
HAL Id: inria-00593795
https://hal.inria.fr/inria-00593795

Submitted on 17 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cycles Assessment with CycleTable
Jannik Laval, Simon Denier, Stéphane Ducasse

To cite this version:
Jannik Laval, Simon Denier, Stéphane Ducasse. Cycles Assessment with CycleTable. [Research
Report] 2011. �inria-00593795�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49988409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00593795
https://hal.archives-ouvertes.fr

Cycles Assessment with CycleTable

Jannik Laval, Simon Denier, Stéphane Ducasse

RMoD Team
INRIA - Lille Nord Europe - USTL - CNRS UMR 8022

Lille, France
{jannik.laval, simon.denier, stephane.ducasse}@inria.fr

Abstract—Understanding the package organization of a large
application is a challenging and critical task since it allows
developers to better maintain the application. Several ap-
proaches show in different ways software structure. Fewer show
modularity issues at the package level. We focus on modularity
issues due to cyclic dependencies between packages. Most
approaches detect Strongly Connected Components (SCC) in
a graph of dependencies. However, SCC detection does not
allow one to easily understand and remove cyclic dependencies
in legacy software displaying dozens of packages all dependent
on each other.

This paper presents i) a heuristic to focus on shared
dependencies between cycles in SCC and ii) CycleTable, a
visualization showing interesting dependencies to efficiently
remove cycles in the system. This visualization is completed
with enriched cells, small views displaying the internals of a
dependency [LDDB09]. We performed i) a case study which
shows that the shared dependency heuristic highlights depen-
dencies to be removed, and ii) a comparative study which shows
that CycleTable is useful for the task of breaking cycles in a
SCC compared to a normal node-link representation.

Keywords-software visualization; reengineering; cycle; pack-
age; dependency

Note for the reader: this paper makes heavy use of colors in the
figures. Please obtain and read a colored version of this paper to
better understand the ideas presented in this paper.

I. INTRODUCTION

It is frequent to have large applications structured over
many packages. Packages are units of reuse and deployment:
a package is built, tested, and released as a whole as soon
as one of its classes is changed, or used elsewhere [Mar00].
Then modularity is as important at package level as at class
level (if not more). Modularity implies that releasing a new
package will only impact the dependent packages in the
building chain. Cycles between packages have a high impact
on the modularity of the application. Indeed, a cycle in the
package dependency graph implies all packages in the cycle
to be built, tested, and released together as they depend on
each other. Martin [Mar00] proposes the Acyclic Dependen-
cies Principle (ADP), which states that there should not be
any cyclic dependency between packages.

While it is easy to detect and correct cyclic dependency as
soon as they arrive, the problem is more difficult in legacy
software where no cycle assessment has been performed on

the go. Then dependencies often form one unique Strongly
Connected Component (SCC) where all packages depend on
each other. It is cumbersome to understand the interweaving
of dependencies and difficult to devise an efficient plan for
breaking cycles.

In a previous work [LDDB09], we propose eDSM which
enhances Dependency Structural Matrix (DSM) for a better
understanding of cycles at the package level. eDSM shows
Strongly Connected Components and highlights cycles be-
tween two packages in the SCC. However, eDSM is not
adapted when one cycle involves more than two packages.

We devise a new approach based on the decomposition of
one SCC into a set of “minimal cycles”. “Minimal cycles”
are simple cycles containing a few nodes and are thus easy
to understand and fix. Together the set of minimal cycles
cover all dependencies in the SCC and allows the engineer
to assess a minimal plan to remove all cycles in the system.

In this paper, we present a new heuristic to break cy-
cles named “shared dependencies” and a new visualization,
called CycleTable, entirely dedicated to cyclic dependency
assessment. The heuristic of “shared dependencies” comes
from the decomposition of the SCC into minimal cycles.
Often minimal cycles are intertwined together so that one
dependency is shared by the cycles. Removing such a shared
dependency breaks involved cycles. CycleTable layout dis-
plays all cycles at once and shows how they are intertwined
through one or more shared dependencies. CycleTable com-
bines this layout with the enriched cells (eCell) of eDSM
[LDDB09] to present details of dependencies at class level,
which allows the engineer to assess the weight of the
dependency. This work is implemented on top of the Moose
software analysis platform.

Section II introduces the background and the challenges of
cycle analysis with the traditional node-link representation
of graphs and with DSM. Section III and Section IV explain
CycleTable layout and usage. Section V presents enriched
cells in CycleTable and discusses on a sample case the
criteria to break cycles as highlighted by the visualization.
Section VI presents some validations based on a case study
and a comparative study. Section VII lists related work and
Section VIII concludes the paper.

A B

E

D

C

Figure 1. Sample SCC.

