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Multifractal Segmentation of ImagesJacques LEVY VEHEL, Pascal MIGNOTINRIADomaine de VoluceauRocquencourt - B.P. 10578153 Le Chesnay CedexFRANCEe-mail: jlv@bora.inria.fr, pascal@bora.inriafrAbstractIn this work, we propose a multifractal approach to the problem of image analysis.We show that an alternative description of images, based on a multifractal charac-terization of the signal, can be used instead of the classical approach that involvessmoothing of the discrete data in order to compute local extrema. We classify eachpoint of the image according to two parameters, its type of singularity and its relativeheight, by computing the spectra associated with di�erent kinds of capacities de�nedfrom the grey levels. All these informations are then used together through a Bayesianapproach.1 IntroductionThe aim of this work is to show the potentialities of a multifractal approach for imageanalysis. In the fractal community, \image analysis" usually means that we are given animage representing a certain state of a particular process, and that we want to compute somesort of fractal dimension, which is of interest for characterizing the process, using this imageOur concern here is di�erent, since we want to characterize the image itself in terms offractal features: in other words, the object of study is the image, and the fractal approachis used to describe its structure. Thus our work is a fractal approach to the widely studiedimage analysis problem.In section 2, we state the basic problems of image analysis and describe some of the\classical" solutions that have been proposed. In section 3, we recall some de�nitions andresults of the multifractal theory. These results are used in section 4 for a multifractal de-scription of images. We present some results on synthetic and real images, before concludingand proposing some desirable extensions.2 Classical Approach to Image SegmentationImage Analysis is an important research �eld which has a number of applications in robotics,medical imaging, satellite imaging, etc : : :We restrict ourselves here to the problem of image segmentation: segmentation meansthat we want to extract from the image a compact description in terms of edges and/orregions. Thus, we do not tackle the problem of higher level interpretations such as recognitionfor instance.



Essentially, image segmentation consists in �nding all the characteristic entities of animage: these entities are either described by their contours (edge detection) or by the regionwhere they lie (region extraction). These two approaches are dual, but their algorithms arevery di�erent, and, unfortunately, most of the times lead to di�erent segmentation results.Edge DetectionIt is by far the most widely used approach. The core of the classical methods is theassumption that edges usually corresponds to local extrema of the gradient of the grey levelsin the image. In this setting, one then has to tackle the problem of computing some kind of\derivative" of a noisy discrete signal.Let I(x; y) be the image (noisy) signal. An edge is de�ned by its type: a step edge isa 0th-order discontinuity of I, a roof-edge is a 1st-order discontinuity of I, : : :Let G(I) bethe gradient of I. The problem reduces to the determination of a �lter yielding a goodapproximation of G. Under some assumptions on the nature of the noise, it may be shownthat the problem is equivalent to that of �nding an optimal linear �lter f such that:G = (I � f)0 = I � f 0In order words, we start by smoothing the discrete image data I by convolving it with f ,and then compute the gradient by di�erentiating the smoothed signal. Edge points are thende�ned to be the local maxima of the gradient's norm in the gradient's direction. Usingadditionnal criteria, one can derive expressions for optimal �lters. A frequently used one is:f(x) = �ce��jxj sin(wx) or f(x) = �cxe��jxj (Canny-Deriche �lter)It is also possible to re�ne the method using a multiresolution scheme: the original imageundergoes a series of successive smoothings, and, at each step, some characteristic points(maxima of the transform) are computed. These points are then used in collaborationthrough a propagation method, to describe more robustly and accurately the edges ([12]).Region ExtractionThe idea here is to separate the image into regions that verify a given uniformity criterion.If we are dealing with very simple images, the criterion might just be that all points belongingto a certain region must have the same grey level. However, in general, images includetextured zones, and one has to solve the much harder problem of texture discrimination. Formore complete discussion, see citeMonga87,lvpmjpb92.3 Basics of the Multifractal TheoryWe de�ne here our notations and briey recall some basic facts about the multifractal theory([1, 2, 3, 4, 14, 13]).Let � be a Borel probability measure on [0; 1]� [0; 1]. Let �n be an increasing sequenceof positive integers, and de�ne:Ii;j;n = � i�n ; i+ 1�n �� � j�n ; j + 1�n �



