
HAL Id: hal-00591853
https://hal.archives-ouvertes.fr/hal-00591853

Submitted on 10 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A type system for complexity flow analysis
Jean-Yves Marion

To cite this version:
Jean-Yves Marion. A type system for complexity flow analysis. Twenty-Sixth Annual IEEE Sympo-
sium on Logic in Computer Science - LICS 2011, Jun 2011, Toronto, Canada. �hal-00591853�

https://hal.archives-ouvertes.fr/hal-00591853
https://hal.archives-ouvertes.fr

A type system for complexity flow analysis
Jean-Yves Marion
Nancy-Université

INPL-ENSMN
LORIA

Abstract—We propose a type system for an imperative pro-
gramming language, which certifies program time bounds. This
type system is based on secure flow information analysis. Each
program variable has a level and we prevent information from
flowing from low level to higher level variables. We also introduce
a downgrading mechanism in order to delineate a broader class
of programs. Thus, we propose a relation between security-typed
language and implicit computational complexity. We establish a
characterization of the class of polynomial time functions.

I. INTRODUCTION

This paper introduces a new static analysis method for
controlling and certifying imperative program runtime. We
propose a type system to reflect information flow and to
explore the computational complexity properties of well-typed
programs. We exhibit a relation between Implicit Computa-
tional Complexity approaches and research on language-based
information flow security.

The subject of Implicit Computational Complexity (ICC) is
the characterization of complexity classes without referring to
machines and so with no externally imposed resource bounds
on time or space. Early examples of implicit characterization
of PTIME are via bounded recursion by Cobham [1], fixpoint
logic by Immerman [2], positive-existential comprehension in
second-order logic by Leivant [3], safe recursion by Bellantoni
& Cook [4], ramified recursion by Leivant [5], restricted
lambda-calculi by Leivant & Marion [6], light linear logic by
Girard [7] and Lafont [8], linear types by Hofmann [9], and
syntactically restricted induction [10], to mention a few.

Since Bell & La Padula [11] and Biba [12], secure informa-
tion flow uses a lattice of security levels to ensure confiden-
tiality and integrity. Each variable is assigned a security level.
The type system guarantees the security policy induced by the
lattice. An important property, called non-interference [13],
consists in demonstrating that values of high level variables
are independent from values of low level variables during a
program execution. The use of type systems in this context was
pioneered by Volpano, Smith and Irvine [14]. Type systems for
secure information flow were investigated extensively see e.g.
Sabelfeld and Myers survey [15].

Another important issue is declassification. Sometimes it is
necessary to release information, which is usually done by
downgrading the security level of variables. In the context
of integrity, declassification is also called endorsement. For a
comprehensive survey, see the article by Sabelfeld and Sands
[16] .

Related works

There are several works related to ICC on resource analysis
for imperative programming language. In [17] Jones charac-
terizes PTIME by means of simple constructor free programs.
Data flow analysis to bound variables growth rate is performed
by matrix calculus in Jones & Kristiansen [18], Niggl &
Wunderlich [19], and Ben-Amram, Jones & Kristiansen [20].
However the language is restricted to loops of fixed length,
and operators are successor-like functions. Finally, Marion &
Péchoux [21] extend interpretation methods [22] to object
oriented languages.

There are other recent approaches to compute resource
consumption bounds. Jost, Hammond, Loidl & Hofmann [23]
work on automatic amortized cost analysis using type systems,
which is related to the study of non-size increasing systems.
Hughes, Pareto & Sabry [24] propose sized types in order
to determine bound on data structure sizes. Albert, Alonso,
Arenas, Genaim, & Puebla [25] design cost analyser for
java byte codes. Lastly, the approach of Gulwani, Mehra &
Chilimbi [26] consists in automatically finding loop invariants
and is related to abstract interpretation methods.

Contributions

We present a type system for an imperative programming
language over words. Programs are built from while loops
and expressions are built from predicates, constructor and
destructor operators. To control the size of the information
flow, the type system is based on a complexity lattice. Each
variable is assigned a type, which is a pair of tiers, i.e.
elements of the complexity lattice. There is a declassification
mechanism, which allows applying safely operators inside
loops. We demonstrate that the type system is sound with
respect to a timed structural operational semantics. For this,
we establish first a non-interference result, which shows that
values of higher tier variables do not depend on values of lower
tier variables. Then, we show that a consequence is a theorem
of temporal non-interference: the length of loops depends
only on values of higher tier variables. Another consequence
is a weak polynomial time termination procedure. Finally,
we demonstrate that terminating and well-typed programs
are computable in polynomial time over the two tier lattice
({0,1},�,0). Conversely, each polynomial time function is
implemented by a well-typed program.

Informal motivation

We give an informal presentation of the main ideas behind
a type system for complexity flow analysis. Our point of
departure is the definition of functions by ramified recursion
as suggested by Leivant in [5] and in essence in [27] twenty
years ago. As a result, some kinds of circular definitions are
not allowed. This underlying concept of circularity is one of
the most important in implicit computational complexity. Thus,
Simmons [28] proposed a fine-grained study of diagonalisation
to delineate primitive recursion definitions from multiple re-
cursive definitions. His work is extended in [29] to show how
an Ackermann style construction may be used to diagonalise
away from the class of polynomial time functions. Another
illustration is given by Light Linear Logic in which modalities
are essential in order to prevent circular definitions, as Girard
explains it in his seminal work [7] . It is a guideline in order
to define an information flow typing to control complexity of
a simple imperative programming language. What we have
in mind is to get inspiration from security-type systems like
the one of Volpano, Smith and Irvine [14]. A type system is
defined with respect to a security policy, which specifies the
use of data. Each variable is assigned a security type. Let us
examine a typing rule which expresses by subtyping an explicit
downward flow from E to X :

Γ ` X : η Γ ` E : ζ
η ≤ ζ

Γ ` X :=E : ζ

There is a data flow from type ζ to η, which corresponds
to the no-read-down-rule of Biba’s integrity policy [12]. The
converse should not be possible. There are implicit information
flows in while-loop, which should also be controlled. Consider
the following program which copies the value of the variable
X into Y :

Y :=0 ;
w h i l e (X > 0)

{ X :=X − 1 ;
Y :=Y + 1 ;}

Here, the variable X controls the while loop. In order to bound
the complexity data flow, we should require that the level of
Y is strictly less than the one of X . Otherwise, a circular
data flow is created, which violates the ICC concept of data-
ramification principle by allowing an upward flow. So, the
typing rule of a while-command looks like

Γ,∆ ` E : ζ Γ,∆ ` C : η
η ≺ ζ

Γ,∆ ` while(E){C} : η

On the one hand, the guard E is of level ζ. This implies that X
is also of level ζ. On the other hand, the block of commands
X :=X − 1;Y :=Y + 1; is of type η and η ≺ ζ. Therefore,
we have to downgrade or to declassify X in such a way that
the command X :=X − 1 is of type η.

