if we
wanted to introduce a notion of energy consumption, we would like to start
the new feature analysis as written in figure 4. From this, we could refine the

14

notion along the observation levels and merge the resulting model with the
current specification.

INVARIANT

meter ∈ Vehicles → int // energy meter
energyConsumed∈ Vehicles → int
EVENT travel REFINES travel =̂
ANY

vehicle , newLocation, meterReadingAtStart
WHERE

vehicle∈ Vehicles ∧ newLocation∈ GlobalLocations ∧
newLocation 6= location(vehicle) ∧ meterReadingAtStart ≤ meter(vehicle)
THEN

location (vehicle) := newLocation
energyConsumed := meter(vehicle) − meterReadingAtStart
END

Fig. 4 Introduction of Energy consumption: what we want

Instead, Event-B’s flat refinement structure would force us to write the
travel event as illustrated by figure 5 and to introduce in all other events a
dummy action of the form:
meter : | meter’(n) ≥ meter(n)

This action simply states that meter is susceptible to be modified by future
refinements. Even if the addition of such an action does not pose any problem,
it tends to clutter the text and to cause distraction.

INVARIANT

meter ∈ Vehicles → int // energy meter
energyConsumed∈ Vehicles → int
EVENT travel REFINES travel =̂
ANY

vehicle , newLocation, r , origin , destination , meterReadingAtStart
WHERE

r ∈ routes ∧
// ...
// 14 lines of guards
// ...
meterReadingAtStart ≤ meter(vehicle)
THEN

location (vehicle):= newLocation
travelTime(vehicle) := time − startTime(vehicle)
activationTime := {vehicle} ⊳− activationTime
speed(vehicle) := 0
acceleration (vehicle) := 0
energyConsumed := meter(vehicle) − meterReadingAtStart
END

Fig. 5 Introduction of Energy consumption: what we have

In domain engineering the commonality/variability analysis and decompo-
sition/recomposition of models have always been considered as integral fea-

Utilizing Event-B for Domain Engineering: A Critical Analysis 15

tures. The example shows why such features would be welcomed in developing
a domain model. Currently Rodin lacks tools to compose models. However, for
its recent versions, several plugins have been proposed for composing Event-B
models together: Feature Composition Plugin [19], Parallel Composition Plu-
gin [40] and Shared Event Composition Plugin [43]. They are still prototypes
and at early stages of development. We need to investigate them in more detail
before we can use recomposition in our models.

5.4 Protocols/ordering constraints in events

Once events are decomposed into smaller events, it is crucial that these events
be fired in a strict order so that a consistent behavior is modeled. For instance,
the decomposition of the travel event is thought of as:

travel ≡ (startTravel; (crossHub; traversePath)+)

Unfortunately, Event-B does not provide us with traits to express this protocol.
Instead, we must make explicit definition of the protocol with the help of
control variables and guards in the events. This is complex and a source of
errors.

This situation happens each time we introduce a new observation level. So,
going from second to third level, we decompose as follows:

crossHub ≡ (wait∗; enterHub; leaveHub)

To go from third to fourth level, we decompose as follows:

traversePath ≡ (waitToEnterOnPath∗; leaveHub;

(waitToMoveOnPath| moveOnPath)∗)

We use two basic techniques for controlling the protocols. The first is the
introduction of control sets. We used these for the decomposition of travel.
The control variable is the set of all hubs and paths the vehicle will have to
pass through. The next hub to cross or the next path to traverse is easily
defined as the member of the control set which is related to vehicle’s position.
This technique has the advantage that a variant is quite easy to define, but
has the drawback of introducing complex computation of the sets. The second
technique is the introduction of a notion of state markers, either through an
explicit variable or a property, such as belonging to the domain of a relation.
This can be seen as a form of coding a state machine. The advantage of using
state markers is their easy definition, but their drawback is the difficulty to
set variants and generally to connect state markers to invariants.

Although without formal substance, the previous regular-expressions like
formulae were of great help to set up the explicit control. It would be a welcome
extension of Event-B or of its supporting tools if that kind of expression could
be stated and be checked against the behavior of the events. Diagrammatic
notations, such as the structure diagrams of Jackson System Development
(JSD) [23] or formalism like Communicating Sequential Processes (CSP) [22]
could be used.

16

5.5 Time modeling

Unsurprisingly, the modeling of time raised many questions. We used the tim-
ing patterns for Event-B proposed by Cansell et al [13] in our models. They
assume a discrete time and in our model, travel time is of that kind. The
computation of the clock with the timed event queue is cumbersome because
it is explicit, but does not lead to specification difficulties. Indeed, a generic
pattern emerged to write the refinement:

– identify an event concerned by time;
– introduce the standard guard (same for all events);
– introduce a substitution of the timed event queue; the actual value to

substitute is of course dependent on the event.