We consider the following quantities:�n(q) = 1log �n logXi �Xj ��(Ii;j;n)qwhereP � means that the summation runs through those indices (i; j) such that �(Ii;j;n) 6= 0.When the limit exists, we set: limn!1 �n(q) = � (q)We then de�ne fl(�) as the following Legendre transform of � (q):fl(�) = infq2IR(�q � � (q))On the other hand, we consider the sets:E� = ((x; y) 2 [0; 1[�[0; 1[= limn!1 log �(In(x; y))log �n = �)with In(x; y) = fIi;j;n=(x; y) 2 Ii;j;ng� is the local H�older exponent at point (x; y), and we de�ne fh(�) as the Haussdor� dimensionof E�.Finally, we consider the following double limit:fg(�) = lim"!0 limn!1 logN "n(�)log �nwhere: N "n(�) = cardfIi;j;n=�n(Ii;j;n) 2 [�� "; �+ "[gand �n is the coarse grained H�older exponent of � at Ii;j;n:�n(Ii;j;n) = log �(Ii;j;n)log �nA central concern of the multifractal theory is to compare the three descriptions of thesingularities of the measure, namely the \spectra" (�; fl(�)),(�; fg(�)) and (�; fh(�)). Thishas important applications. Indeed, � (q), and thus fl(�)), is usually much easier to computeon experimental data than the other spectra: � (q) is obtained by averaging over many\boxes" and then taking the limit. fg(�) is more di�cult to evaluate, both theoreticallyand practically, specially on real noisy data, since pointwise computations are necessary. Asfor fh(�), it is even much more complex, since the computation of a Hausdor� dimension istypically very involved.Under very general assumptions, it has been proven that ([1]):fh(�) � fl(�)



It is also possible to prove that in general ([8]):fg(�) � fl(�)For certain special classes of measures, including multinomial measures, we have an equality:fn(�) = fg(�) = fl(�)when all quantities are the same, we simply note them f(�).In the case of multinomial measures, f(�) is a bell-shaped curve. This shape is alsoobserved for a number of natural phenomena. However, this is by no way a general property,as one can prove that any ruled function can be the spectrum of a multifractal function(see [5]), or capacity (see [8]).Other \special" features of f may appear depending on the construction of the measure,as for instance negative values (see [13]). In general, it is easy to construct a measurefor which fl(�) is strictly greater than fg(�) and fh(�). We shall call the assumptionthat fg = fh = fl the \strong assumption", and the assumption that fg = fh the \weakassumption".4 Application to Image Analysis4.1 De�nition of the MeasuresThough fractal geometry has been introduced a long time ago in image analysis, it is notyet used extensively [16, 10].Some authors have used the fractal dimension to perform texture classi�cation and imagesegmentation, other have used higher order dimensions or measures, as correlation or lacu-narity [6, 9], to re�ne the results and have obtained some interesting results. Very few papershave been devoted to the use of multifractals in image analysis[11], although we believe thatapproaches based on the computation of the fractal dimension are largely unfounded. Thisapproach assumes that the 2D grey level image can be seen as a 3D surface, or, equivalently,that the grey levels can be assimilated to a spatial coordinate on the z-axis. This assumptionhas no theoretical basis, since the scaling properties of the grey levels are generally di�erentfrom those of the space coordinates. Instead, we should look at the grey levels as a measure,laid upon a generally compact set, totally inhomogeneous to space coordinates. This leadsto a multifractal analysis.A natural choice is to de�ne the measure � as the sum of intensities of pixels in themeasured region. This measure will be useful, but it will not be su�cient for a �ne descriptionof the image. One possibility is then to de�ne other types of functions of the grey levels,and to apply the multifractal analysis to them. Since the notion of resolution is of greatimportance in image analysis, we �nd it more appropriate to work with set functions thanwith point functions. However, it occurs that those functions that are relevant in our �eldare not in general measures, but rather capacities. Lack of space prevents us from presentingthe extension of the multifractal analysis to capacities, thus we refer the interested readerto [8] and just de�ne the capacities that we will need.