A B

E

D

C

A B

C

Figure 2. Sample SCC (Figure 1) decomposed into three minimal cycles.
The thick arrow represents a shared dependency

II. CYCLE UNDERSTANDING PROBLEMS

In this section, we present important points related to
cycle understanding and which methods exist to fix them.

A. Definitions

Definition 1: A Strongly Connected Component (SCC)
is the maximal set of nodes (here, packages) that depend on
each others. In Figure 1, all nodes are in a single SCC.

Definition 2: A cycle is a circular dependency between
two or more packages. We distinguish two types of cycles:

• direct cycle. It represents a cycle between two packages.
In Figure 1, C and D are in a direct cycle because there
is one dependency from C to D, and one dependency
from D to C.

• indirect cycle. It represents a cycle between more than
two packages. In Figure 1, A, B and C are in indirect
cycle. A, B and E are also in indirect cycle.

Definition 3: A minimal cycle is a cycle with no node
(here no package) appearing more than once when listing the
sequence of nodes in the cycle. In Figure 2, A-B-E and A-
B-C are two different minimal cycles, but A-B-C-D-C is not
because C is present twice. A-B-C-D-C can be reconstructed
with the two minimal cycle A-B-C and C-D.

Definition 4: A shared dependency is a dependency
presents in multiple minimal cycles. In Figure 2, the edge
between A and B is shared by the two minimal cycles A-B-E
and A-B-C.

B. Feedback Arcset

In graph theory, a feedback arcset is a collection of edges
we should remove to obtain an acyclic graph. The minimum
feedback arcset is the minimal collection of edges to remove
to break the cycle. This approach could produce good results
working on package dependencies because it does not break
so much the structure. This method is not usable for two
important reasons:

• It is a NP-complete problem (optimized by Kann
[Kan92] to become APX-hard).

• It does not take into account the semantic of the
software structure. Optimizing a graph is not equivalent
to a possible realistic at the software level.

C. Cycle Visualization

1) Graph Visualization: Figure 1 shows a sample graph
with five nodes and three minimal cycles. Notice that cycle
A-B-C and A-B-E share a common dependency (in bold)
from A to B. This shared dependency is interesting to spot
since it joins two cycles and by removing it we would break
those cycles.

Graph layouts offer an intuitive representation of graphs,
and some handle cyclic graph better than others. On large
graphs, complex layouts may reduce the clutter but this is
often not simple to achieve.

2) DSM and eDSM Visualization: DSM (Dependency
Structural Matrix) provides a good approach to see soft-
ware dependencies [Ste81], [SGCH01], [LF05], [SGS+05],
[SJSJ05] and particularly cycles [SJSJ05]. It provides a
dependency-centric view possibly associated with color to
perceive more rapidly some values [HBO10]. We use DSM
(Dependency Structural Matrix) to see direct cycles: a direct
cycle is displayed in red and the two cells representing the
two dependencies of the direct cycle are symmetric along the
diagonal [SJSJ05]. Seeing indirect cycles is more difficult,
as the visualization is not adapted for it. The main reason for
this problem is that it is difficult to read an indirect cycle in
the matrix, i.e., to follow the sequence of cells representing
the sequence of dependencies in the cycle. The order can
appear quite arbitrary as one has to jump between different
columns and rows (this problem does not exist with direct
cycles as there is only two cells involved, mirroring each
other along the diagonal). The cycle A-B-E composed by the
three dependencies A>B, B>E and E>A has been circled in
Figure 3 to show the complexity of reading indirect cycles,
intertwined with direct cycles.

In Figure 3, the whole matrix displays a pale blue back-
ground, indicating that A, B, C, D, and E are in the same
SCC. We can see the direct cycle between C and D (in red)
and in yellow the other dependencies in the SCC.

We propose eDSM [LDDB09], an improvement of DSM,
which shows the relationships between classes in package
dependencies. It shows all classes involved in a dependency
and which types of dependency exist, providing a good

DCBA
A C>A

B A>B

C B>C D>C

D C>D

E>A

B>EE

E

Dependencies from
the cycle A-B-E

a direct cycle

Figure 3. DSM corresponding to the graph of Figure 1. Each cell represents
a dependency.

understanding of the dependency and support for breaking
the dependency when necessary. While eDSM allows us to
analyze direct cycles comfortably, it does not address the
problem of indirect cycles left over after removal of direct
cycles.

D. Lack of Solutions

In this section, we presented the problem of understanding
and breaking cycles and we explained why existing ap-
proaches are not up to the task. Solving cycles in legacy
systems with several packages and large SCCs is difficult.
Feedback Arcset is not necessarily adapted. Node-link repre-
sentations become unreadable with a large number of pack-
ages and dependencies crossing each other. DSM does not
provide enough information about indirect cycles. Based on
our experience, we propose to focus on shared dependencies
in order to efficiently understand and break cycles. The next
section shows how this heuristic is embodied and used in
the CycleTable visualization.

