5-choosability of graphs with 2 crossings

Victor Campos, Frédéric Havet

To cite this version:

Victor Campos, Frédéric Havet. 5-choosability of graphs with 2 crossings. [Research Report] RR-7618, INRIA. 2011, pp.22. inria-00593426

HAL Id: inria-00593426
https://hal.inria.fr/inria-00593426
Submitted on 21 May 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

5-choosability of graphs with 2 crossings

Victor Campos - Frédéric Havet
$\mathbf{N}^{\circ} 7618$
Mai 2011

5-choosability of graphs with 2 crossings ${ }^{*}$

Victor Campos ${ }^{\dagger}$, Frédéric Havet ${ }^{*}$
Thème COM - Systèmes communicants Équipe-Projet Mascotte
Rapport de recherche $\mathrm{n}^{\circ} 7618$ - Mai 2011 - 19 pages

Abstract

We show that every graph with two crossings is 5-choosable. We also prove that every graph which can be made planar by removing one edge is 5 -choosable.

Key-words: list colouring, choosability, crossing number
\dagger Universidade Federal do Ceará, Departamento de Computaçao, Bloco 910, Campus do Pici, Fortaleza, Ceará, CEP 60455-760, Brasil. campos@lia.ufc.br; Partially supported by CNPq/Brazil.

* Projet Mascotte, I3S(CNRS, UNSA) and INRIA, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France. Frederic. Havet@inria.fr; Partially supported by the ANR Blanc International ANR-09-blan-0373-01.
* This work was partially supported by Equipe Associée EWIN.

5-choisissabilité des graphes ayant deux croisements

Résumé : Nous montrons que tout graphe ayant deux croisements est 5-choisissable. Nous prouvons également que tout graphe qui peut être rendu planaire par la suppression d'une arête est 5choisissable.

Mots-clés : coloration sur listes, choisissabilité, nombre de croisements

1 Introduction

The crossing number of a graph G, denoted by $\operatorname{cr}(G)$, is the minimum number of crossings in any drawing of G in the plane.

The Four Colour Theorem states that, if a graph has crossing number zero (i.e. is planar), then it is 4-colourable. Deleting one vertex per crossing, it follows that $\chi(G) \leq 4+\operatorname{cr}(G)$. So it is natural to ask for the smallest integer $f(k)$ such that every graph G with crossing number at most k is $f(k)$ colourable? Settling a conjecture of Albertson [1], Schaefer [8] showed that $f(k)=O\left(k^{1 / 4}\right)$. This upper bound is tight up to a constant factor since $\chi\left(K_{n}\right)=n$ and $\operatorname{cr}\left(K_{n}\right) \leq\binom{\left|E\left(K_{n}\right)\right|}{2}=\left(\begin{array}{c}n \\ 2 \\ 2\end{array}\right) \leq \frac{1}{8} n^{4}$.

The values of $f(k)$ are known for a number of small values of k. The Four Colour Theorem states $f(0)=4$ and implies easily that $f(1) \leq 5$. Since $\operatorname{cr}\left(K_{5}\right)=1$, we have $f(1)=5$. Oporowski and Zhao [7] showed that $f(2)=5$. Since $\operatorname{cr}\left(K_{6}\right)=3$, we have $f(3)=6$. Further, Albertson et al. [2] showed that $f(6)=6$. Albertson then conjectured that if $\chi(G)=r$, then $\operatorname{cr}(G) \leq \operatorname{cr}\left(K_{r}\right)$. This conjecture was proved by Barát and Tóth [3] for $r \leq 16$.

A list assignment of a graph G is a function L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colours. An L-colouring is a function $\varphi: V(G) \rightarrow \bigcup_{v} L(v)$ such that $\varphi(v) \in L(v)$ for every $v \in V(G)$ and $\varphi(u) \neq \varphi(v)$ whenever u and v are adjacent vertices of G. If G admits an L-colouring, then it is L-colourable. A graph G is k-choosable if it is L-colourable for every list assignment L such that $|L(v)| \geq k$ for all $v \in V(G)$. The choose number of G, denoted by $\operatorname{ch}(G)$, is the minimum k such that G is k-choosable.

Similarly to the chromatic number, one may seek for bounds on the choose number of a graph with few crossings or with independent crossings. Thomassen's Five Colour Theorem [10] states that if a graph has crossing number zero (i.e. is planar) then it is 5-choosable. A natural question is to ask whether the chromatic number is bounded in terms of its crossing number. Erman et al. [5] observed that Thomassen's result can be extended to graphs with crossing number at most 1 . Deleting one vertex per crossing yields $\operatorname{ch}(G) \leq 4+\operatorname{cr}(G)$. Hence, what is the smallest integer $g(k)$ such that every graph G with crossing number at most k is $g(k)$-choosable? Obviously, since $\chi(G) \leq \operatorname{ch}(G)$, we have $f(k) \leq g(k)$.

In this paper, we extend Erman et al. result in two ways. We first show that every graph which can be made planar by the removal of an edge is 5 -choosable (Theorem 3). We then prove that is $g(2)=5$. In other words, every graph with crossing number 2 is 5 -choosable ${ }^{1}$. This generalizes the result of Oporowski and Zhao [7] to list colouring.

2 Planar graphs plus an edge

In order to prove its Five Colour Theorem, Thomassen [10] showed a stronger result.
Definition 1. An inner triangulation is a plane graph such that every face of G is bounded by a triangle except its outer face which is bounded by a cycle.

Let G be a plane graph and x and y two consecutive vertices on its outer face F. A list assignment L of G is $\{x, y\}$-suitable if

- $|L(x)| \geq 1,|L(y)| \geq 2$,

[^0]- for every $v \in V(F) \backslash\{x, y\},|L(v)| \geq 3$, and
- for every $v \in V(G) \backslash V(F),|L(v)| \geq 5$.

A list assignment of G is suitable if it is $\{x, y\}$-suitable for some vertices x and y on the outer face of G.

The following theorem is a straightforward generalization of Thomassen's five colour Theorem which holds for non-separable plane graphs.

Theorem 2 (Thomassen [10]). If L is a suitable list assignment of a plane graph G then G is L colourable.

This result is the cornerstone of the following proof.
Theorem 3. Let G be a graph. If G has an edge such that $G \backslash e$ is planar then $\operatorname{ch}(G) \leq 5$.
Proof. Let $e=u v$ be an edge of G such that $G \backslash e$ is planar. Let G^{\prime} be a planar triangulation containing $G \backslash e$ as a subgraph. Without loss of generality, we may assume that u is on the outer triangle of G^{\prime}. The graph $G^{\prime}-u$ has an outer cycle C^{\prime} whose vertices are the neighbours of u in G^{\prime}.

Let L be a 5-list assignment of G. Let $\alpha, \beta \in L(u)$. Let L^{\prime} be the list-assignment of $G^{\prime}-u$ defined by $L^{\prime}(w)=L(w) \backslash\{\alpha, \beta\}$ if $w \in V\left(C^{\prime}\right)$ and $L^{\prime}(w)=L(w)$ otherwise. Then L^{\prime} is suitable. So $G^{\prime}-u$ admits an L^{\prime}-colouring by Theorem 2. This colouring may be extended into an L-colouring of G by assigning to u a colour in $\{\alpha, \beta\}$ different from the colour of v.

Hence G is 5-choosable.

3 Graphs with two crossings

3.1 Preliminaries

We first recall the celebrated characterization of planar graphs due to Kuratowski [6]. See also [9] for a nice proof.

Theorem 4 (Kuratowski [6]). A graph is planar if and only if it contains no minor isomorphic to either K_{5} or $K_{3,3}$.

Let G be a plane graph and x, y and z three distinct vertices on the outer face F of G. A list assignment L of G is (x, y, z)-correct if

- $|L(x)|=1=|L(y)|$ and $L(x) \neq L(y)$,
- $|L(z)| \geq 3$,
- for every $v \in V(F) \backslash\{x, y, z\},|L(v)| \geq 4$, and
- for every $v \in V(G) \backslash V(F),|L(v)| \geq 5$.

If L is (x, y, z)-correct and $L(z) \geq 4$, we say that L is $\{x, y\}$-correct.
Lemma 5. Let G be an inner triangulation and x and y two distinct vertices on the outer face of G. If L is an (x, y, z)-correct list assignment of G then G is L-colourable.

Proof. We prove the result by induction on the number of vertices, the result holding trivially when $|V(G)|=3$.

Suppose first that F has a chord $x t$. Then $x t$ lies in two unique cycles in $F \cup x t$, one C_{1} containing y and the other C_{2}. For $i=1,2$, let G_{i} denote the subgraph induced by the vertices lying on C_{i} or inside it. By the induction hypothesis, there exists an L-colouring ϕ_{1} of G_{1}. Let L_{2} be the list assignment on G_{2} defined by $L_{2}(t)=\left\{\phi_{1}(t)\right\}$ and $L_{2}(u)=L(u)$ if $u \in V\left(G_{2}\right) \backslash\{t\}$. Let $z^{\prime}=z$ if $z \in V\left(C_{2}\right)$ and z^{\prime} be any vertex of $V\left(C_{2}\right) \backslash\{x, t\}$ otherwise. Then L_{2} is $\left(x, t, z^{\prime}\right)$-correct for G_{2} so G_{2} admits an L_{2}-colouring ϕ_{2} by induction hypothesis. The union of ϕ_{1} and ϕ_{2} is an L-colouring of G.

Suppose now that x has exactly two neighbours u and v on F. Let $u, u_{1}, u_{2} \ldots, u_{m}, v$ be the neighbours of x in their natural cyclic order around x. As G is an inner triangulation, $u u_{1} u_{2} \cdots u_{m}, v=P$ is a path. Hence the graph $G-x$ has $F^{\prime}=P \cup(F-x)$ as outer face.

Assume first that $z \notin\{u, v\}$. Then let L^{\prime} be the list assignment on $G-x$ defined by $L^{\prime}(w)=$ $L(w) \backslash L(x)$ if $w \in N_{G}(x)$ and $L^{\prime}(w)=L(w)$ otherwise. Clearly, $\left|L^{\prime}(w)\right| \geq 3$ if $w \in F^{\prime}$ and $\left|L^{\prime}(w)\right| \geq 5$ otherwise. Hence, by Theorem $2, G-x$ admits an L^{\prime}-colouring. Colouring x with the colour of its list, we obtain an L-colouring of G.

Assume now that $z \in\{u, v\}$, say $z=u$. Let α be a colour of $L(z) \backslash(L(x) \cup L(y))$. Let L^{\prime} be the list assignment on $G-x$ defined by $L^{\prime}(z)=\{\alpha\}, L^{\prime}(w)=L(w) \backslash L(x)$ if $w \in N_{G}(x) \backslash\{z\}$ and $L^{\prime}(w)=L(w)$ otherwise. Clearly, L^{\prime} is (y, z, v)-correct. Hence, by the induction hypothesis, $G-x$ admits an L^{\prime}-colouring. Colouring x with the colour of its list, we obtain an L-colouring of G.

