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ABSTRACT

This paper considers the blind separation of the harmonic and
percussive components of multichannel music signals. We
model the contribution of each source to all mixture channels
in the time-frequency domain via a spatial covariance matrix,
which encodes its spatial characteristics, and a scalar spec-
tral variance, which represents its spectral structure. We then
exploit the spatial continuity and the different spectral con-
tinuity structures of harmonic and percussive components as
prior information to derive maximum a posteriori (MAP) es-
timates of the parameters using the expectation-maximization
(EM) algorithm. Experimental results over professional musi-
cal mixtures show the effectiveness of the proposed approach.

Index Terms— Harmonic and percussive source separa-
tion, local Gaussian model, continuity prior.

1. INTRODUCTION

Sounds in most real-world musical mixtures can be classified
into two major types depending on their spectral structure:
harmonic sounds such as vocals, piano or violin and percus-
sive sounds such as drums. Denoting by h(n, f) and p(n, f)
the contribution of harmonic sounds and percussive sounds
to all I mixture channels in the short time Fourier transform
(STFT) domain in time frame n and frequency bin f , respec-
tively, the observed I × 1 mixture signal x(n, f) can be ex-
pressed as

x(n, f) = h(n, f) + p(n, f). (1)

The separation of these components from a mixture is
useful for remixing [1] and also for various music infor-
mation retrieval tasks [2–4]. In [1] a method called Har-
monic/Percussive Sound Separation (HPSS) was proposed
whereby the harmonic and percussive sources can be blindly
separated in the time-frequency domain from a single channel
mixture using the assumption that spectrograms of harmonic

components are smooth in the time direction while those of
percussive components are smooth in the frequency direction.
However, this technique does not exploit the spatial informa-
tion available in multichannel mixtures and does not readily
extend to this context due to the chosen divergence cost.

In this paper, we address the separation of harmonic and
percussive components from multichannel mixtures using the
local Gaussian modeling framework in [5]. We model h(n, f)
and p(n, f) as zero-mean Gaussian random variables whose
respective covariances Σh(n, f) and Σp(n, f) are factorized
into

Σh(n, f) = vh(n, f)Rh(n, f)
Σp(n, f) = vp(n, f)Rp(n, f)

(2)

where vh(n, f) and vp(n, f) are scalar time-varying spectral
variances encoding the spectro-temporal power of harmonic
and percussive components, respectively, while Rh(n, f) and
Rp(n, f) are I × I full-rank time-varying spatial covariance
matrices encoding their spatial position and spatial spread.
Note that, compared to [5], we do not assume that the spatial
covariance matrices are constant over time. Rather, we intro-
duce a continuity prior for the spatial covariance matrices and
incorporate the temporal and spectral smoothness objectives
in [1] using different priors for the spectral variances of har-
monic and percussive components. The parameters are then
estimated in the maximum a posteriori (MAP) sense. Finally,
the separated components are obtained in the minimum mean
square error (MMSE) sense by multichannel Wiener filtering.
Matlab code for the proposed algorithm is available 1.

The structure of the rest of the paper is as follows. We
present the model of spatial and spectral continuity in Section
2 and address MAP estimation of the model parameters in
Section 3. We provide experimental results to confirm the ef-
fectiveness of the proposed approach in Section 4 and finally
we conclude in Section 5.

1https://www.irisa.fr/metiss/ngoc/sw/hpss.rar



2. SPATIAL AND SPECTRAL CONTINUITY
MODELING

Under the mixing model (1) and the parameterization (2), as-
suming that the components are uncorrelated, the vector of
STFT coefficients of the mixture signal x(n, f) is zero-mean
Gaussian with covariance matrix

Σx(n, f) = vh(n, f)Rh(n, f) + vp(n, f)Rp(n, f). (3)

The log-likelihood is then given by

logL = −
∑
n,f

tr(Σ−1x (n, f)Σ̂x(n, f))+log det(πΣx(n, f))

(4)
where det(.) denotes the determinant of a square matrix and
Σ̂x(n, f) the empirical mixture covariance matrix as defined
in [6].