III. CYCLETABLE

During our experiments with eDSM, we have noted
that a dependency can be part of multiple cycles. These
“shared” dependencies should be highlighted because when
we remove them, all involved cycles disappear. Our intuition
is that the more shared a dependency is, the more likely it
is unwanted in the architecture and should be removed.

We propose a visualization to help reengineers to identify
dependencies involved in cycles and to highlight shared
dependencies. This visualization shows all minimal cycles
ordered by shared dependencies.

A. CycleTable in a Nutshell

We design CycleTable with the purpose of visualizing
intertwined cycles. CycleTable is a rectangular matrix where
packages are placed in rows and cycles in columns. Cy-
cleTable (i) shows each minimal cycle independently in
columns; (ii) highlights shared dependencies between mini-
mal cycles; and (iii) uses context displaying cells to provide
information about dependency internals, enabling small mul-
tiples and micro-macro reading [Tuf97] i.e., variations of the

A

B

E

C

D

A>B

B>E

E>A

C>A

B>C

A>B

D>C

C>D

A-B-E Cycle
Shared dependency A-B

Source node
 B

Dependency A-B

Dependency B-C

Dependencies
from C

packages
involved
in cycles each column is a

minimal cycle

3 3 2

Number of
dependencies

in the cycle

3

1

2

1

2

3

1

2

Sequence in
the cycle

Figure 4. CycleTable for Figure 1 sample graph.

same structure to reveal information. We detail each of these
points now.

B. CycleTable Layout

The CycleTable layout is presented in Figure 4. This
figure shows a sample CycleTable layout for the graph in
Figure 1 and Figure 2. The first column contains the name
of packages involved in cycles, then each column represents
one minimal cycle. A row represents all dependencies in-
volved in cycles coming from the package. A non-empty
cell, at the intersection of one row and one column, indicates
that the package of this row has a dependency involved in
the column cycle.

1) One cycle per column: Except for the first, each
column represents a minimal cycle. In Figure 4, the first
column involves packages A, B and E in a cycle (first cell
represents the dependency from A to B, the second cell from
B to E and the last one from E to A).

2) One package per row: Each row contains dependen-
cies (represented as boxes) from a package. In Figure 4,
the first row represents package A, with a dependency to B
involved in two different minimal cycles. The second row
represents package B, which depends on E and C.

3) Shared dependencies: Cells with the same background
color represent the same dependency, shared by multiple
cycles. In Figure 4, first row contains two boxes with a
yellow background color. It represents the same dependency
from A to B, involved in the two distinct cycles A-B-E and
A-B-C. It is valuable information for reengineering cycles.
Indeed, removing or reversing A-B can solve two cycles.

4) Size of the cycle: The last line of CycleTable displays
the size of each cycle (e.g., each column). This information
is valuable when there are multiple cycles. A first approach
could be to fix the smaller cycles because there are fewer
dependencies to understand.

C. Cycle Sequence

Cycle sequence represents a relative order between de-
pendencies. This number is sometimes necessary to retrieve
the exact order of dependencies in a cycle. Let’s take the
example of cycle A-B-E. In Figure 4, the first relative
dependency is A>B (there is the number 1 in top-left corner).
The second dependency of the cycle is B>E (number 2 in
top-left corner). The third and last dependency of the cycle
is E>A (number 3 in top-left corner). In this particular case,
it is not useful as cycle sequence follows the top-down order.

To understand the usefulness of this information, Fig-
ure 5 provides a real example. The 13th column displays
a cycle that cannot be read from top to bottom. As the
dependencies are not in the right order, it is useful to
have the sequence of the cycle. The cycle should be read
from number 1 to number 5, 1: FxExtension>MsFinder, 2: Ms-
Finder>MsWizard, 3: MsWizard>MsGene, 4:MsGene>MsCore
and 5: MsCore>FxExtension.

IV. READING A CYCLETABLE

Figure 5 shows a sample CycleTable with 9 packages
involved in 15 minimal cycles.

A. Reading a package

There are three visualization patterns for a package.

• There is one color in the row: the package has one
shared dependency to another package but it is involved
in multiple cycles. For example in Figure 5, the package
MsCore (row 2) has one shared dependency to FxExten-
sion, this dependency is shared by all cycles displayed
in this CycleTable.

• There are white cells in the row: a white dependency
is not a shared dependency. The package is involved in
multiple cycles with many dependencies. In Figure 5,
the package MsWizard (last row) has three different
dependencies involved in three different cycles. There
is no shared dependency.