3.2 Nice, great and good paths

Let G be a graph and H an induced subgraph of G.
We denote by Z_{H} the set of vertices of G which are adjacent to at least 3 vertices of H. For every vertex v in $V(G)$, we denote by $N_{H}(v)$ the set of vertices of H adjacent to v, and we set $d_{H}(v)=\left|N_{H}(v)\right|$.

Let L be a list assignment of G. For any L-colouring ϕ of H, we denote by L_{ϕ} the list assignment of $G-H$ defined by $L_{\phi}(z)=L(z) \backslash \phi\left(N_{H}(z)\right.$). A vertex $z \in V(G-H)$ is safe (with respect to ϕ), if $\left|L_{\phi}(z)\right| \geq 3$. An L-colouring of H is safe if all vertices of $z \in V(G-H)$ are safe. Observe that if L is a 5 -list assignment, then for any L-colouring ϕ of H, every vertex z not in Z_{H} has at most two neighbours in H and therefore $\left|L_{\phi}(z)\right| \geq 3$. Hence ϕ is safe if and only if every vertex in Z_{H} is safe.

Let $P=v_{1} \cdots v_{p}$ be an induced path in G. For $2 \leq i \leq p-1$, we denote by $\left[v_{i}\right]_{P}$, or simply $\left[v_{i}\right]$ if P is clear from the context, the set $\left\{v_{i-1}, v_{i}, v_{i+1}\right\}$. We say that a vertex z is adjacent to $\left[v_{i}\right]$ if it is adjacent to all vertices in the set $\left[v_{i}\right]$. Note that if z is adjacent to $\left[v_{i}\right]$ then z is not in P as P is induced.

Lemma 6. Let $P=v_{1} \cdots v_{p}$ be an induced path in G, x a vertex such that $N_{P}(x)=\left[v_{i+1}\right], 1 \leq i \leq p-1$, and ϕ a colouring of $P-v_{i}$. If $i=1$ or $\phi\left(v_{i-1}\right)=\phi\left(v_{i+1}\right)$, then one can extend ϕ to v_{i} such that x is safe.

Proof. If $\left\{\phi\left(v_{i+1}\right), \phi\left(v_{i+2}\right)\right\} \not \subset L(x)$, then assigning to v_{i} any colour distinct from $\phi\left(v_{i+1}\right)$, we get a colouring of P such that x is safe. So we may assume that $\left\{\phi\left(v_{i+1}\right), \phi\left(v_{i+2}\right)\right\} \subset L(x)$.

If $\phi\left(v_{i+2}\right) \in L\left(v_{i}\right)$, then setting $\phi\left(v_{i}\right)=\phi\left(v_{i+2}\right)$, we have a colouring ϕ such that x is safe. If not, there is a colour α in $L\left(v_{i}\right) \backslash L(x)$. Necessarily, $\alpha \neq \phi\left(v_{i+1}\right)$ and so one can colour v_{i} with α. Doing so, we obtain a colouring such that x is safe.

Let $P=v_{1} \cdots v_{p}$ be an induced path. It is a nice path in G if the following are true.
(a) for every $z \in Z_{P}, N_{P}(z)=\left[v_{i}\right]$ for some $2 \leq i \leq p-1$;
(b) for every $2 \leq i \leq p-1$, there are at most two vertices adjacent to $\left[v_{i}\right]$ and, if there are two such vertices, then the number of vertices adjacent to $\left[v_{i-1}\right]$ or $\left[v_{i+1}\right]$ is at most 1 .
It is a great path in G if is is nice and satisfies the following extra property.
(c) for any $i<j$, if there are two vertices adjacent to $\left[v_{i}\right]$ and two vertices adjacent to $\left[v_{j}\right]$, then the number of vertices adjacent to $\left[v_{i+1}\right]$ or $\left[v_{j-1}\right]$ is at most 1 .
A safe colouring of a path $P=v_{1} \cdots v_{p}$ is α-safe if $\phi\left(v_{1}\right)=\alpha$.
Lemma 7. If P is a great path and L is a 5 -list assignment of G, then for any $\alpha \in L\left(v_{1}\right)$, there exists an α-safe L-colouring ϕ of P.
Proof. We prove this result by induction on p, the number of vertices of P, the result holding trivially when $p \leq 2$.

Assume now that $p \geq 3$. Since P is great then every vertex of Z_{P} adjacent to v_{1} is also adjacent to v_{2} and there are at most two vertices of Z_{P} adjacent to $\left[v_{2}\right]$.

Set $\phi\left(v_{1}\right)=\alpha$.

1. If there is no vertex adjacent to $\left[v_{2}\right]$, then by induction, for any $\beta \in L\left(v_{2}\right) \backslash\{\alpha\}$, there is a β-safe L-colouring ϕ of $v_{2} \cdots v_{p}$. Since $\phi\left(v_{1}\right)=\alpha, \phi$ is an α-safe L-colouring of P.
2. Assume now that there is a unique vertex z adjacent to $\left[v_{2}\right]$.

If $\alpha \notin L(z)$, then by Case 1 , there is an α-safe L-colouring ϕ of P in $G-z$. It is also an α-safe L-colouring of P in G since z is safe as $\alpha \notin L(z)$. Hence we may assume that $\alpha \in L(z)$.
Assume there is a colour β in $L\left(v_{2}\right) \backslash\{\alpha\}$. By induction there is a β-safe L-colouring ϕ of $v_{2} \cdots v_{p}$. Since $\phi\left(v_{1}\right)=\alpha$, we obtain an α-safe L-colouring of P because z is safe as $\beta \notin L(z)$. Hence we may assume that $L\left(v_{2}\right)=L(z)$. In particular, $\alpha \in L\left(v_{2}\right)$. Let γ be α if $\alpha \in L\left(v_{3}\right)$, and a colour in $L\left(v_{3}\right) \backslash L\left(v_{2}\right)$ otherwise. We set $\phi\left(v_{3}\right)=\gamma$. Observe that whatever colour is assigned to v_{2}, the vertex z will be safe.
2.1. Assume that no vertex is adjacent to $\left[v_{3}\right]$. By induction hypothesis, there is a γ-safe L colouring ϕ of $v_{3} \cdots v_{p}$. Choosing $\phi\left(v_{2}\right)$ in $L\left(v_{2}\right) \backslash\{\alpha, \gamma\}$, we obtain an α-safe L-colouring of P.
2.2. Assume that exactly one vertex t is adjacent to $\left[v_{3}\right]$. By induction hypothesis, there is a γ-safe L-colouring ϕ of $v_{3} \cdots v_{p}$. So far all the vertices except t will be safe. So we just need to choose $\phi\left(v_{2}\right)$ so that t is safe.
Observe that if $\left\{\gamma, \phi\left(v_{4}\right)\right\} \not \subset L(t)$, choosing any colour of $L\left(v_{2}\right) \backslash\{\alpha, \gamma\}$ will do the job. So we may assume that $\left\{\gamma, \phi\left(v_{4}\right)\right\} \subset L(t)$. If there is a colour $\beta \in L\left(v_{2}\right) \backslash(L(t) \cup\{\alpha\})$, then setting $L\left(\nu_{2}\right)=\beta$ will make t safe. So we may assume that $L\left(v_{2}\right) \backslash\{\alpha\} \subset L(t)$ and so $L(t)=L\left(v_{2}\right) \cup\{\gamma\} \backslash\{\alpha\}$. Thus $\phi\left(v_{4}\right) \in L\left(v_{2}\right) \backslash\{\alpha, \gamma\}$. Then setting $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)$ makes t safe.
2.3. Assume that two vertices t_{1} and t_{2} are adjacent to $\left[v_{3}\right]$. Then no vertex is adjacent to $\left[v_{4}\right]$. Therefore, it suffices to prove that there is an α-safe L-colouring of $v_{1} v_{2} v_{3} v_{4}$. Indeed, if we have such a colouring ϕ, then by induction, $v_{4} \cdots v_{p}$ admits a $\phi\left(v_{4}\right)$-safe L-colouring ϕ^{\prime}. The union of these two colourings is an α-safe L-colouring of P.
If there exists $\beta \in L\left(v_{4}\right) \cap L\left(v_{2}\right) \backslash\{\alpha, \gamma\}$, then setting $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\beta$, we obtain an α safe L-colouring of $v_{1} v_{2} v_{3} v_{4}$. Otherwise, $L\left(v_{4}\right) \backslash\{\gamma\}$ and $L\left(v_{2}\right) \backslash\{\alpha\}$ are disjoint. Hence one can choose β in $L\left(v_{2}\right) \backslash\{\alpha\}$ and δ in $L\left(v_{4}\right) \backslash\{\gamma\}$ so that $\left|\{\beta, \gamma, \delta\} \cap L\left(t_{i}\right)\right| \leq 2$ for $i=1,2$. Setting $\phi\left(v_{2}\right)=\beta$ and $\phi\left(v_{4}\right)=\delta$, we obtain an α-safe L-colouring of $v_{1} v_{2} v_{3} v_{4}$.
3. Assume that two vertices z_{1} and z_{2} are adjacent to $\left[v_{2}\right]$.

We claim that it suffices to prove that there is an α-safe L-colouring of $v_{1} v_{2} v_{3}$.
Let j be the smallest index such that no vertex is adjacent to $\left[v_{j}\right]$. For the definition of j, consider there is no vertex adjacent to $\left[v_{p}\right]$ so that $j \leq p$. By the property (c) of great path, for all $3 \leq i<j$, there is exactly one vertex z_{i} adjacent to $\left[v_{i}\right]$. For $i=3, \ldots, j-1$, one after another, one can use Lemma 6 in the path $v_{i+1} \cdots v_{1}$ to extend ϕ to v_{i+1}, so that z_{i} is safe. Then applying induction on the path $v_{j} \cdots v_{p}$, we obtain an α-safe L-colouring. This proves the claim.
Let us now prove that an α-safe L-colouring of $v_{1} v_{2} v_{3}$ exists.
If $\alpha \notin L\left(z_{i}\right)$, then any α-safe L-colouring of $v_{1} v_{2} v_{3}$ in $G-z_{i}$ will be an α-safe L-colouring in G. By Case 2 , one can find such a colouring in $G-z_{i}$, so we may assume that $\alpha \in L\left(z_{i}\right)$.
If there is a colour $\beta \in L\left(v_{2}\right) \backslash L\left(z_{1}\right)$, then set $\phi\left(v_{2}\right)=\beta$. By Lemma 6 in the path $v_{3} v_{2} v_{1}$, one can choose $\phi\left(v_{3}\right)$ in $L\left(v_{3}\right)$ to obtain an α-safe L-colouring of $v_{1} v_{2} v_{3}$. Hence we may assume that $L\left(z_{1}\right)=L\left(v_{2}\right)$. Similarly, we may assume that $L\left(z_{2}\right)=L\left(v_{2}\right)$. Therefore, any α-safe L-colouring of $v_{1} v_{2} v_{3}$ in $G-z_{2}$ will be an α-safe L-colouring in G. We can find such a colouring using Case 2.