In order to deal with declassification, we must extend
the assignment of single level tags to expressions and to
commands. From now on, the type of an expression or of
a command is a pair (α, β) of tiers. Roughly speaking, α is

the starting level. β indicates that the information is allowed
to flow down to level β. An expression E of type (α, β) is
downgraded if β ≺ α. A downgraded expression may be safely
assigned in a loop of tier α if β ≺ α. Since the runtime is
controlled within a polynomial bound, variable and operator
typing rules control the declassification process. Thus, we can
only apply neutral operators to a declassified expression. We
call an operator neutral if it does not increase the size of a
value, as in X − 1. On the other hand, some operators (called
positive operators) reclassify an expression because they are
unsafe in a loop, like X + 1. We have informally and briefly
presented ideas that we are now describing in a more formal
way.

II. A COMPLEXITY FLOW TYPE SYSTEM

A. Syntax of expressions and commands

We consider a simple imperative programming language.
The syntax of expressions is given by the grammar
E1, . . . ,En ∈ Exp ::= X | op(E1, . . . ,En) where X is a
variable from a set V, and op is a n-ary operator from a set
O. Constants are 0-ary operators. The set of variables in the
expression E is denoted V(E). The grammar of commands is

C ,C ′ ∈ Cmd ::= X :=E | while(E){C}
| if E then C else C ′

| C ; C ′

We denote by |E | (|C |) the size of an expression E (resp. of
a command C).

B. Complexity lattices

A complexity lattice is a finite lattice (SC,�,0) where �
is a quasi-ordering on SC, 0 is the least element with respect
to SC, such that for any two elements α and β, there is a
unique greatest lower bound α ∧ β and a unique least upper
bound α ∨ β w.r.t. �. Elements of SC are also dubbed tier,
for which we use discourse variables α, β, . . . In particular,
we shall focus on the two tier lattice ({0,1},�,0). We posit
a fixed complexity lattice (SC,�,0), which is implicit in the
rest of this paper.

C. Expression types

The type of an expression is a pair (α, β) of tiers α, β ∈ SC.
The typing derivation system is determined by the typing
rules in Figure 1 and two typing environments: (i) a variable
typing environment Γ : V 7→ SC, which assigns to each
variable a single tier, and (ii) an operator typing environment
∆, which is a relation that associates to each operator one or
several operator types. The grammar of operator types is the
following:

ρ ∈ Operator types ::= (α, β) | (α, β)→ ρ

We write dom(Γ) (resp. dom(∆)) to mean the set of variables
typed by Γ (resp. the set of operators typed by ∆). Lastly, we
occasionally omit parenthesis using right associativity of →.

Variable
Γ(X) = α

where β � α
Γ,∆ ` X : (α, β)

Op
Γ,∆ ` E1 : (α1, β1) . . .Γ,∆ ` En : (αn, βn)

Γ,∆ ` op(E1, . . . ,En) : (α, β)

where (α1, β1)→ . . .→ (αn, βn)→ (α, β) ∈ ∆(op)

Fig. 1. Type system for expressions

D. Command types

Figure 2 gives the typing rules for commands. As we
shall see later, any program that is well-typed according to
these rules satisfies non-interference properties as well as
the ramification conditions of the ICC tiering discipline. The
typing rules control information in way, which is related to
Volpano, Irvine and Smith’s system [14]. A typing judgement
is of the form Γ,∆ ` C : (α, β), and means that the command
C is of type (α, β), where α and β are tiers of SC, under Γ
and ∆.

III. A TIMED BIG STEP SEMANTICS

We present a big step semantics, which takes the com-
putation time into account. In an imperative language, a
computation is a sequence of transition steps where at each
step corresponds a store update. A transition performs a fixed
number of basic operations or tests, which are counted as a
unit cost. So, it is reasonable to define a time measure which
corresponds to the number of transition steps.

Let W be the set of words over a finite alphabet. Expres-
sions, commands and programs are interpreted over W. We
take two words tt and ff of W to denote respectively true
and false. A store µ is a finite mapping from V to W. We
write µ[~X ← ~d] for the store σ such that σ(Xi) = di and
σ(Y) = µ(Y) for Y 6= Xi, where i = 1, n for some fixed n.
We write dom(µ) to mean the domain of µ.

Rules to evaluate expressions are given in Figure 3. Each
operator of arity n is interpreted by a total function JopK :
Wn 7→W. The relation µ � E ⇒t d means that the expression
E is evaluated within t steps to d ∈ W, where each variable
in V(E) is in dom(µ). We just write µ � E ⇒ µ′ if we don’t
care about the running time.

Variables
µ � X ⇒1 µ(X)

Op
µ � E1 ⇒t1 d1 . . . µ � En ⇒tn dn

µ � op(E1, . . . ,En)⇒1+
∑n
i=1 ti JopK(d1, . . . , dn)

Fig. 3. Time semantics of Expressions

Command execution rules are given in Figure 4. Given a
store µ, the relation µ � C ⇒t µ′ expresses that the command
C returns the store µ′ and terminates within t steps. We write
µ � C ⇒ µ′ if we don’t care about the running time. A
command C does not terminate in a given store µ, if there is
no µ′ and no t such that µ � C ⇒t µ′. In this case, we write
µ � C ⇒⊥.

A program P is given by a command C , a list of input
variables X1, . . . ,Xn, and an output variable Y . A program
computes a partial function JPK from Wn to W defined by

JPK(d1, . . . , dn) = µ(Y) iff µ0[~X ← ~d] � C ⇒ µ

where for each variable Z in C , µ0(Z) = ff. A program is
terminating iff JPK is a total function.

