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Integral Equations and Iterative Schemes for
Acoustic Scattering Problems

Xavier ANTOINE and Marion DARBAS

Abstract
The aim of this chapter is to provide an introduction to the iterative Krylov solution
of integral equations for time-harmonic acoustic scattering. From the point of view
of computational methods, considering large frequencies in acoustics is challenging
since it leads to solving highly indefinite large scale complex linear systems which
generally implies a convergence breakdown of iterative methods. Most specifically,
we develop the problematic and explain some partial solutions through analytical pre-
conditioning for high frequency scattering and the introduction of new combined field
integral equations.

Keywords: acoustic scattering, high-frequency, integralequation, GMRES, Kry-
lov solver, preconditioners, well-conditioned integral equation

1 Introduction

The numerical solution of time-harmonic (exterior) scattering problems in the high
frequency regime remains a challenging problem due to its specific computational
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bottlenecks. A few possible directions can be considered toformulate the problem
and try to solve it [15]. Here, we choose the point of view of integral equations for-
mulations [33, 47, 55]. In the most recent industrial code developments, the integral
equation formulation is approximated by a boundary elementmethod. The resulting
linear system is next solved by an iterative Krylov solver [58] coupled with a Fast
Multilevel Multipole method [36, 37, 57, 62]. However, the Helmholtz operator for
scattering problems is a highly indefinite complex-valued linear operator. As a con-
sequence, the associated matrix resulting from the boundary element discretization is
also highly indefinite and complex. This results in a breakdown of the iterative Krylov
solver in many applications or to an extremely slow convergence in best cases. The
aim of this chapter is to explain the specific difficulties linked to this problem and to
introduce some partial solutions. In particular, the convergence of the solver is closely
related to the spectral distribution of the integral operators. We propose here to modify
the spectrum in such a way that we get a fast convergence. Thisis related to the idea of
preconditioning but not only. Furthermore, the originality of our approach is that we
work at the continuous level, meaning that we directly manipulate the Helmholtz op-
erator and not its matrix representation. This point of viewgives rise to ananalytical
operator theory for building preconditioners which must becompared to the standard
purelyalgebraicapproach. Finally, this chapter can be seen as a companion paper to
the chapter [66] by E. Turkel on iterative scheme for acoustic scattering.

The plan of the chapter is the following. In Section 2, we givesome basics about
numerical linear algebra and Krylov solvers. In particular, we describe on a few ex-
plicit examples the problems of convergence that can arise when solving indefinite
linear systems. This leads us to analyze and understand why high frequency exterior
Helmholtz problems also suffer from a lack of convergence. Abrief review of some
notions and recent developments onalgebraicpreconditioners is also proposed for
convergence improvement. As already said, one of the originalities of our approach
for preconditioning integral operators is to build continuousanalyticalprecondition-
ers. To this aim, Section 3 gives an introduction to the theory of pseudodifferential
operators and associated symbolic calculus which will be used in the sequel. In par-
ticular, we give a first simple application of this theory forproposing an original in-
terpretation of standardalgebraicLaplace shifted preconditioners. Section 4 focuses
on the theory of potential which is used for writing integralequation representations
for acoustics scattering. We develop the elementary notions for obtaining integral
equations and review standard direct and indirect, first- and second-kind Fredholm
integral operator formulations. This allows us to insist onthe spectral properties of
each representation and to precise the well-posedness results. Section 5 gives a short
presentation of the way actual integral equations solvers are built. This mainly high-
lights the fact that the construction of a preconditioner should be based on the only
assumption that an integral operator is never available through its matrix but rather
through a ”black-box” which is able to compute fast matrix-vector products. There-
fore, a suitable preconditioner should be matrix-free which is a strong restriction to
usual algebraic preconditioners. We analyze in Section 6 the spectral distribution of
standard integral operators in the case of a sphere where integral operators can be
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diagonalized. This gives a thorough understanding of the eigenvalue distribution of
each operator and how it is related to the frequency parameter k and densitynλ of dis-
cretization points per wavelength. In Section 7, we describe two possible solutions for
obtaining some efficient and robust analytical preconditioners. The first strategy uses
integral operators through the so-called Calderón relations while the second one is
based on the theory of pseudodifferential operators. Some examples show that these
two directions are promising. In Section 8, we propose to build some new alterna-
tive well-posed integral equations with a spectral distribution well-suited to get a fast
convergence of an iterative solver. Examples show that these new integral formula-
tions are well-adapted for solving high frequency problems. Finally, Section 9 gives a
conclusion.

2 Difficulties for the iterative solution of scattering pro-
blems

2.1 Notations and background

Let us begin by some background in linear algebra. A vector norm on a vector space
Y is a real-valued functiony 7→ ‖y‖ onY which satisfies:

• ‖y‖ ≥ 0, ∀y ∈ Y, and‖y‖ = 0 if and only if y = 0 (positivity),

• ‖αy‖ = |α|‖y‖, ∀y ∈ Y, ∀α ∈ C (scaling),

• ‖y + x‖ ≤ ‖y‖ + ‖x‖, ∀y,x ∈ Y (triangular inequality).

For the particular case whenY = Cn, the most commonly used vector norms are the
Hölder norms (p-norms)

‖y‖p = (

n∑

i=1

|yi|p)1/p,

with y = (yi)i=1,··· ,n andp ≥ 1. The most useful norms in practice are

‖y‖1 =

n∑

i=1

|yi|, ‖y‖2 = (

n∑

i=1

|yi|2)1/2, and‖y‖∞ = max
i=1,··· ,n

|yi|.

We can use norms to measure the magnitude of a matrix. The sameaxioms stated
above for vector norms apply here

• ‖A‖ ≥ 0, ∀A ∈ Cn×n, and‖A‖ = 0 if and only ifA = 0 (positivity),

• ‖αA‖ = |α|‖A‖, ∀A ∈ Cn×n, ∀α ∈ C (scaling),

• ‖A+B‖ ≤ ‖A‖ + ‖B‖, ∀A,B ∈ Cn×n (triangular inequality).
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The most important class of norms are the induced matrixp-norms

‖A‖p = max
x∈Cn,x 6=0

‖Ax‖p

‖x‖p
.

A fundamental property is that

‖AB‖p ≤ ‖A‖p‖B‖p, ∀A,B ∈ C
n×n.

Whenp = 1 andp = ∞, we have the simple formulas(A = (aij)1≤i,j≤n)

‖A‖1 = max
j=1,··· ,n

n∑

i=1

|aij | and‖A‖∞ = max
i=1,··· ,n

n∑

j=1

|aij|.

The induced 2-norm is also called the spectral norm and is given by

‖A‖2 = ρ(A∗A)1/2,

with A∗ the transpose conjugate matrix (= ĀT ) andρ(A) the maximum modulus of
the eigenvalues ofA (spectral radius).

To end this section, let us give some other useful definitions.

Definition 1. Let us introduce the following definitions

• A non Hermitian matrixA of sizen × n is said to be positive-definite (respec-
tively negative-definite) if and only ifℜ(x∗Ax) > 0 (respectivelyℜ(x∗Ax) < 0)
for all non-zerox ∈ C

n.

• A Hermitian matrixA (A = A∗) of sizen × n is said to be positive-definite
(respectively negative-definite) if and only ifx∗Ax > 0 (respectivelyx∗Ax < 0)
for all non-zerox ∈ Cn.

• A Hermitian matrixA of sizen × n is said to be positive-semidefinite (respec-
tively negative-semidefinite) if and only ifx∗Ax ≥ 0 (respectivelyx∗Ax ≤ 0)
for all x ∈ C

n.

• A Hermitian matrix which is neither positive- or negative-semidefinite is called
indefinite.

We also have the following Proposition.

Proposition 1. A Hermitian matrix is positive-definite if and only if all itseigenvalues
are real and strictly positive.

4



2.2 Iterative algorithms

We consider a linear system
Ax = b, (1)

whereA is an invertible complex-valued matrix of sizen × n andb ∈ Cn. Methods
for the solution of linear systems fall into two classes:direct methodsand iterative
methods.

Direct methods[31] produce an exact solution in a predictable finite numberof
elementary operations if no rounding errors are present. When the matrix is symmet-
ric positive-definite, a Cholesky algorithm is applied. Fora nonsymmetric matrix, a
gaussian elimination solver is used. In this case, the memory storage and computa-
tional times costs scale asO(n2) andO(n3) respectively. Then, a direct solution is
clearly out of reach whenA is large and dense, requiring hence too large memory and
prohibitive computational times.

Iterative schemescan be considered as an alternative to direct methods for thesolu-
tion of large linear systems. Stationary relaxation-type methods [31] (Jacobi, Gauss-
Seidel...) have the disadvantage of slow convergence and concern certain classes of
matrices only. Projection methods are more general and robust. This is most par-
ticularly the case of Krylov subspace methods [58]. These techniques are motivated
by the Cayley-Hamilton theorem [50] which allows to construct the inverse of a ma-
trix as a polynomial according toA. Krylov subspace methods consist in seeking an
approximate solutionx(m) to (1) from an affine subspace

x(0) + Km(A, r(0)), (2)

with

• x(0) the initial guess,

• r(0) = b− Ax(0) the initial residual vector,

• Km(A, r(0)) = span{r(0), Ar(0), A2r(0), . . . , Am−1r(0)} the Krylov subspace of
dimensionm,

such that the orthogonality condition (Petrov-Galerkin condition)

(B(x − x(m)),v) = 0, ∀v ∈ Km(A, r(0)), (3)

is fulfilled. The successive approximations are clearly expressed byx(m) = x(0) +
Pm−1(A)r(0), wherePm−1 is a polynomial of degreem − 1. The different Krylov
methods therefore differ in the choice of the matrixB (generally symmetric positive-
definite). IfB defines a scalar product, then the orthogonality condition (3) becomes
equivalent to the following minimization problem (optimality condition)

‖x − x(m)‖B = min
y∈Km(A,r(0))

‖x − y‖B.

Two standard examples of such methods are
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• Conjugate gradient methods: IfA is symmetric positive-definite, thenB = A
and (3) is equivalent to

‖x − x(m)‖A = min
y∈Km(A,r(0))

‖x − y‖A,

• Generalized Minimum RESidual method (GMRES) : For a generalmatrixA,
we chooseB = ATA and get

‖b− Ax(m)‖2 = min
x∈Km(A,r(0))

‖b− Ax‖2.

A Krylov subspace method is then represented by a construction algorithm of a basis
of the affine subspaceKm(A, r(0)) and by an optimality criterion to determine the
approximate solutionx(m) of (1).

