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5-choisissabilité des graphes ayant deux croisements

Résumé : Nous montrons que tout graphe ayant deux croisements est 5-choisissable. Nous prou-
vons également que tout graphe qui peut être rendu planaire par la suppression d’une arête est 5-
choisissable.

Mots-clés : coloration sur listes, choisissabilité, nombre de croisements
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1 Introduction

The crossing number of a graph G, denoted by cr(G), is the minimum number of crossings in any
drawing of G in the plane.

The Four Colour Theorem states that, if a graph has crossing number zero (i.e. is planar), then it
is 4-colourable. Deleting one vertex per crossing, it follows that χ(G) ≤ 4+ cr(G). So it is natural
to ask for the smallest integer f (k) such that every graph G with crossing number at most k is f (k)-
colourable? Settling a conjecture of Albertson [1], Schaefer [8] showed that f (k) = O

(

k1/4
)

. This

upper bound is tight up to a constant factor since χ(Kn) = n and cr(Kn)≤
(|E(Kn)|

2

)

=
((n

2)
2

)

≤ 1
8 n4.

The values of f (k) are known for a number of small values of k. The Four Colour Theorem
states f (0) = 4 and implies easily that f (1) ≤ 5. Since cr(K5) = 1, we have f (1) = 5. Oporowski
and Zhao [7] showed that f (2) = 5. Since cr(K6) = 3, we have f (3) = 6. Further, Albertson et al.
[2] showed that f (6) = 6. Albertson then conjectured that if χ(G) = r, then cr(G) ≤ cr(Kr). This
conjecture was proved by Barát and Tóth [3] for r ≤ 16.

A list assignment of a graph G is a function L that assigns to each vertex v ∈ V (G) a list L(v) of
available colours. An L-colouring is a function ϕ : V (G)→

⋃
v L(v) such that ϕ(v) ∈ L(v) for every

v ∈ V (G) and ϕ(u) 6= ϕ(v) whenever u and v are adjacent vertices of G. If G admits an L-colouring,
then it is L-colourable. A graph G is k-choosable if it is L-colourable for every list assignment L such
that |L(v)| ≥ k for all v ∈V (G). The choose number of G, denoted by ch(G), is the minimum k such
that G is k-choosable.

Similarly to the chromatic number, one may seek for bounds on the choose number of a graph
with few crossings or with independent crossings. Thomassen’s Five Colour Theorem [10] states that
if a graph has crossing number zero (i.e. is planar) then it is 5-choosable. A natural question is to ask
whether the chromatic number is bounded in terms of its crossing number. Erman et al. [5] observed
that Thomassen’s result can be extended to graphs with crossing number at most 1. Deleting one
vertex per crossing yields ch(G)≤ 4+cr(G). Hence, what is the smallest integer g(k) such that every
graph G with crossing number at most k is g(k)-choosable? Obviously, since χ(G)≤ ch(G), we have
f (k)≤ g(k).

In this paper, we extend Erman et al. result in two ways. We first show that every graph which can
be made planar by the removal of an edge is 5-choosable (Theorem 3). We then prove that is g(2) = 5.
In other words, every graph with crossing number 2 is 5-choosable1. This generalizes the result of
Oporowski and Zhao [7] to list colouring.

2 Planar graphs plus an edge

In order to prove its Five Colour Theorem, Thomassen [10] showed a stronger result.

Definition 1. An inner triangulation is a plane graph such that every face of G is bounded by a triangle
except its outer face which is bounded by a cycle.

Let G be a plane graph and x and y two consecutive vertices on its outer face F . A list assignment
L of G is {x,y}-suitable if

- |L(x)| ≥ 1, |L(y)| ≥ 2,

1While writing this paper, we discovered that Dvořák et al. [4] independently proved this result. Their proof has some
similarity to ours but is different. They prove by induction a stronger result, while we use the existence of a shortest path
between the two crossings which satisfies some given properties.
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4 Victor Campos2 , Frédéric Havet 3

- for every v ∈V (F)\{x,y}, |L(v)| ≥ 3, and

- for every v ∈V (G)\V (F), |L(v)| ≥ 5.

A list assignment of G is suitable if it is {x,y}-suitable for some vertices x and y on the outer face
of G.

The following theorem is a straightforward generalization of Thomassen’s five colour Theorem
which holds for non-separable plane graphs.

Theorem 2 (Thomassen [10]). If L is a suitable list assignment of a plane graph G then G is L-

colourable.

This result is the cornerstone of the following proof.

Theorem 3. Let G be a graph. If G has an edge such that G\ e is planar then ch(G)≤ 5.

Proof. Let e = uv be an edge of G such that G\e is planar. Let G′ be a planar triangulation containing
G \ e as a subgraph. Without loss of generality, we may assume that u is on the outer triangle of G′.
The graph G′−u has an outer cycle C′ whose vertices are the neighbours of u in G′.

Let L be a 5-list assignment of G. Let α,β ∈ L(u). Let L′ be the list-assignment of G′−u defined
by L′(w) = L(w) \ {α,β} if w ∈ V (C′) and L′(w) = L(w) otherwise. Then L′ is suitable. So G′− u

admits an L′-colouring by Theorem 2. This colouring may be extended into an L-colouring of G by
assigning to u a colour in {α,β} different from the colour of v.

Hence G is 5-choosable.

3 Graphs with two crossings

3.1 Preliminaries

We first recall the celebrated characterization of planar graphs due to Kuratowski [6]. See also [9] for
a nice proof.

Theorem 4 (Kuratowski [6]). A graph is planar if and only if it contains no minor isomorphic to

either K5 or K3,3.

Let G be a plane graph and x, y and z three distinct vertices on the outer face F of G. A list
assignment L of G is (x,y,z)-correct if

- |L(x)|= 1 = |L(y)| and L(x) 6= L(y),

- |L(z)| ≥ 3,

- for every v ∈V (F)\{x,y,z}, |L(v)| ≥ 4, and

- for every v ∈V (G)\V (F), |L(v)| ≥ 5.

If L is (x,y,z)-correct and L(z)≥ 4, we say that L is {x,y}-correct.

Lemma 5. Let G be an inner triangulation and x and y two distinct vertices on the outer face of G. If

L is an (x,y,z)-correct list assignment of G then G is L-colourable.

INRIA



5-choosability of graphs with 2 crossings 5

Proof. We prove the result by induction on the number of vertices, the result holding trivially when
|V (G)|= 3.

Suppose first that F has a chord xt. Then xt lies in two unique cycles in F ∪xt, one C1 containing y

and the other C2. For i = 1,2, let Gi denote the subgraph induced by the vertices lying on Ci or inside
it. By the induction hypothesis, there exists an L-colouring φ1 of G1. Let L2 be the list assignment on
G2 defined by L2(t) = {φ1(t)} and L2(u) = L(u) if u ∈V (G2)\{t}. Let z′ = z if z ∈V (C2) and z′ be
any vertex of V (C2)\{x, t} otherwise. Then L2 is (x, t,z′)-correct for G2 so G2 admits an L2-colouring
φ2 by induction hypothesis. The union of φ1 and φ2 is an L-colouring of G.

Suppose now that x has exactly two neighbours u and v on F . Let u,u1,u2 . . . ,um,v be the neigh-
bours of x in their natural cyclic order around x. As G is an inner triangulation, uu1u2 · · ·um,v = P is
a path. Hence the graph G− x has F ′ = P∪ (F − x) as outer face.