We introduce \max", \min" and \iso" capacities of a region 
. If 
? is the subset of 
where intensity is non-zero, and p(i) is the intensity of the point i, we de�ne:�max(
) = maxi2
p(i) and �min(
) = mini2
?p(i) (1)If G(
) is the geometrical center of 
, we de�ne:�iso(
) = Cardfi 2 
=p(i) = p(G(
))g (2)The exponents computed with those capacities give di�erent informations on the singularitiesencountered: �max and �min only depends on the height of the singularity, �iso only dependson the kind of singularity, and �sum depends on both height and kind of the singularity.4.2 Edge Detection Using Multifractal Characterizations4.2.1 IntroductionThe approach here is, in some sense, inverse to the classical one explained in section 2:instead of smoothing the discrete data in order to be able to compute some derivatives, westay with our initial discrete values and quantify the singularity around each point; we thencharacterize an edge point as a point having a given value of singularity.This procedure is based on the idea that, in some cases, it might be impossible to recoveran underlying continuous process from the discrete data (if such a process exists : : : ). Thusit seems more natural to directly model the sampled signal. The advantage is that we donot loose or introduce any information by smoothing. The drawback is that we may wellbe much more sensitive to noise. This is why we have to de�ne several capacities. Usingjointly the local information provided by � and the global one contained in f(�), we areable to construct a operator on the image whose main features are the following ones: it isidempotent (it detects its own result), it reacts di�erently to di�erent types of singularities(provided that the noise is not too important), and no tuning parameters are needed, as soonas the type and the amplitude of the noise are known. As a drawback, since a more complexanalysis of the image is made, the computations are not as fast as with gradient-based edgedetectors. A few minutes are needed to analyse a 512x512 image.4.2.2 Computation of the singularity exponentsWe study the behaviour of the singularity exponents for sum, max,min and iso capacities onsimpli�ed models of step-edge, corner, line and plane. Figure 1 describes those singularities.There are only two values for the gray levels: p1, level of the point of interest, and p2, levelof the background. We will denote V (i) the i� i squared neighborhood centered on the pixelof interest, and V ?(i) as V (i) minus the pixel of interest.We stress a very important point here: it is obvious that the objects we consider are farfrom being \fractals", or even \multifractals". However, our approach does not at any pointmake such an assumption. All we do is suppose that the de�ned capacity does have a H�olderat each point (a rather weak assumption). This makes it possible to compute a multifractalspectrum, whether the capacity is multifractal or not. Of course, strictly speaking, the



x = 4p1 + 5p2x = 3p1 + 6p2x = 3p1 + 6p2x = 6p1 + 3p2 21 pp
Figure 1: Step-edge, line , corner line and corner models. Notice that the line and the linecorner model give the same capacity, they won't be distinguished further.spectra corresponding to all of our models reduce to the point (2,2), thus we do not have amultifractal behaviour. The fundamental idea here is that we are not interested in gettingthe \real" spectrum, but rather to verify that, if we use a certain procedure of estimation, the\spectrum" associated with a typical image will allow a description of the local singularities.In other terms, we are not interested in absolute quantitites (the \true" spectrum), butrather in evidencing di�erences between estimated spectrum associated with di�erent setsof images.� is computed as the estimation of the slope of log �(V (i)) versus log i, with i = 2n + 1,n = 0 : : :. The maximal size of neighborhoods is related to localization of computation. Ifwe use little neighborhoods, for instance i � 3, � will react to localized singularities, if weuse larger neighborhoods, � will react to more widespread singularities. If we consider acomputing neighborhood V (3), it is possible to derive explicitely the probability law of � insome cases, for instance when the noise is additive gaussian or uniform. The calculationsare simple but rather tedious, and the formulas are quite long, thus we only give here onelaw for information:Law of � (sum measure), for a gaussian additive noise of variance �: thesingularity is characterised by n (n equals 9 for a smooth region, 6 for a step, 4 for a corner,3 for a line), and s1 = p1� et s2 = p2� :



8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:
f1(�) = 19(32� � 2 3� + 9)S(n) = n s1 + (9� ns2)f2(�) = �29S(n)3� + 29(S(n) + 3�s1)� 2s1f�(�) = 6p2 log 3 3��f1(�) exp�� 116S2 � 916s21 + 18S(n)s1��0@�89 � p�f2(�)3qf1(�) exp 9f2(�)264f1(�)! erf0@ 3f2(�)8qf1(�)1A1AObservation of plots of di�erent laws show that there is nearly no chance of confusionbetween the di�erent types of singularity when the amount of noise is not too large, andthat the max and min capacities are more robust to uniform noise.4.2.3 ResultsWe �rst present the detection of a step singularity blurred with rayleigh noise. Result isshown on �gure 2. We can see that edge detected by a Canny-Deriche �ltering is irregular,and edges detected by the multifractal exponent are far less sensitive to noise. On �gure 3,we can see the detection of a line blurred with uniform noise. The line is detected with afair accuracy by multifractal exponent, and not at all by Canny's �lter: we should here haveused a speci�c �lter for lines. However, the same multifractal exponent is able to detect bothstep-edge and line.

