
HAL Id: inria-00590896
https://hal.inria.fr/inria-00590896

Submitted on 5 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specifying and implementing UI Data Bindings with
Active Operations

Olivier Beaudoux, Arnaud Blouin, Olivier Barais, Jean-Marc Jézéquel

To cite this version:
Olivier Beaudoux, Arnaud Blouin, Olivier Barais, Jean-Marc Jézéquel. Specifying and implementing
UI Data Bindings with Active Operations. ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, Jun 2011, Pise, Italy. pp.127–136, �10.1145/1996461.1996506�. �inria-00590896�

https://hal.inria.fr/inria-00590896
https://hal.archives-ouvertes.fr

Specifying and implementing UI Data Bindings
with Active Operations

Olivier Beaudoux
ESEO Group, GRI Team

Angers, France
olivier.beaudoux@eseo.fr

Arnaud Blouin
INRIA, Triskell Team

Rennes, France
arnaud.blouin@inria.fr

Olivier Barais
Jean-Marc Jezequel

Univ. of Rennes 1, Triskell
(barais, jezequel)@irisa.fr

ABSTRACT
Modern GUI toolkits propose the use of declarative data
bindings to link the domain data to their presentations.
These approaches work fine for defining simple bind-
ings, but require an increasing programming effort as
soon as the bindings become more complex. In this
paper, we propose the use of active operations for spec-
ifying and implementing UI data bindings to tackle this
issue. We demonstrate that the proposed approach goes
beyond the usual declarative data bindings by combin-
ing the simplicity of the declarative approaches with the
expressiveness of active operations.

ACM Classification Keywords
D.2.2 Software Engineering: Design Tools and Tech-
niques—Computer-aided software engineering (CASE),
User interfaces

General Terms
Algorithms, Design, Languages

Author Keywords
Data binding, active operation, GUI

1. INTRODUCTION
The problem of linking domain data to their presenta-
tions has appeared very early in computer science. The
Model-View-Controller (MVC) design pattern has been
introduced with the SmallTalk-80 language to formalize
and implement such a linking [13]. The main drawback
of this pattern is that the view is bound to a specific
model: the view has to observe the model and refresh
its state on model changes. Consequently, applications
must adapt their domain data to the specific models
bound to their possible views. The Java Swing API
applies such a schema; for example, displaying a collec-
tion of elements within a JTable requires adapting the
collection by implementing interface TableModel [8].

The concept of data binding can be seen as an evo-
lution of MVC that avoids such a drawback. A data
binding is a “controller” that binds the model and the
view: it observes the model and updates the view when-
ever the model changes; conversely, it observes the view
and updates the model whenever the view changes. The
concept of data binding is very close to the controller of
the PAC model where the Controller binds the Abstrac-
tion and the Presentation [6]. Recent GUI toolkits pro-
pose the data binding as the first-class object for linking
models and views. However, as this paper will illustrate,
they all suffer from two main limitations: 1) they of-
fer a limited expressiveness so that hand-programming
is often required when the complexity of the bindings
grows; 2) they are platform-dependent implying that a
data binding written within a given GUI toolkit must
be entirely rewritten to be used within another one.

In this paper, we propose the use of active operations
for specifying and implementing UI data bindings. The
concept of active operation extends the usual concept of
operation by allowing the result of an operation to be
re-evaluated afterward. For example, usual operation
b := a.select(f) constructs collection b containing each
element of collection a that satisfies predicate f [18]; the
active version of this operation does more: it adds into b
(respectively removes from b) any element newly added
into a (respectively removed from a) that satisfies f.
Active operations formalize and generalize our initial
work on active transformations in the context of GUI
[3, 2]; the mathematical definition of action operations
is provided in [4].

Our proposal aims at combining the simplicity of the
declarative approaches with the expressiveness of ac-
tive operations, which is achieved through: a unified
and platform-independent language for specifying data
bindings; the use of simplified class diagrams (Ecore
documents) for representing both the models and the
views; a formalism for implementing the specification of
bindings independently from the final implementation
language; a compatibility schema with GUI toolkits.

The remainder of this paper is structured as follows.
Section 2 presents, through three concrete examples,
our language used to specify data bindings with active
operations. Section 3 explains why and how the speci-

fication of active operations must be translated before
being implemented. Section 4 focuses on the imple-
mentation and execution of active operations on GUI
platforms. Section 5 introduces works related to data
binding. Section 6 complements section 5 by compar-
ing our proposal with the declarative data bindings of
three representative Rich Internet Application (RIA)
toolkits. Section 7 finally concludes on our work and
its perspective.

2. SPECIFYING ACTIVE OPERATIONS
This section introduces active operations through three
complementary examples. These examples have been
carefully designed to illustrate the expressiveness of ac-
tive operations for specifying various UI data bindings.
They have also been motivated to illustrate the limita-
tion of usual binding mechanisms (see section 6).

The following specifications of active operations are ex-
pressed using our own domain specific language (DSL)
that is close to the OCL language [18].

2.1 Example 1 - A Simple XML Editor
Figure 1 gives the model of a simple XML editor. The
left part represents a simplified XML document model;
the right part represents the model of a tree widget;
the middle part represents bindings between these two
models.