Assume first that z /∈ {u,v}. Then let L′ be the list assignment on G− x defined by L′(w) =
L(w)\L(x) if w ∈ NG(x) and L′(w) = L(w) otherwise. Clearly, |L′(w)| ≥ 3 if w ∈ F ′ and |L′(w)| ≥ 5
otherwise. Hence, by Theorem 2, G−x admits an L′-colouring. Colouring x with the colour of its list,
we obtain an L-colouring of G.

Assume now that z ∈ {u,v}, say z = u. Let α be a colour of L(z) \ (L(x)∪ L(y)). Let L′ be
the list assignment on G− x defined by L′(z) = {α}, L′(w) = L(w) \ L(x) if w ∈ NG(x) \ {z} and
L′(w) = L(w) otherwise. Clearly, L′ is (y,z,v)-correct. Hence, by the induction hypothesis, G− x

admits an L′-colouring. Colouring x with the colour of its list, we obtain an L-colouring of G.

3.2 Nice, great and good paths

Let G be a graph and H an induced subgraph of G.
We denote by ZH the set of vertices of G which are adjacent to at least 3 vertices of H. For every

vertex v in V (G), we denote by NH(v) the set of vertices of H adjacent to v, and we set dH(v)= |NH(v)|.
Let L be a list assignment of G. For any L-colouring φ of H, we denote by Lφ the list assignment

of G−H defined by Lφ(z) = L(z) \ φ(NH(z)). A vertex z ∈ V (G−H) is safe (with respect to φ), if
|Lφ(z)| ≥ 3. An L-colouring of H is safe if all vertices of z ∈ V (G−H) are safe. Observe that if
L is a 5-list assignment, then for any L-colouring φ of H, every vertex z not in ZH has at most two
neighbours in H and therefore |Lφ(z)| ≥ 3. Hence φ is safe if and only if every vertex in ZH is safe.

Let P = v1 · · ·vp be an induced path in G. For 2 ≤ i ≤ p− 1, we denote by [vi]P, or simply [vi]
if P is clear from the context, the set {vi−1,vi,vi+1}. We say that a vertex z is adjacent to [vi] if it is
adjacent to all vertices in the set [vi]. Note that if z is adjacent to [vi] then z is not in P as P is induced.

Lemma 6. Let P= v1 · · ·vp be an induced path in G, x a vertex such that NP(x) = [vi+1], 1 ≤ i ≤ p−1,

and φ a colouring of P− vi. If i = 1 or φ(vi−1) = φ(vi+1), then one can extend φ to vi such that x is

safe.

Proof. If {φ(vi+1),φ(vi+2)} 6⊂ L(x), then assigning to vi any colour distinct from φ(vi+1), we get a
colouring of P such that x is safe. So we may assume that {φ(vi+1),φ(vi+2)} ⊂ L(x).

If φ(vi+2) ∈ L(vi), then setting φ(vi) = φ(vi+2), we have a colouring φ such that x is safe. If not,
there is a colour α in L(vi) \L(x). Necessarily, α 6= φ(vi+1) and so one can colour vi with α. Doing
so, we obtain a colouring such that x is safe.

Let P = v1 · · ·vp be an induced path. It is a nice path in G if the following are true.

(a) for every z ∈ ZP, NP(z) = [vi] for some 2 ≤ i ≤ p−1;

RR n° 7618



6 Victor Campos4 , Frédéric Havet 5

(b) for every 2 ≤ i ≤ p−1, there are at most two vertices adjacent to [vi] and, if there are two such
vertices, then the number of vertices adjacent to [vi−1] or [vi+1] is at most 1.

It is a great path in G if is is nice and satisfies the following extra property.

(c) for any i < j, if there are two vertices adjacent to [vi] and two vertices adjacent to [v j], then the
number of vertices adjacent to [vi+1] or [v j−1] is at most 1.

A safe colouring of a path P = v1 · · ·vp is α-safe if φ(v1) = α.

Lemma 7. If P is a great path and L is a 5-list assignment of G, then for any α ∈ L(v1), there exists

an α-safe L-colouring φ of P.

Proof. We prove this result by induction on p, the number of vertices of P, the result holding trivially
when p ≤ 2.

Assume now that p ≥ 3. Since P is great then every vertex of ZP adjacent to v1 is also adjacent to
v2 and there are at most two vertices of ZP adjacent to [v2].

Set φ(v1) = α.

1. If there is no vertex adjacent to [v2], then by induction, for any β ∈ L(v2)\{α}, there is a β-safe
L-colouring φ of v2 · · ·vp. Since φ(v1) = α, φ is an α-safe L-colouring of P.

2. Assume now that there is a unique vertex z adjacent to [v2].

If α /∈ L(z), then by Case 1, there is an α-safe L-colouring φ of P in G− z. It is also an α-safe
L-colouring of P in G since z is safe as α /∈ L(z). Hence we may assume that α ∈ L(z).

Assume there is a colour β in L(v2) \ {α}. By induction there is a β-safe L-colouring φ of
v2 · · ·vp. Since φ(v1) = α, we obtain an α-safe L-colouring of P because z is safe as β /∈ L(z).
Hence we may assume that L(v2) = L(z). In particular, α ∈ L(v2). Let γ be α if α ∈ L(v3), and
a colour in L(v3)\L(v2) otherwise. We set φ(v3) = γ. Observe that whatever colour is assigned
to v2, the vertex z will be safe.

2.1. Assume that no vertex is adjacent to [v3]. By induction hypothesis, there is a γ-safe L-
colouring φ of v3 · · ·vp. Choosing φ(v2) in L(v2)\{α,γ}, we obtain an α-safe L-colouring
of P.

2.2. Assume that exactly one vertex t is adjacent to [v3]. By induction hypothesis, there is a
γ-safe L-colouring φ of v3 · · ·vp. So far all the vertices except t will be safe. So we just
need to choose φ(v2) so that t is safe.
Observe that if {γ,φ(v4)} 6⊂ L(t), choosing any colour of L(v2) \ {α,γ} will do the job.
So we may assume that {γ,φ(v4)} ⊂ L(t). If there is a colour β ∈ L(v2) \ (L(t)∪{α}),
then setting L(v2) = β will make t safe. So we may assume that L(v2)\{α} ⊂ L(t) and so
L(t) = L(v2)∪{γ}\{α}. Thus φ(v4) ∈ L(v2)\{α,γ}. Then setting φ(v2) = φ(v4) makes
t safe.

2.3. Assume that two vertices t1 and t2 are adjacent to [v3]. Then no vertex is adjacent to [v4].
Therefore, it suffices to prove that there is an α-safe L-colouring of v1v2v3v4. Indeed, if
we have such a colouring φ, then by induction, v4 · · ·vp admits a φ(v4)-safe L-colouring
φ′. The union of these two colourings is an α-safe L-colouring of P.
If there exists β ∈ L(v4)∩L(v2)\{α,γ}, then setting φ(v2) = φ(v4) = β, we obtain an α-
safe L-colouring of v1v2v3v4. Otherwise, L(v4)\{γ} and L(v2)\{α} are disjoint. Hence
one can choose β in L(v2) \ {α} and δ in L(v4) \ {γ} so that |{β,γ,δ} ∩ L(ti)| ≤ 2 for
i = 1,2. Setting φ(v2) = β and φ(v4) = δ, we obtain an α-safe L-colouring of v1v2v3v4.

INRIA



5-choosability of graphs with 2 crossings 7

3. Assume that two vertices z1 and z2 are adjacent to [v2].

We claim that it suffices to prove that there is an α-safe L-colouring of v1v2v3.