We say that an induced path $P=v_{1} \cdots v_{p}$ is good path if either P is great or $p \geq 4$ and there is a vertex $z \in Z_{P}$ adjacent to v_{1} such that $\left\{v_{1}, v_{4}\right\} \subset N_{P}(z) \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ satisfying the following conditions:

- P is a great path in $G \backslash v_{1} z$.
- if two vertices distinct from z are adjacent to $\left[v_{2}\right]$, then $N_{P}(z)=\left\{v_{1}, v_{3}, v_{4}\right\}$ and there is no vertex adjacent to $\left[v_{3}\right]$; and
- if two vertices distinct from z are adjacent to $\left[v_{3}\right]$, then $N_{P}(z)=\left\{v_{1}, v_{2}, v_{4}\right\}$ and there is no vertex adjacent to $\left[v_{2}\right]$.

Note that since P is induced, then z is not in P.
Lemma 8. If $P=v_{1} \cdots v_{p}$ is a good path and L is a 5 -list assignment of G, then there exists a safe L-colouring of P.

Proof. If P is great, then the result follows from Lemma 7 . So we may assume that P is not great. Let z be the vertex of Z_{P} such that $\left\{v_{1}, v_{4}\right\} \subset N_{P}(z) \subseteq\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

If there is a colour $\alpha \in L\left(v_{1}\right) \backslash L(z)$, then let $\phi\left(v_{1}\right)=\alpha$ and use Lemma 7 to colour $v_{1} \cdots v_{p}$ in $G \backslash v_{1} z$. The obtained colouring ϕ is a safe L-colouring of P. For any $z^{\prime} \in Z_{P} \backslash\{z\}$, we have $\left|L_{\phi}\left(z^{\prime}\right)\right| \geq 3$ because z^{\prime} has the same neighbourhood in G and $G \backslash v_{1} z$. Now $\left|L_{\phi}(z)\right| \geq 3$ since $\alpha \notin L(z)$, so ϕ is safe. Henceforth, we assume that $L\left(v_{1}\right)=L(z)$.

1. Assume first that $N_{P}(z)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.

By the properties of a good path, at most one vertex z^{\prime} different from z is adjacent to $\left[v_{2}\right]$.
1.1. Assume first that z is the unique vertex adjacent to $\left[v_{3}\right]$.

If there is a colour $\alpha \in L(z) \cap L\left(v_{3}\right)$, then set $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)=\alpha$. By Lemma 7 , one can extend ϕ to $v_{3} \cdots v_{p}$ so that all vertices of Z_{P} but z are safe. Then by Lemma 6 applied to
$v_{2} \cdots v_{p}$, one can choose $\phi\left(v_{2}\right) \in L\left(v_{2}\right)$ so that z is safe for $P-v_{1}$. Since $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)$, then ϕ is a proper colouring and z is safe for P. Hence ϕ is a safe L-colouring of P. So we may assume that $L(z) \cap L\left(v_{3}\right)=\emptyset$.
If there exists $\beta \in L\left(v_{2}\right) \backslash L(z)$, then set $\phi\left(v_{2}\right)=\beta$. By Lemma 7 , one can extend ϕ to $v_{2} \cdots v_{p}$ so that all vertices of Z_{P} but z and z^{\prime} are safe. Observe that necessarily z will be safe because $\phi\left(v_{2}\right) \notin L(z)$ and $\phi\left(v_{3}\right) \notin L(z)$. By Lemma6, one can extend ϕ to v_{1} so that z^{\prime} is safe, thus getting a safe L-colouring of P. So we may assume that $L\left(v_{2}\right)=L(z)$.
We have $\left|L\left(v_{2}\right) \cup L\left(v_{3}\right)\right|=10 \geq\left|L\left(z^{\prime}\right)\right|$. So we can find $\alpha \in L\left(v_{2}\right)$ and $\beta \in L\left(v_{3}\right)$ so that $\left|\{\alpha, \beta\} \cap L\left(z^{\prime}\right)\right| \leq 1$. Using Lemma 7 take a β-safe L-colouring ϕ of the path $v_{3} v_{4} \ldots v_{p}$ and set $\phi\left(v_{2}\right)=\alpha$. If $\phi\left(v_{4}\right) \in L(z) \backslash\{\alpha\}$, then colour v_{1} with $\phi\left(v_{4}\right)$, otherwise colour it with any colour distinct from α. This gives a safe L-colouring of P.
1.2 Assume now that a vertex $y \neq z$ is adjacent to $\left[v_{3}\right]$.

* Suppose that a vertex t is adjacent to $\left[v_{4}\right]$. Then z^{\prime} does not exist.

If there is a colour $\alpha \in L\left(v_{2}\right) \backslash L(z)$, then using Lemma 7 take an α-safe L-colouring ϕ of $v_{2} \cdots v_{p}$. If $\phi\left(v_{3}\right) \notin L(z)$, then z would be safe whatever colour we assign to v_{1}, so there is a safe L-colouring of P. If If $\phi\left(v_{3}\right) \in L(z)$, then setting $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)$, we obtain a safe L-colouring of P. So we may assume that $L\left(v_{2}\right)=L(z)$.
If there is a colour α in $L(z) \cap L\left(v_{4}\right)$, then set $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\alpha$. Then y will be safe. Extend ϕ to $v_{4} \cdots v_{p}$ by Lemma 7. Then all the vertices are safe except t and z. By Lemma6, one can choose $\phi\left(v_{3}\right)$ so that t is safe. If $\phi\left(v_{3}\right) \in L(z)$, then setting $\phi\left(v_{1}\right)=$ $\phi\left(v_{3}\right)$, we get a safe L-colouring of P. If $\phi\left(v_{3}\right) \notin L(z)$, then whatever colour we assign to v_{1}, we obtain a safe colouring of P. Hence we may assume that $L(z) \cap L\left(v_{4}\right)=\emptyset$. By Lemma 7, there is a safe L-colouring of P in $G \backslash z v_{4}$. This colouring is also a safe colouring of P in G, since $\phi\left(v_{4}\right)$ is not in $L(z)$.

* If no vertex is adjacent to $\left[v_{4}\right]$, then z^{\prime} may exist. In this case, it is sufficient to prove that there exists a safe L-colouring of $v_{1} v_{2} v_{3} v_{4}$. Indeed, if there is such a colouring ϕ, then by Lemma 7, it can be extended to a safe L-colouring of P.
Symmetrically to the way we proved the result when $L\left(v_{1}\right) \neq L(z)$, one can prove it when $L\left(v_{4}\right) \neq L(z)$. Hence we may assume that $L\left(v_{4}\right)=L(z)$.
Assume that there is a colour $\alpha \in L\left(v_{2}\right) \cap L(z)$. Set $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\alpha$. If there is a colour $\beta \in L\left(v_{3}\right) \backslash L(z)$, then set $\phi\left(v_{3}\right)=\beta$ so that z will be safe and extend ϕ with Lemma 6 so that z^{\prime} is safe to obtain a safe colouring of $v_{1} v_{2} v_{3} v_{4}$ in G. If $L\left(v_{3}\right)=L(z)$, then assign to v_{1} and v_{3} a same colour in $L(z) \backslash\{\alpha\}$ to get a safe colouring of $v_{1} v_{2} v_{3} v_{4}$. Hence we may assume that $L\left(v_{2}\right) \cap L(z)=\emptyset$. Symmetrically, we may assume that $L\left(v_{3}\right) \cap L(z)=\emptyset$. By Lemma 7, there exists a safe colouring ϕ of $v_{1} v_{2} v_{3} v_{4}$ in $G-z$. It is also a safe colouring of $v_{1} v_{2} v_{3} v_{4}$ in G because $\phi\left(v_{2}\right)$ and $\phi\left(v_{3}\right)$ cannot be in $L(z)$.

2. Assume now that $N_{P}(z)=\left\{v_{1}, v_{3}, v_{4}\right\}$.

If no vertex is adjacent to $\left[v_{2}\right]$, then using Lemma 7 take a safe L-colouring of $v_{2} \ldots v_{p}$. If $\phi\left(v_{3}\right) \in L(z)$, then set $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)$. If not colour v_{3} with any colour in $L(z) \backslash\left\{\phi\left(v_{2}\right)\right\}$. This gives a safe L-colouring of P. Hence we may assume that a vertex t is adjacent to $\left[v_{2}\right]$.
By the properties of a good path, we know that at most one vertex, say u, is adjacent to v_{3}. If $L\left(v_{3}\right) \cap L(z)$ is empty, then any safe L-colouring of P given by Lemma 7 in $G \backslash z v_{1}$ would be a safe L-colouring of P. Hence we may assume that there is a colour α in $L\left(v_{3}\right) \cap L(z)$. Set $\phi\left(v_{1}\right)=\phi\left(v_{3}\right)=\alpha$ and apply Lemma 7 to $v_{3} \ldots v_{p}$. Then by Lemma 6, we can choose $\phi\left(v_{2}\right)$ so that the possible vertex u is safe. This gives a safe colouring of P.
3. Assume that $N_{P}(z)=\left\{v_{1}, v_{2}, v_{4}\right\}$.

