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Integral Equations and Iterative Schemes for
Acoustic Scattering Problems

Xavier ANTOINE and Marion DARBAS

Abstract

The aim of this chapter is to provide an introduction to tleeative Krylov solution

of integral equations for time-harmonic acoustic scattgriFrom the point of view
of computational methods, considering large frequenciescoustics is challenging
since it leads to solving highly indefinite large scale coemdinear systems which
generally implies a convergence breakdown of iterativehoas. Most specifically,
we develop the problematic and explain some partial salatibrough analytical pre-
conditioning for high frequency scattering and the intrcithn of new combined field
integral equations.

Keywords: acoustic scattering, high-frequency, integrabquation, GMRES, Kry-
lov solver, preconditioners, well-conditioned integral guation

1 Introduction

The numerical solution of time-harmonic (exterior) scattg problems in the high
frequency regime remains a challenging problem due to gsiip computational



bottlenecks. A few possible directions can be considerddrioulate the problem
and try to solve it [15]. Here, we choose the point of view dégral equations for-
mulations [33, 47, 55]. In the most recent industrial codeettgoments, the integral
equation formulation is approximated by a boundary elemethod. The resulting
linear system is next solved by an iterative Krylov solveB][Soupled with a Fast
Multilevel Multipole method [36, 37, 57, 62]. However, theslfhholtz operator for
scattering problems is a highly indefinite complex-valueéar operator. As a con-
sequence, the associated matrix resulting from the boyred@ment discretization is
also highly indefinite and complex. This results in a breakaof the iterative Krylov
solver in many applications or to an extremely slow convecgen best cases. The
aim of this chapter is to explain the specific difficultieskial to this problem and to
introduce some partial solutions. In particular, the cogeace of the solver is closely
related to the spectral distribution of the integral opanat\We propose here to modify
the spectrum in such a way that we get a fast convergenceislieiated to the idea of
preconditioning but not only. Furthermore, the originabf our approach is that we
work at the continuous level, meaning that we directly malafe the Helmholtz op-
erator and not its matrix representation. This point of vggves rise to armnalytical
operator theory for building preconditioners which mustbepared to the standard
purelyalgebraicapproach. Finally, this chapter can be seen as a companpan {ta
the chapter [66] by E. Turkel on iterative scheme for acaustattering.

The plan of the chapter is the following. In Section 2, we geene basics about
numerical linear algebra and Krylov solvers. In particulee describe on a few ex-
plicit examples the problems of convergence that can artsenvgolving indefinite
linear systems. This leads us to analyze and understand ighyfrequency exterior
Helmholtz problems also suffer from a lack of convergencéori&f review of some
notions and recent developments algebraic preconditioners is also proposed for
convergence improvement. As already said, one of the @ligigs of our approach
for preconditioning integral operators is to build contsanalytical precondition-
ers. To this aim, Section 3 gives an introduction to the thedrpseudodifferential
operators and associated symbolic calculus which will ezluis the sequel. In par-
ticular, we give a first simple application of this theory fmoposing an original in-
terpretation of standaralgebraicLaplace shifted preconditioners. Section 4 focuses
on the theory of potential which is used for writing integegjuation representations
for acoustics scattering. We develop the elementary nstion obtaining integral
equations and review standard direct and indirect, firstt second-kind Fredholm
integral operator formulations. This allows us to insisttbe spectral properties of
each representation and to precise the well-posednedtsreSection 5 gives a short
presentation of the way actual integral equations solverdailt. This mainly high-
lights the fact that the construction of a preconditionesuti be based on the only
assumption that an integral operator is never availableutyir its matrix but rather
through a "black-box” which is able to compute fast matrector products. There-
fore, a suitable preconditioner should be matrix-free Wheca strong restriction to
usual algebraic preconditioners. We analyze in Sectiore&gectral distribution of
standard integral operators in the case of a sphere whexgrahtoperators can be



diagonalized. This gives a thorough understanding of thersialue distribution of
each operator and how it is related to the frequency pararheted density:, of dis-
cretization points per wavelength. In Section 7, we desdim possible solutions for
obtaining some efficient and robust analytical precondérs. The first strategy uses
integral operators through the so-called Calderon watatwhile the second one is
based on the theory of pseudodifferential operators. Soamples show that these
two directions are promising. In Section 8, we propose tddbsome new alterna-
tive well-posed integral equations with a spectral distitm well-suited to get a fast
convergence of an iterative solver. Examples show thaethess integral formula-
tions are well-adapted for solving high frequency probleRisally, Section 9 gives a
conclusion.

2 Difficulties for the iterative solution of scattering pro-
blems

2.1 Notations and background

Let us begin by some background in linear algebra. A vectommmn a vector space
Y is a real-valued functiog — ||y|| onY which satisfies:

e |yl >0, Yy € Y, and||y| = 0 if and only if y = 0 (positivity),
e [lay| = lalllyll, Vy € Y, Va € C (scaling),
o |ly +x|| <|lyll + lIx]|, Vy,x €Y (triangular inequality).

For the particular case when = C", the most commonly used vector norms are the
Holder norms g-norms)

Iyl = ) lwal”)',
i=1

withy = (yi)izl,---,n andp > 1. The most useful norms in practice are

Iyl = lwil Iyl = O w2, and|ly]|o = _max [y;].
i=1 i=1 T

We can use norms to measure the magnitude of a matrix. The @sdomas stated
above for vector norms apply here

o ||A]| >0, VA € C™" and| Al = 0 ifand only if A = 0 (positivity),
o |[aAl = |af||A]l, YA € C"*", Va € C (scaling),

o |A+ B| < ||A]| + ||B||, VA, B € C™" (triangular inequality).



The most important class of norms are the induced matngrms

1A,

All, = :
|| ||p x€eC” x#£0 ||X||p
A fundamental property is that

IAB|l, < [|Allp|Bll,, VA, B € C"".

Whenp = 1 andp = oo, we have the simple formuldsl = (a;;),, ;)

n n
JAIL = max > fayland][ Al = max > Jayl.
j=1,-n P i=1,--.n =

The induced 2-norm is also called the spectral norm and engdy
IA]ls = p(A"4)'2,

with A* the transpose conjugate matrix (A7) and p(A) the maximum modulus of
the eigenvalues ofl (spectral radius).

To end this section, let us give some other useful definitions

Definition 1. Let us introduce the following definitions

e A non Hermitian matrixA of sizen x n is said to be positive-definite (respec-
tively negative-definite) if and onlyJif(x* Ax) > 0 (respectivelyi(x* Ax) < 0)
for all non-zerox € C".

e A Hermitian matrixA (A = A*) of sizen x n is said to be positive-definite
(respectively negative-definite) if and onlxifAx > 0 (respectivelk* Ax < 0)
for all non-zerox € C".

e A Hermitian matrixA of sizen x n is said to be positive-semidefinite (respec-
tively negative-semidefinite) if and onlyxif Ax > 0 (respectivelyx* Ax < 0)
forall x € C".

¢ A Hermitian matrix which is neither positive- or negativensdefinite is called
indefinite.

We also have the following Proposition.

Proposition 1. A Hermitian matrix is positive-definite if and only if all ksgenvalues
are real and strictly positive.



2.2 lterative algorithms

We consider a linear system
Ax = b, (1)

whereA is an invertible complex-valued matrix of sizex n andb € C". Methods
for the solution of linear systems fall into two classesrect methodsinditerative
methods

Direct methodq31] produce an exact solution in a predictable finite numidder
elementary operations if no rounding errors are presenenhe matrix is symmet-
ric positive-definite, a Cholesky algorithm is applied. Bononsymmetric matrix, a
gaussian elimination solver is used. In this case, the mgistorage and computa-
tional times costs scale &(n?) and O(n?) respectively. Then, a direct solution is
clearly out of reach when is large and dense, requiring hence too large memory and
prohibitive computational times.

Iterative schemesan be considered as an alternative to direct methods feothe
tion of large linear systems. Stationary relaxation-typethrods [31] (Jacobi, Gauss-
Seidel...) have the disadvantage of slow convergence amckoo certain classes of
matrices only. Projection methods are more general andstobLhis is most par-
ticularly the case of Krylov subspace methods [58]. Theskrtigjues are motivated
by the Cayley-Hamilton theorem [50] which allows to constrthe inverse of a ma-
trix as a polynomial according td. Krylov subspace methods consist in seeking an
approximate solutios™ to (1) from an affine subspace

x4+ K, (A, r0), (2)
with
¢ x( the initial guess,
o 1O = b — Ax(® the initial residual vector,

o [Cn(A, 1) = span{r® Ar® A%x© Am™=1x0)} the Krylov subspace of
dimensionm,

such that the orthogonality condition (Petrov-Galerkindition)
(B(x = x™),v) =0, W € Kpn(A,x?), (3)

is fulfilled. The successive approximations are clearlyregped by (™ = x©) 4
P (A)r®, whereP,,_, is a polynomial of degreen — 1. The different Krylov
methods therefore differ in the choice of the matBiXgenerally symmetric positive-
definite). If B defines a scalar product, then the orthogonality condi®rbécomes
equivalent to the following minimization problem (optirtglcondition)

Ix=x"p=min |x—ylp
VEKm (A,r(0)

Two standard examples of such methods are



e Conjugate gradient methods: f is symmetric positive-definite, the = A
and (3) is equivalent to

Ix—x"|l4= min [x—y|a,
YEKm (A,r(©)

e Generalized Minimum RESidual method (GMRES) : For a generatlix A,
we chooseB = AT A and get

b —Ax™ ||, =  min ||b— Ax|,.
XEKm (A,r(0))

A Krylov subspace method is then represented by a congtruatgorithm of a basis
of the affine subspack,,(A,r(®) and by an optimality criterion to determine the
approximate solutios™ of (1).

