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Parameters estimation of a noisy sinusoidal signal with tira-varying
amplitude

Da-yan Liu, Olivier Gibaru and Wilfrid Perruquetti

Abstract— In this paper, we give estimators of the frequency, modulating functions method. In Secti@u V, the estimators
amplitude and phase of a noisy sinusoidal signal with time- are given in discrete case. Then, we study the influence of
varying amplitude by using the algebraic parametric techngues sampling period on the associated noise error part due to a

introduced by Fliess and Sira-Ramirez. We apply a similar - . . . .
strategy to estimate these parameters by using modulating €SS Of noises. In Sectidn V!, inspired by [15] a recursive

functions method. The convergence of the noise error part da algorithm for the frequency estimator is given, then some
to a large class of noises is studied to show the robustnessdan numerical simulations are given to show the efficiency and
the stability of these methods. We also show that the estimats  stability of our estimators.

obtained by modulating functions method are robust to “large”

sampling period and to non zero-mean noises. I1. NOTATIONS PRELIMINARIES

. INTRODUCTION Let us denote byDt := {T € R} : [0,T] C Q}, and
=(1—1)H1* foranyt € [0,1] with p,k €] —1,+00].

Recent algebraic parametric estimation techniques f%"“ usmg the Rodrigues formula (see [16] p.67), we have

linear systems [1], [2], [3] have been extended to various
problems in signal processing (see, e.g., [4], [5], [6], [2])-

In [9], [10], [11], these methods are devoted to estimate the dr' { he (1)} =
frequency, amplitude and phase of a noisy sinusoidal S|gna\L1
with time-invariant amplitude. Let us emphasize that thes®
methods, which are algebraic and non-asymptotic, exhidi®
good robustness properties with respect to corruptingesois i i H K
without the need of knowing their statistical propertiese(s Pi“ T = Z}(—l)'s( ) (|
[12], [13] for more theoretical details). We have shown in s=

[14] that the differentiation estimators proposed by algah Then, we have the following lemma.
parametric techniques can cope with a large class of noises.emma 1:Let f be a%™(Q)-continuous functionr( <
for which the mean and covariance are polynomials ifiN) and I'IE,H be a differential operator defined as follows
time. The robustness properties have already been confirmed ik

by numerous computer simulations and several laboratory nn — 1 d_ ©)
experiments. In [15], [9], modulating functions methods ki T TH dgtk T

are used to estimate unknown parameters of noisy sinwheres is the Laplace variablek € N and —1 < peR.
soidal signals. These methods have similar advantages theten, the inverse Laplace transformmﬂ f wheref is the
algebraic parametric techniques especially concernigg thaplace transformation of is given by

robustness of estimations to corrupting noises. The aim of

(—D)fitwy i, (TPF (1), (D)

eP 1 ‘min(k,u) > i €N, is theith order Jacobi
lynomial defined on0, 1] (see [16]):VT € [0, 1],

S

)wis,mr)- @)

this paper is to estimate the frequency, amplitude and phase z 1 {ﬂﬂu f(S)} (T)

of a noisy time-varying amplitude sinusoidal signal by gsin . k 4)
the previous two methods. We also show their stability by =Tk / W“Jrn k() F(TT)dT,

studying the convergence of the noise error part due to a .

large class of noises. whereT € Dt andCyink = %

In Section[ll, we give some notations and useful formulae. In order to prove this lemma, let us recall that tbe
In Sectloﬂl and Sectioh IV, we give parameters’ estimatororder @ € R+) Riemann-Liouville integral (see [17]) of a
by using respectively algebraic parametric techniques amdal functiong (R — R) is defined by

D.Y. Liu is with Paul Painlevé (CNRS, UMR 8524), Univessitle Lille ¢ ( ) o 1 t( . )afl (T)dT (5)
1, 59650, Villeneuve d'Ascq, Franaayan. | iu@nria. fr 9= M(a) Jo 9 )
O. Gibaru is with Laboratory of Applied Mathematics and Mgy
(L2MA), Arts et Metiers ParisTech, 8 Boulevard Louis XIV, & Lille The associated Laplace transform is given by
Cedex, Franc®l i vi er. gi baru@nsam eu