Figure 1. A Simple XML Editor

Binding D2T binds XML document d, instance of class
Document, to tree widget t, instance of class Tree, as
follows:

t . root := d.root .map(E2I)

Expression c.map(f) applies function f to each element
e of collection c, and maintains a link (called a trace)
between e and the element returned by f(e). In the
example, the root element of document d is bound to
the root item of tree t through binding E2I defined as
follows:

1 i . text := "<" + e.name + ">"
2 i . children :=
3 e. attributes .sortedBy(a | a.name).map(A2I) +

4 e. children .map(E2I)

The text of tree item i displays the name of element e
surrounded by angle brackets. Children of item i result
from concatenating attributes of element e sorted by
their name and mapped to tree items (line 3), with
children of element e recursively mapped to tree items
(line 4). Finally, binding A2I displays the name and
value of attribute a into tree item i :

i . text := "@" + a.name + "=" + a.value

All the previous bindings are unidirectional. The next
example illustrates how active operations can be used
to define bidirectional bindings.

2.2 Example 2 - A Directory Editor
Figure 2 gives the model of a directory editor. The
left part represents a directory d of contacts; the right
part represents the model of a list widget l ; three text-
fields ff, lf, and pf, are used to respectively edit the
first-name, last-name and phone number of the contact
selected from the list widget l ; finally, a fourth text-field
tf is used to filter the content of the list so that a user
can quickly find a contact within a large directory.

Figure 2. A Directory Editor

Binding D2L binds list of contacts d, instance of class
Directory, to list widget l, instance of class List. The
binding has a second argument tf, instance of class
TextField, used to filter the list:

1 l . items := d.contacts
2 .sortedBy(c | c. lastName + c.firstName)
3 . select (c | tf . text .isEmpty() or
4 c.lastName.startsWith(tf . text))
5 .map(C2I)

The list of contacts is first sorted (line 2); a simple string
concatenation is here used to specify a sort on the last-
Name and then on the firstName of the contacts. The
resulting list is then filtered through the select opera-
tion (lines 3-4): if text-field tf is empty, all the contacts
are selected; otherwise, only contacts whose last-name
starts with the text-field content are selected. Each re-
sulting contact c is then mapped to a list item i by
calling binding C2I (line 5), which is defined as follows:

Figure 3. An academic calendar

1 i . text := c.firstName + " " + c.lastName
2 i . contact := c

This binding displays each contact in the list widget
with their first and last names (line 1). A trace of bind-
ing C2I, represented by reverse arrow contact in figure
2, is then set (line 2).

Binding L2PF binds text-field pf used to edit the phone
number to the selected item of the list l, as follows:

1 pf . text := l . selection .contact .phone.toString ()
2 l . selection .contact .phone := pf. text . toInteger ()

The phone number of the selected contact is converted
into a string displayed into text-field pf (line 1); con-
versely, the text of text-field pf is converted into an in-
teger that represents the phone number of the selected
contact (line 2). Text-field pf must be designed to re-
strict the editing to integers; this must be achieved at
the GUI platform level, but not by the binding itself.
Binding L2PF is bidirectional : if the user changes the
selection, the text-field is automatically updated; con-
versely, if the user changes the text-field content, the
phone number of the selected contact is automatically
updated. Infinite loop on such a bidirectional binding
is avoided by only notifying changes on new values: if
the new value does not differ from the previous one, no
notification is performed by the property setter method.

Only path assignments, along with an optional conver-
sion, can be used in a bidirectional way [4]. If no conver-
sion is required between two properties, the double use
of operator := defines a bidirectional assignment that
can be shortened with the operator =, such as binding
L2FF illustrates:

ff . text = l. selection .contact .firstName

Contrary to the previous binding, no conversion is re-
quired here. Binding L2LF is similar to L2FF for prop-
erty lastName.

These bindings illustrate the bidirectionality feature of
active operations; however, as within example 1, these

bindings remain quite simple. The next example uses
intensively active operations to achieve a complex bind-
ing.

2.3 Example 3 - An Academic Calendar
Figure 3 gives the model of an academic calendar. The
left part represents a simplified model of a weekly aca-
demic calendar; the right part represents the model of
an HTML-like table widget; the middle part represents
bindings between these two models.

Binding W2G binds week w, instance of class Week, to
grid widget g, instance of class Grid. It maps days of
week w to rows of grid g by calling binding D2R:

g.rows := w.days.map(D2R)

Binding D2R binds day d to a grid row r, which
consists of populating relation r.items from relation
d.courses. Figure 4 synthesizes the principle of binding
D2R through a simple example: collection ts contains
all the predefined time-slots of the calendar (for exam-
ple, time-slot 0 corresponds to slot 9:05-9:55am); day
d contains two courses a and b respectively located on
time-slots 1 and 4. The resulting grid-items r.items of
grid-row r must contain empty grid-items (noted iØ)
that represent the free time-slots, and non-empty grid-
items (noted ia and ib) that represents courses a and
b.