Let j be the smallest index such that no vertex is adjacent to [v j]. For the definition of j,
consider there is no vertex adjacent to [vp] so that j ≤ p. By the property (c) of great path, for
all 3 ≤ i < j, there is exactly one vertex zi adjacent to [vi]. For i = 3, . . . , j−1, one after another,
one can use Lemma 6 in the path vi+1 · · ·v1 to extend φ to vi+1, so that zi is safe. Then applying
induction on the path v j · · ·vp, we obtain an α-safe L-colouring. This proves the claim.

Let us now prove that an α-safe L-colouring of v1v2v3 exists.

If α /∈ L(zi), then any α-safe L-colouring of v1v2v3 in G− zi will be an α-safe L-colouring in G.
By Case 2, one can find such a colouring in G− zi, so we may assume that α ∈ L(zi).

If there is a colour β ∈ L(v2) \L(z1), then set φ(v2) = β. By Lemma 6 in the path v3v2v1, one
can choose φ(v3) in L(v3) to obtain an α-safe L-colouring of v1v2v3. Hence we may assume that
L(z1) = L(v2). Similarly, we may assume that L(z2) = L(v2). Therefore, any α-safe L-colouring
of v1v2v3 in G− z2 will be an α-safe L-colouring in G. We can find such a colouring using Case
2.

We say that an induced path P = v1 · · ·vp is good path if either P is great or p ≥ 4 and there is
a vertex z ∈ ZP adjacent to v1 such that {v1,v4} ⊂ NP(z) ⊆ {v1,v2,v3,v4} satisfying the following
conditions:

• P is a great path in G\ v1z.

• if two vertices distinct from z are adjacent to [v2], then NP(z) = {v1,v3,v4} and there is no vertex
adjacent to [v3]; and

• if two vertices distinct from z are adjacent to [v3], then NP(z) = {v1,v2,v4} and there is no vertex
adjacent to [v2].

Note that since P is induced, then z is not in P.

Lemma 8. If P = v1 · · ·vp is a good path and L is a 5-list assignment of G, then there exists a safe

L-colouring of P.

Proof. If P is great, then the result follows from Lemma 7. So we may assume that P is not great. Let
z be the vertex of ZP such that {v1,v4} ⊂ NP(z)⊆ {v1,v2,v3,v4}.

If there is a colour α ∈ L(v1) \ L(z), then let φ(v1) = α and use Lemma 7 to colour v1 · · ·vp in
G\v1z. The obtained colouring φ is a safe L-colouring of P. For any z′ ∈ ZP\{z}, we have |Lφ(z

′)| ≥ 3
because z′ has the same neighbourhood in G and G\v1z. Now |Lφ(z)| ≥ 3 since α /∈ L(z), so φ is safe.
Henceforth, we assume that L(v1) = L(z).

1. Assume first that NP(z) = {v1,v2,v3,v4}.

By the properties of a good path, at most one vertex z′ different from z is adjacent to [v2].

1.1. Assume first that z is the unique vertex adjacent to [v3].

If there is a colour α ∈ L(z)∩L(v3), then set φ(v1) = φ(v3) = α. By Lemma 7, one can
extend φ to v3 · · ·vp so that all vertices of ZP but z are safe. Then by Lemma 6 applied to

RR n° 7618



8 Victor Campos6 , Frédéric Havet 7

v2 · · ·vp, one can choose φ(v2) ∈ L(v2) so that z is safe for P− v1. Since φ(v1) = φ(v3),
then φ is a proper colouring and z is safe for P. Hence φ is a safe L-colouring of P. So we
may assume that L(z)∩L(v3) = /0.
If there exists β ∈ L(v2) \ L(z), then set φ(v2) = β. By Lemma 7, one can extend φ to
v2 · · ·vp so that all vertices of ZP but z and z′ are safe. Observe that necessarily z will be
safe because φ(v2) /∈ L(z) and φ(v3) /∈ L(z). By Lemma 6, one can extend φ to v1 so that
z′ is safe, thus getting a safe L-colouring of P. So we may assume that L(v2) = L(z).
We have |L(v2)∪L(v3)| = 10 ≥ |L(z′)|. So we can find α ∈ L(v2) and β ∈ L(v3) so that
|{α,β}∩L(z′)| ≤ 1. Using Lemma 7 take a β-safe L-colouring φ of the path v3v4 . . .vp and
set φ(v2) = α. If φ(v4) ∈ L(z) \ {α}, then colour v1 with φ(v4), otherwise colour it with
any colour distinct from α. This gives a safe L-colouring of P.

1.2 Assume now that a vertex y 6= z is adjacent to [v3].

* Suppose that a vertex t is adjacent to [v4]. Then z′ does not exist.
If there is a colour α ∈ L(v2)\L(z), then using Lemma 7 take an α-safe L-colouring
φ of v2 · · ·vp. If φ(v3) /∈ L(z), then z would be safe whatever colour we assign to v1,
so there is a safe L-colouring of P. If If φ(v3) ∈ L(z), then setting φ(v1) = φ(v3), we
obtain a safe L-colouring of P. So we may assume that L(v2) = L(z).
If there is a colour α in L(z)∩L(v4), then set φ(v2) = φ(v4) = α. Then y will be safe.
Extend φ to v4 · · ·vp by Lemma 7. Then all the vertices are safe except t and z. By
Lemma 6, one can choose φ(v3) so that t is safe. If φ(v3) ∈ L(z), then setting φ(v1) =
φ(v3), we get a safe L-colouring of P. If φ(v3) /∈ L(z), then whatever colour we assign
to v1, we obtain a safe colouring of P. Hence we may assume that L(z)∩L(v4) = /0.
By Lemma 7, there is a safe L-colouring of P in G\ zv4. This colouring is also a safe
colouring of P in G, since φ(v4) is not in L(z).

* If no vertex is adjacent to [v4], then z′ may exist. In this case, it is sufficient to prove
that there exists a safe L-colouring of v1v2v3v4. Indeed, if there is such a colouring φ,
then by Lemma 7, it can be extended to a safe L-colouring of P.
Symmetrically to the way we proved the result when L(v1) 6= L(z), one can prove it
when L(v4) 6= L(z). Hence we may assume that L(v4) = L(z).
Assume that there is a colour α ∈ L(v2)∩L(z). Set φ(v2) = φ(v4) = α. If there is a
colour β ∈ L(v3) \L(z), then set φ(v3) = β so that z will be safe and extend φ with
Lemma 6 so that z′ is safe to obtain a safe colouring of v1v2v3v4 in G. If L(v3) = L(z),
then assign to v1 and v3 a same colour in L(z)\{α} to get a safe colouring of v1v2v3v4.
Hence we may assume that L(v2)∩ L(z) = /0. Symmetrically, we may assume that
L(v3)∩L(z) = /0. By Lemma 7, there exists a safe colouring φ of v1v2v3v4 in G− z.
It is also a safe colouring of v1v2v3v4 in G because φ(v2) and φ(v3) cannot be in L(z).

2. Assume now that NP(z) = {v1,v3,v4}.

If no vertex is adjacent to [v2], then using Lemma 7 take a safe L-colouring of v2 . . .vp. If
φ(v3) ∈ L(z), then set φ(v1) = φ(v3). If not colour v3 with any colour in L(z) \ {φ(v2)}. This
gives a safe L-colouring of P. Hence we may assume that a vertex t is adjacent to [v2].

By the properties of a good path, we know that at most one vertex, say u, is adjacent to v3. If
L(v3)∩L(z) is empty, then any safe L-colouring of P given by Lemma 7 in G \ zv1 would be
a safe L-colouring of P. Hence we may assume that there is a colour α in L(v3)∩ L(z). Set
φ(v1) = φ(v3) = α and apply Lemma 7 to v3 . . .vp. Then by Lemma 6, we can choose φ(v2) so
that the possible vertex u is safe. This gives a safe colouring of P.