W. Perruquetti is with LAGIS (CNRS, UMR 8146)cole Centrale Z{J“g(t)}(s) :S*O’@(S), (6)
de Lille, BP 48, Cite Scientifique, 59650 Villeneuve d'AscErance
wilfrid. perruguetti @nria.fr whereg denotes the Laplace transform qf

D.Y. Liu, O. Gibaru and W. Perruquetti are wiEquipe Projet Non-A, KN
INRIA Lille-Nord Europe, Parc Scientifique de la Haute Bod#® avenue Proof. Let us denOteWH+n7K+_n(t) = (T - t)u t for
Halley Bat.A, Park Plaza, 59650 Villeneuve d’Ascq, France anyt € [0,T]. Then, by applying the Laplace transform to



the following Riemann-Liouville integral and doing someLet us apply the inverse Laplace transforml@l (12), then by

classical operational calculations, we obtain using Lemmeﬂl, we obtain
T 1
(n) 4 N

g{cu+n,k+n./o Wyingin(T) f (T)dT} ./o (WLLLKM(T)+2(wT)2Wu+4,k+4(T)) x(TT) dt

~(n+1 KNtk 1
—_g (nt +u>${(*1)n+ LS f(n)(T)} +(wT)4/ Wyt axa(T)X(TT)dT = 0.

i 97 ) ”
=S —— (1 , .
dgrk { ( )} According to 1), we havavﬂ)+4’k+4(0) = WS)Jr4yk+4(l) for

g (n+1+p) ;;ikkgqf(s) _ I'Iﬂuf(s)- i =0,...,3. Then by applying integration by parts, we get

1
Then, by substituting by Tt we have w4/o Wy ks a(T)X(TT) + 20°Wy k1 a(T)X P (TT) dT
T 1
Cutnicn || Wheinien (D)1 (1)dT + [ s DX (Tr)dT =0
' )
1
=T2n+k+“+lcu+n,k+n/o Wy inken(T) F ™ (TT)dT. Thus, w? is obtained by

By using (1), we obtairwﬂln‘km(O) = Wﬂln‘wn(l) =0 for ,  —Bxt /B -4AL

i =0,---,n—1. Finally, this proof can be completed by W™= oA 5 (13)

applyingn times integration by parts t([l(?). O X
where A = _folwu+4’k+4(r)x(Tr)dr,
By = 2f01Wu+4,k+4(T)X(2) (TT) dr, =

&
[1l. A LGEBRAIC PARAMETRIC TECHNIQUES foqu+4,k+4(T)X(4) (TT)dt. Sincex® (Tt)+ 22x®(T1) +

Let y = x+ @w be a noisy observation on a finite timew4x('|'r) =0 for any T € [0,1], we get
interval Q ¢ R™ of a real valued signak, wherew is an
additive corrupting noise and 1 (%74&@) _
4

vVt e Q, x(t) = (Ao + Aqt) sin(wt + @) (8)

1 1 2
_ </ Wy akia(T)XP(TT) dT+/ W Wy ik a(TDX(TT) dT) :
with Ag e R, A; e R*, w € RY, and—3m< @ < 3. Observe 0 Jo '

thatx is a time-variant varying sinusoidal signal, which is a
) . . . ' (2) =
solution to the harmonic oscillator equation Observe thak'® (T1) + w?X(T1) = 2wAs cog wTt+ @) for

any T € [0,2]. If wAq Wy akia(T) cOS@Tt + @)dT =

vteQ, xX¥(t)+2wK(t) + wx(t) = 0. 9) 5 fo Wy akia(T) SiN(@T T+ @)dT > 0, then we get
Then, we can estimate the parametess Ao and ¢ by A /62 AR A&
applying algebraic parametric techniquesﬁo (9). —Bx+ BAX — AL 3 (14)
Proposition 1:Let ke N, 1< u e R and T € Dy 2A