+

.timeslot.map(C2I)

d.courses

.map(GridItem.new)

+

.sortedBy

1

3

2

4

65

7

1 4 320

1 4 2 30

iaiØ ibiØ iØ

iØ iØ iØia ib

ia ib iØ iØ iØ

r.items

a b ts 0 1 3 42

-

Figure 4. Principle of binding D2R

The collection (ia, ib) is computed by mapping courses
d.courses through binding C2I ¬. The collection
of free time-slots (0, 2, 3) is computed by subtracting
d.courses.timeslot1 equals to (1, 4) , from collection
ts representing all defined time-slots (0..4) ®. The
collection of empty grid-items (iØ, iØ, iØ) is computed
by mapping collection of free time-slots with function
GridItem.new ¯. The two collections of grid-items are

1Expression d.courses.timeslot is a path, which is a specific
operation detailed in section 3.1.

then concatenated to form the collection of all grid-
items (ia, ib, iØ, iØ, iØ) °. Such a collection is how-
ever not ordered accordingly to time-slots. Since time-
slot numbers represent positions, the “order collection”
(1, 4, 0, 2, 3), resulting from the concatenation of a and
b time-slots and the free time-slots ±, is used to sort
the grid-items ²: operation sortedBy sorts collection
(ia, ib, iØ, iØ, iØ) with order (1, 4, 0, 2, 3) that gives the
position of each item after sorting.

The previous principle is quite complex due to the cal-
endar model that does not divide a day into time-slots.
However, this proposed model is a simplification of a
calendar model that allows a time-slot to contain mul-
tiple courses and a course to span multiple time-slots.
This simplified model has been designed to illustrate
that active operations allow the definition of bindings
between “something missing” (a time-slot without any
course) to a UI object (an empty grid-item).

Binding D2R is specified with our DSL as follows, and
illustrates the expressiveness of our DSL:

ts := seq(0 to 4)
courseTS := d.courses . timeslot
freeTS := ts − courseTS
items := d.courses .map(C2I) +

freeTS.map(n | GridItem.new)
r . items := items.sortedBy(courseTS + freeTS)

Binding C2I finally binds the text of the not-empty
grid-item i to the description of its corresponding course
c, as follows:

i . text := c. description

3. TRANSLATING ACTIVE OPERATIONS
The previous section focuses on the specifications of
bindings. However, as this section will illustrate, these
specifications cannot be executed on a target platform
as is: they must be translated into an active implemen-
tation. Such a translation uses again our own DSL by
introducing new specific operations, thus making the
translation process independent from the final imple-
mentation language and platform (see section 4). More-
over, some of the new operations motivated by the
translation might be useful at the specification level,
such as example 3 illustrates through its use of opera-
tion sortedBy (see section 2.3).

3.1 Paths
Paths extend the dotted notation of OOP so that the
dot symbol can be applied more than once on collections
[18]. For example, expression d.contacts.firstName rep-
resents a path that returns a flattened collection, as the
OCL operation collect does [18], containing the first-
name of all contacts of directory d. The dedicated op-
eration path must be used for implementing path on col-
lections on top of an OOP language; in binding L2FF
of example 2, expression:

ff . text = l. selection .contact .firstName

must be translated into:

ff . text = l. selection
.path(s | s .contact).path(c | c.firstName)

3.2 Observability
Usual loops can be used to implement usual operations
on collections. For example, expression b := a.collect(f)
computes collection b by converting each element e of
collection a into element f(e) within collection b; op-
eration collect is easy to implement using a loop, as
follows:

a.each(e, i | b.add(f(e), i))

The previous code states that each element e at posi-
tion i within collection a must be converted to the cor-
responding element f(e) at the same position i within
b.

Making an operation active, such as operation collect,
requires the observability of collections: an observable
collection is a collection from which additions and re-
movals can be observed [1, 9]. We have proposed in
[4] to extend usual loops with active loops that manage
collection observability and allow implementing active
operations as usual loops do for implementing the usual
operations. For example, the previous usual loop that
implements operation collect can be easily translated to
the following active loop:

1 a.eachAdded(e, i | b.add(f(e), i))
2 a.eachRemoved(e, i | b.remove(i))

This code states that: each element e newly added into
a results in adding the converted element f(e) into b
(line 1); each element e newly removed from position i
within collection a results in removing the correspond-
ing element from b (line 2).

Such a translation process from usual loops to active
loops works fine for operations collect, map and path.
However, it must be augmented for operations select
and sortedBy, as explained in the next section.

3.3 Selection and sort
The following expression:

minors := persons. select (p | p.age < 18)

computes collection minors that contains persons p un-
der 18. The active loop of such a select operation can be
easily translated from a usual loop. This loop works fine
whenever a person is added or removed from collection
persons; however, it fails whenever the age of a person
goes above 18: this last change is not captured by the
active loop. We thus propose to reify predicate func-
tion f involved in expression c.select(f) into a predicate
collection represented as a sequence of booleans. The
predicate collection related to the previous example is
defined by the following expression:

persons.path(a | a.age). predicate (a | a < 18)

If persons contains three people with ages 16, 42
and 12, this expression returns predicate collection
true, false, true. By overriding operation select, the
previous example should be translated into:

minors := persons. select (
persons.path(a | a.age). predicate (a | a < 18)

)

The same problem arises with operation sortedBy. For
example, binding E2I of example 1 sorts attributes of
element e by their name:

e. attributes .sortedBy(a | a.name)

If an attribute a is added or removed from e.attributes,
the active loop updates correctly the resulting collec-
tion. However, any change to a.name is not captured
by the active loop. We thus propose to reify the order
function f involved in expression c.sortedBy(f) into an
order collection represented as a sequence of integers.
In the previous example, the order collection is defined
by the following expression:

e. attributes .path(a | a.name).ascendingOrder()

If element e defines three attributes named “first”, “sec-
ond” and “last”, the previous expression returns order
collection {0, 2, 1} that gives the position of names after
the sort. By overriding operation sortedBy, the previ-
ous example should be translated into:

e. attributes .sortedBy(
e. attributes .path(a | a.name).ascendingOrder()

)

Order collections are also useful for solving various or-
dering problems, independently from the translation
phase. For example, they have been used in the speci-
fication of binding D2R to bind courses and free time-
slots with grid-items (see section 2.3).