The program running time is the partial function TimeP
from Wn to N defined by

TimeP(d1, . . . , dn) = t iff µ0[~X ← ~d] � C ⇒t µ

The length of a word d is denoted |d |. A program P is running
in polynomial time if there is a polynomial Q such that for
all d1, . . . , dn, TimeP(d1, . . . , dn) ≤ Q(maxi(|di|)).

IV. SAFE PROGRAMS

A. Neutral and positive operator interpretations
We present a restriction on operator interpretations. For

this we shall define two kinds of operator interpretations
called neutral and positive. But before, we present some
typical operators with their interpretations over W to illustrate
definitions.
• For each word v , we have an operator eqv which tests

whether or not a word begins with a given prefix v .

Jeqv K(u) =

{
tt if u = v .d for some d

ff otherwise

• We have an operator pred , which deletes the first letter
of a word such that

JpredK(u) =

{
ε if u = ε

u if u = i.d and for some d and letter i

• For each word v , we have an operator sucv satisfying
Jsucv K(u) = v .u .

Now, define E as the sub-word relation over W by u E d ,
iff there are v and v ′ such that d = v .u.v ′ where . is the
concatenation.

An operator op has a neutral interpretation if either
1) either JopK : W→ {tt,ff} is a predicate; or
2) or for all d1, . . . , dn, JopK(d1, . . . , dn) E di for some

i ≤ n.
The operators eqv and pred have a neutral interpretation.

An operator op has a positive interpretation if there is a
constant cop such that

|JopK(d1, . . . , dn)| ≤ max
i

(|di|) + cop

The operator sucv has a positive interpretation.
Remark 1: A neutral interpretation is also a positive inter-

pretation. But the converse is false.

Assign
Γ(X) = α′ Γ,∆ ` E : (α, β)

α′ � α
Γ,∆ ` X :=E : (α, β)

Compose
Γ,∆ ` C : (α, β) Γ,∆ ` C ′ : (α′, β′)

Γ,∆ ` C ; C ′ : (α ∨ α′, β ∨ β′)
If

Γ,∆ ` E : (ρ, ρ′) Γ,∆ ` C : (α, β) Γ,∆ ` C ′ : (α, β)
where α � ρ

Γ,∆ ` if E then C else C ′ : (α, β)

While
Γ,∆ ` E : (α, α′) Γ,∆ ` C : (α, β)

where β ≺ α
Γ,∆ ` while(E){C} : (α, β)

Fig. 2. Type system for commands

Update
µ � E ⇒t d

µ � X :=E ⇒t+1 µ[X ← d]

µ � C ⇒t µ′ µ′ � C ′ ⇒t′ µ′′

µ � C ; C ′ ⇒t+t′ µ′′
Sequence

Branch
µ � E ⇒t tt µ � C ⇒t′ µ′

µ � if E then C else C ′ ⇒t+t′+1 µ′

µ � E ⇒t ff µ � C ′ ⇒t′ µ′′

µ � if E then C else C ′ ⇒t+t′+1 µ′′

While
µ � E ⇒t ff

µ � while(E){C} ⇒t µ

µ � E ⇒t tt µ � C ⇒t′ µ′ µ′ � while(E){C} ⇒t′′ µ′′

µ � while(E){C} ⇒t+t′+t′′+1 µ′′

Fig. 4. Timed semantics of Commands

B. Positive and neutral operators and safe environment
Assume that ∆ is an operator typing environment. A con-

stant is neutral if all its types the type w.r.t. ∆ satisfy (α, β)
where β � α. An n+ 1-ary operator is neutral if all its types
w.r.t. ∆ satisfy

(α1, β1) . . .→ (αn, βn)→ (∧i=1,nαi,∨i=1,nβi)

where ∨i=1,nβi � ∧i=1,nαi.
A n-ary operator is positive if all its types w.r.t. ∆ satisfy

(α1, β1)→ . . .→ (αn, βn)→ (∧i=1,nαi,∧i=1,nαi)

Next, if each operator op in the domain of ∆ is neutral or
positive then we say that ∆ is a safe typing environment.
Throughout this article, we consider safe operator typing
environments.

Remark 2: Depending on an operator typing environment
∆, an operator may be neutral and positive at the same time.

Lemma 1 (Tier unicity): Assume that Γ is a variable typing
environment and ∆ is a safe operator typing environment.
There is a unique tier α such that Γ,∆ ` E : (α, β).

Proof: By induction on E . If E is a variable, the conclu-
sion follows immediately. Suppose that E = op(E1, . . . ,En).

Since ∆ is safe, op is either neutral or positive. In either
case, α = ∧i=1,nαi, where the type of each Ei is (αi, βi).
By induction hypothesis, αi is unique. So α is also unique by
lattice definition.

Remark 3: In contrast to this, β is not unique because it
represents the current level of classification of an object, and
so this level may vary depending on the context in which an
expression is used. Typically, a variable of tier 1 can be an
expression of type (1,0) or (0,0).

C. Main Result

Assume that ∆ is a safe operator typing environment, and
Γ a variable typing environment. A program P defined by a
command C is well-typed if Γ,∆ ` C : (α, β) where (α, β)
is the type of P.

We now define a relation between the operator interpretation
and its types given by ∆. A program is safe if (i) it is
well-typed, if (ii) each operator has a neutral or a positive
interpretation and if (iii) each operator which has a neutral
(positive) interpretation is neutral (positive) w.r.t. ∆.

Theorem 1: Let ({0,1},�,0) be the complexity lattice. A
terminating and safe program is computable in polynomial

time. Conversely, every polynomial time function over the set
of words W is computable by a terminating and safe program.

Proof: If the type of a safe program over ({0,1},�,0)
is (0,0) then the running time is constant because there is no
loop. If its type is (1,0), then we use Lemma 11. Finally, if
its type is (1,1), then we use Lemma 13.

The converse is a consequence of Theorem 2.

D. Examples

We present three examples over the natural numbers. We
posit that natural numbers are encoded by words in unary.
The complexity lattice is ({0,1},�,0). We consider a positive
operator +1 in infix notation. Types of the operator +1 w.r.t.
∆ are (0,0) → (0,0), (1,0) → (1,1), and (1,1) → (1,1).
We also consider two neutral operators : −1 and a unary
predicate > 0, both in infix notation. Types w.r.t. ∆ are
(0,0) → (0,0), (1,0) → (1,0) and (1,1) → (1,1). Thus,
the typing environment ∆ is safe. So all programs below are
safe.