Let us now focus our attention on the GMRES which constittlieseference al-
gorithm in this chapter. This algorithm, introduced by Saad Schultze [58, 59], is
well-adapted to solve large nonsymmetric linear systetrrtesponds to the choice
of the Krylov subspacéC,,(A,v,) with v; = r®/||r(?|,. At each iteration, the
Krylov subspacéC,, (A, vi) has to be constructed. In practice, we have to generate a
set of basis of this subspace. The natural basisAv,, A*vy,..., A" lv;) cannot
be used because of its numerical degeneracy. A solutiorc@istruct an orthonormal
basis(vy, v, ..., v,,) of K, (A, vy) viathe Arnoldi-Modified Gramm-Schmidt algo-
rithm. We denote by, = (v1, va,...,v,,) then x m matrix with columns vectors
vi,i =1,...,n,and byH,, the(m+1) x m Hessenberg matrix where nonzero entries
h;j = (Av;,v;) are defined by the Arnoldi-Modified Gramm-Schmidt algorithAmy
vectorx in x 4 IC,,(A4, v;) can thus be written as = x(*) + V,,,y, wherey € C™.
Moreover, the relatiomV,, = V.1 H,, holds. It results in

b—Ax=b - A" +V,y) = Vi1 (Ber — Hpy),

by setting3 = ||r(®||, ande; = (1,0,...,0)” € R™*'. Then, we have the optimality
criterion

min |b — Ax||2 = min ||fe; — ﬁmyHQ,
XEKm (A,r(0)) yeR™

exploiting the fact that the column-vectorsigf . ; are orthonormal. The approximate
solutionx(™ can be obtained as™ = x(© + V,,y™, wherey™ minimizes the
functional J(y) = ||Be; — H,,y|»- The pseudocode for basic form of the GMRES
algorithm can now be given as

1. Initialization

Computer® =b — Ax@, 3 := ||r@||, andv, := /3
2. Define thdm + 1) X m matriXFm = {hij}1§i§m+1,1§j§m- Setﬁm = 0.

3. Construction of the Arnoldi’s basis (steps 3-11)
forj=1,2,...,m,do



computew; := Av;

fori=1,...,7,do
hij = (wj,vi)
Wj = Wj — hijvi

enddo

© © N o 0 &

hji1; = ||wjll2. If hj1q1; = 0setm := j and go tol2
10.  vj =w;/hjny
11. enddo

12. Minimization problem
Computey ™ as the minimizer of| Be; — H,,y||» andx(™ = x© 4+ ),

In order to solve the least-squares problem (step 12), tret autapted technique is
to employ a QR-decomposition of the Hessenberg mafrjx(see [58] for details).

Remark 1. The parameterm is not determined a priori. In general, a maximum
numberm,,., is fixed and is typically dictated by the computational resses. If the
ma-ximum numben . of iterations has been reached without triggering the conve
gence test, then arestarting is done, i.e. GMRES is staftedtawith the last approx-
imationx(™m) as the initial guess. This method is called restarted GMRESY).
The residual|b — Ax(™|, is generally used as a stopping criterion.

Essentially, the computational cost of GMRES is related to

i) the total number of iterationd™®" required to reach aa priori fixed tolerance
¢ on the residual norm,

ii) the cost of one iteration which is mainly the Matrix-VecProduct (MVP)w; =
Av; involved at step 4.

If this algorithm is directly used for a full complex-valuedatrix A, then the total
cost isO(N™n?). In terms of memory storage, the algorithm still neéd(s:?) en-
tries for A. In the background of integral equations, efficient comgimsalgorithms
have been proposed during the last two decades. For exathplenultilevel Fast
Multipole Method (FMM) [32, 36, 37, 40, 62] both computes M&P in O(n logn)
operations and requir€3(n) entries. Essentially, the FMM proposes to compute only
the near-field entries exactly and the far-field entries @agprately (but with control-
lable error). Other fast algorithms exists. We do not degkithese techniques and
rather refer to [23] for technical points. This drastic retion both in computational
cost and memory storage for one iteration of the GMRES gixps@ations for solv-
ing high frequency problems.



Let us now briefly review the most important results on theveogence behaviour
of GMRES (for proof and further details see [39, 53, 58])41E C"*™ is non singular,
we define the quantity

kp(A) = [|AL A7,

which is called the condition number of the linear systemwith respect to the in-
duced matrixp-norm (cf. section 2.1). We begin by giving a global convege
result.

Theorem 1. Let A € C"*" be a non singular matrix. The full GMRES algorithm is
guaranteed to converge in at mostterations.

This is true in the absence of arithmetic errors. Unfortalyatomputer arithmetic
is not exact. Moreover, this would be impractical for largear systems if there were
many steps required to reach convergence. In these sitsatopreconditioner can
be used to reduce the number of iterations (see e.g. SecBdnl@ order to predict
the behaviour of GMRES, the convergence analysis is cordenith the derivation
of upper bounds on the residual norms.

Proposition 2. Let A € C™" be a non singular matrix anet®” ¢ C” an initial

guess. If we can diagonalizé in the formA = UAU~! whereA is the diagonal
matrix of eigenvalue§);); of A corresponding to the appropriate eigenvectorgin
then a bound on the residual norm at iterationis expressed by

[£™lly < mo(U) _min  max g(A) x|l “)

with ko(U) = ||U||2/|U~!||2 the condition number df in the2-norm.

This bound was the first convergence result for GMRES [59)wéier, even ifA
is normal ¢2(U) = 1), the bound (4) may fail to provide any reasonable infororati
about the rate of reduction of the GMRES residual norms. kagahalizable but
non normalA (U far from unitary),x,(U) might be very large, and the bound in (4)
might be a large overestimate of the residual norm. Moreawvisrnot clear that only
the conditioning of the eigenvectors dfshould influence the convergence behaviour
of GMRES (see Section 2.3). To obtain computable bounds endkidual norm
that generate a good prescribed convergence curve for aajenatrix is a difficult
challenge. Theoretical results (min-max approximationsv@trix eigenvalues) in
this field are still partial. We see in the sequel of the chatitat the analysis of
the distribution of the eigenvalues in the complex planegia very useful approach
for predicting the convergence of the GMRES. Concerningeéktarted GMRES, the
following proposition holds.

Theorem 2. If A is symmetric positive-definite, then GMRES(m) convergesat
m > 1.

However, the restarted GMRES algorithm can stagnate wleem#trix is not def-
inite positive. We will observe this difficulty in the follawg section.



2.3 Convergence problems for indefinite linear systems

In iterative methods, a common belief is that the conditiomberx,(A) (in the
2-norm) of A is a good measure of the convergence rate of the algorithnms i$h
generally not true for a complex-valued matrilxwhere indeed the distribution of
the eigenvalues in the complex plane is the most crucialtgoinbserve. In many
applications, the eigenvalues of the matfixare computed in order to examine if the
whole spectrum is included or not in a given part of the complane. Unfortunately,
the matrix is often defined with a given precision and the categ eigenvalues may
differ from the real ones, especially in highly non normases To answer to this
problem, the difficult notion of-pseudospectrum of a matrix was introduced [65]. In
a few words, the idea is to compute the set of the eigenvalupsrturbed matrices
A + E for someFE, with ||E|| < e. Generally, this approach is costly in terms of
computation.

To illustrate the fact that the distribution of the eigemes plays a crucial role
in the convergence of the GMRES, let us consider the seveplsicomplex-valued
diagonal matricesl!; defined by

Al = diaq1/£2)_1§g§n, A2 = diaQG”/ﬁz)lggn, Ag = diaqew)lsgsn,
A4 = dlag(l + 6%4)1§g§n, A5 = dlaq15 + €Z%)1§g§n, (5)
A6 = dlag(l -+ €Z€/€>1§g§n, A7 = dlag(l -+ €Z€/€2)1§g§n.

ConcerningA;, the matrix is real-valued and the eigenvalues tend towzeds
as/ — +oo (Figure 1(a)). In terms of operators (see section 3), itasponds to the
notion of real-valued elliptic positive pseudodifferettyperator of order2. More or
less, the underlying operator is the inverse of the one-dsio@al Laplacian operator
(02)~. In particular, the matrix is symmetric apasitive-definite We can observe
that there is an eigenvalue clustering around zero. Theitondiumbers,(A;) = n?
becomes large asgrows and so the convergence of GMRES(50) takes more iasati
(Figure 1(b)). However, the convergence is observed. Tleeaoce of the iterative
solver is fixed equal te = 10~* in all the examples.

The second test-case is related to a complex-valued méirixThe case is close
to the previous one but the distribution of the eigenvaluethe complex plane is
completely different even if their modulus tends to zerg(fe 1(c)). The condition
number is again? but we can quickly observe the divergence of GMRES(50) ex. f
n = 100 (Figure 1(d)). Here, the matrix is indefinite (eigenvaluagwegative or
positive real parts). In terms of operators, this corresigsdo an indefinite complex-
valued integral (or pseudodifferential) operator of ord@r This is also a first-kind
Fredholm integral operator (see Section 4.3.5). These itwat®ns show how the
convergence of the GMRES strongly depends on the distabuati the eigenvalues in
the complex plane.

The third situation, withAs, is also very interesting. The complex-valued matrix
has a condition number equals tdout the convergence of GMRES(50) takes many
iterations to converge for = 100 and even diverges fat = 1000. This example



illustrates clearly that considering indefinite matricesds to instabilities of the GM-
RES and eventually to its divergence. This is still true iedranslates the spectrum
of A; from 1 to the right and get the matriX, (Figure 2(a)). Now, if one translates
Az from 1.5 and obtaimM;, then the convergence holds and is pretty fast since all the
eigenvalues have a large positive real part and are sutfigi@n away from the origin
(Figure 2(b)).

Let us consider the two matricels and A;. They look like A, but the perturbative
term to1 has a modulus which tends towards zero linearly or quaaigti¢Figures
2(c) and 2(e)). This rate of convergence of the sequencdaitedeto the order of the
underlying operator: first- or second-order. This kind oftricas (close to positive-
definite matrices for large values @) corresponds to an integral operator called a
second-kind Fredholm operator (see Section 4.3.5). Tpertsum clusters around a
complex valuex (= 1 here) up to a sequence converging to zefq'( or e“ /¢ here).
These configurations lead to converging iterative schem#éisawvate depending on
the decay of the sequence to zero (Figures 2(d) and 2(f)).

2.4 Why this happens in acoustic scattering: a simple examel

We have just seen that an indefinite matrice without any riodigenvalue clustering
implies bad convergence properties of the GMRES. Such atgtunaturally arises
in acoustic scattering.