such thatAlfOlv'v,,H,kH(r) sin(wT T+ @)dT < 0, then the

parametemw is estimated from the noisy observatipty Finally, this proof can be completed by applying integratio

by parts and substituting by y in the last equation. [

3 By observing that xo, = x(0) = Agsing, Xy =
_ /B2 _ z '
(b( By+ /By 4AyCy) (10) X(0) = Agwcosp + Arsing and X = x®(0) =
2A ’

x

— w9 — 2w?Assing, then we can obtainAgcosp =
s (xé3) +3w2>'<0). Hence, if—Z < ¢ < 3, then we have

where A, = T*[fwyiaka(T)y(TT)dr, B, =
212 [ akra(DY(T DAL, G = J{W 4 4(DY(T )T, @, 5.2\
Wﬂ)+4,k+4 is given by [1L) withi =1,2,4. Ao= | R+ M ,
Proof. By applying the Laplace transform tf] (9), we get 4w (15)
$*R(s) + 20?SK(s) + w*K(9) 1) B 263X
=530 + X0+ (200 + %o)S+ (26%%0 +X5). ¢= arCtan<xg3> +3w2>'(0> '

Let us applyk+4(k € N) times derivations to both sides of
) with respect te. By multiplying the resulting equation
by s H with —1 < 1 € R, we get

Thus, we need to estimaig, Xg andxés) S0 as to obtain the
estimations ofAy and ¢.

Proposition 2: Let -1 < y € R andT € Dr, then the pa-
M X(S) + 2007T1R 5y X(S) + W*'MRy 4 11 4R(S) = 0. (12)  rametersAy and ¢ are estimated from the noisy observation



y and the estimated value o given in ): Hence, by substituting by Tt, x by y and taking the esti-
mation ofw given in Proposmorﬂl we obtain an estimate for

1
23 | 5025 )2\ ? 1 d1 d
o |22+ (Xo :Z(:ZXO) | Xo. Similarly, vi/e ar;[;ly the operatdil, = 974 3s s 42
) (16) (resp.Mz= s#+4 i §) to @) to compute an estimate
~ 260 for Xo (resp.x0 ). Finally, we get estimations fol and @
(p: arctan W . . . . . (3)
% + 362X from relations @5) by using the estimations ef Xo, X;
and w. m
where
- 1/ . IV. M ODULATING FUNCTIONS METHOD
/ PO(T)y(TT)dT, Xo= / Py N i ) 4
Proposition 3: Let f be a function belonging t&™([0, 1])
/ P2(1)y(TT)dT — 267 which satisfies the following condition& (0) = f()(1) for
T3 5 ( %o. i=0,...,3. Assume thaAlfol (1) sin(wT 1+ ¢@)dT <0 with
3 T € D, then the parametaw is estimated from the noisy
6 PO(T) = <3> Hutizi, (1) observatiory by
F(u+5) 2 i; i) (4—i) Wati 3 .
2 _ . 2 2
8 3\ ¢ - —By+ /B2 —4AC,
2 U+i4+2,3—i ) ) - Y
+4(QT) iZ)<i)7(2_i)! Wy ti+2,3-i(T) &= ( %A, ) ; 17)
+ (T ) cprazWyias(T),
P WhereAyfT4 J&f(T)y(TT)dr, By = 2T2 [3 f(1)y(T1)dT,
7F(u+6)P3 (T) = CuaWyu3(T) +11Cu 41, 2Wy41,2(T) Cy = J3 f@(1)y(Tr)dr.
Proof. Recall thax® (T 1) +2w?x® (T 1) + w*x(T 1) =0 for
+ 28042, 1Wyr42,1(T) + 126,13, 0Wyi+3,0(T) any 1 € [0,1]. As f is continuous on0, 1], then we have
+2(@T)? (Cur23Wur2,3(T) + 5Cu13.2Wyu13.2(T) ) e
AT (64 Wy 14.2(T) — G oW r50(T)) / F(OX® (TT)dT + 200 / f(0X? (Tr)dr
+(@T)* (Cu+4,3Wu143(T) — Cuis oWy 52(T)) Y / F(OX(TT)dT =
-6 - 3 /3\ 3lcyyiz
mpﬂﬂ = _Z}(i)ﬁwuﬂsi(” Then, this proof can be completed similarly to the one of
. = ' Proposition[JL. O
~ 3 Proposition 4: Let f; for i = 1,...,4 be four continuous
2(6T)? ) Cutiv23-iWugii2ai(T P ) ' e :
+2eT) iZ)(l) pti+23-1Wiati+23-i(T) functions defined on0,1]. Assume that there exis& e Dt