We enforce spatial and spectral smoothness of harmonic
and percussive components by introducing prior distributions
for Rh(n, f),Rp(n, f), vh(n, f), and vp(n, f), and estimat-
ing them in the MAP sense.

2.1. Spatial continuity prior

When each component consists of a single harmonic or per-
cussive source and reverberation is moderate, the spatial co-
variance matrices are time-invariant and may be modeled as in
[5]. However, in general, each component consists of several
sources, e.g the percussive component includes several drums
(bass drum, snare drum, hi-hat, etc). The spatial covariance
matrices of each component are then time-varying but can be
assumed to vary smoothly over time due to the fact that one
source usually predominates in a given time-frequency neigh-
borhood. We then choose the following Markov chain prior
for Rh(n, f) and Rp(n, f) when n > 1

p
(
Rh(n, f)

)
= IW

(
Rh(n, f)|(mh − I)Rh(n− 1, f),mh

)
p
(
Rp(n, f)

)
= IW

(
Rp(n, f)|(mp − I)Rp(n− 1, f),mp

)
.

(5)
IW

(
R|Ψ,m

)
denotes the inverse Wishart density over

positive definite matrices R with positive definite inverse
scale matrix Ψ and m degrees of freedom [7]

IW(R|Ψ,m) =
|Ψ|m|R|−(m+I)e− tr(ΨR−1)

πI(I−1)/2
∏I
i=1 Γ(m− i+ 1)

(6)

with tr(.) denoting the trace of a square matrix and Γ the
Gamma function such that the mean of R is given by Ψ/(m−
I) [7]. This distribution, its mean, and its variance exists for
m > I − 1, m > I , and m > I + 1 respectively

The reason for which we consider an inverse-Wishart
prior for the spatial covariance matrices is that it is the con-
jugate prior for the likelihood of the considered Gaussian
observation model, which results in closed-form updates.
The initial distributions p

(
Rh(1, f)

)
and p

(
Rp(1, f)

)
are

chosen as uniform for all f .

2.2. Spectral continuity prior

Since the spectrum of harmonic components is usually
smooth over the time axis while that of percussive com-
ponents is usually smooth over the frequency axis [1], we
consider the following Markov chain priors for vh(n, f) with
n > 1 and vp(n, f) with f > 1:

p
(
vh(n, f)

)
= IG

(
vh(n, f)|αh, (αh − 1)vh(n− 1, f)

)
p
(
vp(n, f)

)
= IG

(
vp(n, f)|αp, (αp − 1)vp(n, f − 1)

)
(7)

IG(v|α, β) denotes the inverse-gamma density with
shape parameter α > 0 and scale parameter β > 0

IG(v|α, β) =
βα

Γ(α)
v−α−1e−β/v (8)

whose mean is β/(α− 1).
Similarly to the choice of initial distribution for the spatial

covariances, p
(
vh(1, f)

)
∀f and p

(
vp(n, 1)

)
∀n are chosen

as uniform. The choice of an inverse-gamma prior, which
is the conjugate prior for the considered likelihood, brings
not only simpler computation compared to the Gaussian prior
in [1] but also better separation performance as shown in our
experiments in Section 4. This prior distribution was also
used to model temporal continuity in [8] in the different con-
text of multipitch estimation.

3. MAP ESTIMATION OF MODEL PARAMETERS

We derive an EM algorithm to estimate the spatial parameters
θspat = {Rh(n, f),Rp(n, f)}n,f and the spectral parameters
θspec = {vh(n, f), vp(n, f)}n,f of the two types of compo-
nents in each time-frequency bin (n, f) using the complete
data c = {h(n, f),p(n, f)}n,f , that is the set of STFT coef-
ficients of the harmonic component and the percussive com-
ponent in all time-frequency bins.