Kinematics introduce a flavor of continuous time. This raises two questions:
(1) is it legitimate to try to model this with the purely discrete means Event-B
provides us? and (2) how will it merge with the previous definition of time?
The answer to the first question is “Yes” if the model is to be the basis for
a software implementation. By essence, computers are discrete machines. A
fundamental parameter of any control software for running machines is the
frequency of their control loop. So, the actual time will be discrete.

Technically, the refinement of traversePath to introduce the kinematics
behavior did not pose many problems. The basic idea was to use the pattern
presented above with a kind of “fixed tick” in the third step. The kinematic
functions are modeled as axioms in the context specific to vehicles.

5.6 Safety and liveness properties

Safety: A safety property asserts that nothing bad happens [26]. Safety prop-
erties can be specified either as something that should never happen, or as
some property that should always hold. Consider the safety property of colli-
sion avoidance. It is specified by the invariant of the model. All the invariant
preservation proofs have been discharged. We are then assured that no event
precipitates a collision.

It should be noted, however, that the previous condition is necessary, but
not sufficient to ensure safety in general. Although this does not yet happen
in the current state of the specification, it will when kinematics will be fully
specified. A moving vehicle should never be allowed to make a move which
leads to a collision (i.e. no event should break the invariant), but it must also
always be able to react (i.e. there should always be an enabled event). This
last condition is similar to the liveness property discussed later.

Deadlock: A deadlock, in computation, is a state when some processes in a
system are halted waiting for something to happen which can only be trig-
gered by one of the halted processes. In transportation a similar phenomenon
exists and is referred to as gridlock, which describes an inability to move on

Utilizing Event-B for Domain Engineering: A Critical Analysis 17

a transport network (i.e. traffic jams). Both deadlock and gridlock are some-
thing that implementers must avoid. It is then important to characterize them
at the level of the specification.

While deadlocks can be thought of as a situation in Event-B, where no
event is enabled, i.e., guards of all events are false, deadlock freeness would
mean that some vehicles can always move i.e. at least one event is enabled all
the time, such as stated with the following invariant:

G(E1) ∨G(E2) ∨ ... ∨G(En)

where G(Ei) is the guard of the event Ei.
In the transportation domain, we can always experience the situation of

traffic jams which may prevent all vehicles from moving. Since gridlock is a fact
of life, we choose to allow them in the specification. At a theoretical level, with
the introduction of wait, we can say that a vehicle can wait in such situations,
and at least this event can always be fired, but this is not an elegant solution.
At the specification level, Rodin does not allow any deadlock freeness proof
and it either needs to be done manually or with the help of a model checker,
such as ProB [29].

As an impact of the decision to allow gridlock in the model, later in the
specification, the introduction of time forced the gridlock situations to “pop
up” during some proof obligations. A solution was to introduce new events
to model these gridlock situations. We have identified three such situations at
present:

1. when a vehicle needs to enter a station which is already full of parked cars.
No vehicle will leave the hub and the moving vehicle is then “locked out”;

2. when a vehicle needs to enter a path which is full of other (stationary)
vehicles. This vehicle is then “locked in”;

3. the third case is similar to the second case except the vehicle has already
begun traversing the path. It is then “locked on path”.

Modeling gridlock with special events has at least one advantage. The con-
ditions of the blockage are clearly identified. Implementers who want a partic-
ular system to be jam free can derive their invariants from these conditions.

Have we identified all the gridlock situations? This question can be an-
swered either way. We can answer “Yes” if we consider only the formal model.
The locked events are direct consequences of the time model that is used in the
domain specification. They are necessary to discharge the proofs related to the
property that time is ever increasing. We can answer “No” if we consider the
reality of which the specification is an abstract model. There could be other
gridlock situations, associated with other notions of “progress” of the state of
the model which are not yet described. The point is that the proof obligations
of Event-B catch the gridlocks implied by the model.

Liveness: The liveness property asserts that something good will happen “even-
tually” [26]. We have noted above that liveness can be a necessary condition

18

to have systems which guarantee a given safety property. This notion can
also be used for expressing non critical, but desirable properties. In our case,
a desirable property is that a vehicle eventually reaches its destination and
terminates its travel. This property cannot be formally expressed within the
Event-B framework because liveness properties involve the temporal concept
“eventually;” until now there is no standard way to define temporal constraints
in Event-B specifications. Even so we know that, due to traffic jams, the above
liveness property is certainly not guaranteed, it would be very useful to be able
to express it formally.

However, as proposed by [45], in order to prove the liveness of our model,
we can prove that our system is non-divergent and enabledness preserving.
By non-divergent we mean that newly introduced events do not take control
forever and by enabledness preserving we mean that if an event is enabled at
abstract level it is enabled at concrete level as well.