3 /3 _ such that the determinant of the matik, = (Mﬁ)lgi’j54
+ (cIJT)4 Z} (i )( 1)'ilcytatiz—iWyratiz—i(T). is different to zero, where far=1,....4

1 1
Proof. In order to est|matexo, we apply the following M_wl:/ (1) sin(wT1)dr, M.s—/ f(T)TT sin(wTT)dr,
0 0

1
operatory = — (333 to (19) with —1 < p € R, which

annihilates each terms contammgﬁ fori=1,2,3. Then, by
using the Leibniz formula, we get

|2f/ fi(t)coqwTT)dT, M|4f/l fi(t)Tt coqwTr)dr.

Then, for anyp €] — 7, Z[ the estimations of\, A; and @

1 e are given by
z() S o it
L o A-:((Aacosqo) + (Asing)?) ",
9= Aocosqo ;

Let us express the last equation in the time domain. By
denotingT as the length of the estimation time window weWhere the estimates & cosp and Ajsing for i = 0,1 are

have obtained by solving the following linear system
T H+4 4lcy iz Aocosqo
T(u+5)° / ( ) Y iy Wuria-i(T)dT | modne | I; o
Cyyvi ; w Al(iosqo - | )
+4w2/0 ZO (i ) lg%zi’)s;lqurHZSfi(T)dT ASing I)ﬁ
1= .

4 [T Wherel}’i = _fol fi(T)y(Tr)dr for i=1,...,4, and® is the
T _/0 Cu+4.3Wyu143(T)dT. estimate ofw given by Propositior]3.



Proof. Let us take an expansion &f (Cy): for anyst >0, s#t, w(s) andw(t) are indepen-

; ; dent;
X(Tt) =AoCoSp sm(w'l’_r) +A03|n¢c9s(wTr) (Cp) : the mean value function ofw(1), 7 > 0} belongs
+ArcospTTsin(wT 1) +A1Sin@TTcogwTT), t0 Z(Q);
whereT € [0,1], T € Dr. By multiplying both sides of the ~ (Cg) : the variance function ofw@(7),7 > 0} is bounded
last equation by the continuous functiofisfor i =1,...,4 on Q.
and by integrating the resulting equations between 0 and lpte that white Gaussian noise and Poisson noise satisfy
we obtain these conditions. When the value of is set, thenTs —
0 is equivalent tom — +c. We are going to show the

f - AOCOS(pM +AosmqoM +A1C°S‘pM +Alsm(pM| 4 convergence of the noise error contributions when> 0.

Then, it yields the following linear system Lemma 2:Let @(tj) be a sequence dfw(T), 7 > 0} with
« an equidistant sampling periol}, where{@(1),7 > 0} be
AOCQS§0 h a continuous stochastic process satisfying condit(ﬁhﬁsf
Aosing | _ | n (C3). Assume thatj € .#2([0,1]), then we have
“1 Ajcosp | 1
Agsing 1%, mIerlmE [ePm] = ./0 q(71)E[w(TT1)]dT, (20)
Since detM,,) # 0, we obtainA; cosp andA; sing for i = I|m Var [e[‘fm} -0

0,1. Finally, the proof can be completed by substitutiigy

y in the so obtained formulae & cosp and A sing. O
From now on, we choose functiomﬁ,"}rn’ﬁn with n e

N, p,k €] —1,+0o[ for the previous modulating functions.