Let us now focus our attention on the GMRES which constitutesthe reference al-
gorithm in this chapter. This algorithm, introduced by Saadand Schultze [58, 59], is
well-adapted to solve large nonsymmetric linear systems. It corresponds to the choice
of the Krylov subspaceKm(A,v1) with v1 = r(0)/‖r(0)‖2. At each iteration, the
Krylov subspaceKm(A,v1) has to be constructed. In practice, we have to generate a
set of basis of this subspace. The natural basis(v1, Av1, A

2v1, . . . , A
m−1v1) cannot

be used because of its numerical degeneracy. A solution is toconstruct an orthonormal
basis(v1,v2, . . . ,vm) of Km(A,v1) via the Arnoldi-Modified Gramm-Schmidt algo-
rithm. We denote byVm = (v1,v2, . . . ,vm) then ×m matrix with columns vectors
vi, i = 1, . . . , n, and byHm the(m+1)×m Hessenberg matrix where nonzero entries
hij = (Avj ,vi) are defined by the Arnoldi-Modified Gramm-Schmidt algorithm. Any
vectorx in x(0) + Km(A,v1) can thus be written asx = x(0) + Vmy, wherey ∈ C

m.
Moreover, the relationAVm = Vm+1Hm holds. It results in

b− Ax = b −A(x(0) + Vmy) = Vm+1(βe1 −Hmy),

by settingβ = ‖r(0)‖2 ande1 = (1, 0, . . . , 0)T ∈ R
m+1. Then, we have the optimality

criterion
min

x∈Km(A,r(0))
‖b−Ax‖2 = min

y∈Rm
‖βe1 −Hmy‖2,

exploiting the fact that the column-vectors ofVm+1 are orthonormal. The approximate
solutionx(m) can be obtained asx(m) = x(0) + Vmy(m), wherey(m) minimizes the
functionalJ(y) = ‖βe1 − Hmy‖2. The pseudocode for basic form of the GMRES
algorithm can now be given as

1. Initialization

Computer(0) = b− Ax(0), β := ‖r(0)‖2 andv1 := r(0)/β

2. Define the(m+ 1) ×m matrixHm = {hij}1≤i≤m+1,1≤j≤m. SetHm = 0.

3. Construction of the Arnoldi’s basis (steps 3-11)

for j = 1, 2, . . . , m, do
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4. computewj := Avj

5. for i = 1, . . . , j, do

6. hij := (wj ,vi)

7. wj := wj − hijvi

8. enddo

9. hj+1,j = ‖wj‖2. If hj+1,j = 0 setm := j and go to12

10. vj+1 = wj/hj+1,j

11. enddo

12. Minimization problem

Computey(m) as the minimizer of‖βe1 −Hmy‖2 andx(m) = x(0) + Vmy(m).

In order to solve the least-squares problem (step 12), the most adapted technique is
to employ a QR-decomposition of the Hessenberg matrixHm (see [58] for details).

Remark 1. The parameterm is not determined a priori. In general, a maximum
numbermmax is fixed and is typically dictated by the computational ressources. If the
ma-ximum numbermmax of iterations has been reached without triggering the conver-
gence test, then a restarting is done, i.e. GMRES is started afresh with the last approx-
imationx(mmax) as the initial guess. This method is called restarted GMRES(mmax).
The residual‖b− Ax(m)‖2 is generally used as a stopping criterion.

Essentially, the computational cost of GMRES is related to

i) the total number of iterationsN iter required to reach ana priori fixed tolerance
ε on the residual norm,

ii) the cost of one iteration which is mainly the Matrix-Vector Product (MVP)wj =
Avj involved at step 4.

If this algorithm is directly used for a full complex-valuedmatrix A, then the total
cost isO(N itern2). In terms of memory storage, the algorithm still needsO(n2) en-
tries forA. In the background of integral equations, efficient compression algorithms
have been proposed during the last two decades. For example,the multilevel Fast
Multipole Method (FMM) [32, 36, 37, 40, 62] both computes theMVP in O(n log n)
operations and requiresO(n) entries. Essentially, the FMM proposes to compute only
the near-field entries exactly and the far-field entries approximately (but with control-
lable error). Other fast algorithms exists. We do not detailall these techniques and
rather refer to [23] for technical points. This drastic reduction both in computational
cost and memory storage for one iteration of the GMRES gives expectations for solv-
ing high frequency problems.
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Let us now briefly review the most important results on the convergence behaviour
of GMRES (for proof and further details see [39, 53, 58]). IfA ∈ Cn×n is non singular,
we define the quantity

κp(A) = ‖A‖p‖A−1‖p,

which is called the condition number of the linear system (1)with respect to the in-
duced matrixp-norm (cf. section 2.1). We begin by giving a global convergence
result.

Theorem 1. LetA ∈ Cn×n be a non singular matrix. The full GMRES algorithm is
guaranteed to converge in at mostn iterations.

This is true in the absence of arithmetic errors. Unfortunately, computer arithmetic
is not exact. Moreover, this would be impractical for large linear systems if there were
many steps required to reach convergence. In these situations, a preconditioner can
be used to reduce the number of iterations (see e.g. Section 2.5). In order to predict
the behaviour of GMRES, the convergence analysis is concerned with the derivation
of upper bounds on the residual norms.

Proposition 2. Let A ∈ Cn×n be a non singular matrix andx(0) ∈ Cn an initial
guess. If we can diagonalizeA in the formA = UΛU−1 whereΛ is the diagonal
matrix of eigenvalues(λi)i ofA corresponding to the appropriate eigenvectors inU ,
then a bound on the residual norm at iterationm is expressed by

‖r(m)‖2 ≤ κ2(U) min
q∈Pm,q(0)=1

max
i=1,...,n

q(λi)‖r(0)‖2, (4)

with κ2(U) = ‖U‖2‖U−1‖2 the condition number ofU in the2-norm.

This bound was the first convergence result for GMRES [59]. However, even ifA
is normal (κ2(U) = 1), the bound (4) may fail to provide any reasonable information
about the rate of reduction of the GMRES residual norms. For diagonalizable but
non normalA (U far from unitary),κ2(U) might be very large, and the bound in (4)
might be a large overestimate of the residual norm. Moreover, it is not clear that only
the conditioning of the eigenvectors ofA should influence the convergence behaviour
of GMRES (see Section 2.3). To obtain computable bounds on the residual norm
that generate a good prescribed convergence curve for a general matrix is a difficult
challenge. Theoretical results (min-max approximations on matrix eigenvalues) in
this field are still partial. We see in the sequel of the chapter that the analysis of
the distribution of the eigenvalues in the complex plane gives a very useful approach
for predicting the convergence of the GMRES. Concerning therestarted GMRES, the
following proposition holds.

Theorem 2. If A is symmetric positive-definite, then GMRES(m) converges atany
m ≥ 1.

However, the restarted GMRES algorithm can stagnate when the matrix is not def-
inite positive. We will observe this difficulty in the following section.
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2.3 Convergence problems for indefinite linear systems

In iterative methods, a common belief is that the condition numberκ2(A) (in the
2-norm) ofA is a good measure of the convergence rate of the algorithm. This is
generally not true for a complex-valued matrixA where indeed the distribution of
the eigenvalues in the complex plane is the most crucial point to observe. In many
applications, the eigenvalues of the matrixA are computed in order to examine if the
whole spectrum is included or not in a given part of the complex plane. Unfortunately,
the matrix is often defined with a given precision and the computed eigenvalues may
differ from the real ones, especially in highly non normal cases. To answer to this
problem, the difficult notion ofǫ-pseudospectrum of a matrix was introduced [65]. In
a few words, the idea is to compute the set of the eigenvalues of perturbed matrices
A + E for someE, with ‖E‖ ≤ ǫ. Generally, this approach is costly in terms of
computation.

To illustrate the fact that the distribution of the eigenvalues plays a crucial role
in the convergence of the GMRES, let us consider the seven simple complex-valued
diagonal matricesAj defined by

A1 = diag(1/ℓ2)1≤ℓ≤n, A2 = diag(eiℓ/ℓ2)1≤ℓ≤n, A3 = diag(eiℓ)1≤ℓ≤n,
A4 = diag(1 + eiℓ)1≤ℓ≤n, A5 = diag(1.5 + eiℓ)1≤ℓ≤n,
A6 = diag(1 + eiℓ/ℓ)1≤ℓ≤n, A7 = diag(1 + eiℓ/ℓ2)1≤ℓ≤n.

(5)

ConcerningA1, the matrix is real-valued and the eigenvalues tend towardszero
asℓ → +∞ (Figure 1(a)). In terms of operators (see section 3), it corresponds to the
notion of real-valued elliptic positive pseudodifferential operator of order−2. More or
less, the underlying operator is the inverse of the one-dimensional Laplacian operator
(∂2

x)
−1. In particular, the matrix is symmetric andpositive-definite. We can observe

that there is an eigenvalue clustering around zero. The condition numberκ2(A1) = n2

becomes large asn grows and so the convergence of GMRES(50) takes more iterations
(Figure 1(b)). However, the convergence is observed. The tolerance of the iterative
solver is fixed equal toε = 10−14 in all the examples.

The second test-case is related to a complex-valued matrixA2. The case is close
to the previous one but the distribution of the eigenvalues in the complex plane is
completely different even if their modulus tends to zero (Figure 1(c)). The condition
number is againn2 but we can quickly observe the divergence of GMRES(50) e.g. for
n = 100 (Figure 1(d)). Here, the matrix is indefinite (eigenvalues with negative or
positive real parts). In terms of operators, this corresponds to an indefinite complex-
valued integral (or pseudodifferential) operator of order−2. This is also a first-kind
Fredholm integral operator (see Section 4.3.5). These two situations show how the
convergence of the GMRES strongly depends on the distribution of the eigenvalues in
the complex plane.

The third situation, withA3, is also very interesting. The complex-valued matrix
has a condition number equals to1 but the convergence of GMRES(50) takes many
iterations to converge forn = 100 and even diverges forn = 1000. This example
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illustrates clearly that considering indefinite matrices leads to instabilities of the GM-
RES and eventually to its divergence. This is still true if one translates the spectrum
of A3 from 1 to the right and get the matrixA4 (Figure 2(a)). Now, if one translates
A3 from 1.5 and obtainA5, then the convergence holds and is pretty fast since all the
eigenvalues have a large positive real part and are sufficiently far away from the origin
(Figure 2(b)).

Let us consider the two matricesA6 andA7. They look likeA4 but the perturbative
term to1 has a modulus which tends towards zero linearly or quadratically (Figures
2(c) and 2(e)). This rate of convergence of the sequence is related to the order of the
underlying operator: first- or second-order. This kind of matrices (close to positive-
definite matrices for large values ofn) corresponds to an integral operator called a
second-kind Fredholm operator (see Section 4.3.5). Their spectrum clusters around a
complex valueα (= 1 here) up to a sequence converging to zero (eiℓ/ℓ or eiℓ/ℓ2 here).
These configurations lead to converging iterative schemes with a rate depending on
the decay of the sequence to zero (Figures 2(d) and 2(f)).

2.4 Why this happens in acoustic scattering: a simple example

We have just seen that an indefinite matrice without any robust eigenvalue clustering
implies bad convergence properties of the GMRES. Such a situation naturally arises
in acoustic scattering.

Let us look at the following simple scattering problem. We consider a plane wave
uinc(x) = e−ikx coming from+∞ and illuminating the left positive domain]−∞; 0].
The real-valued constant wavenumber is denoted byk. The sound-hard scattering
problem reads: find the scattered fieldu in the unbounded domain[0; +∞[ such that





(∂2
x + k2)u = 0, in [0; +∞[,

∂xu(0) = ik,
u travels to the right.