Let us look at the following simple scattering problem. Wasider a plane wave
u"(x) = e~** coming from+oo and illuminating the left positive domajn- oc; 0].
The real-valued constant wavenumber is denoted .byrhe sound-hard scattering
problem reads: find the scattered fielth the unbounded domalif; +oo[ such that

(02 + k*)u =0, in]0;+oo],
0,u(0) = ik, (6)
u travels to the right

Of course, the solution is triviakz(z) = ¢***. Let us note that other boundary condi-
tions could be used as for example the sound-soft af@r = —1 or an impedance
boundary condition. Since problem (6) is set in an unboumidadain, one usually in-
troduces an Atrtificial Boundary Condition (ABC) at the fimits boundary: = {1}
(another point could be chosen). Its aim is to replace théeser "u travels to the
right” to get a bounded domain boundary value problem. H#éepoundary condi-
tion is trivial and is(9,, — ik)u = 0, wheren is the outwardly directed unit normal
vector tof at 3. Finally, the problem which is solved by a finite element noeks

(2 +k)u=0, inQ,
0,u(0) = ik, (7)
(On —ik)u =10, onx,

with Q =|0; 1] andX = {1}. Let us consider that we use a linear continuous Galerkin

10
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approximation of (7). Then, the variational formulationtes down: findu such that
/ Dyud,v — Kuvdr — iku(1)v(1) = —ikv(0), (8)
Q

for all well-chosen test-functions Let us denote biyl,, andS,, respectively the mass
and stiffness matrices associated with the linear Finigareint Method (FEM), for

a uniform discretization of). The length of one element isand the total number
of degrees of freedom of the FEM s, (which is equal to the number of segments
plus one). We denote by, € C"*! the linear approximation of solution to (7)

or (8). The term—iku(1)v(1) related to the ABC contributes in the linear system by
an additional term on the last row and column of the lineatesys We denote this
matrix term by—ikB,,. The right-hand side is related teikv(0) and gives birth to a
right-hand side vectds, € C™»*!. Finally, the linear finite element approximation of
(8) leads to the solution of the system

(Sh — kQMh — ith)uh = bh. (9)

The sparse matrix involved in system (9} j€omplex-valued because of the boundary
term —ikB;, andii) non positive-definite since we have the contributian— 4*M,.
This is most particularly penalizing when solving high fuegcy problemsk( large).
We report on Figure 3(a) the behaviour of GMRES(50) appl@ddlving (9) for

k = 60 andn;, = 100. The convergence is extremely slow. Let us note thamust
be quite large for this value df because of the pollution error [15, 64] into the FEM.
Figure 3(b) shows the distribution of the eigenvalue&Spf- £*M;, —ikB;,) as well as
(S, — k*M,). We can clearly see that the problem has many eigenvaluggilyithe
left half-plane with null imaginary part fdiS;, — £*M,). As a consequence, the matrix
is non positive-definite. Furthermore, the reason why aldlgenvalues are real is
that we are rather solving an interior Helmholtz problemhwiteumann boundary
condition. In the case of an (exterior) scattering problachding the ABC (which
means that we consider the additional terikB,,) leads to a complex spectrum. This
can be observed on Figure 3(b). Then, this is worst for haaingnverging iterative
scheme.

2.5 How to improve the convergence: preconditioners

For practical purpose, large scale sparse linear systeensaved by an iterative
Krylov solver. This is the case in acoustic scattering whegemust be able to design

1) a convergent iterative solver and 2) methods that coevistly if convergence
occurs. One very convenient way to do this ipteconditioninghe linear system by

a sparse matri¥ called thepreconditioner The idea is the following. Let us assume
that we are solving a linear systefax = b and that we are able to build a matrk
such thatP is close toA~!. This means that in some sense, for a suitable matrix norm
||-|l, the quantity]| PA —I|| or ||AP — I|| is small. Here[ is the identity matrix. We
say thatP is a left preconditioner iP A ~ 1 or a right preconditioner il P ~ I. Since
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Figure 3: Matrix(S;, — k*M,;, — ikBy,).

the condition numbext(PA) is close tox(I) = 1, we can think that the solution to the
new linear systen” Ax = Pb by an iterative method is convergent and fast. This can
be expected for positive-definite matricédut not necessarily for indefinite matrices
as we previously noticed. If applyin only requires a Matrix-Vector Product (MVP)

in the GMRES, we say thdt is anexplicit preconditioner. If its application needs the
solution of a sparse linear system|js said to bemplicit.

Since we work at a matrix level, then the construction of thexpnditionerP can
only be based oalgebraicconsiderations (the entries df). Many algebraic precon-
ditioners have been proposed during the last decades. lne¢nBon e.g. Incomplete
LU preconditioners (ILU), SParse Approximate InversesA|3Br Algebraic Recur-
sive Multilevel Solvers (ARMS) and all their variants. Weeeto [17] for some
of these techniques for general linear systems. Concethmgolution of scatter-
ing problems, these preconditioners have been tested gmuwed for instance in
[18, 26, 27, 41, 44, 45, 56, 67]. However, even if these prditmmers provide an im-
proved convergence, convergence breakdown and slow ganes still arise when
medium and high wavenumbetsare considered. This challenging problem is so still
open.

An alternative to the algebraic preconditioners is devetbm the sequel. Essen-
tially, we can summarize the derivation of the algebraicpnalitioners to: 1) first,
take a continuous (partial differential or integrodiffeti@l) operator, 2) discretize it
to get a matrixA and 3) build an approximate algebraic invef3eOur solution lead-
ing to what we callnalytical preconditioners is based on the following three points:
1) take a partial differential operator or an integral opara?) build an approximate
inverse at the continuous level and 3) discretize this dpefar example by a finite
element method to get a preconditiorfer The interesting aspect of this approach is
that point 2) keeps the information related to the undeg\atructure of the operator
to approximate, information which & priori lost by considering the algebraic view-
point. To attain this goal, we need a mathematical theoryclwhilows to compute
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practically an approximation of the inverse of a generalrafme at the continuous
level. This is the aim of the next section where we introdineetbols from pseudod-
ifferential operators theory and associated microlocliutas.

3 Elements on pseudodifferential operator theory

We introduce in this section the basics of the theory of pediifiérential operators.

The aim of pseudodifferential operators and associatebioial symbolic calculus

is to naturally generalize partial differential and int@goperators through the notion
of symbol. After the definitions, we give some practical suler symbolic calculus

which are the keystone for building approximations of pseliferential operators,

with future applications to analytical preconditionerge¢sons 3.3, 7 and 8). For
further reading, we refer e.g. to [63] where the theory olpeelifferential operators

is presented with more details that we cannot address ishioig introduction.

3.1 Definitions: pseudodifferential operator and symbol

LetQ C R? be an open set arid((2) the space of distributions ddwhich is the dual
space ofD(Q2) := C°(Q2) [60, 63]. We introduce the vectorial differential operator
D = (Dy,---,Dy), settingD; := —i0; = —id,,. A variable coefficients partial
differential operato(x, D) of orderm has the general form

P(z,D)= Y au(z)D", (10)

laf<m

wherex := (71, ...,74) € Q, a = (ay,- -+, aq) is a multi-index inN¢ and the coef-
ficientsa, areC>(£2) smooth functions. The operatdr® is: D* = D{"...D3*. For

the sake of clarity, we will sometimes precise the derivatiariable used foD* like

for exampleDg or ¢. The polynomiap : (2 x R? — C

pla, &) = > an(@)E,

laf<m

is called the symbol of the operatér (in the sequek = (&, ...,&,) is the Fourier
covariable). Therincipal symbolof orderm of P, denoted by, (P), represents the
homogeneous part of degreein & of p,

op(P)(x. &) = > aq(z)€".

laf=m

For example, for the operatoP(x, D) := div(Ay(x)V-)+ae(x)”, we havep(x, £) =
—ETAQ(m)€+a0($) andO'p(P)(l‘,€) = —€TA2(m)E Here, divv := 81V1+...+8dvd
is the usual divergence operator of a vector field
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Let f be a function in the Schwartz spaSeof C> functions that rapidly decay at
infinity. Then, its Fourier transfornfi € S is defined by

fle) = [ e =se)da,

and we have .

x) = € f .
) = g [ e riee

It is well-known that the Fourier transform is an isomorphisom S. Moreover we
have the propertyeu (&) = £*u(€). The inverse Fourier transform is used to rewrite
the partial differential operatd? : S — S through its symbop

o [ et e

with v € S. Pseudodifferential operators are a generalization térdintial operators.
The motivation is to replace polynomial symbelsn € with more general symbols.
Working not only locally in space fat but also in the cotangent space with respect to
& is known agmicrolocal analysis Let us introduce the space of admissible symbols
that define a pseudodifferential operator.

Definition 2. Letm € R. We denote b§™ () the space of functionse C>*(Q xR?)
such that for every compact subgétC ) and everyn € N9, 3 € N, there exists a
constantC = C(K, «, ) € R such that

P(x, D)u(x) =

020ga(z, €)] < C(1+ (€)™, V(x, &) € K x R™

The notation¢| designates the euclidian norm of vectpre R4, i.e. [¢] = /€ - &,
and, for a multi-index, we sety| = a3 + ... + a4. Elements of5™(£2) are called
symbols of ordern and we writen € S™.

Let us define now a pseudodifferential operatoof orderm through its symbol
a € 8™ and the inverse Fourier transform.

Definition 3. A symbok € §™((2) defines a continuous linear operatdr= Opa :
Co°(82) — €52 (2) by

1
(2r)’
Operators of this type are called pseudodifferential opersof symbok and of order
m. We set therl € " (Q).

A(z, D)u(x) = /R ) e Ea(x, €)u(&)dE.

Pseudodifferential operators of arbitrarily small orderare called regularizing
and we hava) () = Nery™(2). The theory of pseudodifferential operators
offers an interesting and useful property through the syimlsalculus. This leads to
practical computations on operators working at the algelbesel with their symbols
(see section 3.2). To complete some of the definitions bel@wntroduce the notion
of elliptic pseudodifferential operators.
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Definition 4. A symbok € §™(1) is called elliptic (of degreen) if for every K’ C )
compact, there exists a constarsuch that

1
la(2, &) = C(1+ €)™, Vo € K, [¢] = =

An elliptic pseudodifferential operatat € ™ (2) is an operator with an elliptic
symbole € §™(Q2).

Pseudodifferential operators have regularity propesibgh are related to their
orderm. For example, if we denote b§*(2) the Sobolev space of orderc R of
distributionsu defined o2 [63], then it can be proved that is a continuous linear
operator acting froni{*(2) onto H*~™({2), for anys € R.

Finally, pseudodifferential operators have the pseudlpooperty. We say that
an operatorA acting on a distribution is local if Au is smooth in the same set as
u. Pseudolocal means that the set whdrés smooth includes the set wheteis
smooth. This implies that could smooth out a nonsmoothness.qa more rigorous
mathematical definition uses the notion of support and samgupport of a distribu-
tion [63]). Partial differential operators with smooth ffoa@ents are local operators
and every local operator is a differential operator. Exaspif pseudolocal operators
include integral operatord of the form

Aufz) = / Gz, y)uly)dy,

whered is a smooth kernel.