Suppose no vertex is adjacent to $\left[v_{2}\right]$. By Lemma 7 , there is a safe L - colouring of $v_{2} \ldots v_{p}$. Set $\phi\left(v_{1}\right)=\phi\left(v_{4}\right)$ if $\phi\left(v_{4}\right) \in L(z) \backslash\left\{\phi\left(v_{2}\right)\right\}$, and let $\phi\left(v_{1}\right)$ be any colour of $L\left(v_{1}\right) \backslash\left\{\phi\left(v_{2}\right)\right\}$ otherwise. Doing so z is safe and so ϕ is a safe L-colouring of P. Hence we may assume that a vertex u is adjacent to $\left[v_{2}\right]$. By definition of good path, it is the unique vertex adjacent to $\left[v_{2}\right]$.
Suppose that there exists a colour β in $L\left(v_{2}\right) \backslash L(z)$. By Lemma 7 , there is a safe colouring ϕ of $v_{2} \ldots v_{p}$ such that $\phi\left(v_{2}\right)=\beta$. By Lemma 6 , it can be extended to v_{1} so that u is safe. This yields a safe L-colouring of P. Hence we may assume that $L\left(v_{2}\right)=L(z)$.
If $L\left(v_{4}\right) \cap L(z)=\emptyset$, then in every colouring of P, the vertex z will be safe. Hence any safe colouring of P in $G-z$, (there is one by Lemma 7) is a safe L-colouring of P in G. So we may assume that there exists a colour $\alpha \in L\left(v_{4}\right) \cap L(z)$.
Assume that at most one vertex s is adjacent to $\left[v_{4}\right]$. Set $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\alpha$ so that z and all the vertices adjacent to $\left[v_{3}\right]$ will be safe. By Lemma 7 , there is an α-safe colouring of $v_{4} \ldots v_{p}$. Now by Lemma 6, one can extend ϕ to v_{3} so that s (if it exists) is safe, and then again by Lemma 6 extend it to v_{1} so that u is safe. This gives a safe L-colouring of P. So we may assume that two vertices s and s^{\prime} are adjacent to $\left[v_{4}\right]$.
Assume that there is a vertex t adjacent to $\left[v_{3}\right]$, then there is no vertex adjacent to [v_{5}]. Hence it suffices to find a safe L-colouring of $v_{1} v_{2} v_{3} v_{4} v_{5}$. Indeed, if we have such a colouring ϕ, then using Lemma 7, one can extend it to a safe L-colouring of P. Set $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)=\alpha$. Doing so t and z will be safe. If α or some colour $\beta \in L\left(v_{5}\right) \backslash\{\alpha\}$ is not contained in one of lists $L(s)$ and $L\left(s^{\prime}\right)$, say $L\left(s^{\prime}\right)$. Then colouring v_{5} with β, if it exists, or any other colour otherwise, the vertex s^{\prime} will also be safe. By Lemma 6, one can colour v_{3} so that s is safe. By Lemma 6, one can then colour v_{1} to obtain a colouring for which u is safe. This L-colouring of $v_{1} v_{2} v_{3} v_{4} v_{5}$ is safe. Hence, we may assume that $L(s)=L\left(s^{\prime}\right)=L\left(v_{5}\right)$. Colour v_{5} with any colour in $L\left(v_{5}\right) \backslash\{\alpha\}$. Using Lemma 6, colour v_{3} so that s is safe. Then s^{\prime} will be also safe because $L(s)=L\left(s^{\prime}\right)$. Again by Lemma 6, colour v_{1} so that u is safe to obtain a safe colouring of $v_{1} v_{2} v_{3} v_{4} v_{5}$.
Assume finally that no vertex is adjacent to [v_{3}]. By Lemma 7, there is a safe L-colouring ϕ of $v_{3} \ldots v_{p}$. If $\phi\left(v_{4}\right) \notin L(z)$, then assign to v_{2} any colour in $L\left(v_{2}\right) \backslash\left\{\phi\left(v_{3}\right)\right\}$. If not, then set $\phi\left(v_{2}\right)=\phi\left(v_{4}\right)$. (This is possible since $L\left(v_{2}\right)=L(z)$.) Then z will be safe. By Lemma6, colour v_{1} so that u is safe to obtain a safe L-colouring of P.

3.3 Main theorem

A drawing of G is nice if two edges intersect at most once. It is well known that every graph with crossing number k has a nice drawing with at most k crossings. (See [5] for example.) In this paper, we will only consider nice drawings. Thus a crossing is uniquely defined by the pair of edges it belongs to. Henceforth, we will confound a crossing with this set of two edges. The cluster of a crossing C is the set of endvertices of its two edges and is denoted $V(C)$.

Theorem 9. Let G be a graph having a drawing in the plane with two crossings. Then $\operatorname{ch}(G) \leq 5$.
Proof. By considering a counter-example G with the minimum number of vertices. Let L be a 5-list assignment of G such that G is not L-colourable.

Let C_{1} and C_{2} be the two crossings. By Theorem 3, C_{1} and C_{2} have no edge in common. Set $C_{i}=\left\{v_{i} w_{i}, t_{i} u_{i}\right\}$. Free to add edges and to redraw them along the crossing, we may assume that $v_{i} u_{i}$, $u_{i} w_{i}, w_{i} t_{i}$ and $t_{i} v_{i}$ are edges and that the 4 -cycle $v_{i} u_{i} w_{i} t_{i}$ has no vertex inside but the two edges of C_{i}. In addition, we assume that $u_{1} v_{1} t_{1} w_{1}$ appear in clockwise order around the crossing point of C_{1} and that $u_{2} v_{2} t_{2} w_{2}$ appear in counter-clockwise order around the crossing point of C_{2}. Free to add edges, we may also assume that $G \backslash\left\{v_{1} w_{1}, v_{2} w_{2}\right\}$ is a triangulation of the plane. In the rest of the proof, for convenience, we will refer to this fact by writing that G is triangulated.
Claim 9.1. Every vertex of G has degree at least 5 .
Proof. Suppose not. Then G has a vertex x of degree at most 4. By minimality of $G, G-x$ has an L-colouring ϕ. Now assigning to x a colour in $L(x) \backslash \phi(N(x))$ we obtain an L-colouring of G, a contradiction.

A cycle is separating if none of its edges is crossed and both its interior and exterior contain at least one vertex. A cycle is nicely separating if it is separating and its interior or its exterior has no crossing.
Claim 9.2. G has no nicely separating triangle.
Proof. Assume, by way of contradiction, that a triangle $T=x_{1} x_{2} x_{3}$ is nicely separating. Let G_{1} (resp. G_{2}) be the subgraph of G induced by the vertices on T or outside T (resp. inside T). Without loss of generality, we may assume that G_{2} is a plane graph.

By minimality of G, G_{1} has an L-colouring ϕ_{1}. Let L_{2} be the list assignment of G_{2} defined by $L_{2}\left(x_{1}\right)=\left\{\phi_{1}\left(x_{1}\right)\right\}, L_{2}\left(x_{2}\right)=\left\{\phi_{1}\left(x_{1}\right), \phi_{1}\left(x_{2}\right)\right\}, L_{2}\left(x_{3}\right)=\left\{\phi_{1}\left(x_{1}\right), \phi_{1}\left(x_{2}\right), \phi_{1}\left(x_{3}\right)\right\}$, and $L_{2}(x)=L(x)$ for every vertex inside T. Then L_{2} is a suitable list assignment of G_{2}, so by Theorem 2, G_{2} admits an L_{2}-colouring ϕ_{2}. Observe that necessarily $\phi_{2}\left(x_{i}\right)=\phi_{1}\left(x_{i}\right)$. Hence the union of ϕ_{1} and ϕ_{2} is an L-colouring of G, a contradiction.

Claim 9.3. Let $C=$ abcd be a 4 -cycle with no crossing inside it. If a and c have no common neighbour inside C then C has no vertex in its interior.

Proof. Assume by way of contradiction that the set S of vertices inside C is not empty.
Then $a c$ is not an edge otherwise one of the triangles $a b c$ and $a c d$ would be nicely separating. Since G is triangulated, the neighbours of a (resp. c) inside C plus b and d (in cyclic order around a (resp. c)) form a (b, d)-path P_{a} (resp. P_{c}). The paths P_{a} and P_{c} are internally disjoint because a and c have no common neighbour inside C. Hence $P_{a} \cup P_{c}$ is a cycle C^{\prime}. Furthermore C^{\prime} is the outerface of $G^{\prime}=G\langle S \cup\{b, d\}\rangle$.

By minimality of $G, G_{1}=(G-S) \cup b d$ admits an L-colouring ϕ. Let L^{\prime} be the list-colouring of G^{\prime} defined by $L^{\prime}(b)=\{\phi(b)\}, L^{\prime}(d)=\{\phi(d)\}, L^{\prime}(x)=L(x) \backslash\{\phi(a)\}$ if x is an internal vertex of P_{a}, $L^{\prime}(x)=L(x) \backslash\{\phi(c)\}$ if x is an internal vertex of P_{c}, and $L^{\prime}(x)=L(x)$ if $x \in V\left(G^{\prime}-C^{\prime}\right)$. Then L^{\prime} is a $\{b, d\}$-correct list assignment of G^{\prime}. Hence, by Lemma5, G^{\prime} admits an L^{\prime}-colouring ϕ^{\prime}. The union of ϕ and ϕ^{\prime} is an L-colouring of G, a contradiction.

Claim 9.4. G has no nicely separating 4-cycle.
Proof. Suppose not. Then there exists a nicely separating 4-cycle $a b c d$. Let $b=z_{1}, z_{2}, \ldots, z_{p+1}=d$ be the common neighbours of a and c in clockwise order around a. By Claim 9.3, we have $p \geq 2$. Each of the 4 -cycles $a z_{i} c z_{i+1}, 1 \leq i \leq p$ has empty interior by Claim 9.3. So z_{2} has degree at most 4 . This contradicts Claim 9.1 .

A path P is friendly if there are two adjacent vertices x and y such that $\left|N_{P}(x)\right| \leq 4,\left|N_{P}(y)\right| \leq 3$ and P is good in $G-\{x, y\}$. A path P meets a crossing if it contains at least one endvertex of each of the two crossed edges. A magic path is a friendly path meeting both crossings.

Claim 9.5. G has no magic path Q.
Proof. Suppose for a contradiction that G has a magic path Q. Then there exists two adjacent vertices x and y such that $\left|N_{Q}(x)\right| \leq 4,\left|N_{Q}(y)\right| \leq 3$ and P is good in $G-\{x, y\}$. Lemma 8 , there in a L colouring ϕ of Q such that every vertex z of $(G-Q)-\{x, y\}$ satisfies $\left|L_{\phi}(z)\right| \geq 3$. Now $\left|L_{\phi}(x)\right| \geq 1$ and $\left|L_{\phi}(y)\right| \geq 2$, because $\left|N_{Q}(x)\right| \leq 4$ and $N_{Q}(y) \leq 3$ Since Q meets the two crossings, $G-Q$ is planar. Furthermore, $G-Q$ may be drawn in the plane such that all the vertices on the outer face are those of $N(Q)$. Hence L_{ϕ} is a suitable assignment of $G-Q$. Hence by Theorem $2, G-Q$ is L_{ϕ}-colourable and so G is L-colourable, a contradiction.

In the remaining of the proof, we shall prove that G contains a magic path, thus getting a contradiction. Therefore, we consider shortest $\left(C_{1}, C_{2}\right)$-paths, that are paths joining C_{1} and C_{2} with the smallest number of edges. We first consider the cases when the distance between C_{1} and C_{2} is 0 or 1 . We then deal with the general case when $\operatorname{dist}\left(C_{1}, C_{2}\right) \geq 2$.
Claim 9.6. $\operatorname{dist}\left(C_{1}, C_{2}\right)>0$.
Proof. Assume for a contradiction that $\operatorname{dist}\left(C_{1}, C_{2}\right)=0$. Then, without loss of generality, $v_{1}=v_{2}$. Note that $u_{1} \neq u_{2}$ as otherwise the path $u_{1} v_{1}$ would be magic, contradicting Claim 9.5. Similarly, we have $t_{1} \neq t_{2}$.