(6)

Of course, the solution is trivial:u(x) = eikx. Let us note that other boundary condi-
tions could be used as for example the sound-soft one:u(0) = −1 or an impedance
boundary condition. Since problem (6) is set in an unboundeddomain, one usually in-
troduces an Artificial Boundary Condition (ABC) at the fictitious boundaryΣ = {1}
(another point could be chosen). Its aim is to replace the sentence ”u travels to the
right” to get a bounded domain boundary value problem. Here,the boundary condi-
tion is trivial and is(∂n − ik)u = 0, wheren is the outwardly directed unit normal
vector toΩ atΣ. Finally, the problem which is solved by a finite element method is





(∂2
x + k2)u = 0, in Ω,

∂xu(0) = ik,
(∂n − ik)u = 0, onΣ,

(7)

with Ω =]0; 1[ andΣ = {1}. Let us consider that we use a linear continuous Galerkin
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(a) A1: Eigenvalue distribution (n = 100)
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(b) A1: Convergence history
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(c) A2: Eigenvalue distribution (n = 100)
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(e) A3: Eigenvalue distribution (n = 1000)
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(f) A3: Convergence history

Figure 1: MatricesA1, A2, andA3.
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(a) A4: Convergence history
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(b) A5: Convergence history
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(c) A6: Eigenvalue distribution (n = 100)
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(d) A6: Convergence history (n = 100)
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(e) A7: Eigenvalue distribution (n = 100)
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(f) A7: Convergence history

Figure 2: MatricesA4, A5, A6 andA7.
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approximation of (7). Then, the variational formulation writes down: findu such that
∫

Ω

∂xu∂xv − k2uvdx− iku(1)v(1) = −ikv(0), (8)

for all well-chosen test-functionsv. Let us denote byMh andSh respectively the mass
and stiffness matrices associated with the linear Finite Element Method (FEM), for
a uniform discretization ofΩ. The length of one element ish and the total number
of degrees of freedom of the FEM isnh (which is equal to the number of segments
plus one). We denote byuh ∈ Cnh+1 the linear approximation ofu solution to (7)
or (8). The term−iku(1)v(1) related to the ABC contributes in the linear system by
an additional term on the last row and column of the linear system. We denote this
matrix term by−ikBh. The right-hand side is related to−ikv(0) and gives birth to a
right-hand side vectorbh ∈ Cnh+1. Finally, the linear finite element approximation of
(8) leads to the solution of the system

(Sh − k2
Mh − ikBh)uh = bh. (9)

The sparse matrix involved in system (9) isi) complex-valued because of the boundary
term−ikBh andii) non positive-definite since we have the contributionSh − k2Mh.
This is most particularly penalizing when solving high frequency problems (k large).
We report on Figure 3(a) the behaviour of GMRES(50) applied to solving (9) for
k = 60 andnh = 100. The convergence is extremely slow. Let us note thatnh must
be quite large for this value ofk because of the pollution error [15, 64] into the FEM.
Figure 3(b) shows the distribution of the eigenvalues of(Sh−k2Mh−ikBh) as well as
(Sh − k2Mh). We can clearly see that the problem has many eigenvalues lying in the
left half-plane with null imaginary part for(Sh−k2Mh). As a consequence, the matrix
is non positive-definite. Furthermore, the reason why all the eigenvalues are real is
that we are rather solving an interior Helmholtz problem with Neumann boundary
condition. In the case of an (exterior) scattering problem,adding the ABC (which
means that we consider the additional term−ikBh) leads to a complex spectrum. This
can be observed on Figure 3(b). Then, this is worst for havinga converging iterative
scheme.

2.5 How to improve the convergence: preconditioners

For practical purpose, large scale sparse linear systems are solved by an iterative
Krylov solver. This is the case in acoustic scattering wherewe must be able to design
1) a convergent iterative solver and 2) methods that converge fastly if convergence
occurs. One very convenient way to do this is topreconditioningthe linear system by
a sparse matrixP called thepreconditioner. The idea is the following. Let us assume
that we are solving a linear systemAx = b and that we are able to build a matrixP
such thatP is close toA−1. This means that in some sense, for a suitable matrix norm
‖·‖, the quantity‖PA− I‖ or ‖AP − I‖ is small. Here,I is the identity matrix. We
say thatP is a left preconditioner ifPA ≈ I or a right preconditioner ifAP ≈ I. Since
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Figure 3: Matrix(Sh − k2Mh − ikBh).

the condition numberκ(PA) is close toκ(I) = 1, we can think that the solution to the
new linear systemPAx = Pb by an iterative method is convergent and fast. This can
be expected for positive-definite matricesA but not necessarily for indefinite matrices
as we previously noticed. If applyingP only requires a Matrix-Vector Product (MVP)
in the GMRES, we say thatP is anexplicitpreconditioner. If its application needs the
solution of a sparse linear system,P is said to beimplicit.

Since we work at a matrix level, then the construction of the preconditionerP can
only be based onalgebraicconsiderations (the entries ofA). Many algebraic precon-
ditioners have been proposed during the last decades. Let usmention e.g. Incomplete
LU preconditioners (ILU), SParse Approximate Inverses (SPAI) or Algebraic Recur-
sive Multilevel Solvers (ARMS) and all their variants. We refer to [17] for some
of these techniques for general linear systems. Concerningthe solution of scatter-
ing problems, these preconditioners have been tested and improved for instance in
[18, 26, 27, 41, 44, 45, 56, 67]. However, even if these preconditioners provide an im-
proved convergence, convergence breakdown and slow convergence still arise when
medium and high wavenumbersk are considered. This challenging problem is so still
open.

An alternative to the algebraic preconditioners is developed in the sequel. Essen-
tially, we can summarize the derivation of the algebraic preconditioners to: 1) first,
take a continuous (partial differential or integrodifferential) operator, 2) discretize it
to get a matrixA and 3) build an approximate algebraic inverseP . Our solution lead-
ing to what we callanalyticalpreconditioners is based on the following three points:
1) take a partial differential operator or an integral operator, 2) build an approximate
inverse at the continuous level and 3) discretize this operator for example by a finite
element method to get a preconditionerP . The interesting aspect of this approach is
that point 2) keeps the information related to the underlying structure of the operator
to approximate, information which isa priori lost by considering the algebraic view-
point. To attain this goal, we need a mathematical theory which allows to compute
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practically an approximation of the inverse of a general operator at the continuous
level. This is the aim of the next section where we introduce the tools from pseudod-
ifferential operators theory and associated microlocal calculus.

3 Elements on pseudodifferential operator theory

We introduce in this section the basics of the theory of pseudodifferential operators.
The aim of pseudodifferential operators and associated microlocal symbolic calculus
is to naturally generalize partial differential and integral operators through the notion
of symbol. After the definitions, we give some practical rules for symbolic calculus
which are the keystone for building approximations of pseudodifferential operators,
with future applications to analytical preconditioners (Sections 3.3, 7 and 8). For
further reading, we refer e.g. to [63] where the theory of pseudodifferential operators
is presented with more details that we cannot address in thisshort introduction.

3.1 Definitions: pseudodifferential operator and symbol

Let Ω ⊂ Rd be an open set andD′(Ω) the space of distributions onΩ which is the dual
space ofD(Ω) := C∞

0 (Ω) [60, 63]. We introduce the vectorial differential operator
D = (D1, · · · , Dd), settingDj := −i∂j = −i∂xj

. A variable coefficients partial
differential operatorP (x, D) of orderm has the general form

P (x, D) =
∑

|α|≤m

aα(x)Dα, (10)

wherex := (x1, ..., xd) ∈ Ω, α = (α1, · · · , αd) is a multi-index inNd and the coef-
ficientsaα areC∞(Ω) smooth functions. The operatorDα is: Dα = Dα1

1 ...Dαd

d . For
the sake of clarity, we will sometimes precise the derivation variable used forDα like
for exampleDα

x or ∂α
ξ . The polynomialp : Ω × Rd 7→ C

p(x, ξ) =
∑

|α|≤m

aα(x)ξα,

is called the symbol of the operatorP (in the sequelξ = (ξ1, ..., ξd) is the Fourier
covariable). Theprincipal symbolof orderm of P , denoted byσp(P ), represents the
homogeneous part of degreem in ξ of p,

σp(P )(x, ξ) =
∑

|α|=m

aα(x)ξα.

For example, for the operator ”P (x, D) := div(A2(x)∇·)+a0(x)”, we havep(x, ξ) =
−ξTA2(x)ξ+a0(x) andσp(P )(x, ξ) = −ξTA2(x)ξ. Here, divv := ∂1v1+...+∂dvd

is the usual divergence operator of a vector fieldv.
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Let f be a function in the Schwartz spaceS of C∞ functions that rapidly decay at
infinity. Then, its Fourier transform̂f ∈ S is defined by

f̂(ξ) =

∫

Rd

e−ix·ξf(x)dx,

and we have

f(x) =
1

(2π)d

∫

Rd

eix·ξf̂(ξ)dξ.

It is well-known that the Fourier transform is an isomorphism fromS. Moreover we
have the propertŷDαu(ξ) = ξαû(ξ). The inverse Fourier transform is used to rewrite
the partial differential operatorP : S → S through its symbolp

P (x, D)u(x) =
1

(2π)d

∫

Rd

eix·ξp(x, ξ)û(ξ)dξ,

with u ∈ S. Pseudodifferential operators are a generalization of differential operators.
The motivation is to replace polynomial symbolsp in ξ with more general symbols.
Working not only locally in space forx but also in the cotangent space with respect to
ξ is known asmicrolocal analysis. Let us introduce the space of admissible symbols
that define a pseudodifferential operator.

Definition 2. Letm ∈ R. We denote bySm(Ω) the space of functionsa ∈ C∞(Ω×R
d)

such that for every compact subsetK ⊆ Ω and everyα ∈ Nd, β ∈ Nd, there exists a
constantC = C(K,α, β) ∈ R such that

|∂β
x∂

α
ξ a(x, ξ)| ≤ C(1 + |ξ|)m−|α|, ∀(x, ξ) ∈ K × R

d.

The notation|ξ| designates the euclidian norm of vectorξ ∈ Rd, i.e. |ξ| =
√
ξ · ξ,

and, for a multi-index, we set|α| = α1 + ... + αd. Elements ofSm(Ω) are called
symbols of orderm and we writea ∈ Sm.

Let us define now a pseudodifferential operatorA of orderm through its symbol
a ∈ Sm and the inverse Fourier transform.

Definition 3. A symbola ∈ Sm(Ω) defines a continuous linear operatorA = Opa :
C∞

0 (Ω) → C∞
0 (Ω) by

A(x, D)u(x) =
1

(2π)d

∫

Rd

eix·ξa(x, ξ)û(ξ)dξ.

Operators of this type are called pseudodifferential operators of symbola and of order
m. We set thenA ∈ ψm(Ω).

Pseudodifferential operators of arbitrarily small orderm are called regularizing
and we haveψ−∞(Ω) = ∩m∈Rψ

m(Ω). The theory of pseudodifferential operators
offers an interesting and useful property through the symbolic calculus. This leads to
practical computations on operators working at the algebraic level with their symbols
(see section 3.2). To complete some of the definitions below,we introduce the notion
of elliptic pseudodifferential operators.
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Definition 4. A symbola ∈ Sm(Ω) is called elliptic (of degreem) if for everyK ⊂ Ω
compact, there exists a constantC such that

|a(x, ξ)| ≥ C(1 + |ξ|)m, ∀x ∈ K, |ξ| ≥ 1

C
.

An elliptic pseudodifferential operatorA ∈ ψm(Ω) is an operator with an elliptic
symbola ∈ Sm(Ω).

Pseudodifferential operators have regularity propertieswhich are related to their
orderm. For example, if we denote byHs(Ω) the Sobolev space of orders ∈ R of
distributionsu defined onΩ [63], then it can be proved thatA is a continuous linear
operator acting fromHs(Ω) ontoHs−m(Ω), for anys ∈ R.

Finally, pseudodifferential operators have the pseudolocal property. We say that
an operatorA acting on a distributionu is local if Au is smooth in the same set as
u. Pseudolocal means that the set whereA is smooth includes the set whereu is
smooth. This implies thatA could smooth out a nonsmoothness ofu (a more rigorous
mathematical definition uses the notion of support and singular support of a distribu-
tion [63]). Partial differential operators with smooth coefficients are local operators
and every local operator is a differential operator. Examples of pseudolocal operators
include integral operatorsA of the form

Au(x) =

∫

Ω

G(x,y)u(y)dy,

whereG is a smooth kernel.

3.2 Practical symbolic calculus rules

The most important property of pseudodifferential operators for practical applications
in scientific computing is the fact that all the computationslike the composition of
two operators or the transposition of an operator can be performed algebraically at the
symbol level. We give here the main results useful for the sequel and most particularly
introduce the idea of asymptotic expansion of a symbol.