Non divergence is usually proven with the help of variants. We introduced
the following variant at the second level of observation:

card(hubsToCross)+card(connectionsToTraverse)

where hubstoCross (resp. connectionsToTraverse) is the set of hubs (resp.
paths) that the traveling vehicles have still to cross (resp. traverse) to reach
their destinations. One of the sets loses one of its elements each time a vehicle
progresses on its travel. The proof that the newly introduced events crossHub
and traversePath decrease the variant is a guarantee that they do not prevent
the travel event to fire.

This notion of variant is useful to prove non divergence until the event
wait is introduced at the third observation level. Since a vehicle can wait for
indefinite periods of time for its turn to enter a hub, our variant cannot assure
us that this event cannot take control forever. This is a fact of life: the land
transportation domain is divergent.

We can prove enabledness preservation of the model by the standard con-
sistency and refinement checking proofs which need to prove that the guards
of one or more events in the refinement are enabled under the assumption that
the guards of one or more events in the abstraction are also enabled.

This discussion on safety and liveness properties indicates that they are
complex and tangled issues. It also shows that as far as domain models are
concerned, there should not be only one rule like, for example, no model shall
deadlock, or models shall always be live. The point is that Event-B does not
provide us with the mean to express cleanly those kind of properties. We
consider this as an important shortcoming.

5.7 Language and tools

Our unconventional use of Event-B and, consequently, of Rodin raised a few
issues with the modeling language and the tool support. While the observations
discussed below sound negative, we must emphasize the overall quality of the

Utilizing Event-B for Domain Engineering: A Critical Analysis 19

language and the tools: the major difficulties we encountered were caused by
the complexity of the domain and by our own errors.

Considering the tool support, we have two observations:

1. Rodin failed too often to automatically discharge obvious proofs, even those
so obvious that it took a simple click by the user to direct their comple-
tion. This becomes tedious and very distracting. Particularly annoying are
the numerous sub-goals akin to type-checking that are generated by the
deduction rules and discharged with a click. They tend to disrupt the con-
centration required by tricky proofs; we expect tools to help rather than
distract on this aspect.

2. Rodin does not warn when axioms are inconsistent. The detection of con-
tradicting axioms is hard. Now, we rely only on heuristic rules. We suspect
a contradiction when we notice that proofs become mysteriously easy to
discharge. Then, we introduce an axiom or a theorem such as TRUE =
FALSE. Success in the proof signs a contradiction, failure provides us only
with reasonable assurance. We know that proving the non-contradiction
of axioms is non-decidable. However, the indication by Rodin that it has
detected an inconsistency would be welcomed.

Our work prompted three remarks on the language:

1. Refinement is the only structuring mechanism in Event-B. As discussed
above (section 5.2), grouping machines in other ways would be appreciated.
This would not necessarily require a modification of the language, but could
be achieved by the tools.

2. The internal structure of Event-B machines and contexts is too flat. Again,
a possibility to structure axioms or events into categories would improve
greatly the readability. For instance, we classified our axioms into three
categories (technical, typing, and property) and found this practice very
helpful to maintain clean and readable specification.

3. The feature of Event-B which we missed a lot was the notion of sequences.
Currently, we specify them by using the standard definition of sequences.
We consider this only as a patch: it works, but it brings clutter to parts of
specifications that are already sufficiently complex.

6 Lessons Learned: Animation

6.1 Animation of specifications

An important part of the transport domain model amounts to specifying com-
plex behaviors. Some are explicitly defined (e.g., the succession of crossHub
and traversePath during a travel), some implicitly (e.g., the correct interac-
tion of vehicles at intersections), and other unknowingly (e.g., only one vehicle
at a time was allowed to travel in an early, erroneous in that case, specifica-
tion). As a modeler, we are confronted with three questions: does our model

20

specify an actual behavior observed in the domain? Does our model specify the
behavior we actually want to describe? How do we specify a certain behavior?

These questions correspond to well-known software engineering concerns
related to three different development activities. The first question is about
modeling “good” representations of the actual world. The second question con-
cerns the validation of the formal expression against some already abstracted
model. The third question is of a technical nature, related to the expressive
power of the language.

We have discovered that animation is a very valuable technique to help
in answering these three questions. While the observation of the animation
(which does not need to have fancy graphics) gives a lot of information about
the model and helps uncover errors, we also discovered that some activities
around animation are also crucial. Activities, such as setting up values for the
animation (e.g., fixing a network’s actual topology) and inventing scenarios to
act or observe, provided us with a lot of insight about the specification text,
about the model, and even about the traits of the reality we wanted to model.
Of course, animation alone is not sufficient to decide if a model is “good”
but, by allowing concrete observations of the model behavior, it facilitates the
comparison between model and reality.