3.2 Practical symbolic calculus rules

The most important property of pseudodifferential opamator practical applications
in scientific computing is the fact that all the computatitike the composition of

two operators or the transposition of an operator can bepeéd algebraically at the
symbol level. We give here the main results useful for theisegnd most particularly
introduce the idea of asymptotic expansion of a symbol.

A symbola € §™(1?) is said to be homogeneous of degreén £ if the following
relation holds

V(z, &) € Q x (R*\ 0),VA >0, a(z, \§) = \"a(x, £).
We can then give the following definition.

Definition 5. Leta € S™(2). Consider a deacreasing sequence of real constants
(my)72, with lim; ., m; = —oo. Let(a;);2, a sequence of homogeneous symbols
a; € 8™ (Q) such that

k
a—Y a;€S8™(Q), (11)
j=1
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for everyk € N, k # 0. Then, we say thdt;)>", is an asymptotic expansion of In
this case, we write ~ Zj a;. The first termu, of orderm; in the expansion is called
the principal symbol.

Not every symbok € S™(2) has an asymptotic expansion. The set of symbols
of the form (11) is called classical. It is denoted &§(€2) and the corresponding
operators belong tg(£2).

Remark 2. If two symbols: etb have the same asymptotic expansion, then they differ
from a smoothing pseudodifferential operator

k k

a—b=(a=) a;)=(b=) a;) € S"(Q),

i=1 i=1
forallk andlim;_, ., m; = —00, s0(a—b) € S~>(Q), WithS™>°(Q2) = N,crS™ (2).

As said above, one of the crucial points of pseudodiffeatiofperators is that we
have algebraic rules for computing some operations on pskffiekential operators.
Two extremely important properties are the following.

Proposition 3. LetA € ¢g" (Q2), B € ¢4 () with symbols. € S5 (2),b € S5 (Q2)
respectively. Then

1. The transposd’ of A is a pseudodifferential operator. The symbok S ()
of A" € ¥ (Q) is given by the following expansion

w,€) ~ 3 S0E Dial, —€). (12)

aeNd
wherea € N? is a multi-index.

2. The composition of two operatossand B, denoted by B, is a pseudodiffer-
ential operator. The symbatb € S, 7"2(Q) of AB € ¥ ™2(Q) is

cl

ath(w, &) ~ 3 ~Ofalw, ) D3h(x, £). (13

aeNd

In particular, this shows thai(x, —£)" is the principal symbol of ando,(A)o,(B)
of AB.

In addition to Proposition 3, let us remark thafa € Sg* anddga € SQ“““' if
a € 8;". Furthermore, we have the following Theorem.

Theorem 3. Let A be an elliptic pseudodifferential operator of order. There exists
a pseudodifferential operatds (inverse ofA) with order—m such thatd B — I (right
inverse ofd) and BA — I € ¢~>°(Q) (leftinverse ofA). The operator is the identity
operator (with symbol).
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We can see that combining formula (13) and Theorem 3 gives@aipal way of
computing an approximate inverggof a given pseudodifferential operatdrif we
know its symbol: or at least the first terms of its asymptotic expansion. Iicie,
this can often be done. This point of view is at the basis oftwha call analyti-
cal preconditionersvhich is an alternative approach to the puralgebraicmethods
described briefly in section 2.5.

3.3 Afirst and simple application to preconditioning of the Helm-
holtz equation

An example of application of pseudodifferential operattisory and symbolic cal-
culus rules to preconditioning is the following. Let us cioles the Helmholtz op-
eratorL = A + k* of symbolo;(xz, &) = o.(€) = k* — |€|* (the dependence in
x really occurs for an inhomogeneous media). Then, an exadlytaal precondi-
tioner would be an operatof such thatAL = [. Sincel is a pseudodifferential
(in fact, partial differential) operator of order A is a pseudodifferential operator of
order —2. Formally, A is equal to the nonlocal operatoA + £%)~! with symbol
(k* — |€]*)~t. This point of view is purely theoretical since the pradticamputa-
tion of A is exactly what we wish to obtain by solving the initial seaittg prob-
lem. A first approximation is to consider a static approximabf the symbol ofA
as:oy ~ (—|€|*)~!. This means that the corresponding analytical preconitiés
Ay = Op((—|€]*)~1) = A1, implying that the associated preconditioned operator to
solve is: AgL = A7Y(A + k?) = I + k*A~2. HenceA,L is a second-kind integral
operator (see Section 4.3.5) with eigenvalue clusteriograd (1, 0) in the complex
plane for large frequencieg|. This idea was introduced differently by Bayliss, Gold-
berg and Turkel in [16]. It can be shown (see also Figure 4aafone-dimensional
example ) that this clearly improves the convergence oferatitve solver when con-
sidering low-frequenciek (close to the static problem). However, for larger values of
k (medium and high frequency regimes), the convergence nilay f&trongly depends
on k. As an example, let us consider= 60 andn; = 80 for the one-dimensional
case. We represent on Figure 4(a) the eigenvalue distriburti the complex plane
of the corresponding discrete preconditioned matrix £—2S, 'M,. If we would
zoom around the origin, then one would observe a clustefitigeeeigenvalues around
(1,0). However, as we can see, many eigenvalues remain in thealéjplane leading
to an indefinite matrix whe# is sufficiently large. An improved solution is to con-
sider the smoothing of by a complex parameter € C: A, = (A+k*a)~!. Adding
this parameter leads to the solution of a dissipative Heltnleguation. This approach
is called Laplace shifted preconditioning approach [38]tdrms of eigenvalues, the
symbol of the preconditioned operatdy, L is

1+ 2
a—+ 2’

(14)

oa,(x,z) =
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settingz = —|£|?/k* € R™. The eigenvalues are then distributed along a circular arc
as a consequence of the Poincaré map (14). The center afdleeis

1 (a*+b*—a)
53 T

and its radius is

7T

settinga = a+1ib. The endpoints are ! for the low-frequency spatial valugg < k

(= =~ 0 for physical propagative modes) aitl, 0) for large frequencie$¢| > k

(z = —oc for evanescent waves). For the "grazing” waves relatéélte & (= ~ —1),
one gets positive eigenvalues close to the origin. Thesankestan be observed on
Figures 4(b) and 4(c) for respectively= 1 + 0.5¢ and1 + ¢ ("analytical arc”). From
a practical point of viewA,, is computed by a few step of a multigrid algorithm or
by an ILU factorization and not a direct solver (see [38, 6@Jpese preconditioners
a priori lead to preconditioned matrices with eigenvalues havirgjtpe real parts
(and so positive-definite matrices correspond). Howewgrafscattering problem, a
boundary contribution related to the ABC must be considéneithe global system
matrix and must be included into the preconditioner. On gguté(b) and 4(c), we
draw the numerical eigenvalues of the preconditioned wesr ', L, with ABCs,
settingl, = Sy, — k*°M, — tkB), andA¥, = (S, — k*aM, — ikB,)~'. We observe
that the introduction of the boundary term modifies the dacarc. Most particularly,
the associated spectrum has eigenvalues with negativeagsa) meaning thﬁg’f » L

is an indefinite matrix now. The residual history of the GMR&ES for computing the
solution to the scattering problem with different precaiagiers are reported on Figure
4(d). This shows the divergence of the restarted GMRES witpoeconditioner and
its convergence fotv = 0, a = 1 + 7 anda = 1 + 0.5¢, which is compatible with the
literature on the subject [38, 66]. The fastest convergénobtained withn = 1 +
0.5, which can be expected from Figure 4(c) since most eigeegdiave significative
positive real parts.

This first simple application shows that the pseudodiffeaéoperator theory and
symbolic calculus lead to some possible constructionslmigsband efficient precon-
ditioners for PDEs. The aim of the next section is to provitleeo applications for
preconditioning well-known integral equation formulatsoused in acoustic scattering
problems.

\/1 (a— (a% + 0?2))2

4 Potential theory - integral equations

In this section, we present how to solve an exterior boundalye problem set in an
unbounded computational domaiia the integral equations method. First, we recall
the basic acoustic scattering problem and some notatioest, We give elements of
potential theory that are crucial for the integral equatiorethod. Finally, we discuss
the derivation of the classical direct and indirect intégiguations for both Dirichlet
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and Neumann boundary conditions. We also describe thepepties in view of a
numerical solution by a Krylov iterative solver (like the GR&S).

4.1 Acoustic scattering problems

Let us define al-dimensional bounded domaiir C R¢ representing an impenetra-
ble body with boundary’ := 9Q~. We denote by := R?\ Q- the associated
homogeneous exterior domain of propagation. Considerdagesing of an incident
time-harmonic acoustic wave™ by the obstaclé)~. The scattered field™ satisfies
the following exterior boundary-value problem

Aut + Eut =0, inQF,

U+|F = —Uinc|r or anu+|r = —0, Uinc|r, onl’, (15)
. (d—1)/2 + T

| |l|1m ||| (Vu™ - izl —iku™) =0,

x||—+o0

settingA := Zl 1 83; We consider an incident time-harmonic plane wave of the
form:

—ik@"C.z

uinC(

xT)=c¢
This wavefield is characterized by the wavenumber 27 /), setting)\ as the wave-
length of the signal. In the two-dimensional cage< 2), the direction of incidence
6™ is given by the relatio®™ = (cos(6"™),sin(6™))7, whered™ is the scatter-
ing angle in the polar coordinates system. In the three-dsiom@al cased = 3),
we haved™ = (cos(6") sin(¢™™), sin(6") sin(¢™), cos(¢™™))” . The scattering an-
gles ("¢, ") are expressed in the spherical coordinates system. We dsfine
the outwardly directed unit normal o~ at the boundary'. The boundary condition
on I (second equation of (15)) depends on the physical probleserustudy. The
sound-soft or Dirichlet (respectively sound-hard or Neamaoundary condition on
I’ corresponds to the first (respectively second) boundardition in (15). Finally,
the last equation is the well-known Sommerfeld radiationditton or the outgoing
wave condition. This condition completely characterizestiehaviour of the solution
to the Helmholtz equation at infinity and guarantees theusngss of the solution to
the exterior problem (15).