A symbola ∈ Sm(Ω) is said to be homogeneous of degreem in ξ if the following
relation holds

∀(x, ξ) ∈ Ω × (Rd \ 0), ∀λ > 0, a(x, λξ) = λma(x, ξ).

We can then give the following definition.

Definition 5. Let a ∈ Sm(Ω). Consider a deacreasing sequence of real constants
(mj)

∞
j=1 with limj→∞mj = −∞. Let (aj)

∞
j=1 a sequence of homogeneous symbols

aj ∈ Smj (Ω) such that

a−
k∑

j=1

aj ∈ Smk+1(Ω), (11)
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for everyk ∈ N, k 6= 0. Then, we say that(aj)
∞
j=1 is an asymptotic expansion ofa. In

this case, we writea ∼ ∑
j aj . The first terma1 of orderm1 in the expansion is called

the principal symbol.

Not every symbola ∈ Sm(Ω) has an asymptotic expansion. The set of symbols
of the form (11) is called classical. It is denoted bySm

cl (Ω) and the corresponding
operators belong toψm

cl (Ω).

Remark 2. If two symbolsa etb have the same asymptotic expansion, then they differ
from a smoothing pseudodifferential operator

a− b = (a−
k∑

j=1

aj) − (b−
k∑

j=1

aj) ∈ Smk+1(Ω),

for all k andlimj→+∞mj = −∞, so(a−b) ∈ S−∞(Ω), withS−∞(Ω) = ∩m∈RSm(Ω).

As said above, one of the crucial points of pseudodifferential operators is that we
have algebraic rules for computing some operations on pseudodifferential operators.
Two extremely important properties are the following.

Proposition 3. LetA ∈ ψm1
cl (Ω),B ∈ ψm2

cl (Ω) with symbolsa ∈ Sm1
cl (Ω), b ∈ Sm2

cl (Ω)
respectively. Then

1. The transposeAt ofA is a pseudodifferential operator. The symbolat ∈ Sm1
cl (Ω)

ofAt ∈ ψm1
cl (Ω) is given by the following expansion

at(x, ξ) ∼
∑

α∈Nd

1

α!
∂α

ξD
α
xa(x,−ξ), (12)

whereα ∈ Nd is a multi-index.

2. The composition of two operatorsA andB, denoted byAB, is a pseudodiffer-
ential operator. The symbola♯b ∈ Sm1+m2

cl (Ω) ofAB ∈ ψm1+m2
cl (Ω) is

a♯b(x, ξ) ∼
∑

α∈Nd

1

α!
∂α

ξ a(x, ξ)D
α
xb(x, ξ). (13)

In particular, this shows thata(x,−ξ)t is the principal symbol ofAt andσp(A)σp(B)
ofAB.

In addition to Proposition 3, let us remark thatDα
xa ∈ Sm1

cl and∂α
ξ a ∈ Sm1−|α|

cl if
a ∈ Sm1

cl . Furthermore, we have the following Theorem.

Theorem 3. LetA be an elliptic pseudodifferential operator of orderm. There exists
a pseudodifferential operatorB (inverse ofA) with order−m such thatAB−I (right
inverse ofA) andBA− I ∈ ψ−∞(Ω) (left inverse ofA). The operatorI is the identity
operator (with symbol1).
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We can see that combining formula (13) and Theorem 3 gives a practical way of
computing an approximate inverseB of a given pseudodifferential operatorA if we
know its symbola or at least the first terms of its asymptotic expansion. In practice,
this can often be done. This point of view is at the basis of what we call analyti-
cal preconditionerswhich is an alternative approach to the purelyalgebraicmethods
described briefly in section 2.5.

3.3 A first and simple application to preconditioning of the Helm-
holtz equation

An example of application of pseudodifferential operatorstheory and symbolic cal-
culus rules to preconditioning is the following. Let us consider the Helmholtz op-
eratorL = ∆ + k2 of symbolσL(x, ξ) = σL(ξ) = k2 − |ξ|2 (the dependence in
x really occurs for an inhomogeneous media). Then, an exact analytical precondi-
tioner would be an operatorA such thatAL = I. SinceL is a pseudodifferential
(in fact, partial differential) operator of order2, A is a pseudodifferential operator of
order−2. Formally,A is equal to the nonlocal operator(∆ + k2)−1 with symbol
(k2 − |ξ|2)−1. This point of view is purely theoretical since the practical computa-
tion of A is exactly what we wish to obtain by solving the initial scattering prob-
lem. A first approximation is to consider a static approximation of the symbol ofA
as: σA ≈ (−|ξ|2)−1. This means that the corresponding analytical preconditioner is
A0 = Op((−|ξ|2)−1) = ∆−1, implying that the associated preconditioned operator to
solve is:A0L = ∆−1(∆ + k2) = I + k2∆−2. HenceA0L is a second-kind integral
operator (see Section 4.3.5) with eigenvalue clustering around(1, 0) in the complex
plane for large frequencies|ξ|. This idea was introduced differently by Bayliss, Gold-
berg and Turkel in [16]. It can be shown (see also Figure 4(a) for a one-dimensional
example ) that this clearly improves the convergence of an iterative solver when con-
sidering low-frequenciesk (close to the static problem). However, for larger values of
k (medium and high frequency regimes), the convergence may fail or strongly depends
on k. As an example, let us considerk = 60 andnh = 80 for the one-dimensional
case. We represent on Figure 4(a) the eigenvalue distribution in the complex plane
of the corresponding discrete preconditioned matrixI − k−2S

−1
h Mh. If we would

zoom around the origin, then one would observe a clustering of the eigenvalues around
(1, 0). However, as we can see, many eigenvalues remain in the left half-plane leading
to an indefinite matrix whenk is sufficiently large. An improved solution is to con-
sider the smoothing ofA by a complex parameterα ∈ C: Aα = (∆+k2α)−1. Adding
this parameter leads to the solution of a dissipative Helmholtz equation. This approach
is called Laplace shifted preconditioning approach [38]. In terms of eigenvalues, the
symbol of the preconditioned operatorAαL is

σAαL(x, z) =
1 + z

α + z
, (14)
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settingz = −|ξ|2/k2 ∈ R−. The eigenvalues are then distributed along a circular arc
as a consequence of the Poincaré map (14). The center of the circle is

(
1

2
,
(a2 + b2 − a)

2b
)

and its radius is √
1

4
+

(a− (a2 + b2))2

4b2
,

settingα = a+ib. The endpoints areα−1 for the low-frequency spatial values|ξ| ≪ k
(z ≈ 0 for physical propagative modes) and(1, 0) for large frequencies|ξ| ≫ k
(z ≈ −∞ for evanescent waves). For the ”grazing” waves related to|ξ| ≈ k (z ≈ −1),
one gets positive eigenvalues close to the origin. These remarks can be observed on
Figures 4(b) and 4(c) for respectivelyα = 1 + 0.5i and1 + i (”analytical arc”). From
a practical point of view,Aα is computed by a few step of a multigrid algorithm or
by an ILU factorization and not a direct solver (see [38, 66]). These preconditioners
a priori lead to preconditioned matrices with eigenvalues having positive real parts
(and so positive-definite matrices correspond). However, for a scattering problem, a
boundary contribution related to the ABC must be consideredin the global system
matrix and must be included into the preconditioner. On figures 4(b) and 4(c), we
draw the numerical eigenvalues of the preconditioned matricesAik

α,hLh with ABCs,
settingLh = Sh − k2Mh − ikBh andAik

α,h = (Sh − k2αMh − ikBh)
−1. We observe

that the introduction of the boundary term modifies the circular arc. Most particularly,
the associated spectrum has eigenvalues with negative realparts, meaning thatAik

α,hLh

is an indefinite matrix now. The residual history of the GMRES(50) for computing the
solution to the scattering problem with different preconditioners are reported on Figure
4(d). This shows the divergence of the restarted GMRES without preconditioner and
its convergence forα = 0, α = 1 + i andα = 1 + 0.5i, which is compatible with the
literature on the subject [38, 66]. The fastest convergenceis obtained withα = 1 +
0.5i, which can be expected from Figure 4(c) since most eigenvalues have significative
positive real parts.

This first simple application shows that the pseudodifferential operator theory and
symbolic calculus lead to some possible constructions of robust and efficient precon-
ditioners for PDEs. The aim of the next section is to provide other applications for
preconditioning well-known integral equation formulations used in acoustic scattering
problems.

4 Potential theory - integral equations

In this section, we present how to solve an exterior boundaryvalue problem set in an
unbounded computational domainvia the integral equations method. First, we recall
the basic acoustic scattering problem and some notations. Next, we give elements of
potential theory that are crucial for the integral equations method. Finally, we discuss
the derivation of the classical direct and indirect integral equations for both Dirichlet
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and Neumann boundary conditions. We also describe their properties in view of a
numerical solution by a Krylov iterative solver (like the GMRES).

4.1 Acoustic scattering problems

Let us define ad-dimensional bounded domainΩ− ⊂ Rd representing an impenetra-
ble body with boundaryΓ := ∂Ω−. We denote byΩ+ := Rd \ Ω− the associated
homogeneous exterior domain of propagation. Consider the scattering of an incident
time-harmonic acoustic waveuinc by the obstacleΩ−. The scattered fieldu+ satisfies
the following exterior boundary-value problem





∆u+ + k2u+ = 0, in Ω+,
u+|Γ = −uinc|Γ or ∂nu

+|Γ = −∂nu
inc|Γ, onΓ,

lim
‖x‖→+∞

‖x‖(d−1)/2(∇u+ · x

‖x‖ − iku+) = 0,
(15)

setting∆ :=
∑d

i=1 ∂
2
xj

. We consider an incident time-harmonic plane wave of the
form:

uinc(x) = e−ikθinc·x.

This wavefield is characterized by the wavenumberk := 2π/λ, settingλ as the wave-
length of the signal. In the two-dimensional case (d = 2), the direction of incidence
θinc is given by the relationθinc = (cos(θinc), sin(θinc))T , whereθinc is the scatter-
ing angle in the polar coordinates system. In the three-dimensional case (d = 3),
we haveθinc = (cos(θinc) sin(φinc), sin(θinc) sin(φinc), cos(φinc))T . The scattering an-
gles (θinc, φinc) are expressed in the spherical coordinates system. We defineby n
the outwardly directed unit normal toΩ− at the boundaryΓ. The boundary condition
on Γ (second equation of (15)) depends on the physical problem under study. The
sound-soft or Dirichlet (respectively sound-hard or Neumann) boundary condition on
Γ corresponds to the first (respectively second) boundary condition in (15). Finally,
the last equation is the well-known Sommerfeld radiation condition or the outgoing
wave condition. This condition completely characterizes the behaviour of the solution
to the Helmholtz equation at infinity and guarantees the uniqueness of the solution to
the exterior problem (15).

Let us introduce the functional spaces [55]

Hs
loc(Ω

+) :=
{
v ∈ D′(Ω+)/ψv ∈ Hs(Ω+), ∀ψ ∈ D(Rd)

}
, s ≥ 1,

H1
−(∆) := H1(∆,Ω−) :=

{
u ∈ H1(Ω−); ∆u ∈ L2(Ω−)

}
,

H1
+(∆) := H1

loc(∆,Ω
+) :=

{
u ∈ H1

loc(Ω
+); ∆u ∈ L2

loc(Ω
+)

}
.