It should be noted that our choice of tool, Brama, is contingent. At that
time, it was the only one able to animate Event-B specifications. More recent
tools such as AnimB5 and ProB [29], are now available and fully compatible
with Event-B. While our proposed heuristics (discussed in the next subsection)
should surely be adapted to these specific tools, we suspect that the general
philosophy of animation we have adopted is still valid.

6.2 Animation for specification validation

Soon we discovered that not all specifications could be animated for validation
purposes. Not only do tools have their limitations, such as non supported
features of the language for instance, but specification techniques, such as non
constructive definitions, often prevent efficient computation of the values. To
be useful, an animation needs to be reasonably fast.

We then designed and described, as rigorously as possible, a set of heuris-
tics which transform a non-animatable specification into one that the anima-
tor Brama could animate. One can wonder why we do begin by producing
an animatable specification. The reason is that our transformation heuristics
“downgrade” the initial specification on two important counts: the specifica-
tion becomes far less readable and, more importantly, may become unprovable.
The transformation process tends to alter and suppress elements that are es-
sential for proofs.

Naturally, in the presence of some undischarged proof obligations, the rela-
tion between the behaviors seen during the animation and the ones described

5 http://www.animb.org

Utilizing Event-B for Domain Engineering: A Critical Analysis 21

in the initial specification becomes a crucial issue. To solve this, we propose a
stepwise framework to include the animation in a rigorous validation process.
Our proposed validation methodology, for each observation level, is summed
up by figure 6 and as follows:

1. start from a fully verified specification. This step is essential.
2. for each non animatable trait:
(a) pick an appropriate heuristic
(b) check that the applicability conditions hold
(c) prove that the argument used in the justification part of the heuristic

is valid
3. if an anomalous behavior is encountered, modify the initial specification,

prove it to be correct, and restart from step one.

Fig. 6 The stepwise validation framework

In our proposed framework, a verified specification must be the starting
point of the validation process. If there are verification errors in the specifi-
cation they must be corrected before proceeding towards the transformation
step. Our belief is that there is no point in engaging ourselves in a costly series
of validations on a piece of code which is non-verifiable. Furthermore, failures
to discharge proof-obligations are rather frequent and reveal problems in the
specification. Although most problems are minor and easily corrected by small
modification in some expressions, the Event-B text is generally not exactly the
same at the end of the verification than at its beginning. The model then is
different. Last, the proof of correctness for the application of some heuristics
depends on the fact that they are applied to a verified specification.

22

As soon as all proof-obligations have been discharged, we proceed further
towards the animation step. During this procedure, whenever we discover any
element in the specification which is non-animatable, we inspect the prob-
lem and try to match the case with the list of our proposed transformational
heuristics. This inspection and matching practice includes checking if the ap-
plication condition defined by the heuristic holds, and also that the use of
this heuristic can be justified. This justification can either be provided in the
form of a formal proof within Event-B (discharge of a poof-obligation) or by a
rigorous argument which generally uses the fact that the process starts from
a verified model.

The fact that transformations have been applied means now that the spec-
ification is animatable. Animation demonstrates the behavior of the specifica-
tion. If the demonstrated behavior is as per expectations, then we have the
verified and the validated specification in our hands. However, if this is not
the case and a closer look at the specification has revealed deviations from
the intended behavior, then we need to go back to the initial specification and
would have to correct the anomalous behavior. This triggers the loop, i.e.,
re-proving, re-application of the heuristics, and re-animation until the specifi-
cation conforms to actual expectations.

Of course, for this process to be valid, we need to ensure that the initial
and transformed specifications are equivalent in some way. Since the heuristics
are not “semantic preserving” in the strong sense, we have to define an ad-
hoc semantics and preservation properties. Intuitively, we need to guarantee
that: “anything that is observed during the animation of the transformed text
would have been observed on the animation of the initial text.” Another way to
state it is that the behavior of the transformed specification is a subset of the
behavior of the initial specification. This leads to our giving a formal definition
of behaviors as sequences of states and events, and of the relationship between
behaviors of two specifications. A formal notion of “shared behavior” provides
us with the basis for the preservation property. Those definitions are easily
related to the actual observations on animations: enabled events (enabledness
property), and state values (reachability property and closure property).

The current heuristics have been analyzed. Some heuristics can be proven
to preserve behavior in all situations, either because they are strongly semantic
preserving, or because, like invariant removal, they equate the shared behaviors
with the initial behaviors. Others lead to the generation of proof-obligations
which, when discharged, ensure the preservation property.