INRIA



5-choosability of graphs with 2 crossings 9

3. Assume that NP(z) = {v1,v2,v4}.

Suppose no vertex is adjacent to [v2]. By Lemma 7, there is a safeL- colouring of v2 . . .vp. Set
φ(v1) = φ(v4) if φ(v4)∈ L(z)\{φ(v2)}, and let φ(v1) be any colour of L(v1)\{φ(v2)} otherwise.
Doing so z is safe and so φ is a safe L-colouring of P. Hence we may assume that a vertex u is
adjacent to [v2]. By definition of good path, it is the unique vertex adjacent to [v2].

Suppose that there exists a colour β in L(v2)\L(z). By Lemma 7, there is a safe colouring φ of
v2 . . .vp such that φ(v2) = β. By Lemma 6, it can be extended to v1 so that u is safe. This yields
a safe L-colouring of P. Hence we may assume that L(v2) = L(z).

If L(v4)∩ L(z) = /0, then in every colouring of P, the vertex z will be safe. Hence any safe
colouring of P in G− z, (there is one by Lemma 7) is a safe L-colouring of P in G. So we may
assume that there exists a colour α ∈ L(v4)∩L(z).

Assume that at most one vertex s is adjacent to [v4]. Set φ(v2) = φ(v4) = α so that z and all the
vertices adjacent to [v3] will be safe. By Lemma 7, there is an α-safe colouring of v4 . . .vp. Now
by Lemma 6, one can extend φ to v3 so that s (if it exists) is safe, and then again by Lemma 6
extend it to v1 so that u is safe. This gives a safe L-colouring of P. So we may assume that two
vertices s and s′ are adjacent to [v4].

Assume that there is a vertex t adjacent to [v3], then there is no vertex adjacent to [v5]. Hence
it suffices to find a safe L-colouring of v1v2v3v4v5. Indeed, if we have such a colouring φ, then
using Lemma 7, one can extend it to a safe L-colouring of P. Set φ(v2) = φ(v4) = α. Doing so t

and z will be safe. If α or some colour β ∈ L(v5)\{α} is not contained in one of lists L(s) and
L(s′), say L(s′). Then colouring v5 with β, if it exists, or any other colour otherwise, the vertex
s′ will also be safe. By Lemma 6, one can colour v3 so that s is safe. By Lemma 6, one can
then colour v1 to obtain a colouring for which u is safe. This L-colouring of v1v2v3v4v5 is safe.
Hence, we may assume that L(s) = L(s′) = L(v5). Colour v5 with any colour in L(v5) \ {α}.
Using Lemma 6, colour v3 so that s is safe. Then s′ will be also safe because L(s) = L(s′).
Again by Lemma 6, colour v1 so that u is safe to obtain a safe colouring of v1v2v3v4v5.

Assume finally that no vertex is adjacent to [v3]. By Lemma 7, there is a safe L-colouring φ

of v3 . . .vp. If φ(v4) /∈ L(z), then assign to v2 any colour in L(v2) \ {φ(v3)}. If not, then set
φ(v2) = φ(v4). (This is possible since L(v2) = L(z).) Then z will be safe. By Lemma 6, colour
v1 so that u is safe to obtain a safe L-colouring of P.

3.3 Main theorem

A drawing of G is nice if two edges intersect at most once. It is well known that every graph with
crossing number k has a nice drawing with at most k crossings. (See [5] for example.) In this paper, we
will only consider nice drawings. Thus a crossing is uniquely defined by the pair of edges it belongs
to. Henceforth, we will confound a crossing with this set of two edges. The cluster of a crossing C is
the set of endvertices of its two edges and is denoted V (C).

Theorem 9. Let G be a graph having a drawing in the plane with two crossings. Then ch(G)≤ 5.

Proof. By considering a counter-example G with the minimum number of vertices. Let L be a 5-list
assignment of G such that G is not L-colourable.
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Let C1 and C2 be the two crossings. By Theorem 3, C1 and C2 have no edge in common. Set
Ci = {viwi, tiui}. Free to add edges and to redraw them along the crossing, we may assume that viui,
uiwi, witi and tivi are edges and that the 4-cycle viuiwiti has no vertex inside but the two edges of Ci.
In addition, we assume that u1v1t1w1 appear in clockwise order around the crossing point of C1 and
that u2v2t2w2 appear in counter-clockwise order around the crossing point of C2. Free to add edges,
we may also assume that G\{v1w1,v2w2} is a triangulation of the plane. In the rest of the proof, for
convenience, we will refer to this fact by writing that G is triangulated.

Claim 9.1. Every vertex of G has degree at least 5.

Proof. Suppose not. Then G has a vertex x of degree at most 4. By minimality of G, G− x has
an L-colouring φ. Now assigning to x a colour in L(x) \ φ(N(x)) we obtain an L-colouring of G, a
contradiction.

A cycle is separating if none of its edges is crossed and both its interior and exterior contain at
least one vertex. A cycle is nicely separating if it is separating and its interior or its exterior has no
crossing.

Claim 9.2. G has no nicely separating triangle.

Proof. Assume, by way of contradiction, that a triangle T = x1x2x3 is nicely separating. Let G1 (resp.
G2) be the subgraph of G induced by the vertices on T or outside T (resp. inside T ). Without loss of
generality, we may assume that G2 is a plane graph.

By minimality of G, G1 has an L-colouring φ1. Let L2 be the list assignment of G2 defined by
L2(x1) = {φ1(x1)}, L2(x2) = {φ1(x1),φ1(x2)}, L2(x3) = {φ1(x1),φ1(x2),φ1(x3)}, and L2(x) = L(x)
for every vertex inside T . Then L2 is a suitable list assignment of G2, so by Theorem 2, G2 admits
an L2-colouring φ2. Observe that necessarily φ2(xi) = φ1(xi). Hence the union of φ1 and φ2 is an
L-colouring of G, a contradiction.

Claim 9.3. Let C = abcd be a 4-cycle with no crossing inside it. If a and c have no common neighbour

inside C then C has no vertex in its interior.

Proof. Assume by way of contradiction that the set S of vertices inside C is not empty.
Then ac is not an edge otherwise one of the triangles abc and acd would be nicely separating.

Since G is triangulated, the neighbours of a (resp. c) inside C plus b and d (in cyclic order around a

(resp. c)) form a (b,d)-path Pa (resp. Pc). The paths Pa and Pc are internally disjoint because a and c

have no common neighbour inside C. Hence Pa ∪Pc is a cycle C′. Furthermore C′ is the outerface of
G′ = G〈S∪{b,d}〉.

By minimality of G, G1 = (G− S)∪ bd admits an L-colouring φ. Let L′ be the list-colouring of
G′ defined by L′(b) = {φ(b)}, L′(d) = {φ(d)}, L′(x) = L(x) \ {φ(a)} if x is an internal vertex of Pa,
L′(x) = L(x)\{φ(c)} if x is an internal vertex of Pc, and L′(x) = L(x) if x ∈V (G′−C′). Then L′ is a
{b,d}-correct list assignment of G′. Hence, by Lemma 5, G′ admits an L′-colouring φ′. The union of
φ and φ′ is an L-colouring of G, a contradiction.

Claim 9.4. G has no nicely separating 4-cycle.