Foru ∈ H1
±(∆), the exterior (+) and interior (−) trace operators of orderj (j = 0 or

1) can be defined by

γ±j : H1
±(∆) → H1/2−j(Γ)
u 7→ γ±j u

± = ∂j
nu

±|Γ. (16)
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In this functional setting, the existence and uniqueness ofthe solution to the scattering
problem





Findu+ ∈ H1
loc(Ω

+) such that
∆u+ + k2u+ = 0, in D′(Ω+),
γ+

j u
+ = g := −γ+

j u
inc, in H1/2−j(Γ), for j = 0 or 1,

lim
‖x‖→+∞

‖x‖(d−1)/2(∇u+ · x

‖x‖ − iku+) = 0,

(17)

can be proved [33].

The first main difficulty arising in the numerical solution ofthe exterior boundary-
value problem (17) is related to the unboundedness of the computational domainΩ+.
A solution is to apply the integral equations method [29, 33]. This approach allows to
reformulate the initial boundary-value problem as an integral equation defined on the
boundaryΓ of the scattering obstacleΩ−. Then, this method reduces the dimension of
the problem tod − 1. Boundary integral equations are derived from potential theory.
Let us give in the following Section some elements of this theory.

4.2 Potential theory: basic relations - properties

The essential property is that any solution to the Helmholtzequation can be repre-
sented as the linear combination of a single- and a double-layer potentials. The fol-
lowing proposition holds.

Proposition 4. Let us define the outgoing Green’s functionG associated with the
Helmholtz operator inRd by

G(x,y) =





i

4
H

(1)
0 (k‖x− y‖), for d=2,

1

4π

eik‖x−y‖

‖x− y‖ , for d=3,
(18)

whereH(1)
0 designates the first-kind Hankel function of order zero. Let(v−, v+) ∈

H1(Ω−) ×H1
loc(Ω

+) satisfying

∆v− + k2v−, in Ω−,

and {
∆v+ + k2v+, in Ω+,
v+ outgoing wave.

Then, we have

L([∂nv(y)]Γ)(x) −D([v(y)]Γ)(x) =

{
v−(x), for x ∈ Ω−,
v+(x), for x ∈ Ω+,

(19)

where
[v]Γ := γ−0 v

− − γ+
0 v

+, [∂nv]Γ := γ−1 v
− − γ+

1 v
+,
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and

Lp(x) :=

∫

Γ

G(x,y)p(y)dΓ(y), x /∈ Γ, (20)

Dφ(x) :=

∫

Γ

∂n(y)G(x,y)φ(y)dΓ(y), x /∈ Γ, (21)

for (p, φ) ∈ H1/2(Γ) ×H−1/2(Γ).

The operatorsL andD defined above are called the single- and the double-layer
potentials respectively. To obtain integral equations seton the boundaryΓ, we need
the trace formulae for these two potentials (see for instance [55]).

Proposition 5. The first and second traces onΓ of the single-layer and the double-
layer potentials are given by





γ−0 ◦ L = γ+
0 ◦ L = L

γ−1 ◦ L = (
I
2

+ N )

γ+
1 ◦ L = (−I

2
+ N )

(22)





γ−0 ◦D = (−I
2

+ D)

γ+
0 ◦D = (

I
2

+ D)

γ−1 ◦D = γ+
1 ◦D = S

(23)

whereI is the identity operator andL,N ,D andS the four elementary boundary
integral operators expressed, for allx ∈ Γ, by

Lp(x) :=

∫

Γ

G(x,y)p(y)dΓ(y)

N p(x) :=

∫

Γ

∂n(x)G(x,y)p(y)dΓ(y)

Dφ(x) :=

∫

Γ

∂n(y)G(x,y)φ(y)dΓ(y)

Sφ(x) :=

∮

Γ

∂2G

∂n(x)∂n(y)
(x,y)φ(y)dΓ(y).

(24)

Note that the expression definingS is not an integral (its singularity is not inte-
grable) but a finite part expression associated with a hypersingular kernel. We pre-
ferred to keep formally the integral expression for the sakeof clarity. Let us now
summarize the continuity properties of the elementary boundary integral operators
(see for instance [55, Theorem 4.4.1] or Theorems 7.1 and 7.2in [51]).

Proposition 6. For a smooth boundaryΓ, the boundary integral operators given in
Proposition 5 define the following continuous mappings

L : Hs(Γ) −→ Hs+1(Γ),
N : Hs(Γ) −→ Hs(Γ),
D : Hs(Γ) −→ Hs(Γ),
S : Hs(Γ) −→ Hs−1(Γ),

(25)
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for all s ∈ R. Moreover, the operatorsN andD are compact fromHs(Γ) onto itself
for all s ∈ R.

In the case of a Lipschitz boundary [34, 51], the above continuity properties still
hold for−1 ≤ s ≤ 0 (respectively for0 ≤ s ≤ 1) for operatorsL andN (respectively
D andS), while the compactness properties ofN andD fail. A possible approach to
rigorously extend the following developments is to use e.g.some regularizing tech-
niques [24].

The representation (19) allows to determine the near-field around the scatterer. A-
nother physical quantity of interest is the scattering amplitude (or the far-field pattern).
For instance, in the two-dimensional case, we have

a0(θ) =
i

4

√
2

iπk

∫

Γ

e−iky·θ(γ+
1 u

+(y) + ikθ · n(y)γ+
0 u

+(y))dΓ(y).

4.3 Standard integral equations formulations

The Helmholtz representation formula (19) leads to the construction of an infinite
number of integral equations (equivalent if invertible) inthe case of a closed surface.
In the case of an open surface, only one integral equation canbe written. The aim
of this part is to introduce the most standard integral equations for both Dirichlet and
Neumann boundary conditions. We usually distinguish between direct and indirect
integral equations, each of them having their own mathematical properties.

Let us introduce the following notations

• KD(Ω−) = {kD
m, m ∈ N}, the set of Dirichlet irregular frequencies (interior

Dirichlet eigenvalues), is the set of values ofk such that the boundary value
problem {

−∆v = k2v, in Ω−,

γ−0 v = 0, onΓ,

admits a non vanishing solution.

• KN (Ω−) = {kN
m, m ∈ N}, the set of Neumann irregular frequencies (interior

Neumann eigenvalues), is the set of values ofk such that the boundary value
problem {

−∆v = k2v, in Ω−,

γ−1 v = 0, onΓ,

admits a non vanishing solution.

4.3.1 The Dirichlet problem: direct integral formulations

The total fieldw is expressed byw := u+ + uinc. The direct formulations consist in
seeking the total field under the form

w(x) = Lp(x) + uinc(x), x ∈ Ω+. (26)
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The integral representation (26) ensures thatw is solution to the Helmholtz equation
in Ω− ∪ Ω+, and satisfies the Sommerfeld radiation condition. Then, wehave to
determine the unknownp such thatw satisfies also the Dirichlet boundary condition
(γ+

0 w = 0). More precisely, the representation (26) corresponds to the particular
choice of solutions(v−, v+) := (−uinc, u+) in proposition 4, i.e.

[v]Γ = 0 [∂nv]Γ = −γ+
1 w|Γ := p

and

Lp(x) =

{
−uinc(x) for x ∈ Ω−

u+(x) for x ∈ Ω+.

Then, we get the following single-layer potential representation of the total field:

Lp(x) + uinc(x) =

{
0 for x ∈ Ω−

w(x) for x ∈ Ω+.

Clearly, this formulation is completely equivalent to extending artificially the total
field by zero insideΩ−, which explains that this approach is also referred sometimes
to as thenull field method.

The next step is to obtain an integral equation for the physical unknownp =
−γ+

1 w|Γ ∈ H−1/2(Γ). To achieve this, the idea is to apply a trace operator to the
relation

Lp(x) + uinc(x) = 0, ∀x ∈ Ω−. (27)

At this point, many choices are available. Let us cite three of them leading to classical
integral equations of potential theory.

• EFIE : This equation is obtained by applying the trace operatorγ−0 to (27).
Thanks to the trace relations of Proposition 5, this leads tothe well-known Elec-
tric Field Integral Equation (EFIE):

Lp = −γ+
0 u

inc, onΓ. (28)

• MFIE : This equation is obtained by applying the normal trace operator γ−1 to
(27). Thanks to the trace relations of Proposition 5, this leads to the so-called
Magnetic Field Integral Equation (MFIE):

(
I
2

+ N )p = −γ+
1 u

inc, onΓ. (29)

• CFIE : This equation is obtained by applying to (27) the Fourier-Robin (impe-
dance) trace operatorγ−1 + ηγ−0 , with η 6= 0. Once again, the trace relations of
Proposition 5 give the Combined Field Integral Equation (CFIE):

{
(
I
2

+ N ) + ηL
}
p = −(γ+

1 u
inc + ηγ+

0 u
inc), onΓ. (30)
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The existence and uniqueness results for the above direct integral equations ((28),
(29) or (30)) are given in the following theorem.

Theorem 4. The following properties hold.

1. The operatorL defines an isomorphism fromH−1/2(Γ) ontoH1/2(Γ) if and
only if k 6∈ KD(Ω−). Under this condition, the EFIE(28) is uniquely solvable
in H−1/2(Γ).

2. The operator

(
I
2

+ N )

defines an isomorphism fromH−1/2(Γ) ontoH−1/2(Γ) if and only ifk 6∈ KN(Ω−).
Under this condition, the MFIE(29) is uniquely solvable inH−1/2(Γ).

3. The operator

(
I
2

+ N ) + ηL

defines an isomorphism fromH−1/2(Γ) ontoH−1/2(Γ) for all k > 0 provided
ℑ(η) 6= 0 (imaginary part ofη). Under this condition, the CFIE(30) is uniquely
solvable inH−1/2(Γ) for any frequencyk > 0.

In the case wherek in an irregular frequency, the integral equations EFIE and MFIE
have non zero kernels. Nevertheless, it can be shown that thespurious modes of the
EFIE will not radiate in the exterior. Thus, the field is not corrupted outside the object:
Lp = 0 onΓ =⇒ Lp = 0 in Ω+. Then, the EFIE provides accurate computations and
often represents a reference solution. Unlike the EFIE, thespurious solutions of the
MFIE do radiate in the exterior domain, leading hence to a wrong solution. Finally, by
its construction itself, the CFIE is free of the internal-resonance problem. We consider
in the sequelη = −ikα/(1 − α), α ∈]0, 1[,

(1 − α)
i

k
(
I
2

+ N ) + αL = −((1 − α)
i

k
γ+

1 u
inc + αγ+

0 u
inc), onΓ. (31)

A common choice ofα for engineering computations isα = 0.2 which gives an almost
minimal condition number for the CFIE.

4.3.2 The Dirichlet problem: indirect integral formulatio ns

The indirect formulations are based on the assumption that the solution can be ex-
pressed in terms of a source density function defined on the boundary. The unknowns
are then generally non-physical quantities. The physical variables are solved after-
wards in terms of these source densities. Here, we focus on the most commonly
used indirect integral formulation independently proposed by Burton-Miller [25] and
Brakhage-Werner [19]. The idea is to seek the exterior field as a superposition of the
single- and double-layer potentials acting on a fictitious surface densityψ:

u+(x) = (D + ηL)ψ(x), ∀x ∈ Ω+, (32)
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whereη is a complex-valued coupling parameter to choose. The aboveexpression
leads, thanks to the trace relations (5), to the following integral equation :

{
(
I
2

+ D) + ηL
}
ψ = −γ+

0 u
inc, onΓ. (33)

We consider the above integral equation in the spaceH1/2(Γ) and we can prove the
following result.

Theorem 5. The operator

(
I
2

+ D) + ηL

defines an isomorphism fromH1/2(Γ) ontoH1/2(Γ) for all k > 0 providedℑ(η) 6= 0.
Under this condition,(33) is uniquely solvable inH1/2(Γ) for all frequencyk > 0.