We do not discuss transformational heuristics here. For details, see this
research report [31] which discusses the symptoms, transformations, cautions,
justifications, and proofs of all these transformational heuristics. Two comple-
mentary case studies, employing our proposed approach of stepwise validation,
can be found in [32] and [30].

Utilizing Event-B for Domain Engineering: A Critical Analysis 23

6.3 Animation for features exploration

Primarily, we have used animation as a quality assurance activity, i.e., to
validate and gain confidence in our specifications. It is closely related to pro-
totyping. The benefit of this approach is that we can convert the specification
into a prototype without translating it into a program. It then acts as a quick
and low cost validation technique.

The use of animation after the proofs of both the model and application
of heuristics is essential to get a trustworthy validation. However, we have
discovered that animation is also a useful tool when used before the proofs. In
such cases, animation is used to explore new features.

The introduction of a feature raises three issues: (1) the definition of the
feature, (2) its formal specification, and (3) its consistency with the current
model. Regarding the first issue, animation provides us with a good intuitive
understanding of how the model “works.” This helps to realize how the feature
can be introduced and how it will fit into the model. Expressing a feature into
guards, actions, axioms, or invariants is a difficult exercise, even for simple be-
haviors. Small variations in the formal text may lead to “incorrect” behaviors.
Using animation to check that the formal text specifies the intended feature
before embarking on the verification is cost-effective. Regarding the third is-
sue, animators like Brama, which verify continuously that invariants hold, are
very effective in catching incomplete or inconsistent specification of the fea-
ture. Like a good debugger which helps programmers to fix a program rapidly
before going to extensive testing, animation helped us to “fix” the specification
before going through the formal proofs.

7 Related work

7.1 Event-B vs. RAISE

This research is closely related with Dines Bjørner’s work [8–10]. In his work, he
uses RAISE Specification Language (RSL) [1] for the description of domains,
and concentrates on the formalization of as many domain facts as possible.
Our objective is slightly different. Although we aim towards the enrichment of
the transportation domain model, our concerns are also to check the capability
of Event-B as a domain engineering tool and to point out and address (where
possible) the issues with which we are confronted during this exercise. In the
following paragraphs, we present a brief comparison of Event-B with Rigorous
Approach to Industrial Software Engineering (RAISE) [21]:

Just as original B evolved into Event-B, RAISE is considered as an ex-
tended version of Vienna Development Method (VDM) [24]. It is based on
enhanced features of several formal techniques, such as model oriented fea-
tures of VDM, algebraic features of OBJ [18], concurrency features of CSP,
modularity features of Meta Language (ML) [39], real time, etc.

24

The algebra-theoretic nature of most of its constructs is the basis of its
structuring mechanisms. Its states are specified via types and predicates, like
other formal methods, but a change in state can be specified in several ways,
such as imperative, axiomatic, algebraic notations, etc. Event-B, on the other
hand, is based on events which are controlled via guards. State transitions
are defined via generalized substitutions. These guards and substitutions are
similar to the concept of pre and post conditions.

Event-B enjoys a much more liberal refinement mechanism compared to
RAISE. In RAISE, a refinement must have a signature that includes the signa-
ture of the abstract model. It is a tight 1-1 relationship. Event-B, on the other
hand, relaxes this strict 1-1 relationship such that its syntax allows abstrac-
tion to be refined in more than one way. An abstract event can be refined by
several events within the same refining machine. See section 3.1 for a detailed
discussion on the refinement mechanism of Event-B.

RAISE achieves the notion of correctness of refinement through a stan-
dard principle of refinement consistency, i.e., at any time if an abstract op-
eration is available, any refinement of it must also be available (enabledness-
preservation). Event-B adds the idea of non-divergence to it. So, in Event-B a
refinement is correct if it is enabledness-preserving as well as non-divergent.

In RAISE, it is theoretically possible to express and prove the liveness
of each machine separately, but authors like [16,20] have reported different
experiences. Erasmy et al [16] failed to prove the liveness of the system because
the justification editor lacked rules for the parallel combinator, i.e., (exp1 ‖
exp2) and its interaction with other combinators like sequential combinator,
i.e., (exp1 ; exp2), rules for hiding schemes (schemes that hide some of the
declarations inside), etc. According to [20], apart from applicative style, the
concurrent style in RSL cannot be used to specify pure progress properties,
e.g., fairness, which is one of the liveness properties. The poor ability of Event-
B to describe temporal properties is discussed in detail in section 5.6.

The tools supporting both RSL language and the RAISE method have been
commercially available since 1991. These tools revolve around the activities of
writing specifications, type checking, performing justifications, translations of
specifications into imperative languages like C++, Ada, etc., and documenta-
tion. Plugins for translations into Standard ML (SML) [36] and Prototype Ver-
ification System (PVS) [37], and generation of RSL from UML class diagrams
are also available. Although, RAISE is sometimes criticized for its incomplete
set of rules for the justification editor, such as absence of rules for the parallel
combinator, interaction of channel hiding and the parallel combinator, etc.,
yet overall its toolset is easy to use, uniform and relatively fast.