The type of each command is written at the end of the line.
We use labels for tiers. For example X 1 means that the tier
of X is 1.

1) Addition: Let us now examine the addition.

Add(X 1,Y 0)
{w h i l e (X 1 > 0) {

X 1:=X 1 − 1 : (1,0)
Y 0:=Y 0 + 1 : (0,0)

} : (1,0)

The typing derivation is given in Figure 5. We see that the
while-loop is controlled by X , which is of tier 1. The while-
typing rule enforces the body-loop is of type (1,0). Therefore,
all commands inside the body-loop are of type (1,0) or (0,0).
As a result, the variable Y must be of tier 0 and the operator
+1 of type (0,0)→ (0,0). The assignment X 1:=X 1−1 is a
typical case of declassification. The variable X of tier 1 is first
downgraded to an expression of type (1,0). Then, we apply a
neutral operator, here−1 with the type (1,0)→ (1,0). We get
a declassified expression X −1 of type (1,0), that is assigned
to X by a command of type (1,0). One can intuitively see that
Y can not be of tier β because in this case Y 0:=Y 0+1 should
be of type (1,1), which will violate the typing condition on
while-loop.

2) Multiplication: Both inputs are of tier 1 and the output
Z is of 0.

Mul(X 1,Y 1)
{ Z 0:=0 : (0,0)
w h i l e (X 1 > 0)

{X 1:=X 1 − 1 : (1,0)
U 1:=Y 1 : (1,0)
w h i l e (Y 1 > 0)
{ Y 1:=Y 1 − 1 : (1,0)

Z 0:=Z 0 + 1 : (0,0)
} : (1,0)

Y 1:=U 1 : (1,0)
} : (1,0)

} : (1,0)

The typing derivation of U 1:=Y 1 is

Γ(U) = 1

Γ(Y) = 1

Γ,∆ ` Y : (1,0)

Γ,∆ ` U :=Y : (1,0)

3) Greatest Common Divisor: The program below com-
putes the greatest common divisor of X and Y . The result
is stored in Z . For this, we need subtraction that we define
as a neutral operator. Indeed, we have Jd − uK E d w.r.t.
the unary encoding of natural numbers. We also need the
predicate X > Y . We assign to both of them the neutral type
(1,0) → (1,0) → (1,0) in the typing derivation of Gcd
presented below.

Gcd(X 1,Y 1)
{ i f (X 1 > 0) t h e n
{w h i l e (Y 1 > 0)
{ i f (X 1 > Y 1)

t h e n X 1:=X 1 −Y 1 : (1,0)
e l s e Y 1:=Y 1 −X 1 : (1,0)

} : (1,0)
Z 1:=X 1 : (1,0)
} : (1,0)

e l s e Z 1:=Y 1 : (1,0)
} : (1,0)

4) Search: The program below searches for v in a word
X . For this, take two constants tt and ff to denote tt and
ff of type (1,0).

Search(X 1)
{ find:=ff ; : (1,0)
loop:=tt ; : (1,0)
w h i l e (loop)
{ i f eqv (X) t h e n find:=tt ; loop:=ff ;

e l s e i f (X == ε) t h e n loop:=ff ;
e l s e X :=pred(X) ; }

} : (1,0)

It is necessary that the tier of X is 1 in order to be able
to modify the tier 1 variable loop which guards the while-
loop. As a consequence, each command inside the two nested
if-then-else is of type (1,0).

V. CHARACTERIZING POLYNOMIAL TIME FUNCTIONS

We now provide a simulation of polynomial time Turing
machines by safe and terminating programs.

Theorem 2: Every polynomial time function over the set of
words W can be computed by a safe and terminating program.

Proof: A unary polynomial time function f on W is
computed by a Turing Machine M , with one tape and one
head, within (n + 1)k steps for some constant k where n is
the input size. The tape of M is represented by two variables
Left and Right which contains respectively the left side of
the tape and the right side of the tape. States are encoded by
fixed sized words and the variable State contains the current
state. The tier of the three variables holding a configuration of
M is 0. A one step transition is simulated by a finite cascade
of if-commands of the form:

Γ(X) = 1

Γ,∆ ` X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ ` X : (1,0)

Γ,∆ ` X − 1 : (1,0)

Γ,∆ ` X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ ` Y : (0,0)

Γ,∆ ` Y + 1 : (0,0)

Γ,∆ ` Y :=Y + 1 : (0,0)

Γ,∆ ` {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ ` while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s′ ;

Left:=sucb(Left) ;
Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is
a and the state is s, then the next state is s′, the head moves
to the right and the read letter is replaced by b. Since each
variable inside the above command is of type (0,0), the type
of the if-command is also (0,0).

The iteration is made by nested k-while-loops. For this, we
use k variables X1, . . . , Xk of type 1.

X11:=X 1 / / t h e i n i t i a l v a l u e
w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1 : (1,0)

w h i l e (X21 > 0)
{ X21:=X21 − 1 : (1,0)
X30:=X 1 : (1,0)

...
} : (1,0)

} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body
of each loop is of tier (1,0) because first the step command
is of type (0,0) and second each variable of type (1,0) is
assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for
expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a
variable typing environment and that ∆ is a safe operator
typing environment. If Γ,∆ ` E : (α, β), then β � α.

Proof: The proof goes by induction on expressions and
uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only
variables at level α or higher will have their contents read
in order to evaluate an expression E of type (α, β). Over
the two tier lattice ({0,1},�,0), if α = 1, E is evaluated
without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals
also some similarities with Myers’ and Liskov’s decentralized
label model [30] where each object has an owner and a list of
readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable
typing environment. Assume also that ∆ is a safe operator
typing environment. If Γ,∆ ` E : (α, β), then for every
X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .
The base case is when E is a variable. The typing judgement
yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There
are two cases to examine since ∆ is safe.
• op is a neutral operator. Then its type is (α1, β1) →
. . . → (αn, βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for
each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1, β1) → . . . →
(αn, βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-
esis, for each X in Ei we have Γ(X) � αi. Again,
Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command
types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a
variable typing environment and that ∆ is a safe operator
typing environment. Assume also Γ,∆ ` C : (α, β). Then
β � α.