• When there are multiple colors in the row, there are
multiple cycles with multiple shared dependencies. It is
the common visualization pattern. The goal is to look at
the most present color. For example in Figure 5, the line
MsMont has six cells: four cells are white and two cells
are green. The two green cells are the same dependency,
the white cells represents four different dependencies.
MsMont has five different dependencies, involved in six
cycles.

B. Reading a cycle

A column represents a cycle. Cycle length is displayed at
the bottom of the table. A cycle with colored cells has shared
dependencies with other cycles. For example in Figure 5,
the 9th cycle between FxCore, MsCore and FxExtensions has
two shared dependencies (red and blue) and one non-shared
dependency.

C. Reading Colors

The more cells share the same color, the more the same
dependency is involved in multiple cycles. Then this depen-
dency is interesting for cycle removing. We do not say that
this dependency must be removed, but when we remove a
shared dependency, all cycles involving this dependency are
removed. For example, in Figure 5, if the blue dependency
from MsCore to FxExtension could be removed, all presented
cycles would be removed.

V. CYCLETABLE WITH ENRICHED CELLS

A package is a complex structure containing multiple
classes in relation with other classes inside and outside the
package. Showing the details at class level of a dependency
from one package to another is also important to understand
the dependency and assess its weight. We use a small view in
each cell (named eCell for enriched cell). A first version was
proposed in [LDDB09] and has been adapted to CycleTable.
Figure 7 shows how each eCell provides a closed context
to understand each dependency separately, yet allows one
to compare the complexity of dependencies with each other.
As the subject of this paper is not eCell, this section only
shows the behavior that we can use in cells.

A. Overall structure of an enriched cell

An enriched cell contents displays all dependencies at
class level from a source package to a target package.

An enriched cell is composed of three parts (see Figure 6):
• At the bottom is a colored frame which represents the

identification of shared dependencies by a color and a
number for sequence identification.

• The top row gives an overview of the strength and
nature of dependencies between classes into the two
involved packages. It shows the total number of depen-
dencies (Tot) in black, inheritance dependencies (Inh)
in blue, references to classes (Ref) in red, invocations
(Msg) in green, and class extensions (Ext) made by the
source package to the target one in gray1.

• The two large boxes in the middle detail class depen-
dencies going from the top box to the bottom box

1A class extension is a method defined in a package, for which the class is
defined in a different package [BDN05]. Class extensions exist in Smalltalk,
CLOS, Ruby, Python, Objective-C and C#3. They offer a convenient way
to incrementally modify existing classes when subclassing is inappropriate.
They support the layering of applications by grouping a package with its
extensions to other packages. AspectJ inter-type declarations offer a similar
mechanism.

Figure 5. A subset of Moose in CycleTable with simple cells.

i.e., from the source package to the target package.
Each box contains squares that represent involved
classes: referencing classes in the source package and
referenced classes in the target package. Dependencies
between squares link each source class (in top box) to
its target classes (in bottom box) (Figure 6).

Source package

Target package

Ratio of classes
concerned by

the dependency

Tot Inh Ref Msg Ext

Number and type
of dependencies

C

Z X Y

BA
Colors of the link corresponds
to the cell's header:
- Red: reference
- Blue: inheritance
- Green: invocation

State of the dependency1

position in the cycle

Classes involved in the
dependency

Identification of shared
dependencies

Figure 6. Enriched cell structural information.

B. Breaking Cycles with an enriched CycleTable

Figure 7 shows a CycleTable with four packages of
Moose core: FxCore, MsCore, FxExtensions and MsFinder.
Six minimal cycles are immediately visible. It also appears

that three dependencies are each involved in multiple cycles
(with red, blue, and orange frames).

An important asset of CycleTable is that it does not focus
on a single solution to break cycles. It rather highlights
different options as there are many ways to resolve such
cycles. Only the reengineer can select what he thinks is the
best solution. We now discuss how CycleTable allows one
to consider solutions for solving cycles in Figure 7.

The first point to consider in CycleTable is the notion of
shared dependencies, the number of cycles that are involved,
and their weight. For example, the red cell linking FxCore
to MsCore (first row) is in two indirect cycles and one direct
cycle. It has a weight of two dependencies and involves four
classes (two in each package) as well. But one dependency
is an inheritance which can require some work to remove.
Finally, from a semantic point of view, MsCore is at the root
of many functions in the system so it seems normal to have
such dependencies from FxCore.