Extensive tool support for Event-B is one of its powerful aspects. Event-B
is supported by the platform Rodin which helps specification writing and prov-
ing. The Atelier-B [14] provers provide additional automated proof facilities
to the existing Rodin provers. Animators like ProB, AnimB and Brama make
possible the execution of specifications for their validation. The UML-B plu-
gin [44] allows users to translate UML models into Event-B specifications for
verification and validation. The B2Latex plugin allows the printing of Event-B

Utilizing Event-B for Domain Engineering: A Critical Analysis 25

specifications into latex for documentation purposes. We can also run B mod-
els into the Rodin platform with the help of the B2Rodin plugin. There are
also plugins for model decomposition, recomposition and code generation.

7.2 Event-B and goal models

A formal domain model should prove to be useful at the time when the sys-
tem requirements are being specified. It can be used either as an inspirational
source for the specification or as a testbed to check the compatibility of the
requirements with the domain. However, current best practices would recom-
mend the use of a goal oriented requirement engineering methodology to elicit
requirements. Knowledge Acquisition in autOmated Specification (KAOS) [27]
is a good candidate for this activity. Apart from its ability to state goals, their
decompositions and their relationships, KAOS allows requirements engineers
to express temporal properties by real-time Linear Temporal Logic (LTL) for-
mulae. This complements the weakness of Event-B is this area.

The relationship between KAOS and Event-B is an active research field.
In [7,4], a syntactic extension and patterns to model the notion of obligation
introduced by the temporal model into Event-B are proposed. In [35,34], a
simpler approach is explored. Both approaches rely on systematic transfor-
mation rules to derive an Event-B model from the KAOS model. They are
consistent with the idea of a gradual introduction of formalism during the
specification process. They provide us with a tool to study the relationship
between Event-B formal domain models and requirements which are not yet
fully clarified.

7.3 Event-B in the transportation domain

Previously, Event-B has been employed for the development of transportation
systems, see for instance [38,11,17]. But most of the time the role of this
language was limited to system modeling of a particular problem. Our work
is different in the sense that we are modeling the domain, where such systems
are assumed to operate. The specifications of these aforementioned railway
systems do contribute towards the completion of the land transport domain
model, but as a part of the whole. Our model is more general and could be used
for different kinds of transportation systems, such as road, railways, conveyors,
etc.

7.4 Event-B in the community

There has been some self-reflection within the Event-B community regarding
some of the issues raised in this paper. For instance, the elegant expression
of explicit timing properties or LTL expressions in Event-B is known to be

26

a challenging task. The expression of these properties, a key element for uti-
lization of formal methods in the automotive sector, is currently non-standard
in Event-B. Therefore, the correctness of the specifications which incorporate
such expressions cannot be proved in Rodin alone.

Joochim et al [25], like Cansell et al [13], propose a timing pattern which
uses global time and also interacts with a number of active times. This pat-
tern formalizes the Timing Diagram of UML rather than considering timing
properties in general. In addition, its usage is recommended at abstract stages
rather than in later refinements.

In another work [6], the authors propose an extension of Event-B to incor-
porate three LTL operators: next, eventually, and bounded eventually. In this
work, standard Event-B structures, WHEN, THEN and END are modified
to represent these three LTL operators. Such models deviate from the stan-
dard Event-B notations and their verification and validation become a major
challenge.

8 Conclusion

We find Event-B an adequate language for domain engineering, however there
are still some important questions to address. They are about the language,
the tools, and the use of domain models in requirements engineering.

About the language, the most limiting factor is the lack of expression of
temporal or ordering constraints. We cannot straightforwardly state, and of
course prove, properties such as liveness, deadlock freeness, fairness, and so
on. Our domain exhibits many natural “protocols” and constraints; we do not
think it is exceptional in this respect. Whether Event-B can be extended in
this direction, or whether approaches based on mixing formalisms, such as
CSP||Event-B [41] or event refinement diagrams [12] can be made practical is
still an open issue. Answers are beginning to appear. We just hope they can
be used soon.

Tools are essential to formal methods. Without Rodin, the provers, and
Brama, there is no way we could have reached the current state of the spec-
ification. However, they are still crude for an industrial usage. The tool we
lacked the most was inspired by our needs with respect to animation. Appli-
cation of the transformational heuristics requires some insight and intelligence
(choice of the rule, check of the validity), but also tedious and boring work
(text modification). We plan to implement the second part in the form of a
plugin for Rodin. The boring parts of the transformation do not contain overly
complex text manipulation.