Proof: By Lemma 2 and by observing that if β � α and
β′ � α′ then β ∨ β′ � α ∨ α′.

Lemma 5 (Monotonicity): Assume also that C ′ is a sub-
command of C and that Γ,∆ ` C : (α, β) where ∆ is safe.
Then, Γ,∆ ` C ′ : (α′, β′), where α′ � α and β′ � β.

Proof: By induction on typing derivation length.
The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data
of lower level than itself. In our context, if a command C has
the type (α, β) then Confinement lemma says no variable of
rank above tier α is updated in C .

Lemma 6 (Confinement): Assume that Γ is a variable typ-
ing environment and that ∆ is a safe operator typing environ-
ment. Assume also Γ,∆ ` C : (α, β). Then, for each variable
X assigned to in C , Γ(X) � α.

Proof: By induction on C . Suppose that Γ,∆ ` X :=E :
(α, β) by (Assign). There is α′ such that Γ(X) = α′ � α.
The other cases follow directly by induction.

We are now ready to establish type soundness theorem,
which states a first non-interference property. Over ({0,1},�
,0), type soundness theorem states that if X is variable of
tier 1, then we can arbitrarily alter the value of a variable Y
of tier 0, execute again the command C , and the value of X
will be the same. As we shall see in a short while, this non-
interference property has a strong consequence on the loop
length.

Theorem 3 (type soundness): Assume that Γ is a variable
typing environment and that ∆ is a safe operator typing
environment. Assume also that

1) Γ,∆ ` C : (α, β)
2) µ � C ⇒ µ′,
3) σ � C ⇒ σ′,
4) dom(µ) = dom(σ) = dom(Γ),
5) µ(X) = σ(X) for each variable X such that Γ(X) � τ .

Then for every variable X such that Γ(X) � τ , we have
µ′(X) = σ′(X).

Proof: By induction on the structure of the derivation
µ � C ⇒ µ′.

Suppose that the last rule of the evaluation under µ is
(Update) :

µ � E ⇒ d

µ � X :=E ⇒ µ[X ← d]

and that the evaluation under σ ends with
σ � E ⇒ d ′

σ � X :=E ⇒ σ′[X ← d ′]

The typing ends with an application of rule (Assign)

Γ(X) = α′ Γ,∆ ` E : (α, β)
α′ � α

Γ,∆ ` X :=E : (α, β)

There are two cases to consider:
• α′ � τ . Simple security Lemma 3 states that for every

Y ∈ V(E), we have Γ(Y) � α. So Γ(Y) � α′ and
Γ(Y) � τ by transitivity. From hypothesis 5, we have
µ(Y) = σ(Y) for every variable Y in E . So µ � E ⇒ d
and σ � E ⇒ d . Therefore, for every variable Y such
that Γ(Y) � τ , µ′(Y) = µ[X ← d](Y) = σ[X ←
d](Y) = σ′(Y).

• α′ 6� τ . No variable Y such that Γ(Y) � τ is modified.
Therefore, we have µ′(Y) = σ′(Y), for all variables Y
such that Γ(Y) � τ by Hypothesis (5).

Suppose that µ � while(E){C} ⇒t µ′ and that σ �
while(E){C} ⇒t′ σ′ and the typing ends with

Γ,∆ ` E : (α, α′) Γ,∆ ` C : (α, β)

Γ,∆ ` while(E){C} : (α, β)

There are again two cases to consider.
• α � τ . By simple security Lemma 3, for each variable

Y ∈ V(E), Γ(Y) � τ . Therefore, µ � E ⇒ d and
σ � E ⇒ d .
The conclusion is immediate in the case d = ff. On the
other case, d = tt, the evaluation under µ ends with

µ � C ⇒ µ′′ µ′′ � while(E){C} ⇒ µ′

µ � while(E){C} ⇒ µ′

and the evaluation under σ ends with

σ � C ⇒ σ′′ σ′′ � while(E){C} ⇒ σ′

σ � while(E){C} ⇒ σ′

By induction, µ′′(X) = σ′′(X) for all X such that
Γ(X) � τ . So we can again apply the induction hy-
pothesis. We have µ′(X) = σ′(X) for all X such that
Γ(X) � τ .

• α 6� τ . For every X assigned to in C , we have Γ(X) � α
by confinement Lemma 6. Since � is transitive, Γ(X) 6�
τ . Therefore, no variable of type � τ is updated during
the execution of this loop.

The other cases are similar.

VIII. UPPER BOUNDS ON LOOP LENGTH

We now move on the issue of bounding the length of
while loops for terminating commands. Given a variable typing
environment Γ and a safe operator typing environment ∆, a
loop while(E){C} is of tier τ if Γ,∆ ` E : (τ, τ ′). Note
that Lemma 1 implies that loop tiers are unique. Note also
that the tier of each loop in C is less or equal than τ , because
of Lemma 5.

We define a loop length semantics in Figure 6, which
measures the length of loops of tier τ forgetting, intuitively,
all loops of different tiers. The derivation µ `Γ,∆ C →t

τ µ′

means that the run of C under µ performs t iterations of tier
τ . This loop length semantics is correct in two ways. First it
is sound w.r.t. big step semantics, that is if µ � C ⇒t µ′

then µ `Γ,∆ C →tτ
τ µ′ and tτ ≤ t for any tier τ . Second, it

is correct with respect to time usage, which is established by
Theorem 4 below.

Lemma 7: if µ � E ⇒t d , then t ≤ |E |
Proof: Because the cost of an operator is 1.