Instead, we turn our focus to the blue cells (named
A in Figure 7), linking MsCore to FxExtensions. It has a
weight of five dependencies and involves two classes. From
a semantic point of view, FxExtensions represents extended
functionalities of the system so it seems that the depen-
dency from MsCore is misplaced: it is just a single method
referencing a class in FxExtensions. Moving the method to
package FxExtensions is enough in this case to remove the

Package source of
the dependency

FxCore is a source of 1 dependency,
implied in 3 cycles

Two cycles remaining
after the blue dependency was removed

This dependency is complex A direct cycle

Two classes from FxCore are
involved in this dependency

an invocation from FxCore to MsCore

an inheritance from FxCore to MsCore

B
C

A A A A

Figure 7. CycleTable with enriched cells. There are 4 packages involved in cycles: FxCore, MsCore, FxExtensions and MsFinder

dependency. This single action breaks four cycles.
Two direct cycles remain: (FxCore - MsCore) named

B in Figure 7 and (FxExtensions - MsFinder) named C
in Figure 7. The cycle C has a dependency shared with
previously fixed cycles (yellow dependency) and is small
(two internal dependencies). But the other dependency is
also made of two internal dependencies. The situation is
balanced. In this case the reengineer has to rely first on his
knowledge of the system architecture to detect the improper
dependency (FxExtensions >MsFinder). CycleTable is still
useful to explore the involved classes and methods.

We assessed before that the dependency from FxCore to
MsCore is acceptable. Hence, the dependency from MsCore
to FxCore should be removed to resolve the cycle labeled
B (Figure 7). As for the first case, a single method making
a reference was misplaced in package MsCore and should
become a class extension.

VI. VALIDATION

We performed two studies to validate our approach. First,
we show on a case study that unexpected dependencies
in the architecture, which should be removed, often reveal

themselves as shared dependencies and are given the primary
focus in CycleTable. Second, we perform a comparative
study of CycleTable with a normal node-link visualization
to validate the efficiency of CycleTable when understanding
and fixing large sets of intertwined cycles.

A. Case study on unexpected dependencies

1) Protocol: The case study was realized on the core of
Moose version 4beta4 (33 packages). The rest of Moose is
not included in this case study because it does not have
cycles. A developer from the Moose team evaluated all
package dependencies of the system (106 dependencies),
regardless of their involvement in cycles. The goal was to
retrieve an objective evaluation of each dependency. The
possible values that the developer can give are: the depen-
dency is expected in the system architecture, purpose of the
dependency requires deep investigation, and the dependency
is unexpected and should probably be removed.

After this step, we match all shared dependencies from
CycleTable against the evaluation given by the developer. We
assessed two hypotheses: the probability that unexpected de-
pendencies are often shared, and prominence of unexpected

dependencies in CycleTable, given by their positions in the
matrix.

2) Results—shared dependencies as primary targets for
removal investigation: Table I summarizes the results of the
case study. The first three lines show some characteristics of
the system: there are 14 packages involved in 42 minimal
cycles, themselves including 17 different shared dependen-
cies. Then, the assessment performed by the Moose devel-
oper returned 11 unexpected dependencies, which should
be removed. Finally, we perform the intersection between
unexpected and shared dependencies: 9 out of the 11 un-
expected dependencies are also shared by various cycles.
The two other unexpected but not shared dependencies are
actually independent direct cycles i.e., they are direct cycles
forming each one SCC, with no intertwined cycles. These
two dependencies are not critical in the system architecture.

The 11 unexpected dependencies retrieved by the de-
veloper cover the 42 minimal cycles: in other words, fix-
ing those 11 dependencies would break all cycles. It is
remarkable that fixing the 9 shared dependencies actually
break 40 out of 42 minimal cycles (the two remaining
cycles being the independent direct cycles). This case study
shows that i) unexpected dependencies are often shared
dependencies, and that ii) removing shared dependencies can
break multiple cycles with minimal effort, as only a handful
of dependencies need to be assessed.

Characteristics Moose
number of packages 33
number of packages in cycles 14
number of dependencies 106
number of minimal cycles 42
number of shared dependencies 17
number of unexpected dependencies 11
unexpected ∩ shared 9
cycles coverage by unexpected ∩ shared 40 / 42

Table I
RESULTS OF SHARED DEPENDENCY VALIDATION.

3) Results—prominence of unexpected dependencies in
CycleTable: CycleTable uses a heuristic to order packages
and cycles in the matrix. This heuristic tries to place cycles
sharing common dependencies next to each other. In this
study, we show that the ordering given by the heuristic
effectively also puts forward unexpected dependencies, given
that they are often shared. Starting with the set of unexpected
dependencies retrieved by the developer, we looked up the
position of the source package in CycleTable. This position
corresponds to the row where the dependency is displayed.

Table II shows that 9 out of 11 unexpected dependencies
(80%) appear in the first three lines (3 out of 15 packages,
20%). Thus issues with cyclic dependencies relate mostly to
three packages. This result shows that just by focusing on
the first part of the visualization, a great deal of work can
be done in breaking cycles.