Let us introduce the functional spaces [55]

HIOC(Q_ = {v e D'(QT)/yv € H*(Q),Vy € D(R?)
H'(A) = HY(A, Q = {ue H'(Q);Auc L*(Q)},
HL(A) = Hip (A, QF) = {u € Hy, (Q); Au € L, (

752]‘7

)

Foru € HL(A), the exterior {) and interior ) trace operators of order(; = 0 or
1) can be defined by

’y;: CHL(A) — HY>(D)

u — vy ut = dlu|r. (16)
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In this functional setting, the existence and uniquenesiseo$olution to the scattering
problem

Findut € H} (QF) such that

AuT + k*ut =0, inD'(Q),

Yiut=g:= —’y;fuinc, in HY/2-9(T"), forj=0o0rl, (17)
lim 2]V (Vat - — ikut) =0,

]l —+o0 ]

can be proved [33].

The first main difficulty arising in the numerical solutiontbke exterior boundary-
value problem (17) is related to the unboundedness of thepatational domairf2*.
A solution is to apply the integral equations method [29, 33lis approach allows to
reformulate the initial boundary-value problem as an irdegquation defined on the
boundaryl” of the scattering obstacie—. Then, this method reduces the dimension of
the problem tal — 1. Boundary integral equations are derived from potentiebtij.
Let us give in the following Section some elements of thi®tle

4.2 Potential theory: basic relations - properties

The essential property is that any solution to the Helmhedfaation can be repre-
sented as the linear combination of a single- and a doulpbs-jaotentials. The fol-
lowing proposition holds.

Proposition 4. Let us define the outgoing Green’s functiGhassociated with the
Helmholtz operator iR? by

(k@ — y])), for d=2,

G(x,y)=1q 7 giklz—yl (18)
—_—_ ford=3,
Ar ||z — y|

WhereHo(l) designates the first-kind Hankel function of order zero. (et v™) €
H'(Q7) x HL (Q) satisfying

Av™ + kv, inQ,
and

Avt + BT, inQF,

v™ outgoing wave.

Then, we have

Lol @) - Dbl = { 10 @T e a9

where

Wl =0 =% [Onvlp =0T =70,
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and
Lp(x) = / G, y)p(y)dT(y),  ¢T, (20)

Do(x) = / Ori) G, 9)0(y)AT(y), T ¢ T (21)
for (p,¢) € HY2(I') x H~Y(T).

The operatord, and D defined above are called the single- and the double-layer
potentials respectively. To obtain integral equationsosethe boundary’, we need
the trace formulae for these two potentials (see for in&§bs]).

Proposition 5. The first and second traces @hof the single-layer and the double-
layer potentials are given by

( YooL=rqio0L="L
B 7z

M oL:(g;M (22)
WTOL:(—gJFN)

\

)
A
% oD =(-5+D)
z
Yo oD = (§+D) (23)
| moeD=9oD=S

whereZ is the identity operator and’, A/, D and S the four elementary boundary
integral operators expressed, for atl€ T, by

Lp(x) = / G, y)p(y)dT (y)
Np(a) = / Oniey G, y)p(y) T (y)
Do(x) == [ Onq)G(z,y)o(y)dl(y)

S9(e) = § s @ o) ).

(24)

Note that the expression definiilfyis not an integral (its singularity is not inte-
grable) but a finite part expression associated with a hypgprkar kernel. We pre-
ferred to keep formally the integral expression for the sakelarity. Let us now
summarize the continuity properties of the elementary bawnintegral operators
(see for instance [55, Theorem 4.4.1] or Theorems 7.1 anoh T52]).

Proposition 6. For a smooth boundary, the boundary integral operators given in
Proposition 5 define the following continuous mappings

H*T) — H*™Y(T),
N — H(D),
) — 1D, (29)
) — HAD),

»Y =D
=
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for all s € R. Moreover, the operatord/ and D are compact fronfZ*(I") onto itself
forall s € R.

In the case of a Lipschitz boundary [34, 51], the above caitirproperties still
hold for —1 < s < 0 (respectively fob < s < 1) for operatorsC and N (respectively
D andS), while the compactness propertieséfandD fail. A possible approach to
rigorously extend the following developments is to use egme regularizing tech-
niques [24].

The representation (19) allows to determine the near-figldrad the scatterer. A-
nother physical quantity of interest is the scattering atugé (or the far-field pattern).
For instance, in the two-dimensional case, we have

ao(0) = i\/ % /F e MO (yfut (y) + k€ - n(y)yd ut (y))dl (y).

4.3 Standard integral equations formulations

The Helmholtz representation formula (19) leads to the wooson of an infinite
number of integral equations (equivalent if invertible}le case of a closed surface.
In the case of an open surface, only one integral equatiorbeanritten. The aim
of this part is to introduce the most standard integral @qoatfor both Dirichlet and
Neumann boundary conditions. We usually distinguish betweirect and indirect
integral equations, each of them having their own matheralgbroperties.

Let us introduce the following notations
o Kp(2) = {kP m € N}, the set of Dirichlet irregular frequencies (interior

Dirichlet eigenvalues), is the set of valueskosuch that the boundary value
problem

—Av = k?v, inQ-,
Yo v =0, onTl’,
admits a non vanishing solution.
o Ky(Q7) = {kY,m € N}, the set of Neumann irregular frequencies (interior

Neumann eigenvalues), is the set of value& aluch that the boundary value
problem

—Av = k?v, inQ-,
v v =0, onTl’,
admits a non vanishing solution.

4.3.1 The Dirichlet problem: direct integral formulations

The total fieldw is expressed by := u™ + u™. The direct formulations consist in
seeking the total field under the form

w(z) = Lp(x) + u™(x), = € Q. (26)
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The integral representation (26) ensures thas solution to the Helmholtz equation
in Q- U O, and satisfies the Sommerfeld radiation condition. Thenhewe to
determine the unknown such thatw satisfies also the Dirichlet boundary condition
(vdw = 0). More precisely, the representation (26) correspondséoparticular
choice of solutiongv =, v™) := (—u™, u™) in proposition 4, i.e.

Wlr=0 [Onv]r = —7f“w‘p =p

and

—u™(x) forxz c Q-
L =
r) {u*(m) forxz € QF.

Then, we get the following single-layer potential repreéagan of the total field:

0 forz € QO
w(x) forx e QF.

Lp(x) +u™(z) = {

Clearly, this formulation is completely equivalent to exdeng artificially the total
field by zero inside2~, which explains that this approach is also referred sonestim
to as thenull field method

The next step is to obtain an integral equation for the playsioknownp =
—yiwr € H-Y2(T'). To achieve this, the idea is to apply a trace operator to the
relation .

Lp(x) + u™(x) = 0, Ve € Q. (27)

At this point, many choices are available. Let us cite thifigb@m leading to classical
integral equations of potential theory.

e EFIE : This equation is obtained by applying the trace operaggoto (27).
Thanks to the trace relations of Proposition 5, this leadis@avell-known Elec-
tric Field Integral Equation (EFIE):

Lp = —yfu™, onT. (28)

e MFIE : This equation is obtained by applying the normal trace dperg to
(27). Thanks to the trace relations of Proposition 5, thesl$eto the so-called
Magnetic Field Integral Equation (MFIE):

s +, inc
(5 + N)p=—yu™, onl. (29)
e CFIE : This equation is obtained by applying to (27) the FouriebiRgimpe-

dance) trace operatoef + 17, , withn # 0. Once again, the trace relations of
Proposition 5 give the Combined Field Integral EquationlgF

A . )
{(5 +N)+77£}p: — (v u™ + nydu™), onT. (30)
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The existence and uniqueness results for the above ditegrat equations ((28),
(29) or (30)) are given in the following theorem.

Theorem 4. The following properties hold.

1. The operatorl defines an isomorphism frofi—'/2(I") onto H'/2(T") if and
only if £ ¢ Kp(£27). Under this condition, the EFIE28) is uniquely solvable
in H=Y2(I).

2. The operator
A
(5 +N)

defines an isomorphism fromi~/2(T") onto H~/2(T") if and only ifk & Kx(Q27).
Under this condition, the MFIE29) is uniquely solvable it —/2(T").

3. The operator
A
(5 + N) + nﬁ

defines an isomorphism frofd—/2(T") onto H~*/2(T") for all k£ > 0 provided
S(n) # 0 (imaginary part ofp). Under this condition, the CFIE30)is uniquely
solvable inH —/%(T") for any frequency: > 0.

In the case wherkin an irregular frequency, the integral equations EFIE arfdB
have non zero kernels. Nevertheless, it can be shown thaptimeous modes of the
EFIE will not radiate in the exterior. Thus, the field is notregpted outside the object:
Lp=00onT = Lp=0inQ". Then, the EFIE provides accurate computations and
often represents a reference solution. Unlike the EFIEsfh&ious solutions of the
MFIE do radiate in the exterior domain, leading hence to angrsolution. Finally, by
its construction itself, the CFIE is free of the internat@aance problem. We consider
in the sequeh = —ika/(1 — a), a €0, 1],

(1- a)%(% +N)+al =—((1- a)%fyfuinc + ayfu™), onT. (31)

A common choice of for engineering computationsds= 0.2 which gives an almost
minimal condition number for the CFIE.

4.3.2 The Dirichlet problem: indirect integral formulatio ns

The indirect formulations are based on the assumption Heasolution can be ex-
pressed in terms of a source density function defined on thedary. The unknowns
are then generally non-physical quantities. The physieabbles are solved after-
wards in terms of these source densities. Here, we focus emtst commonly
used indirect integral formulation independently progbisg Burton-Miller [25] and
Brakhage-Werner [19]. The idea is to seek the exterior fisld auperposition of the
single- and double-layer potentials acting on a fictitiowsasce density):

ut(x) = (D +nL)y(x), Ve € QF, (32)
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wheren is a complex-valued coupling parameter to choose. The abgpression
leads, thanks to the trace relations (5), to the followirtggnal equation :

7z .
{(5 +D) +7)£}1/1 = —ygu™, onT. (33)
We consider the above integral equation in the sg@é&(I") and we can prove the
following result.
Theorem 5. The operator
A
(5 + D) +nL

defines an isomorphism frof'/?(I") onto H'/2(T") for all k& > 0 provided3(n) # 0.
Under this condition(33) is uniquely solvable idf'/?(T") for all frequencyk > 0.

This integral equation is uniquely solvable if and onlydifn) > 0. An almost
optimal value ofy has been obtained in [3, 46, 48] as= k. We will see in Section
8 that other more subtle choices can be made in view of artiiteridrylov solution.