Theorem 4: Let (SC,�,0) be a complexity lattice. Assume
that Γ is a variable typing environment and that ∆ is a safe
operator typing environment. Given a command C , there is a
constant k such that if µ � C ⇒t µ′ then t ≤ k · T + k
where T =

∑
α�0 tα and µ `Γ,∆ C →tα

α µ′.
Proof: Set k = |C|. By induction on the derivation µ �

C ⇒t µ′.
Temporal non-interference is a consequence of non-

interference Theorem 3, which claims that values of tier
1 variables don’t depend on values of lower tier variables.
Temporal non-interference theorem says the length loop of
tier τ depends only on variables of tier � τ . Over the two
tier lattice ({0,1},�,0), all loops are of tier 1. So, Temporal

Update
µ � E ⇒ d

µ `Γ,∆ X :=E →0
τ µ[X ← d]

Sequence
µ `Γ,∆ C →t

τ µ
′ µ′ `Γ,∆ C ′ →t′

τ µ
′′

µ `Γ,∆ C ; C ′ →t+t′

τ µ′′

Branch
µ � E ⇒ d µ `Γ,∆ Cd →t

τ µ
′

µ `Γ,∆ if E then Ctt else C ′ff →t
τ µ′

While
µ � E ⇒ ff

µ `Γ,∆ while(E){C} →0
τ µ

µ � E ⇒ tt µ `Γ,∆ C →t′

τ µ′ µ′ `Γ,∆ while(E){C} →t′′

τ µ′′

Γ,∆ ` E : (α, α′) and α 6= τ
µ `Γ,∆ while(E){C} →t′+t′′

τ µ′′

µ � E ⇒ tt µ `Γ,∆ C →t′

τ µ′ µ′ `Γ,∆ while(E){C} →t′′

τ µ′′

Γ,∆ ` E : (τ, τ ′)
µ `Γ,∆ while(E){C} →1+t′+t′′

τ µ′′

Fig. 6. Loop length semantics of tier τ

non-interference means that the length of the loop depends on
tier 1 variable. A modification in the value of a variable of
tier 0 does not affect loop lengths. Note that temporal non-
interference is related to Lemma 4.1 of [4], which states that
the computation length is bounded by a polynomial in the size
of normal inputs.

Theorem 5 (Temporal non-interference): Assume that Γ is
a variable typing environment and that ∆ is a safe operator
typing environment. Assume also that

1) Γ,∆ ` C : (α, β)
2) µ `Γ,∆ C →t

τ µ
′,

3) σ `Γ,∆ C →t′

τ σ
′,

4) dom(µ) = dom(σ) = dom(Γ),
5) µ(X) = σ(X) for every variable X such that Γ(X) � τ .

Then t = t′.
Proof: By induction on the structure of the derivation

µ `Γ,∆ C →t
τ µ
′.

Suppose that µ `Γ,∆ while(E){C} →t
τ µ′ and that

σ `Γ,∆ while(E){C} →t′

τ σ′ and the typing ends with

Γ,∆ ` E : (α, α′) Γ,∆ ` C : (α, β)
β ≺ α

Γ,∆ ` while(E){C} : (α, β)

There are three cases to consider.
• α � τ . By simple security Lemma 3, for each variable

Y ∈ V(E), Γ(Y) � τ . Therefore, µ � E ⇒ d and
σ � E ⇒ d .
In the case d = ff, we have t = t′ = 0.
On the other case, d = tt, the evaluation under µ ends
with

µ `Γ,∆ C →t1
τ µ′ µ′ `Γ,∆ while(E){C} →t2

τ µ′′

µ `Γ,∆ while(E){C} →1+t1+t2
τ µ′′

and the evaluation under σ ends with

σ `Γ,∆ C →t′1
τ σ′ µ′ `Γ,∆ while(E){C} →t′2

τ σ′′

σ `Γ,∆ while(E){C} →1+t′1+t′2
τ σ′′

Soundness Theorem 3 implies that for every variable X
such that Γ(X) � τ , µ′(X) = σ′(X). So by induction
hypothesis, t1 = t′1 and t2 = t′2. Therefore t = 1 + t1 +
t2 = 1 + t′1 + t′2 = t′.

• α 6� τ . There is no loop of tier τ in C . So t = t′ = 0.
Other cases are consequences of Soundness Theorem 3

Temporal non-interference provides a weak termination cri-
terion. Take again the two tier lattice ({0,1},�,0). Theorem 5
says the length of a loop depends only on configurations of
tier 1 variables. So, if we enter twice into a loop with the
same configuration of variables of tier 1, we are sure that the
loop will never terminate. Indeed, this configuration of tier 1
variables will never change. This argument is formalized in
the next corollary.

Corollary 1: Assume that Γ,∆ ` E : (α, α′) and Γ,∆ `
C : (α, β) where ∆ is a safe operator typing environment.
Assume that (µi)i is sequence satisying µi � C ⇒ µi+1 such
that there is k > 0 satisfying both conditions:

1) for each i < k, µi � E ⇒ tt.
2) for all X ∈ V(C), Γ(X) � β, µ0(X) = µk(X).

Then, µ0 � while(E){C} ⇒⊥.
In other words, while(E){C} does not terminate from µ0.

Proof: Suppose for the sake of contradiction that there
is T such that µ0 � while(E){C} ⇒T µ. There are t
and t′ such that µ0 ` while(E){C} →t

α µ and µk `
while(E){C} →t′

α µ. Since α � β, Theorem 5 implies that
t = t′. On the other hand, we have t < t′ since k > 0. This
leads to a contradiction. So, while(E){C} does not terminate
from µ0.

IX. NEUTRAL TERMS

A neutral term is an expression which is just built up from
variables and neutral operators.

Lemma 8: Assume that Γ is a variable typing environment.
Assume also that ∆ is a safe operator typing environment.
If Γ,∆ ` E : (α, β), where β ≺ α then E is a neutral term.

Proof: We show by induction on E that if E contains a
positive operator, then α = β. As a result, the lemma will be

proved. Suppose that E = op(E1, . . . ,En). It is immediate if
op is a positive operator. Otherwise, op is a neutral operator
of type (α1, β1) → . . . → (∧i=1,nαi,∨i=1,nβi), where
∨i=1,nβi � ∧i=1,nαi and which contains a sub-expression
Ei with a positive operator. By induction hypothesis, we have
αi = βi. So, we have ∧i=1,nαi � αi = βi � ∨i=1,nβi.
Therefore, ∧i=1,nαi = ∨i=1,nβi.

Lemma 9 (Neutrality): Assume that Γ is a variable typing
environment and that ∆ is a safe operator typing environment.
Assume also Γ,∆ ` C : (α, β), where β ≺ α. Let X be a
variable such that Γ(X) � β. Then, if X is assigned to in C ,
then it is always assigned to a neutral term.