Proof. Suppose not. Then there exists a nicely separating 4-cycle abcd. Let b = z1,z2, . . . ,zp+1 = d

be the common neighbours of a and c in clockwise order around a. By Claim 9.3, we have p ≥ 2.
Each of the 4-cycles aziczi+1, 1 ≤ i ≤ p has empty interior by Claim 9.3. So z2 has degree at most 4.
This contradicts Claim 9.1.
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A path P is friendly if there are two adjacent vertices x and y such that |NP(x)| ≤ 4, |NP(y)| ≤ 3
and P is good in G−{x,y}. A path P meets a crossing if it contains at least one endvertex of each of
the two crossed edges. A magic path is a friendly path meeting both crossings.

Claim 9.5. G has no magic path Q.

Proof. Suppose for a contradiction that G has a magic path Q. Then there exists two adjacent vertices
x and y such that |NQ(x)| ≤ 4, |NQ(y)| ≤ 3 and P is good in G−{x,y}. Lemma 8, there in a L-
colouring φ of Q such that every vertex z of (G−Q)−{x,y} satisfies |Lφ(z)| ≥ 3. Now |Lφ(x)| ≥ 1
and |Lφ(y)| ≥ 2, because |NQ(x)| ≤ 4 and NQ(y)≤ 3 Since Q meets the two crossings, G−Q is planar.
Furthermore, G−Q may be drawn in the plane such that all the vertices on the outer face are those of
N(Q). Hence Lφ is a suitable assignment of G−Q. Hence by Theorem 2, G−Q is Lφ-colourable and
so G is L-colourable, a contradiction.

In the remaining of the proof, we shall prove that G contains a magic path, thus getting a con-
tradiction. Therefore, we consider shortest (C1,C2)-paths, that are paths joining C1 and C2 with the
smallest number of edges. We first consider the cases when the distance between C1 and C2 is 0 or 1.
We then deal with the general case when dist(C1,C2)≥ 2.

Claim 9.6. dist(C1,C2)> 0.

Proof. Assume for a contradiction that dist(C1,C2) = 0. Then, without loss of generality, v1 = v2.
Note that u1 6= u2 as otherwise the path u1v1 would be magic, contradicting Claim 9.5. Similarly, we
have t1 6= t2.

Note that w1 is not adjacent to u2 for otherwise both the interior and exterior of w1u1v1u2 would
contain at least one neighbour of u1 by Claim 9.1. Thus this 4-cycle would be nicely separating, a
contradiction to Claim 9.4. Henceforth, by symmetry, w1 is not adjacent to u2 nor t2 and w2 is not
adjacent to u1 nor t1.

If u1 is not adjacent to u2, then consider the induced path Q = u1v1u2. Since w1 and w2 are
not adjacent to u2 and u1, respectively, then {w1,w2} ∩ ZQ = /0. The vertices t1 and t2cannot be
both in ZQ for otherwise u1t2 and u2t1 would cross. Furthermore, if z1 and z2 are distinct vertices
in ZQ \ {t1, t2}, then either u1v1u2z1 nicely separates z2 or u1v1u2z2 nicely separates z1 contradicting
Claim 9.4. Thus, |ZQ| ≤ 2 and Q is magic contradicting Claim 9.5. Henceforth, u1 is adjacent to u2,
and, by a symmetrical argument, t1 is adjacent to t2.

If u1 is adjacent to t2, then both the interior and exterior of u1u2w2t2 contain at least one neighbour
of w2 by Claim 9.1. Thus this 4-cycle would be nicely separating, a contradiction to Claim 9.4.
Henceforth, u1 is not adjacent to t2, and symmetrically t1 is not adjacent to u2.

Therefore Q = u1v1t2 is an induced path. Note that ZQ ⊆ N(v1). The triangles v1u1u2 and v1t1t2
together with Claim 9.2 imply that N(v1) = {u1,u2, t1, t2,w1,w2}. Since w1 is not adjacent to t2 and
w2 is not adjacent to u1, then ZQ = {u2, t1}. Thus Q is magic contradicting Claim 9.5.

Claim 9.7. Let i ∈ {1,2} and x a vertex not in Ci. Then at most one vertex in {ui, ti} is adjacent to x

and at most one vertex in {vi,wi} is adjacent to x.

Proof. Assume for a contradiction that x is adjacent to both ui and ti. Observe that the edges uix and
tix are not crossed since dist(C1,C2) ≥ 1. Then one of the two 4-cycles uivitix and uiwitix is nicely
separating. Thus the region bounded by this cycle has no vertex by Claim 9.4. Hence either d(vi)≤ 4
or d(wi)≤ 4. This contradicts Claim 9.1.

Similarly, one shows that at most one vertex in {vi,wi} is adjacent to x.
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Claim 9.8. dist(C1,C2)> 1.

Proof. Assume for a contradiction that dist(C1,C2) = 1. Without loss of generality, we may assume
that v1v2 ∈ E(G).

Let us first show that without loss of generality, we may assume that u1 is not adjacent to v2 and
u2 is not adjacent to v1. By symmetry, if t1 is not adjacent to v2 and t2 is not adjacent to v1, then we get
the result by renaming swapping the names of ui and ti, i = 1,2. Thus by symmetry and by Claim 9.7,
if it not the case, then u1v2 ∈ E(G) and v1t2 ∈ E(G). Moreover w1v2 is not an edge by Claim 9.7.
Hence renaming u1, v1, t1, w1 into v1, t1, w1, u1 respectively, we are in the desired configuration.

The vertices u1 and u2 are not adjacent, for otherwise the cycle u1v1v2u2 would be nicely separat-
ing since G is triangulated and u1v2 and u2v1 are not edges. So Q is an induced path.

A vertex of ZQ is goofy if it is adjacent to u1 and u2.

• Suppose first that there is a goofy vertex z′ not in C1 ∪C2.

Without loss of generality, we may assume that z′ is adjacent to u1, v1 and u2. If the crossing
C1 is inside z′u1v1, then consider the path R = t1v1v2u2. It is induced since z′u1v1 separates t1
from v2 and u2. Moreover all the neighbours of t1 are inside z′u1v1, so they have at most two
neighbours in R except for u1 which is not adjacent to v2 nor to u2. Hence the vertices of ZR are
all adjacent to {v1,v2,u2}. Moreover w2 /∈ ZR because w2v1 is not an edge by Claim 9.7. Hence
by planarity of G−{w1,w2}, there are at most two vertices adjacent to {v1,v2,u2}. Thus R is
magic, a contradiction.

Hence we may assume that C1 is outside z′u1v1. The 4-cycle z′v1v2u2 is not nicely separating
by Claim 9.4, and G is triangulated. So z′v2 ∈ E(G) because v1 is not adjacent to u2. So z′ is
adjacent to all vertices of Q.

Then there is no other vertex z′′ in ZQ \{C1 ∪C2}, for otherwise one of the crossing Ci is inside
uiviz

′′ and as above, we obtain the contradiction that R is magic.

Now w1u2 is not an edge, for otherwise w1u1z′u2 would be separating since d(u1) ≥ 5, a con-
tradiction to Claim 9.4. Similarly, w2u1 is not an edge. Hence ZQ ⊂ {z′, t1, t2}. Now one of the
edges t1u2 and t2u1 is not in E(G), since otherwise they would cross. Without loss of generality,
t1 is not adjacent to u2. Then Q is good in G− t2, and so Q is magic. This contradicts Claim 9.5.

• Suppose now that all the goofy vertices of ZQ are in C1 ∪C2.

Suppose first that w1 is in ZQ, then w1u2 is an edge because w1 is not adjacent to v2 according
to Claim 9.7. Thus t2 and w2 are not adjacent to u1. So w2 /∈ ZQ and NQ(t2) ⊂ {v1,v2,u2}, so
t2 is not goofy. Moreover by planarity of G−{w1,w2}, there is at most two vertices adjacent
{v1,v2,u2}. Furthermore, all the vertices distinct from t1 and adjacent to {u1,v1,v2} are in the
region bounded by w1v1v2u2 containing u1. Therefore there is at most one such vertex. Hence
Q is good in G−{w1, t1}. Thus Q is magic and contradicts Claim 9.5.