4.3.3 The Neumann problem: direct integral formulations

Let us now briefly discuss the derivation of direct integr@li&tions in the case of a
Neumann boundary condition. The total fiedd= u ™ + '™ is sought under the form

w(z) = Do(x) + u™(z), =€ Qr. (34)
Proposition 4 fofv—, v™) := (-, u™) leads to:
Pl = =y w = ¢,

[anv]l‘ - 07

and

Do(x) =

ut () forx € Q.

{—uinc(w) forx € O

Then, we get
0 forx € O~
w(x) forx e Q.

Dé(x) +u(x) = {
Applying a trace operator to the relation
Do(x) +u™(x) =0, VeecQ, (35)

the physical unknow = —yw € H'/%(T") is solution to the following direct inte-
gral equations
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e EFIE:

S¢ = —y{u™, onT. (36)
e MFIE :
I + .inc
(=5 + D)o = —Fu™, onl. (37)
e CFIE:
{(=3+D)+0S} ¢ = —(muf® +5u™), onT. (38)

The existence and uniqueness results for the above integuations are summarized
in the next result.

Theorem 6. The following properties hold

1. The operatorS defines an isomorphism frodi'/?(I") onto H~'/%(T") if and
only if k ¢ Kn(£27). Under this condition, the EFIE36) is uniquely solvable
in HY2(T).

2. The operator
7
(—5 +D)
defines an isomorphism from!/2(I") onto H'/%(T") if and only ifk ¢ Kp(Q27).

Under this condition, the MFIE37)is uniquely solvable i/ '/2(T").
3. The operator
7
(—5 + D) + 778
defines an isomorphism froi'/?(T") onto H~/2(T") for all £ > 0 provided
3(n) # 0. Under this condition, the CFIE38)is uniquely solvable i '/?(T")
for all frequencyk > 0.
The reference CFIE in this chapter is
1

A « 7 . Q .
(=o)L D)= &5 = (1 - ) bagune — Safu), ol (39)

4.3.4 The Neumann problem: indirect integral formulations

The Burton-Miller (or Brakhage-Werner) integral represgion of the exterior field

is expressed by
ut(z) = (L+nD)p(x), Y €QT, (40)

wheren is a complex-valued coupling parameter to determine. Ttienfield (40)
solves the exterior boundary-value problem (17) if theaefdensity is solution to
the following integral equation

T .
{(—5 +N)+?75}<p=—%+um°, (41)
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called the Burton-Miller or Brakhage-Werner (BW) integegjuation. We have the
following existence and uniqueness result.

Theorem 7. The operator
7z
(—5 + N) +nS

defines an isomorphism frof!'/2(I") onto H~*/2(T") for all k > 0 provided3(n) # 0.
Under this condition(41) is uniquely solvable i '/2(T") for all frequencyk > 0.

An almost optimal value of) has been numerically discussed in [3, 46, 48] as:
n = 1/ik. Again, we will see in Section 8 that better choices can beicened.

4.3.5 First- vs second-kind fredholm integral equation

For surface formulations of acoustic scattering problewss have seen in the pre-

vious sections that various integral equations, direchdiréct, combined or not, can

be employed. Let us underline that all these integral eqnatare applicable to closed
geometries, leaving EFIE ((28) and (36) in the Dirichlet &®lmann cases respec-
tively) as the only choice for the solutions of scatteringlppems by open surfaces.

In view of an iterative solution of an integral equation, tproperties are essential
to achieve a fast convergence rate: on the one hand thereeséed uniqueness of
the solution, on the other hand the clustering of the eigergaof the underlying
integral operator (and hence a well-conditioning). The pireperty, as we have seen,
is not ensured for each integral equation. Only combined fielegral equations
(CFIE, Brakhage-Werner) provide a well-possedness fdredjuencies. To observe
the second property, let us recall some definitions. Givemeayral operatord <
L(X) on a Hilbert spaceX, an integral equation is called of first-kind if it is of the
form

Ao=f
of second-kind if it is of the form

I+ A= (42)

Moreover, if A : X — X is compact, the above equations are respectively called
Fredholm integral equations of the first-kind and secomitkiAs classically known
[47], the spectrum of compact operators is composed in fir@tendimensional case

of 0 and a sequence of discrete eigenvalues possibly acatingiat the origin. There-
fore, second-kind Fredholm integral equation have largstels of eigenvalues accu-
mulating at the real value point(cf. Section 2.3). This is a very interesting spectral
property in view of an iterative solution using a Krylov selv Indeed, eigenvalue
clustering in the complex plane generally implies fast @gence.

The integral operatof is bounded fromi(T") onto H*™1(T"), and it is compact
from L?(T") onto itself. Therefore, the EFIE (28) is a Fredholm firstekintegral
equation onZ?(T") in the case of a Dirichlet condition. On the contrary, the EFI
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(29), the CFIE (30) and the Burton-Miller integral equat(@3) are all second-kind
integral equations. Then, the combined field integral aqnathave all the properties
required for an efficient iterative solving.

In the case of a Neumann boundary condition, the situationage complex. In
fact, only the MFIE is a second-kind Fredholm integral egurebut it is unfortunately
ill-posed. The EFIE, CFIE and Burton-Miller integral eqioats involve the operator
S which is a first-order, strongly singular and non-compaerafor. Therefore, these
equations are first-kind integral equations. There are tieratives to expect an
eigenvalue clustering. The first one is to preconditiontibegral operator (see Section
7). The second possibility is to incorporate a suitable afperof order—1 which has
a regularizing effet orS and leads to a second-kind integral equation (see Section
8). Let us note that in the case of the numerical solution aftedng problems by
an open surface, the preconditioning represents the onjyavanprove convergence.
We come back to this point in section 7.

5 Developing fast converging solutions: strategy and
problematics

Let us consider now that we have chosen an integral equatpmesentation
Ao=f

that we want to numerically solve. Heré,is one of the previous first- or second-kind
integral operatorsy is a right-hand side given by the incident field anid the density
that we would like to compute. For a numerical calculatitve,surface of the scatterer
needs to be discretized by using for examplg triangles K in three-dimensions,
resulting in a discrete surfadg, = Uj.V:KlK, whereh is the meshsize (see Section 8.3
for more details). Let us consider a regular triangulafiprbased on triangles. The
linear Galerkin boundary element method is based on theoappation space

Vi, = {Uh € CO(Fh);Uh = Uh|1‘ € ]Pl,VT € ZL} ,

of dimensionNy (equal to the number of degrees of freedom). The densitysf di
cretization points per wavelengh, is given byn, = A/hpax, Whereh,,., is the
maximal length of the edges of the triangles. Then, the aper&is also approxi-
mated by a matrixA] and the right hand-sid¢ by a complex-valued vectdy,. The
sizes of the vector and the matfit| are equal to the number of degrees of freedom of
the boundary element method used to approximate the denbitya vectorg,. For
example, using linear boundary elements leadStadegrees of freedom, wheré,

is the number of vertices of the triangular mesh. One proklenhwe do not address
here but which is a hard task in integral equations consisistegrating the kernel
singularities. However, since it is out of our goal, we do detelop this point here.

Consider now that we want to solve the linear system

[Aley, = fi.
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The matrix|[A] is complex-valued, dense and highly non-definite posititveequires

a storage of the order @ (N?) (if a linear boundary element method is used) and its
solution by a direct gaussian solver requi@&V?) operations. For high frequency
problems, thenVy,, becomes extremely large and makes the direct approach not ap
plicable. Therefore, since the introduction, about twesrs, of the Fast Multilevel
Multipole (FMM) method [32, 36, 37, 40, 62], the strategy Bmlving an integral
equation has fundamentally changed. The FMM method (as agetither similar
techniques, see [21, 22, 23]) allows to compute with a lawagte O(Ny/) and in

a fast wayO(Ny log Ny/) the Matrix-Vector Product (MVP)x; — [A]x; ("black
box”). This matrix-free approach allowed to solve highegfnency problems if it is
coupled with an iterative Krylov solver like the GMRES. Aspiously noticed, the
global algorithm is efficient and robust if the GMRES cone=rguith a few iterations.
This is closely related to the spectral propertiesAads well as the way a precondi-
tioner is built. Since we have a non positive-definite mattine iterative algorithm
may diverge. If not, its convergence can be extremely slawthiermore, since we do
not have the matrix at hand (because of the matrix-free FMpMagech), building the
preconditioner must be done without having access to théenhatrix.

The aim of the next sections are 1) to propose a spectral sinalijiintegral opera-
tors in some simplified situations to understand their priogee (Section 6) and 2) to
explain two recent matrix-free analytical preconditiamiechniques (Sections 7 and
8) for solving integral equation formulations.

6 Spectral analysis of integral operators for the sphere

LetI" = S; be the unit sphere centered at the origin. Let us introdueespimerical
harmonicsY,! as the functions of ordern for n = —m - - - m, with m € N [33], given

by

2m + 1 (m — |n])! nd
Y (6,,05) = P (co9))e"”?, (64,6
(01, 02) \/ i (m 1 |n|)! ( 1)e™?, (01,0;) € Sy,
whereP! are the Legendre polynomials. The functidfjsform a complete orthonor-
mal system of.?(S;). Furthermore, they also constitute a basis of eigenveftiotbe
four elementary integral operatofs N, D andS (cf. proposition 5). More precisely,
we have the following proposition [4, 46].

Proposition 7. The eigenvalueg,,, N,,, D,, andS,, of multiplicity (2m + 1) res-
pectively associated with the elementary integral opesaty N, D andS are given

by

LYy = A{ikjm(R)hS) (R)}Y = LYo,
NYZ = {=1/2 4 ik, ()R (R} = N, Y,

DY NY™ = N, Y =D,Y,
SYr = {ik%, (k) (h)) (k)} Y = SuYon
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wherej,, denotes the spherical Bessel function ahd the spherical Hankel function
of the first-kind. Their derivatives are specified with a gim

Let us begin with the case of a sound-soft sphere. We consgiddeFIE operator
L (28), the CFIE operator (31) and the usual BW operator (38) wi= ik. A direct
computation gives the eigenvalu@s andB2 of the combined operators (31) and (33)
respectively
Cpr = ik?hi) (k) (@i (k) + (1 = a)jm(K)),
B = ik?h) (k) (jy (k) = im (K)).