Proof: Take an assignment of C where Γ(X) � β and
consider its typing rule:

Γ,∆ ` E : (α′, β′)
Γ(X) � α′

Γ,∆ ` X :=E : (α′, β′)

By Lemma 5, we have β′ � β. So, Γ(X) � β′. Since Γ(X) �
α′, we see that β′ ≺ α′. Lemma 8 implies that E is a neutral
term.

The last step is to determine an upper bound on the number
of possible values of variables of tier strictly greater than
β, which are computable by iterating a command C of type
(α, β). Then it follows from Corollary 1 that this upper bound
is also an upper bound on the length of while(E){C}.

For this, we consider a command C and a store µ. We
define the set Rkµ(C) of reachable stores from C and µ in k
steps by

R0
µ(C) = {µ}

Rk+1
µ (C) = {µ′ | σ � C ⇒ µ′where σ ∈ Rkµ(C)}

and RC (µ) = ∪kRkµ(C) as the set of reachable stores from
C and µ.

Let Γ be a variable typing environment such that dom(Γ) =
dom(µ). Define µ↑β as the restriction of µ to variables of tier
strictly greater than β:

µ↑β(X) =

{
µ(X) Γ(X) � β

undefined otherwise

and then define, RC (µ)↑β = {µ↑β | µ ∈ RC (µ)}.
Lemma 10: Let ∆ be a safe operator typing environment.

Assume that P is a safe program given by a command C and
that Γ,∆ ` C : (α, β) where β ≺ α. Then, there is a polyno-
mial Q such that for all stores µ, #RC (µ)↑β ≤ Q(n)where
n = maxΓ(X)�β(|µ(X)|). (#S is the cardinal of the set S.)

Proof: Let X be a variable assigned to in C such that
Γ(X) � β. Lemma 9 states that X is assigned to a neutral term
E . From this observation and because of the interpretation of
neutral operators, we show by induction on k that for each µ′

in Rkµ(C) and each variable X , Γ(X) � β, µ′(X) is either in
the range of some finite neutral interpretation (i.e. predicates),
or there is Y such that µ′(X) E µ(Y) and Γ(Y) � β by
lemma 3.

Since the number of sub-words of a word of size n is
bounded by n2, #RC (µ)↑β is bounded by Q(n) which only
depends on C .

Thus, the length of a while-loop while(E){C} is bounded
by the number of stores in RC (µ)↑β where the type of C is
(α, β).

X. COMPLEXITY BOUNDS

Assume that P is a safe program given by a command C .
We establish upper bounds on program runtime with respect
to the program type.

Lemma 11: Let ∆ be a safe operator typing environment.
Assume that Γ,∆ ` C : (α,0). There is a polynomial T such
that for all stores µ, if µ � C ⇒t µ′ then t ≤ T (n) where
n = maxΓ(X)�0(|µ(X)|).

Proof: All while loops in C are of tier � 0. By
Theorem 5, the length of loops depends only on variables of
tier � 0. By setting β = 0 in Lemma 10 , we see that the
number of reachable values of tier � 0 is bounded by Q(n),
where Q is a polynomial. And Corollary 1 states that length
of loops is bounded by the number of reachable values of tier
� 0. Therefore, the length of loops is bounded by Q(n). By
Theorem 4, the runtime is bounded by T (n) = k ·Q(n) + k,
for some constant k.

Lemma 12: Let ∆ be a safe operator typing environment.
Assume that Γ,∆ ` C : (α, α). There is a constant c such
that for all stores µ, if µ � C ⇒t µ′ then for every X such
that Γ(X) = α, we have |µ′(X)| ≤ maxΓ(Y)�α(|µ(Y)|) + c.

Proof: Take an assignment X :=E occurring in C , where
Γ(X) = α. There are two cases. First, the type of E is (α, α).
So, X :=E is not inside a loop body. Otherwise, the typing rule
(While) would be violated. Second, the type of E is (α, β),
where β ≺ α by Lemma 2. By Lemma 8, E is a neutral term.
So, simple security Lemma 3 implies that, in both cases, we
have |µ′(X)| ≤ maxΓ(Y)�α(|µ(Y)|) + c for some constant c.

Lemma 13: Assume that the complexity lattice is
({0,1},�,0). Let ∆ be a safe operator typing environment.
Assume that Γ,∆ ` C : (1,1). There is a polynomial T such
that for all stores µ, if µ � C ⇒t µ′ then t ≤ T (n) where
n = maxΓ(X)=1(|µ(X)|).

Proof: By combining Lemmas 11 and 12.

XI. A CRITERION OF WEAK TERMINATION

In our situation, non-interference property provides a termi-
nation criterion in the following sense:

Theorem 6: Let ∆ be a safe operator typing environment.
Assume that Γ,∆ ` C : (α,0). There is a polynomial decision
procedure which given a store µ decides whether or not there
is µ′ such that µ � C ⇒ µ′.

Proof: Corollary 1 implies that it suffices to check if
there are two stores whose values assigned to variables of tier
� 0 are identical. The runtime of the decision procedure is
polynomial time computable because Lemma 10 implies that
it suffices to memorize a polynomial number of stores.

XII. CONCLUSION

We think that concepts underlying type systems for secure
information flow analysis provide new directions to character-
ize program complexity. There are several issues to investigate
like the ones that are listed below.

A major question is intensionality and language expressive-
ness, which is crucial in order to apply methods related from
ICC. Security typed languages are now expressive and we
could maybe take advantage of works already made in order
to analyze resource usage of a broader class of sequential or
parallel algorithms. A first step would be to enlarge the class
of neutral terms by, for example, re-using des-allocated spaces,
like this has been done by Hofmann [9].

The role of complexity lattice was reduced in this paper
because our study is on polynomial time computation, which
is a robust sequential class. On the other hand, complexity
lattice may be an interesting tool to study small complexity
classes and to to study the complexity of process calculus
computation with respect to causality see e.g. [31].

We restrict the domain of values to a set of words. Results
may be extended easily for several data-structure like array of
words, lists, . . . However to go further, it should be interesting
to follow Dal Lago & Martini [32] and to deal with more
complex data structures. Another direction is also to study the
introduction of weak operators like parity which declassify (or
classify) a small amount of information.

A practical approach may combine other approaches that
we have already mentioned in the discussion on related works.
In particular, a static analysis based on our approach could be
made by compiling a source program into an abstract program
with respect to resource consumption. Here, we follow ideas
suggested in [20] and [23]. Then, the complexity of a source
program could be obtained from a type inference algorithms.