Figure 2: from left to right: blurred step, Canny's edge, edge detected with max capacityon V (3), with sum measure on V (3).We then present a compared result on a natural scene (�gure 4). We can see on that�gure that the multifractal exponent is able to detect small details accurately. The mostremarkable is the accuracy of the detection of the corners of the door and of the limits ofthe bush, when Canny's edges only gives good results in presence of a step.



Figure 3: from left to right: blurred line, Canny's edge with large bandwidth, with smallbandwidth and edge detected with iso capacity, 9 gray levels on V (3).
Figure 4: Left: original image, middle: Canny's edges, right: exponent computed with mincapacity on V (3).4.2.4 Use of f(�)In the images presented so far, the use of � computed with well chosen capacities has provento be su�cient. However, this will not always be the case. In this section, we indicate howthe use of f(�) can help us re�ne our image description. Let us consider �gure 5.Figure 5: Left: Some edges. Right: A textureOn the left, anyone would see three edges, that are easily detected by any edge detector.On the right, we have done nothing else than triple the number of lines in the image. Ofcourse, it is still possible to interpret this image as being composed of nine edges, but mostpeople would prefer to talk of a binary texture. However our local computation of exponent� would be the same in both situations.Here appears another characteristic feature of an edge: an edge does correspond to acertain type of singularity in the images, or to an extremum of the gradient (local character-ization), but also to a \rare" event, in some sense that has to be de�ned. In other words, iftoo many \edges" are detected in a portion of an image, then the human visual system willhave a tendency to talk of a textured zone, rather than of a concentration of edges.This is where we can use the fg(�) characterization. Remember that fg(�) measures,



loosely speaking, how rare or frequent an event of singularity � is.Now if we assume that fg(�) and fh(�) are equal (weak assumption), we may assesshow \rare" a smooth edge is, because a smooth edge point will belong to a set E� whosedimension is one. We simply use here the connection between geometry and probabilityprovided by the assumption made on the two spectra. The general line of reasoning is thefollowing one: from a geometrical point of view, a point with prescribed singularity belongsto a set of given fh(�). If the weak assumption holds, then fg(�) is also given, and we knowthe probability of �nding such a point in the image at a given resolution (this means thatall the quantities are computed at these resolution).In this sense, we may precisely say how an edge, for instance, is characterized both bya given singularity value (local condition) and by the fact that it is a rare event (globalcondition). To illustrate this, we show in �gure 6: the points of �gure 4 (original image)belonging to the sets E� (there might be several such E� sets) such that f(�) � 2 (we keephere all the points lying inside regions), and the points where f(�) � 1 (one can verify thatwe get most edge points of the original image),
Figure 6: Left: image of points (in white) whose f(�) = 1:93. Right: image of points (inwhite) whose f(�) = 1:1.These ideas can be used more rigorously in a probabilistic setting. The general frameworkis that of Bayesian optimisation. We restate the problem as follows: at a given point (x; y)in the image, we look for the most probable couple (t; �), where t is the type of singularityand � the relative height of singularity at (x; y). Let us denote by A the vector of computedlocal H�older exponents at point (x; y), with di�erent measures or capacities. Typically,A = (�min; �max; �sum; �iso). As is usual in image analysis, we use Bayes rule to write:Pr((t; �)=A) = Pr(A=(t; �))Pr(t; �)Pr(A)and we look for the couple (t; �) that maximizes the left hand side of the above equality.This equivalent to maximize the product Pr(A=(t; �))� Pr(t; �), since Pr(A) is a constanthere. Thus we have to evaluate two quantities: the conditional probability of a vector ofH�older exponents given a singularity, and the prior probability of a given singularity.Computation of the conditional probabilityThis probability is di�cult to compute theoretically, and only the cases of uniform noisewith A = (�max; �sum) or A = (�min; �sum) have been completed (see [7]).