Consequently, the estimate fao given in Proposition[|3 ’m Z}aq 1) E[@m(Trh)],

generalizes the estimate given in Proposifipn 1. (1)

Proof. Slnce w(t.) is a sequence of independent random
variables(C;), then by using the properties of mean value
and variance functions we have

V. ANALYSIS OF THE ERRORS DUE TO THE NOISE AND Var (e _mz Z) %(ti)Var[w(TT))].
THE SAMPLING PERIOD
A. Two different sources of errors According to (C3), the variance function ofv is bounded.

Let us assume now tha(ti) = x(t) + @(ti) (t € Q) is a Then we have

noisy measurement of in discrete case with an equidistant o< — Z) 2(1) Var[@(Tn)]| < U2 am & & A ),
sampling periodTs. Sincey is a discrete measurement, isom

we apply the trapezoidal numerical integration method to (22)
approxmate the integrals used in the prewous estimatets. Wherea(m) = Jnax a andU = O§E<I01|Var[ (TT)]| < 4oo.

T = anda >0 fori=0,....mwith m= T € N" (except Moreover, sincey € .#2([0,1]) and the mean value function
for ao >0 anday, > 0) be respectlvely the abscissas and thes o is integrable(C,), then we have

weights for a given numerical integration method. Weight

(resp.am) is set to zero in order to avoid the infinite value lim E [ef / q(t T1)]dr,
atT=0when—1<k <0 (resp.T1=1 when—1< u < 0). M=+
Let us denote by the functions obtained in the integrals of (23)
li — i) = d .
our estimators. Then, we denote b‘§/ fo q(1)y(Tr)dr. mﬂmi;mq (W) /0 Fr)dT < oo
Hence, |} is approximated by™: 7)y(Tr). B
PP ¥a Z) a(m)y(Ta). By As all g; are bounded, we havg 2™ Z} =0. This
ym
writing y(t.) =X(t)+@(ti), we getly M1 ef™ where proof is completed. 0
e(‘fm _q(TI) @(T1). Thus the mtegrala' is corrupted Theorem 1:With the same conditions given in Lemrﬂa 2,
we have the following convergence
by two sources of errors:
« the numerical error which comes from the numerical wm Ol / q(t)E[w(T1)]dr, whenTs—0. (24)
integration method,
. the noise error contributiomﬁf’m Moreover, if noisew satisfies the following condition
n-1
In the next subsection, we study the choice for the sampllng (Ca): E[@(T)] =S vt with neN andv € R,
period so as to reduce the noise error contributions. &
B. Analysis of the noise error for different stochastic proandq= Wil ok n With 11,k €] — 3, +-o0], then we have
cesses lim E [eq* ] =0, (25)
We assume in this section that the additive corruption noise Moo
{m(t),t € Q} is a continuous stochastic process satisfyingnd 22(01)
the following conditions eg" — 0, whenTs—0. (26)



Proof. Recall thatE {(Ym— c)z} = Var[Ym] + (E[Ym] — ¢ and noisecw(x; ) is simulated from a zero-mean white Gaus-
for any sequence of random variablMs with ¢ € R, then sianiid sequence withrc = 9.1. Hence, the signal-to-noise

by using Lemmaﬂz,ec‘f’m converges in mean square toratio SNR= 10Ioglo( ‘(‘:’gt(‘t?‘)‘ ) is equal toSNR= 20.8dB.
n—1 !

1 - i In order to estimate the frequency, by applying the previous
Jo a(r) B[@(TT)]dT when Ts — 0. If Elw(T)] = i; YI'T" recursive algorithm we use Propositih 1 with= p1 = 0,
and u,k €] — %,Jroo[, then by using the Rodrigues for- Mm=450 andv = 1. The relating estimation error is shown in
d Fig. @ By using the estimated frequency value, we estimate
1 the amplitude and phase of the signal by applying Propasitio
(n) _ . .
fﬁl’ WHJH,KJrn(T)E[w(TT)]dT = 0. Hence, this proof is com- B with 4 =0, m= 500 and Propositiofi] 4 witm = 500,
pleted. fi=wsa, fa=wy3, f3=ws34 and f4 = wa 3. The relating
VI. NUMERICAL IMPLEMENTATIONS estimation errors are shown in Fig. 3 and Hb. 4. We can