3.4 Tuples
Anonymous functions f involved in active operations,
such as b := a.select(f), may require more than one ar-
gument. For example, binding D2L includes a selection
based on two arguments tf and c:

d.contacts . select (c |
tf . text .isEmpty() or
c.lastName.startsWith(tf . text)

)

The reified version of this select operation uses a tu-
ple from which a predicate operation is performed, as
follows:

d.contacts . select (
(d.contacts .lastName, tf . text). predicate (n,t |

t . isEmpty() or n. startsWith(t)
)

)

By doing so, the predicate collection is updated when-
ever d.contacts.lastName or tf.text changes. Tuples can

thus be used for extending the initial scope of operation
select to multiple arguments; a similar extension can be
applied to other active operations, such as operation
collect2.

4. IMPLEMENTING ACTIVE OPERATIONS
The previous section explains the translation of bind-
ing specifications to their active implementation, inde-
pendently from the target GUI platform. This section
explains how to make the final implementation compat-
ible with a given GUI platform so that its widgets can
be reused. It gives theoretical and experimental results
regarding performances of the final implementation.

4.1 Implementing Active Operations on a GUI Toolkit
In order to evaluate the use of active operations for UI
data binding, we have implemented active operations on
top of the Flex GUI platform [12]. Flex has been chosen
for its own internal binding mechanism, its rich set of
widgets, and its ability to pass anonymous functions as
function arguments. All the three examples presented
in this paper have been implemented with the resulting
ActiveFlex project; more details about the Flex imple-
mentation can be found within the project.3.

Figure 5 gives an overview of our ActiveFlex model that
extends Flex classes with active operation capabilities.

Figure 5. ActiveFlex model

The Flex API defines a built-in data binding mechanism
accessible through classes ArrayCollection and Object.
An ArrayCollection represents an observable and or-
dered collection of elements; it is bound to a source Ar-
ray that holds the elements. Array collections can be
bound to Flex widgets displaying collections to users,
such as widget List. Consequently, our class ActiveAr-
ray inherits from this Flex ArrayCollection class so that
instances of ActiveArray returned by active operations
can be bound to such Flex widgets. Class Predicate de-
fines predicate collections and adds usual boolean oper-
ations to class ArrayCollection; class Order defines or-
2Such an extension is however out of the scope of this paper.
3ActiveFlex is available under GPL license at http: // gri.
eseo. fr/ software/ activeflex. html .

http://gri.eseo.fr/software/activeflex.html
http://gri.eseo.fr/software/activeflex.html

der collections by providing operation and that allows
sorting on multiple criteria.

Any class derived from the Flex class Object can mark
any of its attribute as bindable: by doing so, the bind-
able attribute can be bound to Flex widgets displaying
simple values, such as a text-field or a check-box. Our
class ActiveObject thus defines its content through at-
tribute value that is marked as bindable so that any
active object can be bound to such Flex widgets.

The following MXML code4 illustrates how simple the
binding of the TreeItem of example 1 to a Flex mx:Tree
widget is:

<mx:Tree dataProvider="{tree.root}" ... />

Object tree is an instance of our class Tree. Themx:Tree
is bound to the tree.root, which is an instance of our
TreeItem class; the mx:Tree then uses internally: the
children property to recursively construct the tree con-
tent, and the bindable property label to display the con-
tent of each tree item. Any Flex widget can be bound to
an instance of our classes ActiveArray or ActiveObject
similarly.

Such a scheme can be applied to any RIA toolkit that
proposes a declarative data binding mechanism, such
as with WPF/Silverlight [16] or JavaFX [10]. Toolkits
without data binding capabilities require more coding
effort. For example, the use of active operations on
top of the Swing toolkit requires implementing Java in-
terfaces such as TableModel, TreeModel or Document
within active collection and/or object classes.

4.2 Theoretical Complexities
Table 1 summarizes the best-case (Cmin), average-case
(Cav) and worst-case (Cmax) complexities of active op-
erations (see [4] for more details on computation of these
complexities).

Cmin Cav Cmax

Operation I + - I + - I + -
collect n 1 n
path n 1 n
select n 1 n
predicate n 1 n
not, and, or n 1 n
sortedBy n 1 n
asc.Order n 1 n.log2 n n n2 n
and n 1 n
union n 1 n
difference n 1 n2 n n2 n
intersection n 1 n2 n n2 n

Table 1. Complexities of active operations

Columns labeled “I” give complexities for the initial con-
struction of the operation result; columns labeled “+”
4MXML is the Flex XML dialect used to specify user inter-
faces.