Similarly, we get a contradiction if w2 ∈ ZQ. So ZQ∩(C1∪C2)⊆ {t1, t2}. Then easily Q is good
in G− t2 and so Q is magic. This contradicts Claim 9.5.

Claim 9.9. Some of the shortest (C1,C2)-paths is nice.
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Proof. Let P = x1x2 · · ·xp be any shortest (C1,C2)-path. Then no vertex in C1 is adjacent to a vertex
in P−{x1,x2}. Therefore, V (C1)∩ZP = /0. Similarly, we have V (C2)∩ZP = /0. Hence the graph G′

induced by V (P)∪ZP is planar as it contains exactly one vertex from each crossing.
Any vertex not in P can be adjacent only to vertices of P at distance at most two from each other,

otherwise there would be a (C1,C2)-path shorter than P. Thus, if z ∈ ZP, then z has precisely three
neighbours in P. Moreover, there exists an i ∈ {2, . . . , p−1} such that NP(z) = [xi].

If there are distinct vertices z1,z2,z3 ∈ ZP such that NP(z1) =NP(z2) =NP(z2) = [xi] for some value
of i, then the subgraph of G′ induced by {z1,z2,z3}∪{xi−1,xi,xi+1} contains a K3,3. By Kuratowski’s
Theorem, this contradicts the fact that G′ is planar. Therefore, for every 2 ≤ i ≤ p− 1, there are at
most two vertices in ZP adjacent to [xi].

Let z1,z2 ∈ ZP be such that NP(z1) = NP(z2) = [xi]. The edges of H = G[{z1,z2}∪ [xi]] separate the
plane into five regions R1, . . . ,R5 as follows. Let R1 be the region bounded by xi−1xiz1 not containing
the vertex z2, R2 be the region bounded by xixi+1z1 not containing the vertex z2, R3 be the region
bounded by xi−1xiz2 not containing the vertex z1, R4 be the region bounded by xixi+1z2 not containing
the vertex z1 and R5 be the region bounded by xi−1z1xi+1z2 not containing xi (see Figure 1). Since
(V (C1)∪V (C2))∩ZP = /0 and P is a shortest (C1,C2)-path, then no edge in H is crossed.

xi

z1

z2

xi+1xi−1

R5

R1 R2

R3 R4

Figure 1: Regions R1, R2, R3, R4 and R5.

Let JP be the subset of {3, . . . , p−2} such that for j ∈ JP, there are two vertices in ZP adjacent to
[x j] and at least one vertex adjacent to [x j−1] and another adjacent to [x j+1]. The path P is said to be
semi-nice if JP = /0.

Let us first prove that some of the shortest (C1,C2)-paths is semi-nice.

Suppose for a contradiction that no shortest (C1,C2)-path is semi-nice. Let P be a shortest
(C1,C2)-path that maximizes the smallest index i in JP. Let z1,z2 ∈ ZP be such that NP(z1) =
NP(z2) = [xi].

Let z ∈ ZP be a vertex adjacent to [xi+1]. If C2 is in R5, then so is xi+2 and we get a contradiction
from the fact that either zxi or zxi+2 must cross an edge of H. Since P defines a path between
xi+1 and V (C2), then C2 must be either in R2 or in R4 (say R4). Similarly, C1 is either in R1 or in
R3. The cycle xi−1xixi+1z2 is not be a nicely separating cycle by Claim 9.4, so C1 must be in R1.
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Now, by Claim 9.2, R2 and R3 are empty, and, by Claim 9.4, there is no vertex in R5. Since P is
a shortest path, xi−1xi+1 is not an edge and therefore z1 is adjacent to z2 as G is triangulated.

Now, consider the path P′ obtained from P by replacing xi with x′i = z2. Note that P′ is also a
shortest path and that both z1 and xi are adjacent to [x′i]. Since no edge in H is crossed, for any
v ∈ V (G) \ ({z1,z2}∪ [xi]), if v is adjacent to xi−1 then it must be in R1 and if v is adjacent to
z2 then it must be in R4. Therefore, there is no vertex in ZP′ adjacent to {xi−2,xi−1,z2}. This
implies that if j ∈ JP′ , then either j ≤ i−3 or j ≥ i+1. Note that if j ∈ JP′ and j ≤ i−3, then
j ∈ JP. As i is the minimum of JP, the minimum of JP′ is at least i+ 1. This contradicts our
choice of P.

Let KP be the subset of {2, . . . , p− 1} such that for k ∈ KP, there are two vertices in ZP adjacent
to [xk] and two vertices adjacent to [xk+1]. Observe that a nice path P is a semi-nice path such that KP

is empty, that is a path such that JP and KP are empty.
Suppose, by way of contradiction, that every (C1,C2)-shortest path is not nice. Then consider the

semi-nice (C1,C2)-shortest path that maximizes the minimum of KP.
Let z1,z2,z3,z4 ∈ ZP be such that NP(z1) = NP(z2) = [xi] and NP(z3) = NP(z4) = [xi+1], where i is

the smallest index in KP. Recall that the edges of H = G[{z1,z2}∪ [xi]] separate the plane into the five
above-described regions R1, . . . ,R5. Again, we can use z3 or z4 to prove that C2 is either in R2 or in
R4 (say R4). Therefore, xi+2 is in R4 which implies z3 and z4 are also in R4. Thus, z1 is not adjacent
to z3 nor z4. Furthermore, z2 cannot be adjacent to both z3 and z4 for otherwise we can obtain a K5 in
the subgraph of G′ induced by [xi+1]∪{z2,z3,z4} by contracting the edge z4xi+2 (see Figure 2). Thus,
without loss of generality, suppose z2 and z3 are not adjacent.

xi

z2

xi+1

z3

z4

xi+2

Figure 2: K5 minor of G′ is obtained by contracting z4xi+2.

Consider the path P′ obtained from P by replacing xi+1 with x′i+1 = z3. Since no edge in H is
crossed, for any v ∈ V (G) \ ({z1,z2} ∪ [xi]), if v is adjacent to xi−1 then it is not in R4, and if v is
adjacent to z3 then it must be in R4. Since neither z1 nor z2 are adjacent to z3 and xi+1 is not adjacent
to xi−1, there is no vertex in ZP′ adjacent to {xi−1,xi,z3}. This implies that if k ∈ KP′ , then either
k ≤ i−2 or k ≥ i+1. Note that if k ∈ KP′ and k ≤ i−2, then k ∈ KP. This implies that the minimum
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5-choosability of graphs with 2 crossings 15

index in KP′ is strictly greater than i. Hence by our choice of P, the path P′ is not semi-nice, that is
JP′ 6= /0.

Observe that if j ∈ JP′ , then either j ≤ i−2 or j ≥ i+2. Note that if j ∈ JP′ and either j ≤ i−2
or j ≥ i+ 4, then j ∈ JP. Since JP is empty, then JP′ ⊆ {i+ 2, i+ 3}. Let z′1,z

′
2 ∈ ZP′ be such that

NP′(z′1) = NP′(z′2) = [x′j], for some j ∈ JP′ with JP′ ⊆ {i+ 2, i+ 3}. Note that for the two possible
values of j, both z′1 and z′2 are adjacent to xi+3. Since P is a shortest (C1,C2)-path, neither z2 nor xi+1

are adjacent to xi+3 and therefore z′1 and z′2 are in R4. Let R′
1 be the region bounded by x′j−1x′jz

′
1 not

containing the vertex z′2 and R′
3 be the region bounded by x′j−1x′jz

′
2 not containing the vertex z′1. Both

of these regions are contained in R4. With the same argument used above in the proof of existence
of a semi-nice path, one shows that if j ∈ JP′ , then C1 is either contained in R′

1 or in R′
3. We get a

contradiction as the path P from V (C1) to xi−1 crosses an edge of H.