Unexpected dependency Position in CycleTable
(line number)

Famix-Core » Famix-Implementation 1
Moose-Core » Famix-Core 2
Moose-Core » Moose-SmalltalkImporter 2
Moose-Core » Famix-Extensions 2
Moose-Core » Moose-GenericImporter 2
Moose-Core » Famix-Implementation 2
Famix-Extension » Famix-Smalltalk 3
Famix-Extensions » Moose-Finder 3
Famix-Extension » Famix-Java 3
Fame » Moose-Core 9
Moose-Wizard » Moose-Finder 10

Table II
RESULTS OF UNEXPECTED DEPENDENCY POSITION.

B. Comparative Study with Node-link Representation

1) Protocol: In this comparative study, we validate Cy-
cleTable as a useful visualization to understand and break
a large set of cycles intertwined together. The precise goal
of the study was to validate the effectiveness of CycleTable
layout in matrix, compared to a common node-link layout.
We measure the time taken by participant to reason about
cycles and the quality of their answer.

The protocol is the following: first the participant is
given a tutorial about the task and the tool with a small
example, questions and correct answers to train himself.
Second he performs the same questions on the real case
study. For the case study, we use a subset of Moose (the 14
packages in cycles, see Table I). Since we focus on assessing
the tool, we replace all package names by arbitrary letters
from A to O and we do not use enriched cell (Figure 9).
Hence, participants could not use prior Moose background
(some had already work as developers in Moose) or package
names to guide their intuition. The assessment of multiple
intertwined cycles is impractical when one uses a single
node-link representation showing the full SCC (as shown
in Figure 8).

Famix-Smalltalk

Famix-Implementation

Moose-Core

Famix-Core

Famix-Extensions

Fame

Moose-GenericImporter

Moose-SmalltalkImporter

Moose-Finder

Famix-Java

Famix-File

Moose-Wizard Moose-MonticelloImporter

Famix-SourceAnchor

Figure 8. Node-Link representation of the Moose 14 packages in cycle.

Instead, we choose to display a series of node-link
representations, one for each minimal cycle built with
dotty/GraphViz [GN00]. This allows us to map the same
data in CycleTable and node-link. In particular, a shared
dependency was also displayed with the same color across
multiple node-links.

One group of seven participants answers questions using
CycleTable. The other group of six participants answers
questions using the node-link visualization.

Figure 9. Sample of CycleTable (left) and node-link visualization(right)
used in the study.

2) List of questions: Here are the eight questions that the
users have to answer. We also give the rating of the answer,
based on the distance of the answer to the correct one. A 0
rating indicates a good answer.

Q1: Give 2 packages that are in a direct cycle (cycle
between two packages). Rating: 0 when the answer
represents a direct cycle, 1 else.

Q2: Give a minimal cycle involving N and O (enumer-
ate packages in order). Rating: 0 when the answer
is {O, G, N}, +1 for each false value.

Q3: How many minimal cycles go through package F?
Rating: Computed as the difference between the
answer and 16, the correct answer.

Q4: How many shared dependencies exit package F?
Rating: Computed as the difference between the
answer and 2, the correct answer.

Q5: How many dependencies should be removed to
break all cycles involving package F? Rating:
Computed as the difference between the answer
and 8, the correct answer.

Q6: What is the biggest shared dependency in the
system? Rating: 0 when the answer is {G, M},
1 else.

Q7: How many minimal cycles are broken by removing
the biggest shared dependency? Rating: Computed
as the difference between the answer and 24, the
correct answer.

Q8: Give the minimum number of edges to remove in

order to break all cycles in the system. Rating:
Computed as the difference between the answer
and 10, the correct answer.

3) Results: 13 participants performed the study, from
license’s degree students to experienced researchers with
various programming skills and experience in visualizations.
We distinguish three parts in the results (Figure 10).

The first part relates to questions Q1 and Q2. For these
two easy questions, the user should identify cycles. Results
shows that it is faster to identify a cycle with a node-link
visualization. We can consider that it is still more intuitive
than CycleTable.

The second part relates to questions 3 to 7, where the user
should recognize shared dependencies or packages involved
in multiple cycles. Here, CycleTable performs better and
faster. Q7 appears as an exception: actually participants in
both groups confused two very similar colors, which is a
mistake on our part for the choice of colors. These questions
validate the design of CycleTable compared to node-link, for
the purpose of reasoning about shared dependencies.

Finally question 8 evaluates the capacity to assess the
full complexity of the graph. It builds upon the preparatory
work made by answering the previous questions as one needs
to assess a minimal set of dependencies, mostly based on
the impact of removing shared dependencies. Results show
it takes in average more than 90 seconds with CycleTable
and more than 3 minutes with node-link visualization. While
both groups gave similar answers, it highlights the ease to
read CycleTable for this task.