Conversely, we may wonder if methods developed in ICC,
and in particular light linear logic approaches, can be used and
bring something new to security-type systems.

ACKNOWLEDGMENT

The author would like to thank Gérard Boudol and Daniel
Leivant.

REFERENCES

[1] A. Cobham, “The intrinsic computational difficulty of functions,” in
International Conference on Logic, Methodology, and Philosophy of
Science. North, 1964, pp. 24–30.

[2] N. Immerman, “Relational queries computable in polynomial time,”
Information and Control, vol. 68, no. 1-3, pp. 86–104, 1986.

[3] D. Leivant, “Predicative recurrence and computational complexity i:
Word recurrence and poly-time,” in Feasible Mathematrics II, P. Clote
and J. Remmel, Eds., 1994.

[4] S. Bellantoni and S. Cook, “A new recursion-theoretic characterization
of the poly-time functions,” Computational Complexity, vol. 2, pp. 97–
110, 1992.

[5] D. Leivant, “A foundational delineation of poly-time,” Inf. Comput., vol.
110, no. 2, pp. 391–420, 1994.

[6] D. Leivant and J.-Y. Marion, “Lambda calculus characterizations of
poly-time,” Fundam. Inform., vol. 19, no. 1/2, pp. 167–184, 1993.

[7] J.-Y. Girard, “Light linear logic,” Inf. Comput., vol. 143, no. 2, pp. 175–
204, 1998.

[8] Y. Lafont, “Soft linear logic and polynomial time,” Theor. Comput. Sci.,
vol. 318, no. 1-2, pp. 163–180, 2004.

[9] M. Hofmann, “Linear types and non-size-increasing polynomial time
computation,” Inf. Comput., vol. 183, no. 1, pp. 57–85, 2003.

[10] J.-Y. Marion, “Actual arithmetic and feasibility,” in CSL, ser. Lecture
Notes in Computer Science, vol. 2142. Springer, 2001, pp. 115–129.

[11] D. E. Bell and L. L. Padula, “Secure computer system: unified exposition
and multics interpretation,” Mitre corp Rep., Tech. Rep., 1976.

[12] K. Biba, “Integrity considerations for secure computer systems,” Mitre
corp Rep., Tech. Rep., 1977.

[13] J. Goguen and J. Meseguer, “Security policies and security models,” in
IEEE Symposium on Security and Privacy, vol. 13, 1982, pp. 11–20.

[14] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure
flow analysis,” Journal of Computer Security, vol. 4, no. 2/3, pp. 167–
188, 1996.

[15] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE J. Selected Areas in Communications, vol. 21, no. 1, pp.
5–19, Jan. 2003.

[16] A. Sabelfeld and D. Sands, “Declassification: Dimensions and princi-
ples,” J. Comput. Secur., vol. 17, pp. 517–548, October 2009.

[17] N. D. Jones, “The expressive power of higher-order types or, life without
cons,” J. Funct. Program., vol. 11, no. 1, pp. 5–94, 2001.

[18] N. D. Jones and L.Kristiansen, “A flow calculus of mwp-bounds for
complexity analysis,” ACM Trans. Comput. Log., vol. 10, no. 4, 2009.

[19] K.-H. Niggl and H. Wunderlich, “Certifying polynomial time and
linear/polynomial space for imperative programs,” SIAM J. Comput.,
vol. 35, no. 5, pp. 1122–1147, 2006.

[20] A. Ben-Amram, N. D. Jones, and L. Kristiansen, “Linear, polynomial
or exponential? complexity inference in polynomial time,” in Logic and
Theory of Algorithms, Fourth Conference on Computability in Europe,
CiE, ser. LNCS, Springer, Ed., vol. 5028, 2008, pp. 67–76.

[21] J.-Y. Marion and R. Péchoux, “Analyzing the implicit computational
complexity of object-oriented programs,” in FSTTCS, ser. LIPIcs, vol. 2.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008, pp. 316–327.

[22] J.-Y. Marion and J.-Y. Moyen, “Efficient first order functional program
interpreter with time bound certifications,” in LPAR, ser. Lecture Notes
in Computer Science, vol. 1955, 2000, pp. 25–42.

[23] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann, “Static deter-
mination of quantitative resource usage for higher-order programs,” in
POPL, 2010, pp. 223–236.

[24] J. Hughes, L. Pareto, and A. Sabry, “Proving the correctness of reactive
systems using sized types,” in Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, ser.
POPL ’96. New York, NY, USA: ACM, 1996, pp. 410–423. [Online].
Available: http://doi.acm.org/10.1145/237721.240882

[25] E. Albert, D. Alonso, P. Arenas, S. Genaim, and G. Puebla, “Asymptotic
resource usage bounds,” in Proceedings of the 7th Asian Symposium
on Programming Languages and Systems, ser. APLAS ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 294–310. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-10672-9 21

[26] S. Gulwani, K. K. Mehra, and T. M. Chilimbi, “Speed: precise and
efficient static estimation of program computational complexity,” in
POPL, 2009, pp. 127–139.

[27] D. Leivant, “A foundational delineation of computational feasiblity,” in
Proceedings of the Sixth IEEE Symposium on Logic in Computer Science
(LICS’91), 1991.

[28] H. Simmons, “The realm of primitive recursion,” Archive for Mathemat-
ical Logic, vol. 27, pp. 177–188, 1988.

[29] J.-Y. Marion, “On tiered small jump operators,” Logical Methods in
Computer Science, vol. 5, no. 1, 2009.

[30] A. Myers and B. Liskov, “Protecting privacy using the decentralized
label model,” ACM Trans. Softw. Eng. Methodol., vol. 9, no. 4, pp.
410–442, 2000.

[31] R. Demangeon, D. Hirschkoff, and D. Sangiorgi, “Static and dynamic
typing for the termination of mobile processes,” in IFIP TCS, 2008, pp.
413–427.

[32] U. Dal Lago and S. Martini, “An invariant cost model for the lambda
calculus,” in Logical Approaches to Computational Barriers, Second
Conference on Computability in Europe, ser. Lecture Notes in Computer
Science, B. L. Arnold Beckmann, Ulrich Berger and J. Tucker, Eds., vol.
3988. Springer, 2006, pp. 105–114.