Claim 9.10. There exists an induced path Q = x0x1 · · ·xpxp+1 with the following properties:

P1. P = x1 · · ·xp is a shortest (C1,C2)-path and is a nice path;

P2. x0 ∈V (C1) and xp+1 ∈V (C2) but x0x1 and xpxp+1 are not crossed edges; and

P3. there is at most one vertex in ZQ adjacent to both vertices in {x0,x3} and at most one vertex in

ZQ adjacent to both vertices in {xp−2,xp+1}.

P4. for any i < j, if there are two vertices adjacent to [vi] and two vertices adjacent to [v j], then the

number of vertices adjacent to [vi+1] or to [v j−1] is at most 1.

Proof. By Claim 9.9 there exists a shortest (C1,C2)-path P = x1 · · ·xp which is nice. Without loss of
generality, we may assume that x1 = v1 and xp = v2. According to Claim 9.7, we can choose vertices
x0 ∈ {u1, t1} and xp+1 ∈ {u2, t2} such that Q is induced. Therefore, we have at least one path satisfying
properties P1 and P2. We say that x0 is a valid endpoint if there is at most one vertex in ZQ adjacent
to both vertices in {x0,x3} and xp+1 is a valid endpoint if there is at most one vertex in ZQ adjacent to
both vertices in {xp−2,xp+1}.

Let Q be a path satisfying properties P1 and P2 which maximizes the number of valid endpoints
of Q.

Let us first show that Q has only valid endpoints, and satisfies property P4. By contradiction,
suppose that Q has an invalid endpoint. Without loss of generality, x0 is invalid.

Let z1,z2 ∈ ZQ be two vertices adjacent to both vertices in {x0,x3}. Since P is a shortest (C1,C2)-
path, no vertex of C1 is adjacent to x3. Therefore, no edge of x0x1x2x3z1 and x0x1x2x3z2 is crossed.
Let R1 be the region bounded by x0x1x2x3z1 that does not contain z2 and R2 be the region bounded by
x0x1x2x3z2 that does not contain z1. Since the edges bounding the regions R1 and R2 are not crossed,
then the crossing C1 is contained in one of the regions R1 or R2 (say R1). Let x̂0 be the vertex of
{u1, t1}\{x0} (see Figure 3).

Assume first that x̂0 is not adjacent to x2. Let Q̂ be the path obtained from Q by replacing x0 with
x̂0. Clearly the path Q̂ is induced and satisfies properties P1 and P2. By definition of Q, x̂0 must be an
invalid endpoint. Hence, there is a vertex ẑ in ZQ̂ \{z1} which is adjacent to x̂0 and x3. This vertex in
necessarily inside R1 because it is adjacent to x0. But then, by planarity, z1 cannot be adjacent to x1

and x2, a contradiction to z1 ∈ ZQ.
Assume now that x̂0 is adjacent to x2. Let Q′ be the path obtained from Q by replacing x0 with w1

and x1 with x̂0. Note that Q′ is induced as w1 is not adjacent to x2 by Claim 9.7.
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z1

z2

R2

x0 x1 x2 x3

x̂0

R1

Figure 3: Regions R1 and R2 and the vertex x̂0.

Note that property P2 is valid for Q′. The path P′ = x̂0x2 · · ·xp is a (C1,C2) shortest path. Let us
prove that P′ is nice and so that P′ satisfies property P1. If p = 3, then, since no vertex in the cluster of
C1 is adjacent to x3, at most two vertices are in ZP′ for otherwise we would get a K3,3 in G−{w1,w2},
which is impossible as this graph is planar. Thus P′ is nice. Suppose now that p ≥ 4. By planarity,
z1 is not adjacent to x1, so z1 is adjacent to x2 as z1 ∈ ZQ. In addition, z1x2 is contained in R1. Thus,
any vertex in ZP′ adjacent to x̂0 must be in region R1 and cannot be adjacent to x3. Hence no vertex is
adjacent to [x2]P′ so, since P is a nice path, P′ is also a nice path.

By definition of Q, w1 must be an invalid endpoint of Q′. Hence, there is a vertex z′ in ZQ′ \{z1}
which is adjacent to w1 and x3. This vertex in necessarily inside R1 because neither x0 nor x1 are
adjacent to x3. But then, by planarity, z1 cannot be adjacent to x1 and x2, a contradiction to z1 ∈ ZQ.

Let us now prove that Q satisfies property P4. By contradiction, suppose Q does not. Let
z1,z2,z

′
1,z

′
2 ∈ ZQ be such that both z1 and z2 are adjacent to [xi] and z′1 and z′2 are adjacent to [x j].

Consider the regions R1, . . . ,R5 related to z1 and z2 used in Figure 1. Consider the regions R′
1, . . . ,R

′
5

related to z′1 and z′2 used in Figure 1 for i = j.
Let z ∈ ZQ be adjacent to [xi+1]. Note that we can have {z1,z2}∩{u1, t1} 6= /0 if i = 1. But since

dist(C1,C2) ≥ 2, the edges z1xi+1 and z2xi+1 are not crossed. Furthermore, since no vertex in the
cluster of C1 is adjacent to x3 and not vertex in the cluster of C2 is adjacent to x1 (P is a shortest
(C1,C2)-path), then z is not in the cluster of either crossing.

Therefore, since z is adjacent to both xi and xi+2, we must have that both z and x3 are in R2 or in
R4 (say R2). This also implies that C2 is in R2. Note also that, by our choice of x0, the edges z1xi and
z2xi are not crossed. Therefore, C1 is contained in R1 ∪R3 ∪R5. With a symmetric argument, we have
that C1 is either in R′

1 or in R′
3 (say R1). Since both z′1 and z′2 are also in R2, then R′

1 ∪R′
3 are contained

in R2 and we get a contradiction.

Let Q be a path given by Claim 9.10. Without loss of generality, suppose x1 = v1 and xp = v2.
Note also that Claim 9.7 implies w1 and w2 are not in ZQ and therefore G[V (Q)∪ZQ] is planar.

Claim 9.11. dist(C1,C2) = 2 and there is a vertex adjacent to x0 and x4.

Proof. Suppose not. Then no vertex in ZQ is adjacent to vertices at distance at least four in Q. Observe
that this is the case when dist(C1,C2)≥ 3, since x1 . . .xp is a shortest (C1,C2)-path.

INRIA
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Since P is a nice and shortest (C1,C2)-path, then the only vertices in ZQ adjacent to vertices at
distance at least three in Q must be adjacent to both x0 and x3 or to both xp−2 and xp+1. By the
property P3 of Claim 9.10, there is at most one vertex, say z, adjacent to x0 and x3 and at most one
vertex, say z′, adjacent to xp−2 and xp+1.

Let us make few observations.

Obs. 1 If two vertices z1 and z2 distinct from z are adjacent to [x2], then no vertex is adjacent to [x1]
and NQ(z) = {x0,x1,x3}. Indeed z must be in the region R5 in Figure 1 because it is adjacent to
x0 and x3. By the planarity of G[V (Q)∪ZQ] and since z is adjacent to x0, x0 must also be in R5.
Again by planarity, z is not adjacent to x2 and, therefore, must be adjacent to x1 as z ∈ ZQ.