C. Threats to validity

Rating.: We compute a rating based on the distance to
the expected answer. We can see that CycleTable provides
better answers than a node-link visualization. But false-
answers are due to a visualization without software meaning
for participants. In the case of real reengineering session,
results could be different. It is a part of future work.

Removable Dependency.: We suppose for CycleTable
that a critical dependency is often shared. In our case study,
results show that this hypothesis is right. But we should do
more experiments to confirm it.

Smalltalk Software.: Smalltalk software applications
have specific features as class extension, which makes it
easier to modularize software, but which makes it also easier
to make cycles. A work is in progress to analyze Java
software.

D. Conclusion of the Study

We create this visualization to assess cycles at package
level. To analyze the usefulness of the visualization, we do
not have other visualization tool to compare. We build a
node-link visualization which shows shared dependencies.
The benefit of node-link visualization is that there is no
learning time.

Graph CycleTable

0
2

4
6

8
10

Q 1 Distance

●

●

●

Graph CycleTable

Q 1 Time

0
1

2
3

● ●

Graph CycleTable

0
2

4
6

8
10

Q 2 Distance

●

Graph CycleTable

Q 2 Time

0
1

2
3

●

●

●

Graph CycleTable

0
2

4
6

8
10

Q 3 Distance

Graph CycleTable

Q 3 Time
0

1
2

3

●

●

●

●

Graph CycleTable

0
2

4
6

8
10

Q 4 Distance

●

Graph CycleTable

Q 4 Time

0
1

2
3

●

●

Graph CycleTable

0
2

4
6

8
10

Q 5 Distance

●

Graph CycleTable

Q 5 Time

0
1

2
3

●● ●

Graph CycleTable

0
2

4
6

8
10

Q 6 Distance

●

●

Graph CycleTable

Q 6 Time

0
1

2
3

●●

Graph CycleTable

0
2

4
6

8
10

Q 7 Distance

●

●

●

Graph CycleTable

Q 7 Time

0
1

2
3

●

●

●

Graph CycleTable

0
2

4
6

8
10

Q 8 Distance

●

●
●

Graph CycleTable

Q 8 Time

0
1

2
3

4
5

6
7

Figure 10. Boxplots showing distance to expected answer in absolute and time in minutes for questions 1 to 8. Graph shown on left and CycleTable on
right for each question.

The study shows that CycleTable is efficient to detect and
to help reengineer breaking cycles between packages. There
are still some limits that we would like to overcome, with
the goal to make CycleTable more effective for reengineers.

The order of cycles in the matrix is based on the sim-
ilarity they share with each other, based on their common
shared dependencies. The order of packages follows cycle
sequences as soon as cycles are inserted in the matrix. This
heuristic gives good result in the first rows and columns of
the visualization. Then it becomes difficult to arrange cycles
and packages so that a shared dependency forms a unique
line of color in its row.

When there are cycles without shared dependencies, Cy-
cleTable shows cycles separately but without colors. Such
systems are actually simple to understand. In this case the
use of other visualization such as node-link or DSM could
be better.

VII. RELATED WORK

Node-link visualization.: Often node-link Visualiza-
tions are used to show dependencies among software entities.
Several tools such as dotty/GraphViz, Walrus or Guess
can be used. Using node-link visualization is intuitive and
has a short learning curve. One problem with node-link
visualization is finding a layout scaling on large sets of

nodes and dependencies: such a layout needs to preserve
the readability of nodes, the ease of navigation following
dependencies, and to minimize dependency crossing. Even
then, cycle identification is not trivial.

Package Blueprint.: It shows how one package uses
and is used by other packages [DPS+07]. It provides a
fine-grained view. However, package blueprint lacks (1) the
identification of cycles at system level and (2) the detailed
focus on classes actually involved in the cycles.

Dependency Structural Matrix.: Contrary to node-link,
a DSM visualization preserves the same structure whatever
the data size is. This enables the user to dive fast into the rep-
resentation using the normal process. SCCs can be identified
by colored cells. Moreover, eDSM [LDDB09] displays fine-
grained information about dependencies between packages.
Classes in source package as well as in target package are
shown in the cells of the DSM.

Dependence Clusters.: Brinkley and Harman proposed
two visualizations for assessing program dependencies, both
from a qualitative and quantitative point of view [BH04].
They identify global variables and formal parameters in
software source-code. Subsequently, they visualize the de-
pendencies. Additionally, the MSG visualization [BH05]
helps finding dependence clusters and locating avoidable
dependencies. Some aspects of their work are similar to
ours. Granularity and the methodology employed differ: they
operate on source-code and use slicing method, while we
focused on coarse-grained entities and use model analysis.