Note that w_{1} is not adjacent to u_{2} for otherwise both the interior and exterior of $w_{1} u_{1} v_{1} u_{2}$ would contain at least one neighbour of u_{1} by Claim 9.1. Thus this 4 -cycle would be nicely separating, a contradiction to Claim 9.4. Henceforth, by symmetry, w_{1} is not adjacent to u_{2} nor t_{2} and w_{2} is not adjacent to u_{1} nor t_{1}.

If u_{1} is not adjacent to u_{2}, then consider the induced path $Q=u_{1} v_{1} u_{2}$. Since w_{1} and w_{2} are not adjacent to u_{2} and u_{1}, respectively, then $\left\{w_{1}, w_{2}\right\} \cap Z_{Q}=\emptyset$. The vertices t_{1} and t_{2} cannot be both in Z_{Q} for otherwise $u_{1} t_{2}$ and $u_{2} t_{1}$ would cross. Furthermore, if z_{1} and z_{2} are distinct vertices in $Z_{Q} \backslash\left\{t_{1}, t_{2}\right\}$, then either $u_{1} v_{1} u_{2} z_{1}$ nicely separates z_{2} or $u_{1} v_{1} u_{2} z_{2}$ nicely separates z_{1} contradicting Claim 9.4. Thus, $\left|Z_{Q}\right| \leq 2$ and Q is magic contradicting Claim 9.5. Henceforth, u_{1} is adjacent to u_{2}, and, by a symmetrical argument, t_{1} is adjacent to t_{2}.

If u_{1} is adjacent to t_{2}, then both the interior and exterior of $u_{1} u_{2} w_{2} t_{2}$ contain at least one neighbour of w_{2} by Claim 9.1 . Thus this 4 -cycle would be nicely separating, a contradiction to Claim 9.4 . Henceforth, u_{1} is not adjacent to t_{2}, and symmetrically t_{1} is not adjacent to u_{2}.

Therefore $Q=u_{1} v_{1} t_{2}$ is an induced path. Note that $Z_{Q} \subseteq N\left(v_{1}\right)$. The triangles $v_{1} u_{1} u_{2}$ and $v_{1} t_{1} t_{2}$ together with Claim 9.2 imply that $N\left(v_{1}\right)=\left\{u_{1}, u_{2}, t_{1}, t_{2}, w_{1}, w_{2}\right\}$. Since w_{1} is not adjacent to t_{2} and w_{2} is not adjacent to u_{1}, then $Z_{Q}=\left\{u_{2}, t_{1}\right\}$. Thus Q is magic contradicting Claim 9.5 ,

Claim 9.7. Let $i \in\{1,2\}$ and x a vertex not in C_{i}. Then at most one vertex in $\left\{u_{i}, t_{i}\right\}$ is adjacent to x and at most one vertex in $\left\{v_{i}, w_{i}\right\}$ is adjacent to x.

Proof. Assume for a contradiction that x is adjacent to both u_{i} and t_{i}. Observe that the edges $u_{i} x$ and $t_{i} x$ are not crossed since $\operatorname{dist}\left(C_{1}, C_{2}\right) \geq 1$. Then one of the two 4 -cycles $u_{i} v_{i} t_{i} x$ and $u_{i} w_{i} t_{i} x$ is nicely separating. Thus the region bounded by this cycle has no vertex by Claim 9.4. Hence either $d\left(v_{i}\right) \leq 4$ or $d\left(w_{i}\right) \leq 4$. This contradicts Claim 9.1 .

Similarly, one shows that at most one vertex in $\left\{v_{i}, w_{i}\right\}$ is adjacent to x.

Claim 9.8. $\operatorname{dist}\left(C_{1}, C_{2}\right)>1$.
Proof. Assume for a contradiction that $\operatorname{dist}\left(C_{1}, C_{2}\right)=1$. Without loss of generality, we may assume that $v_{1} v_{2} \in E(G)$.

Let us first show that without loss of generality, we may assume that u_{1} is not adjacent to v_{2} and u_{2} is not adjacent to v_{1}. By symmetry, if t_{1} is not adjacent to v_{2} and t_{2} is not adjacent to v_{1}, then we get the result by renaming swapping the names of u_{i} and $t_{i}, i=1,2$. Thus by symmetry and by Claim 9.7 , if it not the case, then $u_{1} v_{2} \in E(G)$ and $v_{1} t_{2} \in E(G)$. Moreover $w_{1} v_{2}$ is not an edge by Claim 9.7. Hence renaming $u_{1}, v_{1}, t_{1}, w_{1}$ into $v_{1}, t_{1}, w_{1}, u_{1}$ respectively, we are in the desired configuration.

The vertices u_{1} and u_{2} are not adjacent, for otherwise the cycle $u_{1} v_{1} v_{2} u_{2}$ would be nicely separating since G is triangulated and $u_{1} v_{2}$ and $u_{2} v_{1}$ are not edges. So Q is an induced path.

A vertex of Z_{Q} is goofy if it is adjacent to u_{1} and u_{2}.

- Suppose first that there is a goofy vertex z^{\prime} not in $C_{1} \cup C_{2}$.

Without loss of generality, we may assume that z^{\prime} is adjacent to u_{1}, v_{1} and u_{2}. If the crossing C_{1} is inside $z^{\prime} u_{1} v_{1}$, then consider the path $R=t_{1} v_{1} v_{2} u_{2}$. It is induced since $z^{\prime} u_{1} v_{1}$ separates t_{1} from v_{2} and u_{2}. Moreover all the neighbours of t_{1} are inside $z^{\prime} u_{1} v_{1}$, so they have at most two neighbours in R except for u_{1} which is not adjacent to v_{2} nor to u_{2}. Hence the vertices of Z_{R} are all adjacent to $\left\{v_{1}, v_{2}, u_{2}\right\}$. Moreover $w_{2} \notin Z_{R}$ because $w_{2} v_{1}$ is not an edge by Claim 9.7. Hence by planarity of $G-\left\{w_{1}, w_{2}\right\}$, there are at most two vertices adjacent to $\left\{v_{1}, v_{2}, u_{2}\right\}$. Thus R is magic, a contradiction.
Hence we may assume that C_{1} is outside $z^{\prime} u_{1} v_{1}$. The 4-cycle $z^{\prime} v_{1} v_{2} u_{2}$ is not nicely separating by Claim 9.4, and G is triangulated. So $z^{\prime} v_{2} \in E(G)$ because v_{1} is not adjacent to u_{2}. So z^{\prime} is adjacent to all vertices of Q.
Then there is no other vertex $z^{\prime \prime}$ in $Z_{Q} \backslash\left\{C_{1} \cup C_{2}\right\}$, for otherwise one of the crossing C_{i} is inside $u_{i} v_{i} z^{\prime \prime}$ and as above, we obtain the contradiction that R is magic.

Now $w_{1} u_{2}$ is not an edge, for otherwise $w_{1} u_{1} z^{\prime} u_{2}$ would be separating since $d\left(u_{1}\right) \geq 5$, a contradiction to Claim 9.4. Similarly, $w_{2} u_{1}$ is not an edge. Hence $Z_{Q} \subset\left\{z^{\prime}, t_{1}, t_{2}\right\}$. Now one of the edges $t_{1} u_{2}$ and $t_{2} u_{1}$ is not in $E(G)$, since otherwise they would cross. Without loss of generality, t_{1} is not adjacent to u_{2}. Then Q is good in $G-t_{2}$, and so Q is magic. This contradicts Claim 9.5 .

- Suppose now that all the goofy vertices of Z_{Q} are in $C_{1} \cup C_{2}$.

Suppose first that w_{1} is in Z_{Q}, then $w_{1} u_{2}$ is an edge because w_{1} is not adjacent to v_{2} according to Claim 9.7. Thus t_{2} and w_{2} are not adjacent to u_{1}. So $w_{2} \notin Z_{Q}$ and $N_{Q}\left(t_{2}\right) \subset\left\{v_{1}, v_{2}, u_{2}\right\}$, so t_{2} is not goofy. Moreover by planarity of $G-\left\{w_{1}, w_{2}\right\}$, there is at most two vertices adjacent $\left\{v_{1}, v_{2}, u_{2}\right\}$. Furthermore, all the vertices distinct from t_{1} and adjacent to $\left\{u_{1}, v_{1}, v_{2}\right\}$ are in the region bounded by $w_{1} v_{1} v_{2} u_{2}$ containing u_{1}. Therefore there is at most one such vertex. Hence Q is good in $G-\left\{w_{1}, t_{1}\right\}$. Thus Q is magic and contradicts Claim 9.5 .
Similarly, we get a contradiction if $w_{2} \in Z_{Q}$. So $Z_{Q} \cap\left(C_{1} \cup C_{2}\right) \subseteq\left\{t_{1}, t_{2}\right\}$. Then easily Q is good in $G-t_{2}$ and so Q is magic. This contradicts Claim 9.5 .

Claim 9.9. Some of the shortest $\left(C_{1}, C_{2}\right)$-paths is nice.

Proof. Let $P=x_{1} x_{2} \cdots x_{p}$ be any shortest $\left(C_{1}, C_{2}\right)$-path. Then no vertex in C_{1} is adjacent to a vertex in $P-\left\{x_{1}, x_{2}\right\}$. Therefore, $V\left(C_{1}\right) \cap Z_{P}=\emptyset$. Similarly, we have $V\left(C_{2}\right) \cap Z_{P}=\emptyset$. Hence the graph G^{\prime} induced by $V(P) \cup Z_{P}$ is planar as it contains exactly one vertex from each crossing.

Any vertex not in P can be adjacent only to vertices of P at distance at most two from each other, otherwise there would be a $\left(C_{1}, C_{2}\right)$-path shorter than P. Thus, if $z \in Z_{P}$, then z has precisely three neighbours in P. Moreover, there exists an $i \in\{2, \ldots, p-1\}$ such that $N_{P}(z)=\left[x_{i}\right]$.

If there are distinct vertices $z_{1}, z_{2}, z_{3} \in Z_{P}$ such that $N_{P}\left(z_{1}\right)=N_{P}\left(z_{2}\right)=N_{P}\left(z_{2}\right)=\left[x_{i}\right]$ for some value of i, then the subgraph of G^{\prime} induced by $\left\{z_{1}, z_{2}, z_{3}\right\} \cup\left\{x_{i-1}, x_{i}, x_{i+1}\right\}$ contains a $K_{3,3}$. By Kuratowski's Theorem, this contradicts the fact that G^{\prime} is planar. Therefore, for every $2 \leq i \leq p-1$, there are at most two vertices in Z_{P} adjacent to $\left[x_{i}\right]$.