We would also appreciate to see tools evolving in the direction of richer
visualization of the specifications. Our notes about observation levels, flat lin-
ear structures, parallel refinement, or composition of refinement can be seen
through this light. We do not call for incorporating these into the language: it
would be unwise to break something that works quite well! Instead, we think
that tools based on a better understanding of the needs of the specifiers would

Utilizing Event-B for Domain Engineering: A Critical Analysis 27

be a more promising approach. There is clearly a need for research in this
direction.

As we argued, knowledge of the particular domain before prescription of
requirements is a valuable asset. We have hinted at ideas, such as deriving
invariants of a system from the properties expressed in the domain model. We
now want to test this by studying the practical relationship of our domain
model with a separate specification, written also in Event-B, of a platooning
system [28]. In particular, we would like to study how we can immerse the
specification of a particular system into the domain model.

Acknowledgements

This work has been partially supported by ANR under project ANR-06-
SETI-017 TACOS (http://tacos.loria.fr) and by Pôle de Compétitivité
Alsace/Franche-Comté under CRISTAL project (http://www.projet-cristal.org).

References

1. Specification Case Studies in RAISE. Springer (2002)
2. Abrial, J.R.: The B Book. Cambridge University Press (1996)
3. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge Uni-

versity Press (2010)
4. Aziz, B., Arenas, A.E., Bicarregui, J., Ponsard, C., Massonet, P.: From Goal-oriented

Requirements to Event-B Specifications. In: 1st Nasa Formal Method Symposium
(NFM’09), California, USA (2009)

5. Baille, G., Garnier, P., Mathieu, H., Roger, P.G.: Le Cycab de L’INRIA Rhônes-alpes.
Technical Report RT-0229, INRIA Rhônes-alpes, Grenoble, France (1999)

6. Bicarregui, J., Arenas, A., Aziz, B., Massonet, P., Ponsard, C.: Towards Modeling Obli-
gations in Event-B. In: 1st International Conference on Abstract State Machines (ASM),
B and Z (ABZ’08), London, UK (2008)

7. Bisztray, D., Heckel, R., Ehrig, H.: Verification of Architectural Refactorings by Rule
Extraction. In: 11th International Conference on Fundamental Approaches to Software
Engineering (FASE’08), Budapest, Hungary (2008)

8. Bjørner, D.: Software Engineering 3: Domains, Requirements, and Software Design
(Texts in Theoretical Computer Science, an EATCS Series). Springer (2006)

9. Bjørner, D.: Development of Transportation Systems. In: 2nd ISOLA Workshop on
Leveraging Applications of Formal Methods, Verification and Validation (ISOLA’07)
Poitiers, France (2007)

10. Bjørner, D.: Domain Engineering: Technology Management, Research and Engineering.
JAIST (2009)

11. Butler, M.: A System-based Approach to the Formal Development of Embedded Con-
trollers for a Railway. Design Automation for Embedded Systems, 6, 355–366 (2002)

12. Butler, M.: Decomposition Structures for Event-B. In: 7th International Conference on
Integrated Formal Methods (IFM ’09), Düsseldorf, Germany (2009)

13. Cansell, D., Mery, D., Rehm, J.: Time Constraint Patterns for Event B Development.
In: 7th International Conference of B Users (B’07), Besançon, France (2006)

14. Clearsy: User Manual of Atelier B, version 4.0 (2009)
15. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Appli-

cations. Addison-Wesley Publishing Co. (2000)
16. Erasmy, F., Sekerinski, E.: RAISE: A Rigorous Approach using Stepwise Refinement.

In: Formal Development of Reactive Systems, 891, 277–293, Springer (1995)

28

17. Essamé, D.: Handling Safety Critical Requirements in System Engineering Using the B
Formal Method. In: 23rd International Conference on Computer Safety, Reliability, and
Security (SafeComp’04), Postdam, Germany (2004)

18. Futatsugi, K., Goguen, J.A., Jouannaud, J.P., Meseguer, J.: Principles of OBJ2. In:
12th Symposium on Principles of Programming Languages (POPL’85), Louisiana, USA
(1985)

19. Gondal, A., Poppleton, M., Snook, C.: Feature composition - Towards Product Lines
of Event-B Models. In: 1st International Workshop on Model-Driven Product Line
Engineering, Twente, The Netherlands (2009)

20. Gørtz, J.: Specifying Safety and Progress Properties with RSL. In: 2nd International
Symposium of Formal Methods Europe (FME’94), Barcelona, Spain (1994)