In the general case, one has to perform computer simulations to obtain the conditionallaws.Computation of the prior probabilityTwo cases have to be considered: when the point does not lie in a smooth region, it isreasonable to assume that t and � are independant. Thus:Pr(t; �) = Pr(t)Pr(�)On the other hand, we know that the iso capacity reacts only to the type of the singularity,and that the max capacity reacts only to the relative height of the singularity. In our case,we even have an equivalence between (t; �) and the coarse grained H�older exponents, whichallows us to write: Pr(t 2 T ) = Pr(�niso 2 Ai)Pr(� 2 ^) = Pr(�nmax 2 Am)where we have used an superscript n to indicate that the coarse grained exponent are com-puted at resolution n. The sets T;Ai and ^; Am are related by expressions that can bederived explicitely.To evaluate Pr(t; �), we thus need only to evaluate the two spectra fg(�iso) and fg(�max).This can be done directly on the data, using an approach described in citelevy-mignot-berroir.Finally, when (x; y) lies in a smooth region, another approach using only (�min; �max)have to be used.Results obtained with this approach are presented on an aerial photograph (�gure 7).A blurring with gaussian noise of variance 0.1 has �rst been preformed, then the methodexplained above has been applied at three succesive resolutions. Finally, a propagationalgorithm have been used.5 ConclusionIn this work, we have demonstrated that the use of a multifractal characterization of imagepoints can help to solve the problem of segmentation. Our experiments show that, in severalcases, this approach gives at least as good results as the classical ones. Much more workis needed in this direction, but these preliminary results show that the (�; f(�)) approachmight be able to build a bridge between the two so far unconnected methods of edge detectionand region extraction.References[1] G. Brown, G. Michon, and J. Peyri�ere. On the multifractal analysis of measures.[2] U. Frisch and G.Parisi. Turbulence and predictability in geophysical uid dynamics and climate dynamics, page 84. M.Ghil, R. Benzi and G. Parisi, Amsterdam (Holland), 1895.[3] H.G.E Hentschel and I.Procaccia. The in�nite number of generalizeddimensions of fractals and strange attractors. Physica8D, 1983.



Figure 7: Left: Top left: original image. Top right: blurred[4] I.Procaccia. The characterization of fractal measures as interwoven sets of singularities : Global universality at thetransition to chaos. Technical report, Department of Chemical Physics, The Weizmann Institute of Science, Rehovot76100, Israel, 1986.[5] S. Ja�ard. Construction de fonctions multifractales ayant un spectre de singularit�es prescrit. C.R. Acad. Sci. Paris, pages19{24, 1992. T. 315, S�erie I.[6] James M. Keller, Susan Chen, and RichardM. Crownover. Texture description and segmentation through fractal geometry.Computer Graphics and Image Processing, 45:150{166, 1989. Edited by Academic Press.[7] J. L�evy V�ehel, , P. Mignot, and J.-P. Berroir. Multifractal image analysis. preprint.[8] J. L�evy V�ehel, , P. Mignot, and R. Vojak. Analyse multifractale de capacit�es. preprint.[9] J. L�evy V�ehel. About lacunarity, some links between fractal and integral geometry, and an application to texture segmen-tation. In ICCV, 1990.[10] J. L�evy V�ehel. Fractal probability functions : an application to image analysis. In CVPR, 1991.[11] J. L�evy V�ehel, P. Mignot, and J.P. Berroir. Multifractals, texture, and image analysis. In CVPR, 1992.[12] S. Mallat and W.L. Hwang. Singularity detection and processing with wavelets. IEEE Trans. on Information Theory,38(2), March 1992.[13] B.B. Mandelbrot. A class of multinomial multifractal measures with negative (latent) values for the dimension f(�). InFractals (Proceedings of the Erice meeting). L.Pietronero, New York, 1989.[14] B.B. Mandelbrot. Fractal measures (their in�nite moment sequences and dimensions) and multiplicative chaos: Earlyworks and open problems. Technical report, Physics Department, IBM ResearchCenter, MathematicsDeparment, HarvardUniversity, Cambridge, MA 02138, USA, 1989.[15] O. Monga. An optimal region growing algorithm for image segmentation. International Journal of Pattern Recognitionand Arti�cial Intelligence, 1(3), December 1987. Paris, France.[16] S. Peleg, J. Naor, R. Hartley, and D. Avnir. Multiple resolution texture analysis and classi�cation. IEEE, PAMI-6(4),July 1984.