Let $z_{1}, z_{2} \in Z_{P}$ be such that $N_{P}\left(z_{1}\right)=N_{P}\left(z_{2}\right)=\left[x_{i}\right]$. The edges of $H=G\left[\left\{z_{1}, z_{2}\right\} \cup\left[x_{i}\right]\right]$ separate the plane into five regions R_{1}, \ldots, R_{5} as follows. Let R_{1} be the region bounded by $x_{i-1} x_{i} z_{1}$ not containing the vertex z_{2}, R_{2} be the region bounded by $x_{i} x_{i+1} z_{1}$ not containing the vertex z_{2}, R_{3} be the region bounded by $x_{i-1} x_{i} z_{2}$ not containing the vertex z_{1}, R_{4} be the region bounded by $x_{i} x_{i+1} z_{2}$ not containing the vertex z_{1} and R_{5} be the region bounded by $x_{i-1 z_{1}} x_{i+1} z_{2}$ not containing x_{i} (see Figure 11). Since $\left(V\left(C_{1}\right) \cup V\left(C_{2}\right)\right) \cap Z_{P}=\emptyset$ and P is a shortest $\left(C_{1}, C_{2}\right)$-path, then no edge in H is crossed.

Figure 1: Regions $R_{1}, R_{2}, R_{3}, R_{4}$ and R_{5}.

Let J_{P} be the subset of $\{3, \ldots, p-2\}$ such that for $j \in J_{P}$, there are two vertices in Z_{P} adjacent to $\left[x_{j}\right]$ and at least one vertex adjacent to $\left[x_{j-1}\right]$ and another adjacent to $\left[x_{j+1}\right]$. The path P is said to be semi-nice if $J_{P}=\emptyset$.

Let us first prove that some of the shortest $\left(C_{1}, C_{2}\right)$-paths is semi-nice.
Suppose for a contradiction that no shortest $\left(C_{1}, C_{2}\right)$-path is semi-nice. Let P be a shortest $\left(C_{1}, C_{2}\right)$-path that maximizes the smallest index i in J_{P}. Let $z_{1}, z_{2} \in Z_{P}$ be such that $N_{P}\left(z_{1}\right)=$ $N_{P}\left(z_{2}\right)=\left[x_{i}\right]$.
Let $z \in Z_{P}$ be a vertex adjacent to $\left[x_{i+1}\right]$. If C_{2} is in R_{5}, then so is x_{i+2} and we get a contradiction from the fact that either $z x_{i}$ or $z x_{i+2}$ must cross an edge of H. Since P defines a path between x_{i+1} and $V\left(C_{2}\right)$, then C_{2} must be either in R_{2} or in R_{4} (say R_{4}). Similarly, C_{1} is either in R_{1} or in R_{3}. The cycle $x_{i-1} x_{i} x_{i+1} z_{2}$ is not be a nicely separating cycle by Claim 9.4 , so C_{1} must be in R_{1}.

Now, by Claim $9.2, R_{2}$ and R_{3} are empty, and, by Claim 9.4 , there is no vertex in R_{5}. Since P is a shortest path, $x_{i-1} x_{i+1}$ is not an edge and therefore z_{1} is adjacent to z_{2} as G is triangulated.
Now, consider the path P^{\prime} obtained from P by replacing x_{i} with $x_{i}^{\prime}=z_{2}$. Note that P^{\prime} is also a shortest path and that both z_{1} and x_{i} are adjacent to $\left[x_{i}^{\prime}\right]$. Since no edge in H is crossed, for any $v \in V(G) \backslash\left(\left\{z_{1}, z_{2}\right\} \cup\left[x_{i}\right]\right)$, if v is adjacent to x_{i-1} then it must be in R_{1} and if v is adjacent to z_{2} then it must be in R_{4}. Therefore, there is no vertex in $Z_{P^{\prime}}$ adjacent to $\left\{x_{i-2}, x_{i-1}, z_{2}\right\}$. This implies that if $j \in J_{P^{\prime}}$, then either $j \leq i-3$ or $j \geq i+1$. Note that if $j \in J_{P^{\prime}}$ and $j \leq i-3$, then $j \in J_{P}$. As i is the minimum of J_{P}, the minimum of $J_{P^{\prime}}$ is at least $i+1$. This contradicts our choice of P.

Let K_{P} be the subset of $\{2, \ldots, p-1\}$ such that for $k \in K_{P}$, there are two vertices in Z_{P} adjacent to $\left[x_{k}\right]$ and two vertices adjacent to $\left[x_{k+1}\right]$. Observe that a nice path P is a semi-nice path such that K_{P} is empty, that is a path such that J_{P} and K_{P} are empty.

Suppose, by way of contradiction, that every $\left(C_{1}, C_{2}\right)$-shortest path is not nice. Then consider the semi-nice $\left(C_{1}, C_{2}\right)$-shortest path that maximizes the minimum of K_{P}.

Let $z_{1}, z_{2}, z_{3}, z_{4} \in Z_{P}$ be such that $N_{P}\left(z_{1}\right)=N_{P}\left(z_{2}\right)=\left[x_{i}\right]$ and $N_{P}\left(z_{3}\right)=N_{P}\left(z_{4}\right)=\left[x_{i+1}\right]$, where i is the smallest index in K_{P}. Recall that the edges of $H=G\left[\left\{z_{1}, z_{2}\right\} \cup\left[x_{i}\right]\right]$ separate the plane into the five above-described regions R_{1}, \ldots, R_{5}. Again, we can use z_{3} or z_{4} to prove that C_{2} is either in R_{2} or in R_{4} (say R_{4}). Therefore, x_{i+2} is in R_{4} which implies z_{3} and z_{4} are also in R_{4}. Thus, z_{1} is not adjacent to z_{3} nor z_{4}. Furthermore, z_{2} cannot be adjacent to both z_{3} and z_{4} for otherwise we can obtain a K_{5} in the subgraph of G^{\prime} induced by $\left[x_{i+1}\right] \cup\left\{z_{2}, z_{3}, z_{4}\right\}$ by contracting the edge $z_{4} x_{i+2}$ (see Figure 2). Thus, without loss of generality, suppose z_{2} and z_{3} are not adjacent.

Figure 2: K_{5} minor of G^{\prime} is obtained by contracting $z_{4} x_{i+2}$.

Consider the path P^{\prime} obtained from P by replacing x_{i+1} with $x_{i+1}^{\prime}=z_{3}$. Since no edge in H is crossed, for any $v \in V(G) \backslash\left(\left\{z_{1}, z_{2}\right\} \cup\left[x_{i}\right]\right)$, if v is adjacent to x_{i-1} then it is not in R_{4}, and if v is adjacent to z_{3} then it must be in R_{4}. Since neither z_{1} nor z_{2} are adjacent to z_{3} and x_{i+1} is not adjacent to x_{i-1}, there is no vertex in $Z_{P^{\prime}}$ adjacent to $\left\{x_{i-1}, x_{i}, z_{3}\right\}$. This implies that if $k \in K_{P^{\prime}}$, then either $k \leq i-2$ or $k \geq i+1$. Note that if $k \in K_{P^{\prime}}$ and $k \leq i-2$, then $k \in K_{P}$. This implies that the minimum
index in $K_{P^{\prime}}$ is strictly greater than i. Hence by our choice of P, the path P^{\prime} is not semi-nice, that is $J_{P^{\prime}} \neq 0$.

Observe that if $j \in J_{P^{\prime}}$, then either $j \leq i-2$ or $j \geq i+2$. Note that if $j \in J_{P^{\prime}}$ and either $j \leq i-2$ or $j \geq i+4$, then $j \in J_{P}$. Since J_{P} is empty, then $J_{P^{\prime}} \subseteq\{i+2, i+3\}$. Let $z_{1}^{\prime}, z_{2}^{\prime} \in Z_{P^{\prime}}$ be such that $N_{P^{\prime}}\left(z_{1}^{\prime}\right)=N_{P^{\prime}}\left(z_{2}^{\prime}\right)=\left[x_{j}^{\prime}\right]$, for some $j \in J_{P^{\prime}}$ with $J_{P^{\prime}} \subseteq\{i+2, i+3\}$. Note that for the two possible values of j, both z_{1}^{\prime} and z_{2}^{\prime} are adjacent to x_{i+3}. Since P is a shortest $\left(C_{1}, C_{2}\right)$-path, neither z_{2} nor x_{i+1} are adjacent to x_{i+3} and therefore z_{1}^{\prime} and z_{2}^{\prime} are in R_{4}. Let R_{1}^{\prime} be the region bounded by $x_{j-1}^{\prime} x_{j}^{\prime} z_{1}^{\prime}$ not containing the vertex z_{2}^{\prime} and R_{3}^{\prime} be the region bounded by $x_{j-1}^{\prime} x_{j}^{\prime} z_{2}^{\prime}$ not containing the vertex z_{1}^{\prime}. Both of these regions are contained in R_{4}. With the same argument used above in the proof of existence of a semi-nice path, one shows that if $j \in J_{P^{\prime}}$, then C_{1} is either contained in R_{1}^{\prime} or in R_{3}^{\prime}. We get a contradiction as the path P from $V\left(C_{1}\right)$ to x_{i-1} crosses an edge of H.

Claim 9.10. There exists an induced path $Q=x_{0} x_{1} \cdots x_{p} x_{p+1}$ with the following properties:
$P_{1} . P=x_{1} \cdots x_{p}$ is a shortest $\left(C_{1}, C_{2}\right)$-path and is a nice path;
P2. $x_{0} \in V\left(C_{1}\right)$ and $x_{p+1} \in V\left(C_{2}\right)$ but $x_{0} x_{1}$ and $x_{p} x_{p+1}$ are not crossed edges; and
P_{3}. there is at most one vertex in Z_{Q} adjacent to both vertices in $\left\{x_{0}, x_{3}\right\}$ and at most one vertex in Z_{Q} adjacent to both vertices in $\left\{x_{p-2}, x_{p+1}\right\}$.

P4. for any $i<j$, if there are two vertices adjacent to $\left[v_{i}\right]$ and two vertices adjacent to $\left[v_{j}\right]$, then the number of vertices adjacent to $\left[v_{i+1}\right]$ or to $\left[v_{j-1}\right]$ is at most 1 .