21. The RAISE Language Group: The RAISE Specification Language. Prentice Hall, Inc.
(1993)

22. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Inc. (1985)
23. Jackson, M.A.: System Development, Prentice Hall, Inc., (1983)
24. Jones, C.B.: Systematic Software Development Using VDM (2nd edition). Prentice Hall,

Inc. (1990)
25. Joochim, T., Snook, C., Poppleton, M., Gravell, A.: Timing Diagrams Requirements

Modeling Using Event-B Formal Methods. In: IASTED International Conference on
Software Engineering (SE’10). Innsbruck, Austria (2010)

26. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transactions on
Software Engineering, 3(2), 125–143 (1977)

27. Lamsweerde, A.V.: Requirements Engineering: From System Goals to UML Models to
Software Specifications. Wiley (2009)

28. Lanoix, A.: Event-B Specification of a Situated Multi-Agent System: Study of a Pla-
toon of Vehicles. In: 2nd International Symposium on Theoretical Aspects of Software
Engineering (TASE’08), Nanjing, China (2008)

29. Leuschel, M., Butler, M.: ProB: A Model Checker for B. In: 12th International Sympo-
sium on Formal Methods (FM’03), Pisa, Italy (2003)

30. Mashkoor, A., Jacquot, J.P.: Incorporating Animation in Stepwise Development of For-
mal Specification. Research Report INRIA-00392996, LORIA, Nancy, France (2009)

31. Mashkoor, A., Jacquot, J.P.: Transformational Heuristics for Animation - Towards Step-
wise Validation of Specifications. Research Report HAL-00544261, LORIA, Nancy,
France (2010)

32. Mashkoor, A., Jacquot, J.P., Souquières, J.: Transformation Heuristics for Formal Re-
quirements Validation by Animation. In: 2nd International Workshop on the Certifica-
tion of Safety-Critical Software Controlled Systems (SafeCert’09), York, UK (2009)

33. Mashkoor, A., Jacquot, J.P., Souquières, J.: B Événementiel pour la Modèlisation du
Domaine: Application au Transport. In: 9th Approches Formelles dans l’Assistance au
Développement de Logiciels (AFADL’09), Toulouse, France (2009)

34. Mashkoor, A., Matoussi, A.: Towards validation of requirements models. In: 2nd In-
ternational Conference on Abstract State Machines (ASM), Alloy, B and Z (ABZ’10).
Orford, Canada (2010)

35. Matoussi, A., Gervais, F., Laleau, R.: A First Attempt to Express KAOS Refinement
Patterns with Event B. In: 1st International Conference on Abstract State Machines
(ASM), B and Z (ABZ’08), London, UK (2008)

36. Milner, R., Tofte, M., Harper, R., Macqueen, D.: The Definition of Standard ML -
Revised. The MIT Press (1997)

37. Owre, S., Rushby, J.M., , Shankar, N.: PVS: A Prototype Verification System. In: 11th
International Conference on Automated Deduction (CADE’92), New York, USA (1992)

38. Papatsaras, A., Stoddart, B.: Global and Communicating State Machine Models in
Event Driven B: A Simple Railway Case Study. In: 2nd International Conference of B
and Z Users (ZB’02), Grenoble, France (2002)

39. Paulson, L.C.: ML for the Working Programmer (2nd Edition). Cambridge University
Press (1996)

40. Poppleton, M.: The Composition of Event-B Models. In: 1st International Conference
on Abstract State Machines (ASM), B and Z (ABZ’08), London, UK (2008)

Utilizing Event-B for Domain Engineering: A Critical Analysis 29

41. Schneider, S., Treharne, H., Wehrheim, H.: A CSP Approach to Control in Event-B. In:
8th International Conference on Integrated Formal Methods (IFM’10), Nancy, France
(2010)

42. Servat, T.: BRAMA: A New Graphic Animation Tool for B Models. In: 7th International
Conference of B Users (B’07), Besançon, France (2006)

43. Silva, R., Pascal, C., Hoang, T., Butler, M.: Decomposition Tool for Event-B. In: 1st
Workshop on Tool Building in Formal Methods. Orford, Canada (2010)

44. Snook, C., Butler, M.: UML-B: Formal Modeling and Design Aided by UML. ACM
Transactions on Software Engineering and Methodology, 15(1), 92–122 (2006)

45. Yadav, D., Butler, M.: Verification of Liveness Properties in Distributed Systems.
In: 2nd International Conference on Contemporary Computing (IC3’09), Noida, India
(2009)

46. Yang, F., Jacquot, J.P.: Scaling up with Event-B: A Case Study. In: 3rd NASA Formal
Methods Symposium (NFM’11), California, USA (2011)

47. Zave, P., Jackson, M.: Four Dark Corners for Requirements Engineering. ACM Trans-
actions on Software Engineering and Methodology, 6(1), 1–30 (1997)