(respectively “-”) give complexities for updating the re-
sult when an addition (respectively a removal) occurs on
the source collection. Initial constructions mainly cost a
linear time since they globally use elementary operation
add in the best-case (i.e. append); subsequent muta-
tions also cost a linear time due the required shifting.
These results only vary for sorting that requires two
loops, and for difference/intersection that must check
the presence with operation contains which costs a lin-
ear time.

The previous complexities are asymptotic. However,
the translation cost representing the amount of time
and memory used by the intermediate operations that
appear during the translation (see section 3) should be
also taken into account. For example, expression:

c. select (e | f1(e.p1) and f2(e.p2))

must be translated into expression:

c. select (c.path(e|e.p1). predicate (f1) and
c.path(e|e.p2). predicate (f2))

This last expression includes 2 paths (npa = 2), 2 predi-
cates (npr = 2), plus 1 boolean expression (npr−1), and
thus costs 5 intermediate active collections and opera-
tions. A similar principle can be applied to operation
sortedBy that can be based on multiple criteria (ncr).
Table 2 synthesizes such a cost.

Operation Translation cost
union, diff., inter. 0
collect 0
path 1
select npa + 2× npr − 1
sortedBy npa + 2× ncr − 1

Table 2. Translation cost

The previous complexities of individual operations can
be used to compute complexities of an overall bind-
ing. Let us consider the binding defined by example
1 (the XML editor) for a source XML document with
a depth d, a number of child elements per element ne,
and a number of attributes per element na, both com-
mon to all elements. For simplification purpose, we
consider that ne = na = n. Document thus counts
Ne = nd−1

n−1 elements, and Na = n ×Ne attributes; the
tree widgets counts Ni = Na + Ne items. By consider-
ing that N = nd � 1, we have: Ne ' nd−1 = N/n and
Na ' Ni ' nd = N . Number N = nd thus represents
the overall and approximate number of both document
nodes and tree items, while n represents the cardinal-
ity of each relation. The worst-case complexity of the
associated binding is given by the complexity of the
sort that binding D2R performs, and thus costs O(n2).
The initial construction of the tree widget requires Ne

sort operations, and thus costs Cinit = Ne×O(n2), i.e.
Cinit = O(N × n). Mutations cost a linear time for all
operations within the binding, i.e. Cupdate = O(n).

The ratio N between these two complexities well illus-
trates the interest in making active binding operations,
rather than recomputing all the resulting tree widget
content. The next section illustrates that our experi-
mental results match these theoretical ones.

4.3 Experimental results
Our experimental measurements focus on two objec-
tives: verifying that our theoretical complexities match
the measured performance; comparing the cost of ac-
tive operations with the cost of widget rendering. They
have been performed on a PC running Windows XP on
top of an Intel Pentium 1.8 GHz + 1 GB RAM and an
ATI FireGL 128 MB. Figure 6 gives the performance
of initial construction of the tree widget for the XML
document defined in the previous section with depth 3
(N = n3). Axis x represents number n, and axis y gives
time performance in ms.Construction

Page 1

0 2 4 6 8 10 12 14 16 18
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

mx:Tree
Tree (naive)
Tree (quicksort)
Passive
Doc.

n

Ti
m

e
(m

s)

Figure 6. Construction performance

The five curves represent respectively: the XML doc-
ument construction (curve “Doc.”) that includes the
creation of instances of classes Document, Element and
Attribute, and the establishment of their relation; the
“passive” data binding (curve “Passive”) that represents
the usual operations that can be used (only) for the
initial construction; the tree construction (curve “Tree
(naive)”) that represents the binding uses to build the
target instances of class Tree and TreeItem with active
operations; the tree construction that uses a quicksort-
based algorithm (curve “Tree (quicksort)”) instead of
a naive one (previous curve); finally, the tree wid-
get rendering (curve “mx:Tree”) performed by the Flex
engine to display the graphical content of the wid-
get. Curve “Doc” tends to 0, 25 × N , thus illustrat-
ing that the document construction is linear. Curve
“Tree (naive)” gives the performance of the bindings in
the worst-case since it uses a naive implementation of
the sort that costs O(n2); it tends to 0, 052 × N × n,
thus matching the expected theoretical result. Curve
“Tree (quicksort)” tends to 0, 18 × N × log2 n; the ex-
pected logarithmic dimming effect appears for a sig-
nificant value of n (here around 14). Curve “Passive”
tends to 0, 028×N × n, which is around half the curve
“Tree (naive)”: this illustrates that the translation cost
is around 1, as expected (one intermediate order collec-
tion is here required). Finally, curve “mx:Tree” tends to

0, 6×N × n2, which probably results from the travers-
ing required for computing location y of each tree-
item i. This location may be recursively computed by
summing heights h of the previous-sibling items of i :
y(i) =

∑
j h(i.sibling[j]); in turn, computing the height

of a node consists of summing the height of its children:
h(i) =

∑
j h(i.children[j]). The overall layout includes

N computation of y, so that the complexity tends to
N × n2.

This experimentation illustrates that complexity of data
bindings can often be neglected regarding the complex-
ity of rendering complex graphics, such as a tree. Sim-
pler widgets, such as a list widget, can however re-
quire complexity comparable to the one of the asso-
ciated binding. Experiments performed on example 2
with a large list of contacts confirms this point: because
the binding performs a sort, displaying the list can be-
come faster than performing the binding, but for a large
number of list items (around 10.000 in our experimen-
tation).