Proof. By Claim 9.9 there exists a shortest $\left(C_{1}, C_{2}\right)$-path $P=x_{1} \cdots x_{p}$ which is nice. Without loss of generality, we may assume that $x_{1}=v_{1}$ and $x_{p}=v_{2}$. According to Claim 9.7, we can choose vertices $x_{0} \in\left\{u_{1}, t_{1}\right\}$ and $x_{p+1} \in\left\{u_{2}, t_{2}\right\}$ such that Q is induced. Therefore, we have at least one path satisfying properties P_{1} and P_{2}. We say that x_{0} is a valid endpoint if there is at most one vertex in Z_{Q} adjacent to both vertices in $\left\{x_{0}, x_{3}\right\}$ and x_{p+1} is a valid endpoint if there is at most one vertex in Z_{Q} adjacent to both vertices in $\left\{x_{p-2}, x_{p+1}\right\}$.

Let Q be a path satisfying properties P_{1} and P_{2} which maximizes the number of valid endpoints of Q.

Let us first show that Q has only valid endpoints, and satisfies property P_{4}. By contradiction, suppose that Q has an invalid endpoint. Without loss of generality, x_{0} is invalid.

Let $z_{1}, z_{2} \in Z_{Q}$ be two vertices adjacent to both vertices in $\left\{x_{0}, x_{3}\right\}$. Since P is a shortest $\left(C_{1}, C_{2}\right)$ path, no vertex of C_{1} is adjacent to x_{3}. Therefore, no edge of $x_{0} x_{1} x_{2} x_{3} z_{1}$ and $x_{0} x_{1} x_{2} x_{3} z_{2}$ is crossed. Let R_{1} be the region bounded by $x_{0} x_{1} x_{2} x_{3} z_{1}$ that does not contain z_{2} and R_{2} be the region bounded by $x_{0} x_{1} x_{2} x_{3} z_{2}$ that does not contain z_{1}. Since the edges bounding the regions R_{1} and R_{2} are not crossed, then the crossing C_{1} is contained in one of the regions R_{1} or R_{2} (say R_{1}). Let \hat{x}_{0} be the vertex of $\left\{u_{1}, t_{1}\right\} \backslash\left\{x_{0}\right\}$ (see Figure 3).

Assume first that \hat{x}_{0} is not adjacent to x_{2}. Let \hat{Q} be the path obtained from Q by replacing x_{0} with \hat{x}_{0}. Clearly the path \hat{Q} is induced and satisfies properties P_{1} and P_{2}. By definition of Q, \hat{x}_{0} must be an invalid endpoint. Hence, there is a vertex \hat{z} in $Z_{\hat{Q}} \backslash\left\{z_{1}\right\}$ which is adjacent to \hat{x}_{0} and x_{3}. This vertex in necessarily inside R_{1} because it is adjacent to x_{0}. But then, by planarity, z_{1} cannot be adjacent to x_{1} and x_{2}, a contradiction to $z_{1} \in Z_{Q}$.

Assume now that \hat{x}_{0} is adjacent to x_{2}. Let Q^{\prime} be the path obtained from Q by replacing x_{0} with w_{1} and x_{1} with \hat{x}_{0}. Note that Q^{\prime} is induced as w_{1} is not adjacent to x_{2} by Claim 9.7 .

Figure 3: Regions R_{1} and R_{2} and the vertex \hat{x}_{0}.

Note that property P_{2} is valid for Q^{\prime}. The path $P^{\prime}=\hat{x}_{0} x_{2} \cdots x_{p}$ is a $\left(C_{1}, C_{2}\right)$ shortest path. Let us prove that P^{\prime} is nice and so that P^{\prime} satisfies property P_{1}. If $p=3$, then, since no vertex in the cluster of C_{1} is adjacent to x_{3}, at most two vertices are in $Z_{P^{\prime}}$ for otherwise we would get a $K_{3,3}$ in $G-\left\{w_{1}, w_{2}\right\}$, which is impossible as this graph is planar. Thus P^{\prime} is nice. Suppose now that $p \geq 4$. By planarity, z_{1} is not adjacent to x_{1}, so z_{1} is adjacent to x_{2} as $z_{1} \in Z_{Q}$. In addition, $z_{1} x_{2}$ is contained in R_{1}. Thus, any vertex in $Z_{P^{\prime}}$ adjacent to \hat{x}_{0} must be in region R_{1} and cannot be adjacent to x_{3}. Hence no vertex is adjacent to $\left[x_{2}\right]_{P^{\prime}}$ so, since P is a nice path, P^{\prime} is also a nice path.

By definition of Q, w_{1} must be an invalid endpoint of Q^{\prime}. Hence, there is a vertex z^{\prime} in $Z_{Q^{\prime}} \backslash\left\{z_{1}\right\}$ which is adjacent to w_{1} and x_{3}. This vertex in necessarily inside R_{1} because neither x_{0} nor x_{1} are adjacent to x_{3}. But then, by planarity, z_{1} cannot be adjacent to x_{1} and x_{2}, a contradiction to $z_{1} \in Z_{Q}$.

Let us now prove that Q satisfies property P_{4}. By contradiction, suppose Q does not. Let $z_{1}, z_{2}, z_{1}^{\prime}, z_{2}^{\prime} \in Z_{Q}$ be such that both z_{1} and z_{2} are adjacent to $\left[x_{i}\right]$ and z_{1}^{\prime} and z_{2}^{\prime} are adjacent to $\left[x_{j}\right]$. Consider the regions R_{1}, \ldots, R_{5} related to z_{1} and z_{2} used in Figure 1 . Consider the regions $R_{1}^{\prime}, \ldots, R_{5}^{\prime}$ related to z_{1}^{\prime} and z_{2}^{\prime} used in Figure 1 for $i=j$.

Let $z \in Z_{Q}$ be adjacent to $\left[x_{i+1}\right]$. Note that we can have $\left\{z_{1}, z_{2}\right\} \cap\left\{u_{1}, t_{1}\right\} \neq \emptyset$ if $i=1$. But since $\operatorname{dist}\left(C_{1}, C_{2}\right) \geq 2$, the edges $z_{1} x_{i+1}$ and $z_{2} x_{i+1}$ are not crossed. Furthermore, since no vertex in the cluster of C_{1} is adjacent to x_{3} and not vertex in the cluster of C_{2} is adjacent to x_{1} (P is a shortest $\left(C_{1}, C_{2}\right)$-path), then z is not in the cluster of either crossing.

Therefore, since z is adjacent to both x_{i} and x_{i+2}, we must have that both z and x_{3} are in R_{2} or in R_{4} (say R_{2}). This also implies that C_{2} is in R_{2}. Note also that, by our choice of x_{0}, the edges $z_{1} x_{i}$ and $z_{2} x_{i}$ are not crossed. Therefore, C_{1} is contained in $R_{1} \cup R_{3} \cup R_{5}$. With a symmetric argument, we have that C_{1} is either in R_{1}^{\prime} or in $R_{3}^{\prime}\left(\right.$ say $\left.R_{1}\right)$. Since both z_{1}^{\prime} and z_{2}^{\prime} are also in R_{2}, then $R_{1}^{\prime} \cup R_{3}^{\prime}$ are contained in R_{2} and we get a contradiction.

Let Q be a path given by Claim 9.10 . Without loss of generality, suppose $x_{1}=v_{1}$ and $x_{p}=v_{2}$. Note also that Claim 9.7 implies w_{1} and w_{2} are not in Z_{Q} and therefore $G\left[V(Q) \cup Z_{Q}\right]$ is planar.
Claim 9.11. dist $\left(C_{1}, C_{2}\right)=2$ and there is a vertex adjacent to x_{0} and x_{4}.
Proof. Suppose not. Then no vertex in Z_{Q} is adjacent to vertices at distance at least four in Q. Observe that this is the case when $\operatorname{dist}\left(C_{1}, C_{2}\right) \geq 3$, since $x_{1} \ldots x_{p}$ is a shortest $\left(C_{1}, C_{2}\right)$-path.

Since P is a nice and shortest $\left(C_{1}, C_{2}\right)$-path, then the only vertices in Z_{Q} adjacent to vertices at distance at least three in Q must be adjacent to both x_{0} and x_{3} or to both x_{p-2} and x_{p+1}. By the property P_{3} of Claim 9.10, there is at most one vertex, say z, adjacent to x_{0} and x_{3} and at most one vertex, say z^{\prime}, adjacent to x_{p-2} and x_{p+1}.

Let us make few observations.
Obs. 1 If two vertices z_{1} and z_{2} distinct from z are adjacent to [x_{2}], then no vertex is adjacent to [x_{1}] and $N_{Q}(z)=\left\{x_{0}, x_{1}, x_{3}\right\}$. Indeed z must be in the region R_{5} in Figure 1 because it is adjacent to x_{0} and x_{3}. By the planarity of $G\left[V(Q) \cup Z_{Q}\right]$ and since z is adjacent to x_{0}, x_{0} must also be in R_{5}. Again by planarity, z is not adjacent to x_{2} and, therefore, must be adjacent to x_{1} as $z \in Z_{Q}$.

Obs. 2 If two vertices z_{1} and z_{2} distinct from z are adjacent to $\left[x_{1}\right]$, then no vertex is adjacent to $\left[x_{2}\right]$ and $N_{Q}(z)=\left\{x_{0}, x_{2}, x_{3}\right\}$. This argument is symmetric to Observation 1.
Suppose that z exists.
If z^{\prime} exists, by Observations 1 and 2 (and their analog for z^{\prime}) and the properties of Q from Claim 9.10, the path Q is good in $G-z^{\prime}$ because it is great in $G-\left\{z, z^{\prime}\right\}$. Hence Q is magic, a contradiction to Claim 9.5. Hence z^{\prime} does not exists.
By Claim 9.7, w_{2} is not adjacent to x_{p-1} and w_{1} is not adjacent to x_{p} since $\operatorname{dist}\left(C_{1}, C_{2}\right) \geq 2$. So, by planarity of $G-\left\{w_{1}, w_{2}\right\}$, at most two vertices are adjacent to $\left[x_{p}\right]$. Let y be a vertex adjacent to $\left[x_{p}\right]$. The path Q is not great in $G-\{y, z\}$, for otherwise it would be magic. Hence, according to the properties of Q and the above observations, there must be two vertices adjacent to $\left[x_{p}\right]$, two vertices adjacent to $\left[x_{p-1}\right]$ and one vertex adjacent to $\left[x_{p-2}\right]$. Let z_{1} and z_{2} be the two vertices adjacent to $\left[x_{p-1}\right]$ and $R_{1} \ldots R_{5}$ be the regions as in Figure 1 with $i=p-1$. Since there is a vertex adjacent to $\left[x_{p-2}\right]$, then C_{1} is in R_{1} or R_{3}, and C_{2} is in R_{2} or R_{4} because a vertex is adjacent to [x_{p}]. But by Claim 9.4 the 4-cycle $z_{1} x_{p} z_{2} x_{p-2}$ is not nicely separating, so there is no vertex inside R_{5}. Since G is triangulated, and $x_{p-2} x_{p}$ is not an edge because P is a shortest $\left(C_{1}, C_{2}\right)$-path, $z_{1} z_{2} \in E(G)$. Now the path Q is good in $G-\left\{z_{1}, z_{2}\right\}$ and so is magic. This contradicts Claim 9.5 .