We draw on Fig. 5 the spectrum of the usual integral operaaiiag £ = 30 and
a maximal number of modes,.., = 12k. To understand the spectral distribution,
we need to introduce three zones: the elliptic zone of evamsnodes|{n| > k),
the hyperbolic region of propagative modes | < &) and the transition (hyperbolic-
elliptic) zone of physical surface modes satisfy|ng ~ k. To make the connection
with pseudodifferential operators, think for easiness¢ha m. For the EFIE (Figure
5(a)), we can see that some eigenvalues spread out the coph@he and are related
to the finite number of propagative modes. Next, a loop bewirappear for modes
close to the transition zone. Finally, we observe an accatiaunl point at(0, 0) for
large modesm|. SinceL is a first-kind operator of order 1, its eigenvalues asymp-
totically behave likem|~! for large values ofm| (elliptic zone). This implies that
the smallest eigenvalue is related to the largest mogg, and makes appear a de-
pendence of the condition number according to the densityisuretization points
per wavelengt,, for integral equations [29]. The largest eigenvalue istegldo a
propagative mode and leads to a dependence of the conditimber according to
k. Therefore, the EFIE has a spectrum which is not really gppate to an itera-
tive solver and preconditioning will have to be consideradst particularly for large
wavenumbers: and large densities of discretization points. Two largestelts of
eigenvalues at pointd /2, 0) and(1, 0) can be observed for the BW operator (Figure
5(b)). The first appears in the elliptic zone and the secordmihe hyperbolic zone.
The few eigenvalues that form the loop between low-ordertagid-order modegn|
correspond to surface modes. The CFIE operator also offerst@resting and quite
similar distribution of eigenvalues (Figure 5(c)). Thes®md spectral properties are
linked to the Fredholm second-kind character of these ¢peraAs a consequence,
the standard CFIE and BW formulations are well-adaptedheiterative solution of
the acoustic sound-soft problem.

Let us now consider the hard sphere. The eigenvalfjesnd 3’} of the CFIE (39)
and the BW ((33)y = i/k) operators are expressed respectively by

/

Cot = k(W) (B)(1 = a)jim (k) + ey, (K)),

Bl = =ik (hY)) () (G (k) + i, (K)).
We draw on Fig. 5 the distribution of the eigenvalues for tleE; BW and CFIE

o-perators. We fixc = 30 andm,., = 12k modes. The EFIE operator is of or-
der1 and its eigenvalues associated with high order modes betage since they
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behave likelm| (Figure 5(d)). The smallest eigenvalue is associated vaighprop-
agative modes. For the usual BW integral operator (Figue®) bfve observe a cluster
of eigenvalues linked to the low-order modes. A large nunao@rf eigenvalues cor-
responding to the evanescent modes are on theclinel /2 and do not cluster like
for the sound-soft case. This behaviour penalizes the cgewee rate of the GM-
RES. Similar conclusions arise for the CFIE (Figure 5(fhisTis due to the fact that
these three integral equations are Fredholm first-kindgnateequations and so are
ill-conditionned. In particular, the convergence rate dfrglov iterative solver will
depend on the wavenumbkras well as the mesh density. Using some asymptotics
of the special functions appearing above and some formkecements, some similar
conclusions can be drawn for these integral equations aedergl convex surfade.
Finally, other geometrical configurations lead to speastimates of integral opera-
tors (see [28, 29]).

From this analysis, we clearly see that some efforts on &naly(or algebraic)
preconditioning must be directed towards the EFIE for thenslesoft problem and
EFIE, BW and CFIE for the sound-hard case.

7 A first direction to improve the convergence: alge-
braic/analytical preconditioning techniques for the
EFIE

As seen above, the EFIE has a condition number which depertalst the wavenum-
ber k£ and the density of discretization points per wavelengttior both the sound-
soft and sound-hard scattering problems. Furthermoresigemvalues spread out the
complex plane which is very penalizing in view of an iteratkrylov solution. One
way to improve the convergence properties of the EFIE iséoqndition it. Algebraic
preconditioners have been proposed over the years but nhandst particularly for
large wavenumbers. Furthermore, they need to handle thenfitix which is in-
compatible with the idea of a matrix-free solver imposed iy EMM method. We
propose here two possible directions for building anafftpreconditioners: the first
one uses the Calderon integral relations and the secondlements from the pseu-
dodifferential operator theory.

7.1 Integral operator preconditioning

The idea of integral operator preconditioning uses theo¥alhg Calderon relations
[55]
7z A
—ES:Z—/\/'Q, —SE:Z—(NT)Q. (43)
From these two equations, we can see that, siide a compact operator, theyi?

and(N7T)? are compact and their eigenvalues tend towards zero. Boswaans that
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the eigenvalues of LS and—SL cluster around1/4, 0) in the complex plane since
they are equal to the operatdy4 up to a compact perturbation. As a consequence,
—L (respectively—S) is a pseudo inverse operator 8f(respectively—L) and can
serve as a preconditioner. This is an interesting propémtyeghe application of this
preconditioner in a FMM environment only involves some aagibns of standard in-
tegral operators. This first application of Calderon tielad to preconditioning has
been developed by Steinbach and Wendland in [61]. It has bernapplied to the
EFIE for acoustics and electromagnetism by Christiansdri\s&aélec in [30]. Exten-
sions and other studies related to this approach are alaifaf®, 10, 11].

To show the improvementinduced by a preconditioner basé&thtateron relations,
we consider the transmission scattering problem whichistsis solving an exterior
Helmholtz problem with wavenumbés, coupled with an interior Helmholtz prob-
lem for a wavenumbeéi, /N with transmission boundary conditions. This physically
corresponds to scattering by a penetrable homogeneousggnscatterer. Following
[11], we propose a Calderén preconditioner for the twadfiategral equation solu-
tion to the transmission problem. We refer to [11] for mor¢ads. The Calderon
preconditioner for the two-field integral equation is dextbby C. We consider on
Figure 6(a) the convergence history of GMRES(50) for the@néitioned linear sys-
tem in the case of the unit square cylinder (centered at tlggn@and with sidelength
2). We represent the dependence of the preconditioned edgoaccording to both
the wavenumbek, and the density., of discretization points per wavelength. The
index+/N for the interior problem is/N = 2 + i. We can observe that the conver-
gence is independent of the densitysince it can be shown that the preconditioned
integral equation is Fredholm second-kind. However, thevemence depends mod-
erately onk,, which is one of the limitations for Calderon precondigos. Another
example is given by the scattering problem by a penetraldéedkiaped object (see
Figure 6(b)) fory/N = 1.55 + 0.644. The same conclusions can be made from Figure
6(c). We can see on Figure 6(d) (foy = 40 andn,, = 10) that even if some eigenval-
ues spread out the complex plane and imphy-@ependence of the iterative solver,
a large cluster of eigenvalues characterizes the precondd matrix and results in
then, independence. This first example shows the impact that thm pbview of
analytical preconditioning can have on solving a scatteproblem. Let us finally
remark that examples in [11] show that ILU preconditionaikih general leading to
a breakdown of the GMRES.

7.2 Pseudodifferential operator preconditioning

A second approach for preconditioning the EFIE uses thevatig result which pre-
cises the principal symbol of the single-lay@and normal derivative tracg of the
double-layer potentials.

Proposition 8. Let £ and S be respectively the single-layer and normal derivative
trace of the double-layer potentials defined by the expoessi24). Let be the dual
variable ofx by Fourier transform forx restricted tol'. Then, the principal symbols
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of £ andS, denoted by, (£) ando,(S), are given by

y k2 _ 2
o)(L) = —— and o,(s) = ~VF_IEF (44)
2k — [
Following an approach similar to the one developed in Se@i@ but for integral

B 2i
equations, an appropriate preconditioner for the souffidssattering problem based
on the EFIE representation@p(o,(£)~') = —40p(0,(S)) since then

—Op(0,(S))L = % + R, (45)

where R is a pseudodifferential operator of order less or equalto One of the
crucial points in this approach is thats also considered as a symbol (associated with
the time derivative operata¥, if we come back to a wave equation) of orderThen,

the symbolo,(S) is homogeneous of ordérand defines a corresponding classical
pseudodifferential operator of order We see here that the equation (45) is typically
a pseudodifferential operator version of the second Caideglation (43). The main
difference is that the operat@Ip(c,(S)) is a correct approximation of the inverse of
L in both its hyperbolic and elliptic zones. This is not theeca$S which is only a
good approximation of the inverse in the elliptic part sitiee error term—(N7)? is
compact (for large values ¢f| compared td:). Consequently, the convergence rate
of the iterative Krylov solver is independent of the meshhefment parameter, and

the dependence accordingitas weakened. For the sound-hard scattering problem, a
suitable choice is-4Op(0, (L)) for preconditioningS and the same conclusions arise.

Concerning the implementation in a FMM code, including theratorOp(o,(S))
can be made independently of the integral equations. Fecteféness, a complex
Padé approximation of the square-root must be considessdSection 8.2), resulting
in the numerical solution of a coupled system of surfaceiplgisre Helmholtz equa-
tions onI'. Their approximate solution can be considered by using &hgtecondi-
tioner and an iterative scheme at the a0$tVy ), which is much less than applying
an integral operator. We refer to [10] for the interestediezavhere much more de-
tails about the implementation are given. Some partial efegmare also developed in
Section 8.3.

To show the robustness of such an approach, we report ondsiguthe number
of MVPs required for solving the sound-hard scattering fEwbby a strip of length
2 with GMRES(50) for a tolerance = 107°. We use the EFIE and represent the
number of MVPs with respect to the density (for £ = 15, figure 7(a)) and the
wavenumbetf: (for ny = 20, figure 7(b)). The EFIE is referred to as "DBIE” here, the
pseudodifferential preconditioner based-efOp(c,(L£)) and a Padé approximation
by "Padé-type”, the Calderon integral precondition@rby "Calderon”. Furthermore,
an algebraic SPAI (SParse Approximate Inverse) precamdti with sparsity level
N, = 5is also used for comparison. The choi¥e = 5 makes the preconditioning
matrix already quite dense (abdit% of nonzero coefficients). Another drawback is
that it is built on the full initial EFIE matriXS] which is not available when consider-
ing a FMM solution. On this simple example, we can see thantimber of iterations
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Figure 7: Pseudodifferential preconditioner for scatigproblems.

is independent of both, andk. We report on Figure 7(c) the convergence history
for all methods. We can see the superiority here of the twéytioal preconditioners
over the algebraic SPAI. A second example is given on Fig(ug for a cobra-like
shaped scatterer which is an open curved resonator modaeiinget. We can again
observe the very good behaviour of the iterative solverspaoed with analytical pre-
conditioners.