Figure 7 gives the performance of the addition of an
attribute; performance of its removal is very close to this
curve, and is thus not shown in the figure. In both cases,
updating the document (curve “Doc.”) takes a constant
and negligible time; data binding takes a linear time
t(ms) = 0, 015×n, as expected (curve “Tree”); the Flex
tree widget does not have to compute new y locations:
this rather consists of applying a vertical offset in the
display buffer, which requires a constant time around
150 ms (curve “mx:Tree”). Addition

Page 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

120

140

160

180

200

mx:Tree
Tree
Doc.

n

Ti
m

e
(m

s)

Figure 7. Addition performance

These performances illustrate that the time required to
refresh a drawing is often bigger than the time for com-
puting a binding. In the previous example, the update
time for the Flex tree and the active operations become
equal when n reaches 150/0, 015 = 10.000, which rep-
resents a really huge XML document (1012nodes for a
depth of 3).

5. RELATED WORKS
Constraint systems have been widely used for defining
data bindings in the context of GUI. The Garnet tool-
box proposes the use of “formula”, expressed in Lisp,
to bind an object value to other object values: the for-

mula is reevaluated whenever the values within the for-
mula change, like in spreadsheets [14]. The Rendezvous
architecture defines the concept of “active value”: an
active value is a variable used as en entry point to con-
straint definitions (also expressed in Lisp); when the
value changes, the constraint is reevaluated to reflect
the change [11]. Similarly, but within a C++ infras-
tructure, the Amulet environment allows the definition
of constraint through “formula” that bind object values
[15]. However, all these constraint-based systems are
limited to the binding of object values: they do not ad-
dress the binding of collections, and are thus limited to
simple widgets such as text-field or combo-box.

The JFace toolkit defines interfaces IObservableValue
and IObservableCollection that respectively allow the
observation of values and collections [9]. These inter-
faces are implemented in classes that can be used for
representing “bindable” data in both the model and the
view. This approach defines the required foundation
classes for data binding; however, it is a pure program-
matic approach where bindings must be implemented
rather than being declared. The ObjectEditor toolkit
uses a more subtle approach that consists of extending
the JavaBean syntax so that data bindings appear in
a more declarative way [7]. Moreover, this toolkit ex-
tends the scope of data binding to action binding that
allows user actions to be bound to “do”, “undo” and
“redo” methods. However, ObjectEditor offers a low ex-
pressiveness regarding data binding capabilities.

RIA toolkits, such as WPF [16], Flex [12], and JavaFX
[10], have adopted a declarative approach to data bind-
ing. The aim of these approaches is to simplify the
process of writing bindings: rather than being imple-
mented, bindings are declared. These approaches work
fine for simple bindings where the view does not differ
much from the model; they however lose their simplic-
ity as soon as the complexity of the model is increased,
which often results in requiring some low level program-
ming that contradicts the initial aim of the declarative
approach. Section 6 focuses on proving these limita-
tions.

Using rule-based incremental transformation languages
solves the previous limitations of declarative data bind-
ings. The incremental XSLT processor incXSLT al-
lows the incremental execution of XSLT transforma-
tions [17]. However, XSLT concerns source XML docu-
ments and target text documents, which makes it diffi-
cult to use on various GUI platforms. Moreover, XSLT
is a complex language that does not match well the
required simplicity of data binding. Using a mapping
language, such as Malan [5], combines the benefits of
the simplicity of data bindings and the expressiveness
of transformation languages. However, this higher level
approach postpones the problem of executing the map-
pings: for example, active operations can be generated
from a mapping so that the mapping can be executed
on a target platform.

6. COMPARISON WITH BINDINGS OF RIA TOOLKITS
From our knowledge, recent RIA toolkits offer the best
data binding mechanisms. This section compares our
approach with three representative RIA toolkits: Flex
[12], WPF[16], and JavaFX [10]. It illustrates why the
three examples presented in this paper cannot be fully
implemented by using their data binding capabilities.

6.1 Active Operation Capabilities
Table 3 summarizes the capabilities of active operations
presented throughout this paper. The capabilities be-
long either to active collections, active objects, or both.

Category Capability Collection Object
Math. union

√ √

intersection
√ √

difference
√ √

tuple
√ √

View select
√ √

sort
√

n/a
multiple views

√ √

Transf. collect
√ √

path
√ √

map
√ √

Bidir. bidir. assignment n/a
√

+ conversion n/a
√

Table 3. Active operation capabilities

Category “Math” includes the usual mathematical set
operations, and the definition of tuples; tuples are use-
ful in operations such as select(f) and collect(f) with
more than one parameter in f. Category “View” (in the
database sense) includes operations select and sort ; it
also defines the ability for an active collection or object
to be treated more than once by an active operation
(such as select and sort), thus allowing multiple views
on a common model. Category “Transformation” con-
cerns operations collect, path and map, that allow a
progressive transformation from the source to the tar-
get. Finally, category “Bidir.” defines the bidirectional
assignment used to perform two-way bindings on ac-
tive objects; this functionality is supplemented by a re-
versible conversion.

All these capabilities have been illustrated in the 3 ex-
amples of section 2. The next section discusses if and
how these capabilities are present within the data bind-
ing mechanisms of the three RIA toolkits Flex, WPF
and JavaFX.