This integral equation is uniquely solvable if and only ifℑ(η) > 0. An almost
optimal value ofη has been obtained in [3, 46, 48] as:η = ik. We will see in Section
8 that other more subtle choices can be made in view of an iterative Krylov solution.

4.3.3 The Neumann problem: direct integral formulations

Let us now briefly discuss the derivation of direct integral equations in the case of a
Neumann boundary condition. The total fieldw := u+ +uinc is sought under the form

w(x) = Dφ(x) + uinc(x), x ∈ Ω+. (34)

Proposition 4 for(v−, v+) := (−uinc, u+) leads to:

[v]Γ = −γ+
0 w := φ,

[∂nv]Γ = 0,

and

Dφ(x) =

{
−uinc(x) for x ∈ Ω−

u+(x) for x ∈ Ω+.

Then, we get

Dφ(x) + uinc(x) =

{
0 for x ∈ Ω−

w(x) for x ∈ Ω+.

Applying a trace operator to the relation

Dφ(x) + uinc(x) = 0, ∀x ∈ Ω−, (35)

the physical unknownφ = −γ+
0 w ∈ H1/2(Γ) is solution to the following direct inte-

gral equations
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• EFIE :
Sφ = −γ+

1 u
inc, onΓ. (36)

• MFIE :

(−I
2

+ D)φ = −γ+
0 u

inc, onΓ. (37)

• CFIE :
{
(−I

2
+ D) + ηS

}
φ = −(ηγ+

1 u
inc
|Γ + γ+

0 u
inc), onΓ. (38)

The existence and uniqueness results for the above integralequations are summarized
in the next result.

Theorem 6. The following properties hold

1. The operatorS defines an isomorphism fromH1/2(Γ) ontoH−1/2(Γ) if and
only if k 6∈ KN(Ω−). Under this condition, the EFIE(36) is uniquely solvable
in H1/2(Γ).

2. The operator

(−I
2

+ D)

defines an isomorphism fromH1/2(Γ) ontoH1/2(Γ) if and only ifk 6∈ KD(Ω−).
Under this condition, the MFIE(37) is uniquely solvable inH1/2(Γ).

3. The operator

(−I
2

+ D) + ηS

defines an isomorphism fromH1/2(Γ) ontoH−1/2(Γ) for all k > 0 provided
ℑ(η) 6= 0. Under this condition, the CFIE(38) is uniquely solvable inH1/2(Γ)
for all frequencyk > 0.

The reference CFIE in this chapter is

(1 − α)
i

k
(−I

2
+ D) − α

k2
S = −((1 − α)

i

k
γ+

0 u
inc − α

k2
γ+

1 u
inc), onΓ. (39)

4.3.4 The Neumann problem: indirect integral formulations

The Burton-Miller (or Brakhage-Werner) integral representation of the exterior field
is expressed by

u+(x) = (L+ ηD)ϕ(x), ∀x ∈ Ω+, (40)

whereη is a complex-valued coupling parameter to determine. Then,the field (40)
solves the exterior boundary-value problem (17) if the surface densityϕ is solution to
the following integral equation

{
(−I

2
+ N ) + ηS

}
ϕ = −γ+

1 u
inc, (41)
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called the Burton-Miller or Brakhage-Werner (BW) integralequation. We have the
following existence and uniqueness result.

Theorem 7. The operator

(−I
2

+ N ) + ηS

defines an isomorphism fromH1/2(Γ) ontoH−1/2(Γ) for all k > 0 providedℑ(η) 6= 0.
Under this condition,(41) is uniquely solvable inH1/2(Γ) for all frequencyk > 0.

An almost optimal value ofη has been numerically discussed in [3, 46, 48] as:
η = 1/ik. Again, we will see in Section 8 that better choices can be considered.

4.3.5 First- vs second-kind fredholm integral equation

For surface formulations of acoustic scattering problems,we have seen in the pre-
vious sections that various integral equations, direct or indirect, combined or not, can
be employed. Let us underline that all these integral equations are applicable to closed
geometries, leaving EFIE ((28) and (36) in the Dirichlet andNeumann cases respec-
tively) as the only choice for the solutions of scattering problems by open surfaces.

In view of an iterative solution of an integral equation, twoproperties are essential
to achieve a fast convergence rate: on the one hand the existence and uniqueness of
the solution, on the other hand the clustering of the eigenvalues of the underlying
integral operator (and hence a well-conditioning). The first property, as we have seen,
is not ensured for each integral equation. Only combined field integral equations
(CFIE, Brakhage-Werner) provide a well-possedness for allfrequencies. To observe
the second property, let us recall some definitions. Given anintegral operatorA ∈
L(X) on a Hilbert spaceX, an integral equation is called of first-kind if it is of the
form

A̺ = f

of second-kind if it is of the form

(I + A)̺ = f. (42)

Moreover, ifA : X → X is compact, the above equations are respectively called
Fredholm integral equations of the first-kind and second-kind. As classically known
[47], the spectrum of compact operators is composed in the infinite dimensional case
of 0 and a sequence of discrete eigenvalues possibly accumulating at the origin. There-
fore, second-kind Fredholm integral equation have large clusters of eigenvalues accu-
mulating at the real value point1 (cf. Section 2.3). This is a very interesting spectral
property in view of an iterative solution using a Krylov solver. Indeed, eigenvalue
clustering in the complex plane generally implies fast convergence.

The integral operatorL is bounded fromHs(Γ) ontoHs+1(Γ), and it is compact
from L2(Γ) onto itself. Therefore, the EFIE (28) is a Fredholm first-kind integral
equation onL2(Γ) in the case of a Dirichlet condition. On the contrary, the MFIE
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(29), the CFIE (30) and the Burton-Miller integral equation(33) are all second-kind
integral equations. Then, the combined field integral equations have all the properties
required for an efficient iterative solving.

In the case of a Neumann boundary condition, the situation ismore complex. In
fact, only the MFIE is a second-kind Fredholm integral equation but it is unfortunately
ill-posed. The EFIE, CFIE and Burton-Miller integral equations involve the operator
S which is a first-order, strongly singular and non-compact operator. Therefore, these
equations are first-kind integral equations. There are two alternatives to expect an
eigenvalue clustering. The first one is to precondition the integral operator (see Section
7). The second possibility is to incorporate a suitable operator of order−1 which has
a regularizing effet onS and leads to a second-kind integral equation (see Section
8). Let us note that in the case of the numerical solution of scattering problems by
an open surface, the preconditioning represents the only way to improve convergence.
We come back to this point in section 7.

5 Developing fast converging solutions: strategy and
problematics

Let us consider now that we have chosen an integral equation representation

A̺ = f

that we want to numerically solve. Here,A is one of the previous first- or second-kind
integral operators,f is a right-hand side given by the incident field and̺ is the density
that we would like to compute. For a numerical calculation, the surface of the scatterer
needs to be discretized by using for exampleNK trianglesK in three-dimensions,
resulting in a discrete surfaceΓh = ∪NK

j=1K, whereh is the meshsize (see Section 8.3
for more details). Let us consider a regular triangulationTh based on triangles. The
linear Galerkin boundary element method is based on the approximation space

Vh =
{
vh ∈ C0(Γh); vh = vh|Γ ∈ P1, ∀T ∈ Th

}
,

of dimensionNV (equal to the number of degrees of freedom). The density of dis-
cretization points per wavelenghnλ is given bynλ = λ/hmax, wherehmax is the
maximal length of the edges of the triangles. Then, the operator A is also approxi-
mated by a matrix[A] and the right hand-sidef by a complex-valued vectorfh. The
sizes of the vector and the matrix[A] are equal to the number of degrees of freedom of
the boundary element method used to approximate the density̺ by a vector̺ h. For
example, using linear boundary elements leads toNV degrees of freedom, whereNV

is the number of vertices of the triangular mesh. One problemthat we do not address
here but which is a hard task in integral equations consists in integrating the kernel
singularities. However, since it is out of our goal, we do notdevelop this point here.

Consider now that we want to solve the linear system

[A]̺h = fh.
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The matrix[A] is complex-valued, dense and highly non-definite positive.It requires
a storage of the order ofO(N2

V ) (if a linear boundary element method is used) and its
solution by a direct gaussian solver requiresO(N3

V ) operations. For high frequency
problems, thenNV becomes extremely large and makes the direct approach not ap-
plicable. Therefore, since the introduction, about twentyyears, of the Fast Multilevel
Multipole (FMM) method [32, 36, 37, 40, 62], the strategy forsolving an integral
equation has fundamentally changed. The FMM method (as wellas other similar
techniques, see [21, 22, 23]) allows to compute with a low-storageO(NV ) and in
a fast wayO(NV logNV ) the Matrix-Vector Product (MVP):xh → [A]xh (”black
box”). This matrix-free approach allowed to solve higher frequency problems if it is
coupled with an iterative Krylov solver like the GMRES. As previously noticed, the
global algorithm is efficient and robust if the GMRES converges with a few iterations.
This is closely related to the spectral properties ofA as well as the way a precondi-
tioner is built. Since we have a non positive-definite matrix, the iterative algorithm
may diverge. If not, its convergence can be extremely slow. Furthermore, since we do
not have the matrix at hand (because of the matrix-free FMM approach), building the
preconditioner must be done without having access to the whole matrix.

The aim of the next sections are 1) to propose a spectral analysis of integral opera-
tors in some simplified situations to understand their properties (Section 6) and 2) to
explain two recent matrix-free analytical preconditioning techniques (Sections 7 and
8) for solving integral equation formulations.

6 Spectral analysis of integral operators for the sphere

Let Γ = S1 be the unit sphere centered at the origin. Let us introduce the spherical
harmonicsY n

m as the functions of orderm for n = −m · · ·m, withm ∈ N [33], given
by

Y n
m(θ1, θ2) =

√
2m+ 1

4π

(m− |n|)!
(m+ |n|)!P

n
m(cosθ1)e

inθ2 , (θ1, θ2) ∈ S1,

whereP n
m are the Legendre polynomials. The functionsY n

m form a complete orthonor-
mal system ofL2(S1). Furthermore, they also constitute a basis of eigenvectorsfor the
four elementary integral operatorsL, N , D andS (cf. proposition 5). More precisely,
we have the following proposition [4, 46].

Proposition 7. The eigenvaluesLm, Nm, Dm andSm of multiplicity (2m + 1) res-
pectively associated with the elementary integral operatorsL, N , D andS are given
by

LY n
m = {ikjm(k)h(1)

m (k)}Y n
m = LmY

n
m,

NY n
m = {−1/2 + ik2j

′

m(k)h(1)
m (k)}Y n

m = NmY
n
m,

DY n
m = N tY n

m = NmY
n
m = DmY

n
m,

SY n
m = {ik3j

′

m(k)(h(1)
m )′(k)}Y n

m = SmY
n
m,
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wherejm denotes the spherical Bessel function andh
(1)
m the spherical Hankel function

of the first-kind. Their derivatives are specified with a prime
′

.

Let us begin with the case of a sound-soft sphere. We considerthe EFIE operator
L (28), the CFIE operator (31) and the usual BW operator (33) with η = ik. A direct
computation gives the eigenvaluesCD

m andBD
m of the combined operators (31) and (33)

respectively
CD

m = ik2h(1)
m (k)(αj

′

m(k) + i(1 − α)jm(k)),

BD
m = ik2h(1)

m (k)(j
′

m(k) − ijm(k)).