In the E-step, the expected covariance matrices Σ̂h(n, f),
Σ̂p(n, f) are updated similarly as in [6] using the Wiener fil-
ters Wh(n, f) and Wp(n, f)

Wh(n, f) = Σh(n, f)Σ−1x (n, f) (9)

Wp(n, f) = Σp(n, f)Σ−1x (n, f) (10)

Σ̂h(n, f) = Wh(n, f)Σ̂x(n, f)WH
h (n, f) (11)

+ (I−Wh(n, f))Σh(n, f)

Σ̂p(n, f) = Wp(n, f)Σ̂x(n, f)WH
p (n, f) (12)

+ (I−Wp(n, f))Σp(n, f)

where I is the I × I identity matrix, Σh(n, f), Σp(n, f) are
defined in (2), Σx(n, f) in (3), and Σ̂x(n, f) in [6].

In the M-step, the auxiliary function Q defined in the
MAP sense as

QMAP (θ|θold) = log p
(
c|θ
)

+ γ1 log p
(
θspat

)
+γ2 log p

(
θspec

)
(13)



is maximized with respect to the parameters θ = {θspat, θspec},
where γ1, γ2 are tradeoff hyper-parameters determining the
contribution of the priors and

p
(
c|θ
)

=
∏
n,f

p
(
h(n, f)|0,Σh(n, f)

)
p
(
p(n, f)|0,Σp(n, f)

)
(14)

p
(
θspat

)
=
∏
n,f

p
(
Rh(n, f)

)
p
(
Rp(n, f)

)
(15)

p
(
θspec

)
=
∏
n,f

p
(
vh(n, f)

)
p
(
vp(n, f)

)
. (16)

By substituting (5) into (15), (7) into (16), and (14), (15), (16)
into (13), then computing the gradient of QMAP (θ|θold) with
respect to each entry of Rh(n, f), Rp(n, f) and equating it
to zero, we obtain a quadratic matrix equation. After solving
this equation under the constraint that the solution is positive
definite [9], the spatial covariance matrices are updated as

Rh(n, f) = (1/2)A−1h
(
−B + (B2 − 4AhChAh)1/2

)
A−1h

Rp(n, f) = (1/2)A−1p
(
−B + (B2 − 4ApCpAp)

1/2
)
A−1p
(17)

where (.)1/2 denotes the square root of a Hermitian matrix,
and

Ah =
(
γ1(mh − I)R−1h (n+ 1, f)

)1/2
Ap =

(
γ1(mp − I)R−1p (n+ 1, f)

)1/2
B = (γ1I + 1)I (18)

Ch = −Σ̂h(n, f)/vh(n, f)− γ1(mh − I)Rh(n− 1, f)

Cp = −Σ̂p(n, f)/vp(n, f)− γ1(mp − I)Rp(n− 1, f)

Similarly, by computing the gradient of QMAP (θ|θold)
with respect to vh(n, f), vp(n, f) and equating it to zero, we
get a second order polynomial form of the source variances
with a single positive solution, that is

vh(n, f) = (−b+
√
b2 − 4ahch)/(2ah)

vp(n, f) = (−b+
√
b2 − 4apcp)/(2ap)

(19)

where

ah = γ2(αh − 1)/vh(n+ 1, f)

ap = γ2(αp − 1)/vp(n, f + 1)

b = γ2 + I (20)

ch = − tr
(
R−1h (n, f)Σ̂h(n, f)

)
− γ2(αh − 1)vh(n− 1, f)

cp = − tr
(
R−1p (n, f)Σ̂p(n, f)

)
− γ2(αp − 1)vp(n, f − 1)

Note that, in (18) and (20), due to the choice of initial
distributions Rh(n − 1, f), Rp(n − 1, f), vh(n − 1, f) are
zero for all f when n = 1, and vp(n, f − 1) is zero for all
n when f = 1. Source variances are uniformly initialized as

vh(n, f) = vp(n, f) = 1 for all n, f while the spatial covari-
ance matrices are initialized from the observed mixture co-
variance as Rh(n, f) = Rp(n, f) = 1

2Σ̂x(n, f) ∀n, f . The
algorithm converges just after five EM iterations. Finally, the
separated components are obtained by multichannel Wiener
filtering as

ĥ(n, f) = Wh(n, f)x(n, f)
p̂(n, f) = Wp(n, f)x(n, f)

(21)