In our identification procedure, we use a moving inte_observe that with small value df; the relating estimation

gration window. Hence, the estimate af att; is given by errors are also Sm_a“' .
Propositior[[B as follows Example 2:In this example, we increase the valueTgf

to Ty = 211 x 102 and reduce the noise level o= 0.01.
_ By, i By, i—0.1 . 27) Moreover, we add a bias term perturbatign= 0.25 in
2Ay  2Ay T (BI) whent; €]27t, 3. The estimations otv are obtained
by Propositior(J1 withk = 4 =0, m= 12 andv = 1. The
i —  estimations of the amplitude and phase are given by applying
2T2|>f’_‘i m Cy = Y™ with yi = Y(T - +t). Note that if Proposition[R withy = 0, m= 12 and Propositiof] 4 with

i f(4) 1 1 1
Ay, =0, then there is a singular value(®7). If we denote by M= 15, f1 = oy, fo =why, fa=w, and fa = w,J. The

mula given by [L) we obtain!), ., € £2([0,1]) an

Ve Q, @)=

where Ay = Bgti*‘lAynCyti' Ay, = T4I¥‘i’m, By,

" Dy, B B relating estimation errors are shown in FE]. 5 and Fﬂg. 6.
6= Ay W_hereD_Yti - —By, or Dy, *A_Yti’ then we can _appl_y We can observe that the estimators obtained by modulating
the following criterion (see [15]) to improve the estimatio fynctions method are more robust to the sampling period
of w and to the non zero-mean noise than the ones obtained by

) 1 L 2 algebraic parametric techniques.
mind(6) = = Zow - (Dyt, +Ayt.9.) . (28
6ieR 2 £ i i

wherei =0,1,..., andv €]0,1]. The parametev represents
a forgetting factor to exponentially discard the “old” data 2
in the recursive schema. The value &f which minimizes

the criterion (R§), is obtained by seeking the value which

noisy observation y
— — —signal x

cancels%:'). Thus, we get 0
i 4
Z)Vlﬂﬂ Dy, Ay,
i= -2 \
6 =—— > (29)
zDViJrlfj (Ayt) % 2 P s 5 10
1
J:
Similarly to [15], we can get the following recursive algo- Fig. 1. The noisy observatiop and the signak
rithm for (29)
v .
9i+1 = E (al 9| + DYti+1AYti+1) ) I = 07 17 AR (30) oot Relating estimation error of &
. 0,005 algebraic parametric technique
P 2
wherea; = Zov'“*J (Ayt,) Moreover,aj,1 can be recur- 0008
= I 0.007
. 2 0.006
sively calculated as followsj, 1 = Vv | aj + (Ayti) . s
Example 1:According to Sectior) |V, we can reduce the 0.004
noise error part in our estimations by decreasing the sagpli 0.003
period. Hence, lety(ti) = x(ti) +cw(ti));>, be a generated o002
noise data set with a small sampling perid= 5x 10~ oo M
in the interval(0, 37 (see Fig[]l) where % 2 DI 8 i
sin(10G + %), if0<t<m,
X(ti) _ t,—iTSin(lai + %T), if <t <2m, (31) Fig. 2. Relating estimation error @b

2sin(10G + 7)), if 2m<t < 3m,
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VII. CONCLUSIONS AND FUTURE WORKS

In this paper, two methods are given to estimate the fre-
guency, amplitude and phase of a noisy sinusoidal signal wit
time-varying amplitude, where the estimates are obtained
by using integrals. There are two types of errors for these
estimates: the numerical error and the noise error parn,The
the convergence in mean square of the noise error part is
studied. A recursive algorithm for frequency estimator is
given. In numerical examples, we show some comparisons
between the two proposed methods. Moreover, these methods
can also be used to estimate the frequencies, the amplitudes
and the phases of two sinusoidal signals from their noisy
sum (see [11]). The analysis for colored noises will be done
in a future work.
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