Obs. 2 If two vertices z1 and z2 distinct from z are adjacent to [x1], then no vertex is adjacent to [x2] and
NQ(z) = {x0,x2,x3}. This argument is symmetric to Observation 1.

Suppose that z exists.
If z′ exists, by Observations 1 and 2 (and their analog for z′) and the properties of Q from Claim 9.10,
the path Q is good in G− z′ because it is great in G−{z,z′}. Hence Q is magic, a contradiction to
Claim 9.5. Hence z′ does not exists.
By Claim 9.7, w2 is not adjacent to xp−1 and w1 is not adjacent to xp since dist(C1,C2) ≥ 2. So,
by planarity of G−{w1,w2}, at most two vertices are adjacent to [xp]. Let y be a vertex adjacent to
[xp]. The path Q is not great in G−{y,z}, for otherwise it would be magic. Hence, according to the
properties of Q and the above observations, there must be two vertices adjacent to [xp], two vertices
adjacent to [xp−1] and one vertex adjacent to [xp−2]. Let z1 and z2 be the two vertices adjacent to [xp−1]
and R1 . . .R5 be the regions as in Figure 1 with i = p− 1. Since there is a vertex adjacent to [xp−2],
then C1 is in R1 or R3, and C2 is in R2 or R4 because a vertex is adjacent to [xp]. But by Claim 9.4 the
4-cycle z1xpz2xp−2 is not nicely separating, so there is no vertex inside R5. Since G is triangulated,
and xp−2xp is not an edge because P is a shortest (C1,C2)-path, z1z2 ∈ E(G). Now the path Q is good
in G−{z1,z2} and so is magic. This contradicts Claim 9.5.

Hence we may assume that z does not exists and by symmetry that z′ does not exist. We get a
contradiction similarly by considering a vertex w adjacent to [x1] in place of z.

Claim 9.12. There is precisely one vertex z ∈ ZQ adjacent to both x0 and x4.

Proof. Observe that there are at most two vertices adjacent to x0 and x4. Indeed such vertices cannot
be in the crossings because dist(C1,C2) = 2. Thus if there were three such vertices, together with
contracting the path x1x2x3 we would get K3,3 minor in G−{w1,w2}, a contradiction.

Suppose by contradiction that two distinct vertices z1,z2 ∈ ZQ adjacent to vertices x0 and x4. The
edges of Q are contained in the same region of the plane bounded by the cycle x0z1x4z2. Therefore,
both crossings are also in the region containing the edges of Q. By Claim 9.3, the region bounded
by the cycle x0z1x4z2 that does not contain the crossings has no vertex in its interior. Since G is
triangulated, z1z2 ∈ E(G) as x0 because x4 are not adjacent as dist(C1,C2) = 2.

By the property P3 of Claim 9.10, z1 and z2 cannot be both adjacent to the five vertices in Q.
Therefore, without loss of generality, suppose |NQ(z2)| ≤ 4. Let us prove that Q is great in H =
(G− z2)\{z1x0,z1x4}.

(i) If a vertex t in G−{z1,z2} is adjacent to at least four vertices of Q, then without loss of gener-
ality it is adjacent to {x0,x1,x2,x3} as it cannot be adjacent to x0 and x4. Now by property P3,
z1 and z2 are not adjacent to x3. Hence one of them (the one such that x0x1x2x3x4zi separates t

from z3−i) cannot be adjacent to any vertex of {x1,x2,x3}, a contradiction to the fact that it is in
ZQ. Hence Q satisfies (a) in H.
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(ii) If two vertices t1 and t2 of H are adjacent to [x2], then necessarily x1t1x2t2 is a nicely separating,
a contradiction to Claim 9.4. Hence there is at most one vertex of H adjacent to [x2]. Thus Q

satisfies (b) in H.

(iii) If two vertices r1 and r2 of H are adjacent to [x1], then no vertex is adjacent to [x2]. Indeed
suppose for a contradiction that a vertex t is adjacent to [v2] none of {r1,r2, t} is in {w1,w2} by
Claim 9.7 and because dist(C1,C2) ≥ 2. Now contracting the path tx3x4z2 into a vertex w, we
obtain a K3,3 with parts {r1,r2,w} and {x0,x1,x2}. This contradicts the planarity of G.

Symmetrically, if two vertices of H are adjacent to [x3], then no vertex is adjacent to [x2].
Therefore Q satisfies (c) in H.

It follows that Q is a good path in H ′ = (G− z2) \ z1x4. Let φ be a safe L-colouring of Q in H ′

obtained by Lemma 8. Since Q meets the two crossings, G−Q is planar. Furthermore, G−Q can
be drawn in the plane such that all vertices on the outer face are those in N(Q). Every vertex of
ZQ \ {z1,z2} is safe in H ′ and so in G, so |Lφ(v)| ≥ 3. In H ′, z1 is safe and in G, z1 has one more
neighbour in Q in G than H ′, namely x4. Thus in G, |Lφ(z1)| ≥ 2 because z1 was safe in H ′. Since z2

has at most four neighbours in Q, we have |Lφ(z2)| ≥ 1. Now z1 is adjacent to z2, so Lφ is a {z1,z2}-
suitable assignment for G−Q. Hence by Theorem 2, G−Q is Lφ-colourable and so G is L-colourable,
a contradiction.

• Assume first that |NQ(z)| = 5. Let H = G \ {zx0,zx4}. z is the unique vertex adjacent to x0

and x4. Moreover by property P3 z is the unique vertex adjacent to x0 and x3 and the unique
one adjacent to x1 and x4. Hence Q satisfies (a) in H. Moreover, for 1 ≤ i ≤ 3, there is at
most one vertex distinct form z adjacent to [xi] otherwise G[V (Q)∪ZQ] would contain a K3,3.
Hence Q also satisfies (b) and (c) in H. Therefore Q is great in H. By Lemma 7, there exists
a safe L-colouring φ of Q in H. Thus in G, every vertex in ZQ \{z} satisfies |Lφ(v)| ≥ 3 while
|Lφ(z)| ≥ 1. Hence Lφ is suitable for G−Q. Therefore, by Theorem 2, G−Q is Lφ-colourable
and so G is L-colourable, a contradiction.

• Assume now that |NQ(z)| ≤ 4.

Suppose that there are two distinct vertices z1,z2 ∈ ZQ with z1 adjacent to x0 and x3 and z2

adjacent to x1 and x4. Let R1 be the region bounded by the cycle x0x1x2x3z1 not containing z2

and R2 be the region bounded by the cycle x1x2x3x4z2 not containing z1 (see Figure 4). Now,
note that any vertex adjacent to both x0 and x4 is not in R1 ∪R2 and any vertex adjacent to x2

must be in R1 ∪R2. Therefore, z ∈ {z1,z2}. Indeed if this was not true, then by property P3 z

is not adjacent to x1 nor x3. Thus z must be adjacent to x2 as it is in ZQ. So z is inside R1 ∪R2,
which contradicts the fact that it is adjacent to x0 and x4.

Thus, at most one other vertex z′ in ZQ \ {z} is adjacent to vertices at distance three in Q. By
symmetry, we may assume that z′ is adjacent to x0 and x3. Hence all vertices in ZQ \{z,z′} are
adjacent to some [xi] for 1 ≤ i ≤ 3. Similarly to (ii) and (iii) in Claim 9.12, one shows that Q

also satisfies (a) and (b) in (G− z)\ z′x0. Hence Q is a good path in G− z. Then Q is magic, a
contradiction to Claim 9.5.
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Figure 4: Regions R1 and R2.
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