VIII. CONCLUSION

This paper proposes CycleTable, a visualization showing
cycles between packages in order to break cyclic dependen-
cies. A fundamental heuristic of CycleTable is the focus on
“shared dependencies”, which can impact many cycles at
once by their removal. The visualization can be completed
with eCell which has been integrated in eDSM [LDDB09].

We validate the heuristic of “shared dependencies” in a
case study and the efficiency of CycleTable over a node-
link visualization in a comparative study. We plan to work
on (i) pursuing the validation of “shared dependencies”,
(ii) applying CycleTable on several software applications, in
particular in other languages, and (iii) making an approach
with both node-link visualization and CycleTable as they are
complementary.

Acknowledgements
This work was supported by Ministry of Higher Education

and Research, Nord-Pas de Calais Regional Council and
FEDER through the ’Contrat de Projets Etat Region (CPER)
2007-2013’.

REFERENCES

[BDN05] Alexandre Bergel, Stéphane Ducasse, and Oscar Nier-
strasz. Analyzing module diversity. Journal of Univer-
sal Computer Science, 11(10):1613–1644, November
2005.

[BH04] David Binkley and Mark Harman. Analysis and
visualization of predicate dependence on formal pa-
rameters and global variables. IEEE Trans. Softw. Eng.,
30(11):715–735, 2004.

[BH05] David Binkley and Mark Harman. Locating depen-
dence clusters and dependence pollution. In ICSM ’05,
pages 177–186, Washington, DC, USA, 2005. IEEE
Computer Society.

[DPS+07] Stéphane Ducasse, Damien Pollet, Mathieu Suen, Hani
Abdeen, and Ilham Alloui. Package surface blueprints:
Visually supporting the understanding of package re-
lationships. In ICSM ’07: Proceedings of the IEEE
International Conference on Software Maintenance,
pages 94–103, 2007.

[GN00] Gansner and North. An open graph visualization sys-
tem and its applications to software engineering. Soft-
ware Practice Experience., 30(11):1203–1233, 2000.

[HBO10] Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky.
A tour through the visualization zoo. Queue, 8(5):20–
30, 2010.

[Kan92] Viggo Kann. On the Approximability of NP-complete
Optimization Problems. PhD thesis, Royal Institute of
Technology Stockholm, 1992.

[LDDB09] J. Laval, S. Denier, S. Ducasse, and A. Bergel. Identi-
fying cycle causes with enriched dependency structural
matrix. In WCRE ’09: Proceedings of the 2009 16th
Working Conference on Reverse Engineering, Lille,
France, 2009.

[LF05] Antónia Lopes and José Luiz Fiadeiro. Context-
awareness in software architectures. In Proceeding of
the 2nd European Workshop on Software Architecture
(EWSA), volume 3527 of Lecture Notes in Computer
Science, pages 146–161. Springer, 2005.

[Mar00] Robert C. Martin. Design principles and design pat-
terns, 2000. www.objectmentor.com.

[SGCH01] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai,
and Ben Hallen. The structure and value of modularity
in software design. In ESEC/FSE 2001, 2001.

[SGS+05] Kevin J. Sullivan, William G. Griswold, Yuanyuan
Song, Yuanfang Cai, Macneil Shonle, Nishit Tewari,
and Hridesh Rajan. Information hiding interfaces
for aspect-oriented design. In Proceedings of the
ESEC/SIGSOFT FSE 2005, pages 166–175, 2005.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel
Jackson. Using dependency models to manage com-
plex software architecture. In Proceedings of OOP-
SLA’05, pages 167–176, 2005.

[Ste81] D. Steward. The design structure matrix: A method
for managing the design of complex systems. IEEE
Transactions on Engineering Management, 28(3):71–
74, 1981.

[Tuf97] Edward R. Tufte. Visual Explanations. Graphics Press,
1997.

	Introduction
	Cycle understanding problems
	Definitions
	Feedback Arcset
	Cycle Visualization
	Graph Visualization
	DSM and eDSM Visualization

	Lack of Solutions

	CycleTable
	CycleTable in a Nutshell
	CycleTable Layout
	One cycle per column
	One package per row
	Shared dependencies
	Size of the cycle

	Cycle Sequence

	Reading a CycleTable
	Reading a package
	Reading a cycle
	Reading Colors

	CycleTable with enriched cells
	Overall structure of an enriched cell
	Breaking Cycles with an enriched CycleTable

	Validation
	Case study on unexpected dependencies
	Protocol
	Results—shared dependencies as primary targets for removal investigation
	Results—prominence of unexpected dependencies in CycleTable

	Comparative Study with Node-link Representation
	Protocol
	List of questions
	Results

	Threats to validity
	Conclusion of the Study

	Related work
	Conclusion
	References