6.2 Comparison with RIA Toolkits
Table 4 summarizes the data binding capabilities of the
three RIA toolkits Flex, WPF and JavaFX.
As mentioned in section 4.1, instances of the Flex class
ArrayCollection can be bound to collection widgets, and
bindable properties defined within instances of class Ob-
ject can be bound to simple widgets [12]. These two ca-
pabilities are equivalent to operation map on collections

Flex WPF JavaFX
Coll. Obj. Coll. Obj. Coll. Obj.

Math op.
select (

√
)

√

sort (
√

) n/a
√

n/a n/a
m. views

√ √ √ √

collect
√ √ √ √

path
√ √ √

map
√ √ √ √ √ √

assign. n/a
√

n/a
√

n/a
√

+ conv. n/a n/a
√

n/a

Table 4. binding capabilities of RIA toolkits

and on objects. Bidirectional assignment is possible
through property binding, but without conversion. A
path can be specified when binding two properties; how-
ever, paths cannot be defined on collections. It is also
possible to define a “transformation function” within a
property binding, which is analogous to operation col-
lect for a single object. All the other capabilities are not
available with Flex. Operations select and sort exist on
class ArrayCollection, but they do not return new col-
lections: they rather modify the source model directly;
this does not separate well the model from the GUI.
Moreover, these operations cannot use “active” param-
eters (for example, through tuples).

WPF offers richer binding capabilities than Flex [16].
Operations select and sort return new bindable collec-
tions, and thus allow the definition of multiple views;
bidirectional conversion is also possible. However, math
operations and transform operations collect and path
remain undefined for collections.

JavaFX has adopted a radically different strategy for
defining bindings: rather that proposing a bunch of
binding artifacts, such as with Flex or WPF, JavaFX
introduces new language keywords dedicated to the def-
inition of bindings [10]. Consequently, JavaFX bind-
ings are clearer than that of Flex or WPF since they
are based on very few constructs, while Flex and WPF
bindings use many different artifacts that often require
low level ad hoc programming. However, as table 4 il-
lustrates, important features are unavailable in JavaFX
thus making it not as expressive as expected.

6.3 Implementing the Examples using RIA Toolkits
Regarding example 1, Flex data binding cannot be used
to bind XML documents to the tree widget since this
requires union operations. The example could be built
by coding a specific data provider that implements Flex
interface ITreeDataDescriptor. This practice is similar
to the implementation of Swing models, and thus does
not respect the initial philosophy of binding. Filter-
ing contacts in example 2 is impossible with Flex bind-
ing: this requires the programming of an ad hoc code
that recomputes the filtering whenever the user changes
the filtering text. Moreover, sorting and filtering the
contacts must be specified by altering the code of the

model: the design of the GUI thus impacts the source
model, which contradicts the fact that binding clearly
separates the model and its GUIs. Finally, example 3
cannot be implemented by using Flex binding. This is
due to the free-time slots objects that are not present
in the source model, and thus cannot be bound to grid-
items.

As with Flex, example 1 cannot be implemented us-
ing WPF binding due to the lack of operation union.
Example 2 is easier to implement than with Flex due
to WPF view capabilities; however, the active filter-
ing of contacts again requires the development of ad
hoc code. But most of all, implementing example 2
with WPF requires a bunch of data binding artifacts:
“bidirectional converters” must be programmed by im-
plementing interface IValueConverter ; “data templates”
must be defined with the XAML document5 for im-
plementing functions that define the text of the tree
items; and “observable collection” must specify the fil-
tering and sorting of contacts in a programmatic way.
The developer thus needs to juggle with multiple ar-
tifacts, and with both programmatic and declarative
paradigms. Example 3 cannot reap benefit from WPF
binding and must be implemented from scratch.

Due to the lack of view capabilities, examples 1 and 2
cannot be implemented using JavaFX binding. As with
Flex and WPF binding, example 3 is not feasible with
JavaFX.

6.4 Discussion
Data binding of RIA toolkits are simple to use for simple
bindings. Their binding mechanisms remain sufficient
as long as the source models do not differ much from
the target models. Moreover, these mechanisms allow
binding to existing relational databases and/or XML
documents directly, thus making them attractive in an
enterprise context. In counter part, the offered bind-
ing capabilities become insufficient to address various
and/or complex problems. These toolkits often require
multiple artifact juggling that alter the initial simplic-
ity of the declarative approach. Moreover, each RIA
toolkit proposes its own data binding mechanism. Con-
sequently, a binding written in WPF cannot always be
translated to a Flex or JavaFX binding: they are all
platform dependent and do not share a common model.

The use of active operations for specifying and im-
plementing data binding removes such limitations. A
single DSL is used for specifying the bindings, and
translating them before being implemented; it is thus
platform-independent. The resulting implementation
performances are good for the initial construction of
operation results, and very good for updating these re-
sults. In counter part, active operations have to be
implemented through a dedicated compiler; however,
RIA toolkits also require some hidden code generation
5XAML is the XML dialect used by WPF to specified user
interfaces.

(for example, to implement paths between two bound
properties). Active operations currently do not provide
mechanisms for binding UI directly with databases or
XML documents. However, such an issue is not specific
to the domain of active operations: it concerns the seri-
alization and deserialization of models on different data
platforms.