We draw on Fig. 5 the spectrum of the usual integral operatorstakingk = 30 and
a maximal number of modesmmax = 12k. To understand the spectral distribution,
we need to introduce three zones: the elliptic zone of evanescent modes (|m| ≫ k),
the hyperbolic region of propagative modes (|m| ≪ k) and the transition (hyperbolic-
elliptic) zone of physical surface modes satisfying|m| ≈ k. To make the connection
with pseudodifferential operators, think for easiness that ξ = m. For the EFIE (Figure
5(a)), we can see that some eigenvalues spread out the complex plane and are related
to the finite number of propagative modes. Next, a loop beginsto appear for modes
close to the transition zone. Finally, we observe an accumulation point at(0, 0) for
large modes|m|. SinceL is a first-kind operator of order−1, its eigenvalues asymp-
totically behave like|m|−1 for large values of|m| (elliptic zone). This implies that
the smallest eigenvalue is related to the largest modemmax and makes appear a de-
pendence of the condition number according to the density ofdiscretization points
per wavelengthnλ for integral equations [29]. The largest eigenvalue is related to a
propagative mode and leads to a dependence of the condition number according to
k. Therefore, the EFIE has a spectrum which is not really appropriate to an itera-
tive solver and preconditioning will have to be considered,most particularly for large
wavenumbersk and large densities of discretization points. Two large clusters of
eigenvalues at points(1/2, 0) and(1, 0) can be observed for the BW operator (Figure
5(b)). The first appears in the elliptic zone and the second one in the hyperbolic zone.
The few eigenvalues that form the loop between low-order andhigh-order modes|m|
correspond to surface modes. The CFIE operator also offers an interesting and quite
similar distribution of eigenvalues (Figure 5(c)). These good spectral properties are
linked to the Fredholm second-kind character of these operators. As a consequence,
the standard CFIE and BW formulations are well-adapted for the iterative solution of
the acoustic sound-soft problem.

Let us now consider the hard sphere. The eigenvaluesCN
m andBN

m of the CFIE (39)
and the BW ((33),η = i/k) operators are expressed respectively by

CN
m = k(h(1)

m )
′

(k)((1 − α)jm(k) + iαj
′

m(k)),

BN
m = −ik2(h(1)

m )
′

(k)(jm(k) + ij
′

m(k)).

We draw on Fig. 5 the distribution of the eigenvalues for the EFIE, BW and CFIE
o-perators. We fixk = 30 andmmax = 12k modes. The EFIE operator is of or-
der1 and its eigenvalues associated with high order modes becomelarge since they
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(b) Sound-soft: Brakhage-Werner (BW)
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(e) Sound-hard: Brakhage-Werner (BW)
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(f) Sound-hard: CFIE

Figure 5: Sound-soft and sound-hard spheres: distributionof the eigenvalues.
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behave like|m| (Figure 5(d)). The smallest eigenvalue is associated with the prop-
agative modes. For the usual BW integral operator (Figure 5(e)), we observe a cluster
of eigenvalues linked to the low-order modes. A large numberoonf eigenvalues cor-
responding to the evanescent modes are on the linex = 1/2 and do not cluster like
for the sound-soft case. This behaviour penalizes the convergence rate of the GM-
RES. Similar conclusions arise for the CFIE (Figure 5(f)). This is due to the fact that
these three integral equations are Fredholm first-kind integral equations and so are
ill-conditionned. In particular, the convergence rate of aKrylov iterative solver will
depend on the wavenumberk as well as the mesh density. Using some asymptotics
of the special functions appearing above and some formal replacements, some similar
conclusions can be drawn for these integral equations and a general convex surfaceΓ.
Finally, other geometrical configurations lead to spectralestimates of integral opera-
tors (see [28, 29]).

From this analysis, we clearly see that some efforts on analytical (or algebraic)
preconditioning must be directed towards the EFIE for the sound-soft problem and
EFIE, BW and CFIE for the sound-hard case.

7 A first direction to improve the convergence: alge-
braic/analytical preconditioning techniques for the
EFIE

As seen above, the EFIE has a condition number which depends on both the wavenum-
berk and the density of discretization points per wavelengthnλ for both the sound-
soft and sound-hard scattering problems. Furthermore, theeigenvalues spread out the
complex plane which is very penalizing in view of an iterative Krylov solution. One
way to improve the convergence properties of the EFIE is to precondition it. Algebraic
preconditioners have been proposed over the years but may fail, most particularly for
large wavenumbers. Furthermore, they need to handle the full matrix which is in-
compatible with the idea of a matrix-free solver imposed by the FMM method. We
propose here two possible directions for building analytical preconditioners: the first
one uses the Calderón integral relations and the second oneelements from the pseu-
dodifferential operator theory.

7.1 Integral operator preconditioning

The idea of integral operator preconditioning uses the following Calderón relations
[55]

−LS =
I
4
−N 2, −SL =

I
4
− (N T )2. (43)

From these two equations, we can see that, sinceN is a compact operator, thenN 2

and(N T )2 are compact and their eigenvalues tend towards zero. This also means that
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the eigenvalues of−LS and−SL cluster around(1/4, 0) in the complex plane since
they are equal to the operatorI/4 up to a compact perturbation. As a consequence,
−L (respectively−S) is a pseudo inverse operator ofS (respectively−L) and can
serve as a preconditioner. This is an interesting property since the application of this
preconditioner in a FMM environment only involves some evaluations of standard in-
tegral operators. This first application of Calderòn relations to preconditioning has
been developed by Steinbach and Wendland in [61]. It has beennext applied to the
EFIE for acoustics and electromagnetism by Christiansen and Nédélec in [30]. Exten-
sions and other studies related to this approach are available in [9, 10, 11].

To show the improvement induced by a preconditioner based onCalderón relations,
we consider the transmission scattering problem which consists in solving an exterior
Helmholtz problem with wavenumberk2 coupled with an interior Helmholtz prob-
lem for a wavenumberk2

√
N with transmission boundary conditions. This physically

corresponds to scattering by a penetrable homogeneous isotropic scatterer. Following
[11], we propose a Calderón preconditioner for the two-field integral equation solu-
tion to the transmission problem. We refer to [11] for more details. The Calderón
preconditioner for the two-field integral equation is denoted byC. We consider on
Figure 6(a) the convergence history of GMRES(50) for the preconditioned linear sys-
tem in the case of the unit square cylinder (centered at the origin and with sidelength
2). We represent the dependence of the preconditioned algorithm according to both
the wavenumberk2 and the densitynλ of discretization points per wavelength. The
index

√
N for the interior problem is

√
N = 2 + i. We can observe that the conver-

gence is independent of the densitynλ since it can be shown that the preconditioned
integral equation is Fredholm second-kind. However, the convergence depends mod-
erately onk2, which is one of the limitations for Calderón preconditioners. Another
example is given by the scattering problem by a penetrable kite-shaped object (see
Figure 6(b)) for

√
N = 1.55 + 0.64i. The same conclusions can be made from Figure

6(c). We can see on Figure 6(d) (fork2 = 40 andnλ = 10) that even if some eigenval-
ues spread out the complex plane and imply ak2-dependence of the iterative solver,
a large cluster of eigenvalues characterizes the preconditioned matrix and results in
thenλ independence. This first example shows the impact that the point of view of
analytical preconditioning can have on solving a scattering problem. Let us finally
remark that examples in [11] show that ILU preconditioners fail in general leading to
a breakdown of the GMRES.

7.2 Pseudodifferential operator preconditioning

A second approach for preconditioning the EFIE uses the following result which pre-
cises the principal symbol of the single-layerL and normal derivative traceS of the
double-layer potentials.

Proposition 8. Let L andS be respectively the single-layer and normal derivative
trace of the double-layer potentials defined by the expressions (24). Letξ be the dual
variable ofx by Fourier transform forx restricted toΓ. Then, the principal symbols
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(d) Eigenvalue distribution.

Figure 6: Calderón preconditioner for transmission problems.
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ofL andS, denoted byσp(L) andσp(S), are given by

σp(L) =
i

2
√
k2 − |ξ|2

and σp(S) = −
√
k2 − |ξ|2

2i
. (44)

Following an approach similar to the one developed in Section 3.3 but for integral
equations, an appropriate preconditioner for the sound-soft scattering problem based
on the EFIE representation isOp(σp(L)−1) = −4Op(σp(S)) since then

−Op(σp(S))L =
I
4

+R, (45)

whereR is a pseudodifferential operator of order less or equal to−1. One of the
crucial points in this approach is thatk is also considered as a symbol (associated with
the time derivative operator∂t if we come back to a wave equation) of order1. Then,
the symbolσp(S) is homogeneous of order1 and defines a corresponding classical
pseudodifferential operator of order1. We see here that the equation (45) is typically
a pseudodifferential operator version of the second Calderón relation (43). The main
difference is that the operatorOp(σp(S)) is a correct approximation of the inverse of
L in both its hyperbolic and elliptic zones. This is not the case ofS which is only a
good approximation of the inverse in the elliptic part sincethe error term−(N T )2 is
compact (for large values of|ξ| compared tok). Consequently, the convergence rate
of the iterative Krylov solver is independent of the mesh refinement parameternλ and
the dependence according tok is weakened. For the sound-hard scattering problem, a
suitable choice is−4Op(σp(L)) for preconditioningS and the same conclusions arise.

Concerning the implementation in a FMM code, including the operatorOp(σp(S))
can be made independently of the integral equations. For effectiveness, a complex
Padé approximation of the square-root must be considered (see Section 8.2), resulting
in the numerical solution of a coupled system of surface dissipative Helmholtz equa-
tions onΓ. Their approximate solution can be considered by using an ILU precondi-
tioner and an iterative scheme at the costO(NV ), which is much less than applying
an integral operator. We refer to [10] for the interested reader where much more de-
tails about the implementation are given. Some partial elements are also developed in
Section 8.3.

To show the robustness of such an approach, we report on Figures 7 the number
of MVPs required for solving the sound-hard scattering problem by a strip of length
2 with GMRES(50) for a toleranceε = 10−6. We use the EFIE and represent the
number of MVPs with respect to the densitynλ (for k = 15, figure 7(a)) and the
wavenumberk (for nλ = 20, figure 7(b)). The EFIE is referred to as ”DBIE” here, the
pseudodifferential preconditioner based on−4Op(σp(L)) and a Padé approximation
by ”Padé-type”, the Calderón integral preconditioner[L] by ”Calderon”. Furthermore,
an algebraic SPAI (SParse Approximate Inverse) preconditioner with sparsity level
Nv = 5 is also used for comparison. The choiceNv = 5 makes the preconditioning
matrix already quite dense (about20% of nonzero coefficients). Another drawback is
that it is built on the full initial EFIE matrix[S] which is not available when consider-
ing a FMM solution. On this simple example, we can see that thenumber of iterations
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strip.

0 20 40 60 80 100 120
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Number of matrix−vector products

R
es

id
ua

l n
or

m

DBIE
Pade−type
Calderon
SPAI (Nv=5)

(d) Convergence history of GMRES(50) for the
cobra-like scatterer.

Figure 7: Pseudodifferential preconditioner for scattering problems.

is independent of bothnλ andk. We report on Figure 7(c) the convergence history
for all methods. We can see the superiority here of the two analytical preconditioners
over the algebraic SPAI. A second example is given on Figure 7(d) for a cobra-like
shaped scatterer which is an open curved resonator modelingan inlet. We can again
observe the very good behaviour of the iterative solvers compared with analytical pre-
conditioners.