Hence we may assume that z does not exists and by symmetry that z^{\prime} does not exist. We get a contradiction similarly by considering a vertex w adjacent to $\left[x_{1}\right]$ in place of z.

Claim 9.12. There is precisely one vertex $z \in Z_{Q}$ adjacent to both x_{0} and x_{4}.
Proof. Observe that there are at most two vertices adjacent to x_{0} and x_{4}. Indeed such vertices cannot be in the crossings because $\operatorname{dist}\left(C_{1}, C_{2}\right)=2$. Thus if there were three such vertices, together with contracting the path $x_{1} x_{2} x_{3}$ we would get $K_{3,3}$ minor in $G-\left\{w_{1}, w_{2}\right\}$, a contradiction.

Suppose by contradiction that two distinct vertices $z_{1}, z_{2} \in Z_{Q}$ adjacent to vertices x_{0} and x_{4}. The edges of Q are contained in the same region of the plane bounded by the cycle $x_{0} z_{1} x_{4} z_{2}$. Therefore, both crossings are also in the region containing the edges of Q. By Claim 9.3 , the region bounded by the cycle $x_{0} z_{1} x_{4} z_{2}$ that does not contain the crossings has no vertex in its interior. Since G is triangulated, $z_{1} z_{2} \in E(G)$ as x_{0} because x_{4} are not adjacent as $\operatorname{dist}\left(C_{1}, C_{2}\right)=2$.

By the property P_{3} of Claim $9.10, z_{1}$ and z_{2} cannot be both adjacent to the five vertices in Q. Therefore, without loss of generality, suppose $\left|N_{Q}\left(z_{2}\right)\right| \leq 4$. Let us prove that Q is great in $H=$ $\left(G-z_{2}\right) \backslash\left\{z_{1} x_{0}, z_{1} x_{4}\right\}$.
(i) If a vertex t in $G-\left\{z_{1}, z_{2}\right\}$ is adjacent to at least four vertices of Q, then without loss of generality it is adjacent to $\left\{x_{0}, x_{1}, x_{2}, x_{3}\right\}$ as it cannot be adjacent to x_{0} and x_{4}. Now by property P_{3}. z_{1} and z_{2} are not adjacent to x_{3}. Hence one of them (the one such that $x_{0} x_{1} x_{2} x_{3} x_{4} z_{i}$ separates t from z_{3-i}) cannot be adjacent to any vertex of $\left\{x_{1}, x_{2}, x_{3}\right\}$, a contradiction to the fact that it is in Z_{Q}. Hence Q satisfies (a) in H.
(ii) If two vertices t_{1} and t_{2} of H are adjacent to [x_{2}], then necessarily $x_{1} t_{1} x_{2} t_{2}$ is a nicely separating, a contradiction to Claim 9.4 . Hence there is at most one vertex of H adjacent to $\left[x_{2}\right]$. Thus Q satisfies (b) in H.
(iii) If two vertices r_{1} and r_{2} of H are adjacent to $\left[x_{1}\right]$, then no vertex is adjacent to $\left[x_{2}\right]$. Indeed suppose for a contradiction that a vertex t is adjacent to $\left[v_{2}\right]$ none of $\left\{r_{1}, r_{2}, t\right\}$ is in $\left\{w_{1}, w_{2}\right\}$ by Claim 9.7 and because $\operatorname{dist}\left(C_{1}, C_{2}\right) \geq 2$. Now contracting the path $t x_{3} x_{4} z_{2}$ into a vertex w, we obtain a $K_{3,3}$ with parts $\left\{r_{1}, r_{2}, w\right\}$ and $\left\{x_{0}, x_{1}, x_{2}\right\}$. This contradicts the planarity of G.
Symmetrically, if two vertices of H are adjacent to $\left[x_{3}\right]$, then no vertex is adjacent to $\left[x_{2}\right]$. Therefore Q satisfies (c) in H.

It follows that Q is a good path in $H^{\prime}=\left(G-z_{2}\right) \backslash z_{1} x_{4}$. Let ϕ be a safe L-colouring of Q in H^{\prime} obtained by Lemma 8 . Since Q meets the two crossings, $G-Q$ is planar. Furthermore, $G-Q$ can be drawn in the plane such that all vertices on the outer face are those in $N(Q)$. Every vertex of $Z_{Q} \backslash\left\{z_{1}, z_{2}\right\}$ is safe in H^{\prime} and so in G, so $\left|L_{\phi}(v)\right| \geq 3$. In H^{\prime}, z_{1} is safe and in G, z_{1} has one more neighbour in Q in G than H^{\prime}, namely x_{4}. Thus in $G,\left|L_{\phi}\left(z_{1}\right)\right| \geq 2$ because z_{1} was safe in H^{\prime}. Since z_{2} has at most four neighbours in Q, we have $\left|L_{\phi}\left(z_{2}\right)\right| \geq 1$. Now z_{1} is adjacent to z_{2}, so L_{ϕ} is a $\left\{z_{1}, z_{2}\right\}$ suitable assignment for $G-Q$. Hence by Theorem $2, G-Q$ is L_{ϕ}-colourable and so G is L-colourable, a contradiction.

- Assume first that $\left|N_{Q}(z)\right|=5$. Let $H=G \backslash\left\{z x_{0}, z x_{4}\right\} . z$ is the unique vertex adjacent to x_{0} and x_{4}. Moreover by property $\mathrm{P}_{3} z$ is the unique vertex adjacent to x_{0} and x_{3} and the unique one adjacent to x_{1} and x_{4}. Hence Q satisfies (a) in H. Moreover, for $1 \leq i \leq 3$, there is at most one vertex distinct form z adjacent to $\left[x_{i}\right]$ otherwise $G\left[V(Q) \cup Z_{Q}\right]$ would contain a $K_{3,3}$. Hence Q also satisfies (b) and (c) in H. Therefore Q is great in H. By Lemma 7, there exists a safe L-colouring ϕ of Q in H. Thus in G, every vertex in $Z_{Q} \backslash\{z\}$ satisfies $\left|L_{\phi}(v)\right| \geq 3$ while $\left|L_{\phi}(z)\right| \geq 1$. Hence L_{ϕ} is suitable for $G-Q$. Therefore, by Theorem $2, G-Q$ is L_{ϕ}-colourable and so G is L-colourable, a contradiction.
- Assume now that $\left|N_{Q}(z)\right| \leq 4$.

Suppose that there are two distinct vertices $z_{1}, z_{2} \in Z_{Q}$ with z_{1} adjacent to x_{0} and x_{3} and z_{2} adjacent to x_{1} and x_{4}. Let R_{1} be the region bounded by the cycle $x_{0} x_{1} x_{2} x_{3} z_{1}$ not containing z_{2} and R_{2} be the region bounded by the cycle $x_{1} x_{2} x_{3} x_{4} z_{2}$ not containing z_{1} (see Figure 4). Now, note that any vertex adjacent to both x_{0} and x_{4} is not in $R_{1} \cup R_{2}$ and any vertex adjacent to x_{2} must be in $R_{1} \cup R_{2}$. Therefore, $z \in\left\{z_{1}, z_{2}\right\}$. Indeed if this was not true, then by property $\mathrm{P}_{3} z$ is not adjacent to x_{1} nor x_{3}. Thus z must be adjacent to x_{2} as it is in Z_{Q}. So z is inside $R_{1} \cup R_{2}$, which contradicts the fact that it is adjacent to x_{0} and x_{4}.
Thus, at most one other vertex z^{\prime} in $Z_{Q} \backslash\{z\}$ is adjacent to vertices at distance three in Q. By symmetry, we may assume that z^{\prime} is adjacent to x_{0} and x_{3}. Hence all vertices in $Z_{Q} \backslash\left\{z, z^{\prime}\right\}$ are adjacent to some $\left[x_{i}\right]$ for $1 \leq i \leq 3$. Similarly to (ii) and (iii) in Claim 9.12, one shows that Q also satisfies (a) and (b) in $(G-z) \backslash z^{\prime} x_{0}$. Hence Q is a good path in $G-z$. Then Q is magic, a contradiction to Claim 9.5

Acknowledgement

The authors would like to thank Claudia Linhares Sales for stimulating discussions.

Figure 4: Regions R_{1} and R_{2}.

References

[1] M. O. Albertson. Chromatic Number, Independence Ratio, and Crossing Number. Ars Mathematica Contemporanea $1: 1-6,2008$.
[2] M. O. Albertson, M. Heenehan, A. McDonough, and J. Wise. Coloring graphs with given crossing patterns. manuscript.
[3] J. Barát and G. Tóth. Towards the Albertson Conjecture. Electronic Journal of Combinatorics 17: R-73, 2010.
[4] Z. Dvořák, B. Lidický, and R. Škrekovski. Graphs with two crossings are 5-choosable. (arXiv:1103.1801v1 [math.CO]).
[5] R. Erman, F. Havet, B. Lidicky, and O. Pangrac. 5-colouring graphs with 4 crossings. SIAM J. Discrete Math. 25(1):401-422, 2011.
[6] C. Kuratowski. Sur le problème des courbes gauches en topologie. Fund. Math. 15: 271-283, 1930.
[7] B. Oporowski and D. Zhao. Coloring graphs with crossing. Discrete Mathematics 309: 29482951, 2009.
[8] M. Schaefer. personal communication to M. O. Albertson.
[9] C. Thomassen. Kuratowski's theorem. J. Graph Theory 5:225-241, 1981.
[10] C. Thomassen. Every planar graph is 5-choosable. J. Comb. Theory B 62:180-181, 1994.

Centre de recherche INRIA Sophia Antipolis - Méditerranée
2004, route des Lucioles - BP 93-06902 Sophia Antipolis Cedex (France)
Centre de recherche INRIA Bordeaux - Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex Centre de recherche INRIA Grenoble - Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille - Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d'Ascq Centre de recherche INRIA Nancy - Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101-54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris - Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105-78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes - Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Saclay - Île-de-France : Parc Orsay Université - ZAC des Vignes: 4, rue Jacques Monod - 91893 Orsay Cedex

[^0]: ${ }^{1}$ While writing this paper, we discovered that Dvořák et al. [4] independently proved this result. Their proof has some similarity to ours but is different. They prove by induction a stronger result, while we use the existence of a shortest path between the two crossings which satisfies some given properties.