7. CONCLUSION
This paper presents how to reap benefits from active
operation expressiveness and easiness for specifying and
implementing UI data bindings. Active operations of-
fer the ability to reevaluate the result of the operations
in real-time while the user interacts with the system.
The proposed approach overcomes the limitations of
data binding mechanisms provided by modern UI toolk-
its. These limitations are: GUI bindings are platform-
dependent and lack at defining complex bindings. It
is based on a single DSL, mainly inspired by OCL,
that allows both the specification and the platform-
independent implementation of data bindings. Active
operations have been implemented on top of the Flex
RIA toolkit; the resulting ActiveFlex API offers good
performance for the initial construction of active opera-
tion results, and very good ones regarding their updates.

The next step of our work is to implement a compiler
that will generate active implementations from any ac-
tive operation specification. Such a compiler would gen-
erate the implementations on various GUI platforms.
Since our approach offers a great expressiveness, we will
use and evaluate it in the context of “Information Visu-
alization” in order to confront its performance to large
models.

8. REFERENCES
1. D. H. Akehurst. Model Translation: A UML-based

specification technique and active implementation
approach. PhD thesis, University of Kent, 2000.

2. O. Beaudoux. XML active transformation
(eXAcT): Transforming documents within
interactive systems. In DocEng ’05: Proceedings of
the 2005 ACM symposium on Document
engineering, pages 146–148. ACM, 2005.

3. O. Beaudoux and A. Blouin. Linking data and
presentations: from mapping to active
transformations. In DocEng ’10: Proceedings of
the 2010 ACM symposium on Document
engineering, pages 107–110. ACM, 2010.

4. O. Beaudoux, A. Blouin, O. Barais, and J. M.
Jezequel. Active operations on collections. In
MoDELS ’10: Proceedings of the 13th ACM/IEEE
International Conference on on Model Driven
Engineering Languages and Systems (LNCS 6394),
pages 91–105. Springer, 2010.

5. A. Blouin, O. Beaudoux, and S. Loiseau. Malan:
A mapping language for the data manipulation. In

DocEng ’08: Proceedings of the 2008 ACM
symposium on Document engineering, pages
66–75. ACM, 2008.

6. J. Coutaz. PAC, on object oriented model for
dialog design. In Interact’87, 1987.

7. P. Dewan. Increasing the automation of a toolkit
without reducing its abstraction and user-interface
flexibility. In EICS ’10: Proceedings of the 2nd
ACM SIGCHI symposium on Engineering
interactive computing systems, pages 47–56. ACM,
2010.

8. R. Eckstein, M. Loy, and D. Wood. Java Swing.
O’Reilly, 2002.

9. Eclipse Foundation. JFace data binding.
http://wiki.eclipse.org/index.php/JFace_
Data_Binding.

10. R. Field. JavaFX language reference (chapter 7 -
Data binding). http://openjfx.java.sun.com/
current-build/doc/reference/ch07s01.html.

11. R. D. Hill. The Rendezvous constraint
maintenance system. In UIST’93: Proceedings of
the 6th annual ACM symposium on User interface
software and technology, pages 225–234. ACM,
1993.

12. C. Kazoun and J. Lott. Programming Flex 2.
O’Reilly, 2007.

13. G. E. Krasner and S. T. Pope. A description of the
model-view-controller user interface paradigm in
smalltalk80 system. Journal of Object Oriented
Programming, 1:26–49, 1988.

14. B. Myers, D. Giuse, R. Dannenberg, B. Zanden,
D. Kosbie, E. Pervin, A. Mickish, and P. Marchal.
Garnet: comprehensive support for graphical,
highly interactive user interfaces. Computer,
23(11):71–85, 1990.

15. B. Myers, R. McDaniel, R. Miller, A. Ferrency,
A. Faulring, B. Kyle, A. Mickish, A. Klimovitski,
and P. Doane. The Amulet environment: new
models for effective user interface software
development. IEEE Transactions on Software
Engineering, 23(6):347–365, 1997.

16. C. Sells and I. Griffiths. Programming Windows
Presentation Foundation. O’Reilly, 2005.

17. L. Villard and N. Layaida. An incremental XSLT
transformation processor for XML document
manipulation. In WWW ’02: Proceedings of the
11th international conference on World Wide Web,
pages 474–485. ACM, 2002.

18. J. B. Warmer and A. G. Kleppe. The object
constraint language: getting your models ready for
MDA. Addison-Wesley.

http://wiki.eclipse.org/index.php/JFace_Data_Binding
http://wiki.eclipse.org/index.php/JFace_Data_Binding
http://openjfx.java.sun.com/current-build/doc/reference/ch07s01.html
http://openjfx.java.sun.com/current-build/doc/reference/ch07s01.html

	Introduction
	Specifying Active Operations
	Example 1 - A Simple XML Editor
	Example 2 - A Directory Editor
	Example 3 - An Academic Calendar

	Translating Active Operations
	Paths
	Observability
	Selection and sort
	Tuples

	Implementing Active Operations
	Implementing Active Operations on a GUI Toolkit
	Theoretical Complexities
	Experimental results

	Related works
	Comparison with bindings of RIA Toolkits
	Active Operation Capabilities
	Comparison with RIA Toolkits
	Implementing the Examples using RIA Toolkits
	Discussion

	Conclusion
	REFERENCES