In references [10], other numerical examples show that someproblems can arise
for the Calderón preconditioner if the scatterer is composed of two parallel strips
or screens due to resonance phenomenae. It seems that, for this kind of situations,
the pseudodifferential preconditioners are more robust. However, for a single three-
dimensional open surface, some problems are still open likefor instance how to
correctly handle the edges effects in a pseudodifferentialapproach. In the case of
Calderón operators, this point is quite naturally treated. A hybrid Calderón-pseudo-
differential preconditioner is proposed in [35].
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8 A second direction to improve the convergence: gen-
eralized Combined Field Integral Equations

We restrict our presentation to a Neumann boundary condition. Indeed, we have seen
in Section 6 that the standard combined field integral equations (both BW and CFIE)
are second-kind Fredholm integral equations for a sound-soft obstacle. As a conse-
quence, the convergence rate of an iterative solver appliedto these equations is inde-
pendent of the densitynλ but still depends slightly onk. In the same spirit as what is
proposed below, this dependence can be weakened by developing generalized (direct
and indirect) combined field integral equations. In the caseof the sound-hard obstacle,
much work is required since the standard integral equationsare first-kind Fredholm
integral equations. Furthermore, our construction of new second-kind integral equa-
tions preserves the well-posedness of these new integral equations, meaning that they
are all free of any spurious resonance.

8.1 Construction of generalized combined field integral equations

The starting point of the method proposed in [12, 13, 35] is based on the exterior
Helmholtz integral formulation

u+ = −Lγ+
1 u

+ +Dγ+
0 u

+, in Ω+. (46)

Applying the exterior normal derivative trace to (46), we get thanks to Proposition 5

γ+
1 u

+ = (−I
2

+ N )γ+
1 u

+ + Sγ+
0 u

+, in H1/2(Γ). (47)

Let us assume that the exact exterior Neumann-to-Dirichlet(NtD) mapV ex is known

V ex : H−1/2(Γ) → H1/2(Γ)
γ+

1 u
+ 7→ γ+

0 u
+ = V exγ+

1 u
+.

(48)

Then, from (47) and (48), the following identity holds

−I
2

+ N + SV ex = I. (49)

The NtD operatorV ex is a nonlocal pseudodifferential operator of order−1. The
equation (49) means that plugging the NtD operator into the integral formulation leads
to the identity operator which can be solved trivially in oneiteration (direct solver).
Unfortunately, the NtD operator cannot be computed explicitly for a general surface,
otherwise, this would mean that an explicit integral equation can be written for a
scattering problem and solved in one step.

An alternative is to consider an accurate approximationṼ of the exact NtD operator
(48) such that

ϕ = Ṽ ψ,
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with (ϕ, ψ) an approximation of the Cauchy data(γ+
0 u

+, γ+
1 u

+). In the same spirit as
for the exact NtD operator, we propose to solve the followingintegral equation

(−I
2

+ N + SṼ )ψ = −γ+
1 u

inc, in H1/2(Γ), (50)

based on the exterior integral representation

u+ = −Lψ +Dϕ, in Ω+. (51)

Let us for example consider the lowest order approximationṼ = −i/k (Sommer-
feld radiation condition). This choice leads to the standard BW integral equation (41)
with the optimal parameter of Kress [46]. Hence, the integral equation (50) can be
seen as a generalization of the standard BW integral equation. A similar approach can
also be developed for constructing a generalized CFIE

((1−α)
i

k
(−I

2
+D)− α

k2
Ṽ S)φ = −((1−α)

i

k
γ+

0 u
+ + Ṽ γ+

1 u
inc), in H1/2(Γ), (52)

by composition of the operatorS (EFIE) with−Ṽ and then adding the contribution of
the MFIE by a suitable linear combination. One of the aims of the pseudodifferential
operatorṼ is to regularize the operatorS of order1. It should therefore be of order
−1 to get the identity operator. This is not possible by considering the lowest order
approximation which is of order zero. For this reason, high-order approximations
of the NtD operator must be considered. This can be done for example by adapting
techniques related to the Beam Propagation Method [42] or On-Surface Radiation
Conditions (OSRCs) methods [6, 7, 8, 14, 43, 49]. In particular, we refer to the recent
review chapter book which gives an overview of OSRCs approaches. From [14], an
accurate approximation of the NtD map is given by the square-root operator

Ṽ =
1

ik
(1 +

∆Γ

k2
δ

)
−1/2

, (53)

where the operator∆Γ is the usual Laplace-Beltrami operator over the surfaceΓ and
the parameterkδ = k+ iδ is a complex wavenumber. The aim of the damping param-
eterδ > 0 is to regularize the square-root operator in the transitionzone of grazing
rays [14]. An optimal value of this parameter, related to themean curvature ofΓ and
to k is given in [14]. Incorporating the operatorṼ , the generalized combined integral
equations (50) and (52) are uniquely solvable [35] for any frequencyk > 0 and damp-
ing parameterδ > 0. Moreover, they are second-kind Fredholm integral equations
unlike the standard formulations (50) and (39). This is a positive point in view of an
iterative Krylov solution.

8.2 The special case of the unit sphere

The eigenvalues of the operator−∆Γ are expressed byµm = m(m + 1). A direct
computation gives the eigenvaluesBN,δ

m andCN,δ
m of respectively the generalized BW
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Figure 8: Sound-hard sphere: distribution of the eigenvalues for the generalized com-
bined field integral equations.

and the CFIE operators as

BN,δ
m = −ik2(h(1)

m )
′

(k)[ij
′

m(k)(1 − µm

k2
δ

)
−1/2

+ jm(k)],

and

CN,δ
m = k2(h(1)

m )
′

(k)[−i(1 − α)jm(k) + α(1 − µm

k2
δ

)
−1/2

j
′

m(k)].

We draw on Fig. 8 the eigenvalues of the generalized integraloperators by taking
k = 30 andmmax = 12k modes. The eigenvalues of the generalized BW and CFIE
operators cluster around the points(1, 0) and(1/2, 0) respectively. This observation
is partially related to the property that these integral equations are Fredholm second-
kind but also to the fact that an accurate approximation of the NtD operator is injected.
By using suitable asymptotic expansions of the Bessel and Hankel functions [1], we
justify this remark by the following approximations of the eigenvalues [35]

• in the elliptic zone (evanescent modes) for large values ofm

BN,δ
m =

1

2
+
kδ

2k
+ O(

1

m3
), andCN,δ

m =
1

2
+ α(

k

2kδ
− 1

2
) + O(

1

m3
), α ∈]0, 1[.

• in the hyperbolic zone (propagative modes) for large wavenumbersk

BN,δ
m = 1 + O(

1

k
), andCN,δ

m =
1

2
+ O(

1

k
).

The coupling between low- (propagative) and high-order (evanescent) modes is
observable as a loop around the accumulation points(1, 0) and(1/2, 0) for the gen-
eralized BW and CFIE respectively. From these observations, we can expect the fast
convergence of a Krylov solver for computing the solution to(50) or (52).
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8.3 Numerical issues: implementation and examples

Let us denote by[P ] the matrix associated with the linear discretization of a given
integral operatorP . The discretization of (50) leads to theNV × NV dense complex
linear system

(− [I]

2
+ [N ] + [S][Ṽ ])ψh = gh. (54)

The complex valued vectorsψh andgh of CNV are respectively theP1 interpolated
unknown densityψ and the right-hand side of (50). The matrix representation[I] of
the identity operatorI is the surface mass matrix. We refer for example to [5, 36]
for the direct approximation of the integral operatorsN andS. Of course, a FMM
implementation can also be derived in the background of Galerkin methods for a fast
evaluation of MVP. Concerning the discretization of the pseudodifferential operator̃V ,
a rational Padé approximant of the square-root operator isused. In [14], the authors
use the rotating branch-cut technique introduced by Milinazzoal. [54]. It consists in
using the rational approximation defined by

√
1 +X ≈ eiθp/2RNp

((1 +X)e−iθp − 1) = C0 +

Np∑

j=1

AjX

1 +BjX
,

where the parameterθp is the rotation angle of the usual branch-cut{z ∈ C, z < −1}
of the square-root operator, andRNp

denotes the usual Padé approximant of order
Np. The complex-valued coefficientsC0, (Aj, Bj)j=1,··· ,Np

are related to the real Padé
coefficients and the angleθp [14]. Since the square-root operator is implemented in an
iterative solver, we must be able to computey = [Ṽ ]x efficiently, for a given vector
x ∈ C

NV . This can be achieved by writing down

(1 +
∆Γ

k2
δ

)y =
1

ik
(1 +

∆Γ

k2
δ

)1/2x.

Then, the MVPy = [Ṽ ]x is computed by solvingNp dissipative surface Helmholtz
equations

(
Bj

k2
δ

[∆Γ] + [I])xj = [I]x, j = 1, ..., Np, (55)

using a variational formulation and boundary elements and then by computingy so-
lution to

([I] +
[∆Γ]

k2
δ

)y =
1

ik
(C0[I]x +

Np∑

j=1

Aj

k2
δ

[∆Γ]xj). (56)

The matrix[∆Γ] is the surface stiffness matrix onΓh. Let us mention that the solution
of the(Np + 1) linear systems (55) and (56) is computed by an ILUT preconditioned
GMRES and only requires 2 or 3 iterations to get the solution [35]. Therefore, apply-
ing the square-root operator results in a cost of the orderO(NV ) which is less than
applying an elementary integral operator (even with a FMM implementation).
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Figure 9: Sound-hard unit square cylinder: number of MVPs for the four integral
formulations with respect to the wavenumberk (left: nλ = 10) and the densitynλ of
discretization points per wavelength (right:k = 10).

We present now some numerical results to compare the efficiency of the GMRES
without restart and for a tolerance equal toε = 10−6 when using the usual and general-
ized BW and CFIE. We report on Fig. 9 an example of computationfor the scattering
of an incident plane wave of incidence45 degrees by the unit square cylinder. For the
usual formulations, we can see that the number of MVPs grows linearly according to
the densitynλ. Indeed, these two formulations are first-kind Fredholm. Furthermore,
the number of iterations also depends onk (see the next example for the standard
BW formulation). The problem is related to the fact that injecting the Sommerfeld
approximation is not enough to handle thek dependence of the convergence. These
two points can be corrected by considering the generalized formulations. These con-
clusions are confirmed for the three-dimensional case. In Fig. 10, we present the case
of the scattering of an incident plane wave of incidence zerodegree by an ellipsoidal
scatterer of semi-axisa = 1 and b = c = 0.5 respectively along thex1-, x2- and
x3-directions and centered at the origin. Here again, the convergence of the GMRES
is independent ofk andnλ while this is not the case for the two standard formulations.

8.4 Other recent directions

Other recent and closely related approaches have been derived e.g. by Levadouxand
al [2, 52], Brunoand al [20]. We refer to their papers for more details. Let us note
that generalized combined field integral equations have also been proposed recently
in the framework of electromagnetism for Maxwell’s equations.

9 Conclusion

The aim of this chapter was to introduce some recent achievements into the topic of
preconditioning of integral equations of acoustics. Most particularly, we discussed the
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Figure 10: Sound-hard ellipsoidal scatterer: number of MVPs for the four integral
formulations with respect to the wavenumberk (left: nλ = 10) and the densitynλ of
discretization points per wavelength (right:k = 5).

high frequency regime which is a very active area where much work remains to do.
A selected review of some advances on analytical preconditioning has been proposed.
Different points of view can be adopted like for example the integral or pseudodiffer-
ential approaches. Many open questions are still to addresson this problem and can
have implications on other close situations like electromagnetism or elasticity where
the numerical solution by means of integral equations is also extremely challenging.

Other future exciting directions of research include: understanding of the effect of
non convexity and geometrical singularities on an iterative solver, coupling of analyti-
cal and algebraic preconditioners, application of pseudodifferential operator theory to
the design of hybrid analytical-algebraic preconditioners for the finite element solu-
tion of PDEs...
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[60] L. Schwartz,ThéoriedesDistributions, Broché, 1997.
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