4. EXPERIMENTAL RESULTS

Sound mixing techniques vary depending on the music genre:
for certain genres, instruments are placed at different spa-
tial positions while for other genres they are all mixed to the
center. We evaluated the separation performance of the pro-
posed algorithm over 8 stereo music mixtures of harmonic
and percussive sources corresponding to two different mix-
ing conditions. These mixtures are part of the Quaero project
database, which was used for the Professionally produced mu-
sic recordings task of the 2010 Signal Separation Evaluation
Campaign (SiSEC 2010) 2. The first 4 mixtures were origi-
nally mixed by a sound engineer where most instruments are
panned close to the center with artificial reverb, and the total
number of harmonic and percussive sources in each mixture
varies from four to eight. In order to investigate the contri-
bution of spatial information, in the second set of mixtures
(named Pan+) we moved each source to a random position by
amplitude panning but keeping the same reverb. The param-
eter setting is summarized in Table 1. In this experiment, the
empirical mixture covariance Σ̂x(n, f) was computed by lo-
cal averaging as in [6] and the hyper-parameters mh, mp, αh,
αp are heuristically fixed depending on the desired shape of
the priors, which determines the degree of smoothness.

Mixture signal duration 10 s
Number of channels I = 2

Sampling rate 44100 Hz
STFT frame size 4096
STFT frame shift 2048

Number of EM iterations 5
IG shape parameters αh = αp = 10
IW degrees of freedom mh = mp = 5

Trade-off parameters γ1 = 0.5, γ2 = 1

Table 1. Common experimental parameter settings

Separation performance was evaluated using the widely
used signal-to-distortion ratio (SDR) criterion measuring
the overall distortion, as well as the signal-to-interference
ratio (SIR), signal-to-artifact ratio (SAR) and source image-
to-spatial distortion ratio (ISR) criteria in [10]. We com-
pared the performance of the proposed multichannel har-

2http://sisec.wiki.irisa.fr/



monic and percussive sound separation algorithm (M-HPSS)
with that achieved by the original single channel HPSS al-
gorithm using I-divergence and Gaussian continuity priors
(HPSS) [1], and with that given by the single channel HPSS
algorithm introduced in this paper using inverse-gamma prior
(HPSSIG). The results were averaged over all mixtures for
each dataset and are shown in Table 2. All mixtures and
the harmonic/percussive signals separated via the 3 tested
methods are available on our webpage 3.

SDR SIR SAR ISR

Original
HPSS 3.8 5.2 7.6 8.7

HPSSIG 4.8 7.9 8.0 10.7
M-HPSS 5.0 7.2 8.6 10.1

Pan+
HPSS 3.8 5.1 7.5 8.6

HPSSIG 4.7 7.7 8.2 10.4
M-HPSS 5.3 7.4 8.8 10.3

Table 2. Average harmonic/percussive component separation
performance

The numerical results show the significant separation im-
provement of HPSSIG compared to the original HPSS in
terms of all criteria over both datasets. This means that the
inverse-gamma prior investigated in this paper better models
the spectral continuity of harmonic and percussive compo-
nents than the Gaussian prior introduced in [1]. Separation
performance given by HPSS and HPSSIG over the Pan+
dataset is very similar to that over the original dataset due
to the fact that panning does not affect the spectral structure
of the sources. But the performance achieved by M-HPSS
has noticeably increased in panned datasets, i.e. the SDR is
0.6 dB higher than that given by HPSSIG showing the benefit
of exploiting spatial information. The performance improve-
ments are confirmed by informal listening test and by the
additional auditory-motivated criteria introduced at SiSEC
2010.

5. CONCLUSION

In this paper, we proposed a multichannel approach for the
separation of harmonic and percussive components in musi-
cal recordings by joint modeling of spatial and spectral con-
tinuity. We investigated suitable continuity priors for both
spatial and spectral parameters such that they are estimated
in the MAP sense using the EM algorithm. Experimental re-
sults over professional musical mixtures confirm the benefit
of the proposed multichannel approach compared to single-
channel algorithms. Future work will investigate the learn-
ing of hyper-parameters and consider the proposed separation
algorithm as a pre-processing step for some MIR tasks, e.g.
singing voice extraction.

3https://www.irisa.fr/metiss/ngoc/sw/HPSSresults.rar
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