In references [10], other numerical examples show that quoielems can arise
for the Calderbn preconditioner if the scatterer is congposf two parallel strips
or screens due to resonance phenomenae. It seems thatisf&imith of situations,
the pseudodifferential preconditioners are more robustwéver, for a single three-
dimensional open surface, some problems are still openftikenstance how to
correctly handle the edges effects in a pseudodiffereaparoach. In the case of
Calderon operators, this point is quite naturally treatAchybrid Calderén-pseudo-
differential preconditioner is proposed in [35].
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8 A second direction to improve the convergence: gen-
eralized Combined Field Integral Equations

We restrict our presentation to a Neumann boundary comditraleed, we have seen
in Section 6 that the standard combined field integral eqonat{both BW and CFIE)
are second-kind Fredholm integral equations for a souffidebstacle. As a conse-
guence, the convergence rate of an iterative solver apfidtese equations is inde-
pendent of the density, but still depends slightly ok. In the same spirit as what is
proposed below, this dependence can be weakened by dewglpgneralized (direct
and indirect) combined field integral equations. In the cdslke sound-hard obstacle,
much work is required since the standard integral equatwedirst-kind Fredholm
integral equations. Furthermore, our construction of neeosd-kind integral equa-
tions preserves the well-posedness of these new integratieqs, meaning that they
are all free of any spurious resonance.

8.1 Construction of generalized combined field integral eqgations

The starting point of the method proposed in [12, 13, 35] isedaon the exterior
Helmholtz integral formulation

ut = —Lyfut + Dyfut, inQF. (46)
Applying the exterior normal derivative trace to (46), wé tianks to Proposition 5

7 |
Nt = (=5 + N)yfut + Sygut, in HY2(D). (47)

Let us assume that the exact exterior Neumann-to-Diri¢hi#2) mapV** is known

Vex . H71/2(F) N Hl/Q(F)

nut =y ut =Vt 48)
Then, from (47) and (48), the following identity holds
A
-5 N+ SV =1. (49)

The NtD operato/** is a nonlocal pseudodifferential operator of order. The
equation (49) means that plugging the NtD operator intorttegral formulation leads
to the identity operator which can be solved trivially in atexation (direct solver).
Unfortunately, the NtD operator cannot be computed expliéor a general surface,
otherwise, this would mean that an explicit integral equrattan be written for a
scattering problem and solved in one step.

An alternative is to consider an accurate approximaitiarf the exact NtD operator
(48) such that 3
¢ =V,
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with (¢, ) an approximation of the Cauchy ddtal v, v ™). In the same spirit as
for the exact NtD operator, we propose to solve the followiriggral equation

T ~ e s
(5 +N+8V)y = —y e in HY2(T), (50)
based on the exterior integral representation
ut = —Liy + Dy, in Q. (51)

Let us for example consider the lowest order approximatioa —i/k (Sommer-
feld radiation condition). This choice leads to the stadd\W integral equation (41)
with the optimal parameter of Kress [46]. Hence, the integouation (50) can be
seen as a generalization of the standard BW integral equaiisimilar approach can
also be developed for constructing a generalized CFIE

A A «

(1-a)7 (-5 +D)

S +D)— 5 V8)6 = —(1—a)pagu’ + Vfu™), in HY2(T), (52

by composition of the operatdt (EFIE) with—V and then adding the contribution of
the MFIE by a suitable linear combination. One of the aimdefpgseudodifferential

operatorl/ is to regularize the operatdt of order1. It should therefore be of order
—1 to get the identity operator. This is not possible by coméidethe lowest order

approximation which is of order zero. For this reason, rogther approximations

of the NtD operator must be considered. This can be done fample by adapting

techniques related to the Beam Propagation Method [42] eSface Radiation

Conditions (OSRCs) methods [6, 7, 8, 14, 43, 49]. In paréicwe refer to the recent
review chapter book which gives an overview of OSRCs apgresicFrom [14], an

accurate approximation of the NtD map is given by the squaneoperator

-1 Ap 1?2
V=—01+—>) |, (53)
ké

where the operatod\r is the usual Laplace-Beltrami operator over the surfaead

the parametets = £ + id is a complex wavenumber. The aim of the damping param-
eterd > 0 is to regularize the square-root operator in the transitimme of grazing
rays [14]. An optimal value of this parameter, related tortiean curvature of and

to k is given in [14]. Incorporating the operatbt, the generalized combined integral
equations (50) and (52) are uniquely solvable [35] for apgfiency: > 0 and damp-

ing paramete > 0. Moreover, they are second-kind Fredholm integral equatio
unlike the standard formulations (50) and (39). This is atp@spoint in view of an
iterative Krylov solution.

8.2 The special case of the unit sphere

The eigenvalues of the operateAr are expressed by,, = m(m + 1). A direct
computation gives the eigenvaluBs® andCY of respectively the generalized BW
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Figure 8: Sound-hard sphere: distribution of the eigeresfor the generalized com-
bined field integral equations.

and the CFIE operators as
/ , ma—1/2
BN = —ik2(hY)) (B)[ign, (R)(1 = £5) " + i),

and
X = (Y )]-i(0— i) + a1 = 45) 7,000
We draw on Fig. 8 the eigenvalues of the generalized integpatators by taking
k = 30 andm,., = 12k modes. The eigenvalues of the generalized BW and CFIE
operators cluster around the poirits0) and(1/2,0) respectively. This observation
is partially related to the property that these integralatigus are Fredholm second-
kind but also to the fact that an accurate approximation@NtD operator is injected.
By using suitable asymptotic expansions of the Bessel amdkéldunctions [1], we

justify this remark by the following approximations of thigenvalues [35]

¢ in the elliptic zone (evanescent modes) for large values of

1k 1 | 1
NS _ = 4 N6 _ — _ - -
B, +2k+0( ) andC,)’ = 5 ta (%5 2)+(9( 5

), a€]0,1].
¢ in the hyperbolic zone (propagative modes) for large wam@rersk
1 1 1
NS + N§ _ L -
B,, _1+(’)(k), andC;, 2+O(k>'
The coupling between low- (propagative) and high-orderai@gcent) modes is
observable as a loop around the accumulation pdints$) and(1/2,0) for the gen-

eralized BW and CFIE respectively. From these observatiwasan expect the fast
convergence of a Krylov solver for computing the solutioi(§0) or (52).
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8.3 Numerical issues: implementation and examples

Let us denote byP| the matrix associated with the linear discretization of i
integral operato. The discretization of (50) leads to tiig, x Ny, dense complex
linear system

L T+ ST = an (54)
The complex valued vectong;, andg,, of CVv are respectively th&, interpolated
unknown density) and the right-hand side of (50). The matrix representdtiorof
the identity operatof is the surface mass matrix. We refer for example to [5, 36]
for the direct approximation of the integral operatdfsandS. Of course, a FMM
implementation can also be derived in the background of i&alenethods for a fast
evaluation of MVP. Concerning the discretization of theyzsmlifferential operator,
a rational Padé approximant of the square-root operatases. In [14], the authors
use the rotating branch-cut technique introduced by Mitnaeal. [54]. It consists in
using the rational approximation defined by

4 . A X
VI+X = Ry, (14 X)e ™ - 1) =Co+ Y —1——

where the parametéy, is the rotation angle of the usual branch-¢ute C, z < —1}

of the square-root operator, artl, denotes the usual Padé approximant of order
N,. The complex-valued coefficients, (A;, Bj)j:L...’Np are related to the real Padé
coefficients and the anglg [14]. Since the square-root operator is implemented in an

iterative solver, we must be able to compyte- [V]x efficiently, for a given vector
x € CMv. This can be achieved by writing down

A Lo Ar

— (1 1/2.

1
(1+ ik

Then, the MVPy = [V]x is computed by solvingV, dissipative surface Helmholtz

equations
B; ,
(k—é[Ar] +I)x =[x, j=1,..N, (55)

using a variational formulation and boundary elements &ed by computing so-
lution to

[Ar] 1

Np A
)y = —(GolTlx + ) | S [Arkx;). (56)
6 =1

(7 + .

The matrix[Ar] is the surface stiffness matrix @h,. Let us mention that the solution
of the (N, + 1) linear systems (55) and (56) is computed by an ILUT precdord
GMRES and only requires 2 or 3 iterations to get the solut8%).[ Therefore, apply-
ing the square-root operator results in a cost of the of¥€Y,) which is less than
applying an elementary integral operator (even with a FMMIementation).
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Figure 9: Sound-hard unit square cylinder: number of MVRstlie four integral

formulations with respect to the wavenumlagfleft: n, = 10) and the density., of
discretization points per wavelength (riglt= 10).

We present now some numerical results to compare the efficieithe GMRES
without restart and for a tolerance equatte: 10~ when using the usual and general-
ized BW and CFIE. We report on Fig. 9 an example of computdbothe scattering
of an incident plane wave of incidend& degrees by the unit square cylinder. For the
usual formulations, we can see that the number of MVPs grimgaily according to
the densityn,. Indeed, these two formulations are first-kind Fredholnriti@rmore,
the number of iterations also depends /offsee the next example for the standard
BW formulation). The problem is related to the fact that atjleg the Sommerfeld
approximation is not enough to handle thelependence of the convergence. These
two points can be corrected by considering the generalizeddlations. These con-
clusions are confirmed for the three-dimensional case.gnX, we present the case
of the scattering of an incident plane wave of incidence begree by an ellipsoidal
scatterer of semi-axis = 1 andb = ¢ = 0.5 respectively along the;-, z,- and
x3-directions and centered at the origin. Here again, theexg@nce of the GMRES
is independent of andn,, while this is not the case for the two standard formulations.

8.4 Other recent directions

Other recent and closely related approaches have beerderiy. by Levadouand

al [2, 52], Brunoand al[20]. We refer to their papers for more details. Let us note
that generalized combined field integral equations hawe lad&en proposed recently
in the framework of electromagnetism for Maxwell’s equatio

9 Conclusion

The aim of this chapter was to introduce some recent achientninto the topic of
preconditioning of integral equations of acoustics. Mastipularly, we discussed the
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high frequency regime which is a very active area where muatk wemains to do.
A selected review of some advances on analytical precamiiiy has been proposed.
Different points of view can be adopted like for example thiegral or pseudodiffer-
ential approaches. Many open questions are still to adadmesisis problem and can
have implications on other close situations like electrgneism or elasticity where
the numerical solution by means of integral equations i3 ektremely challenging.

Other future exciting directions of research include: usténding of the effect of
non convexity and geometrical singularities on an iteessiwlver, coupling of analyti-
cal and algebraic preconditioners, application of pseiffdwdntial operator theory to
the design of hybrid analytical-algebraic preconditi@er the finite element solu-
tion of PDEs...
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