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Arc segmentation in linear time

Thanh Phuong NGUYEN and Isabelle DEBLED-RENNESSON

ADAGIo team, LORIA, Nancy University
54506 Vandoeuvre-lès-Nancy, France

Abstract. A linear algorithm based on a discrete geometry approach is
proposed for the detection of digital arcs and digital circles using a new
representation of them. It is introduced by inspiring from the work of
Latecki [1]. By utilizing this representation, we transform the problem of
digital arc detection into a problem of digital straight line recognition.
We then develop a linear method for arc segmentation of digital curves.

1 Introduction

The digital arcs and circles are basic geometric objects of which the recognition is an in-
teresting topic. In the literature, some methods have been proposed for the recognition
of digital circles. Nakamura et al. [2] proposed a recursive algorithm for determining
the center of a digital circle, but its complexity is exponential in the general case.
Kim [3, 4] proposed several results on digital disks. The first result [3] detects if a set
of grid points in a N × N image is a digital disk with complexity O(n3). The second
result [4] reduces this task to O(n2). Based on the classical separating arc problem,
Kovalevsky [5] (resp. Fisk [6]) proposed an algorithm for the recognition of a digital
disk in O(n2 log n) (resp. O(n2)) time. Coeurjolly [7] transformed the problem of circle
recognition into a problem of search a 2D point that belongs to the intersection of n2

half-plane. Sauer [8] (resp. Damaschke [9]) presented a linear algorithm to decide if
a curve is a digital circle (resp. arc) based on Megiddo’s algorithm [10]. Worring [11]
introduced a digital circle segmentation method by using a fixed size window process.
Roussillon [12] proposed a linear algorithm of circle recognition in 3 particular cases.

We present in this paper a linear method for the detection of digital circles or digital
arcs based on a discrete geometry approach. Firstly, a polygonalization is applied in
linear time on the input curve [13]. Secondly, we use a transform proposed by Latecki
et al. [1] to represent the obtained polygon in a novel space called tangent space. We
show that a sequence of chords of a circle will correspond to a sequence of collinear
points in the tangent space. So the problem of arc/circle detection can be considered
as a problem of digital straight line recognition.

This paper is organized as follows. Section 2 recalls some definitions concerning
digital circles and blurred segments. The next section presents a technique to transform
an arc into the tangent space and proposes some principal properties of the arc in this
representation. Section 4 proposes a linear algorithm for the detection of digital arcs
or digital circles. In Section 5, we present a linear method for the segmentation of a
curve into arcs and some experimentations.

2 Discrete circle and blurred segment

Discrete circle: In the literature, there exist several definitions of discrete circle. They
are proposed by considering a real circle on the grid digitization. The difference among



them is the process of discretization. Nakamura et al. [2] considered a discretization
of a real circle by the points of Z2 that are the nearest points of that circle. Kim [3]
proposed a definition of discrete circle as a boundary of a digital disk superimposed
by a real circle. Andres [14] used an arithmetic approach to define a digital circle as a
sequence of points superimposed by a ring.
Discrete line and blurred segment: The notion of blurred segment [13] was intro-
duced from the notion of arithmetical discrete line. An arithmetical discrete line,
noted D(a, b, µ, ω), is the set of points (x, y) ∈ Z

2 that verifies: µ ≤ ax − by < µ + ω

with a main vector (b, a), lower bound µ and thickness ω . A width ν blurred segment

(BS) is a set of points (x, y) ∈ R
2 that is optimally bounded (see [13] for more details)

by a discrete line D(a, b, µ, ω) verifying ω−1
max(|a|,|b|)

≤ ν. Fig. 1 shows a BS of with 1.25

(the sequence of gray points) whose optimal bounding line is D(5, 8,−8, 11). A linear
method for recognition of BS has been also proposed in [13].

3 Arc representation in tangent space

Modified tangent space representation: We recall in this section some notions
concerning a representation of a polygon in the tangent space. Latecki et al. [1] pro-
posed the tangent space representation as a tool of similarity measure for shape
matching. Inspired from this representation, we propose a modified tangent space to
represent a polygonal curve. The difference is that we do not normalize the axis 0x

in the tangent space. Let C = {Ci}
n
i=0 be a polygonal curve, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1)

and li - the length of the line segment CiCi+1, i ∈ {0, . . . , n − 1}. If Ci+1 is on the

right of
−−−−→
Ci−1Ci then αi > 0, otherwise αi < 0. From now, we denote P.x (resp. P.y)

to indicate the x (resp. y)-coordinate of point P . We consider a transformation that
associates the polygon C of Z2 to a polygon of R2 that is constituted by line segments
Ti2T(i+1)1, T(i+1)1T(i+1)2 for i from 0 to n− 1 with

T02 = (0, 0),
Ti1 = (T(i−1)2.x+ li−1, T(i−1)2.y), i from 1 to n,
Ti2 = (Ti1.x, Ti1.y + αi), i from 1 to n− 1.

y

x

Fig. 1. A BS [13].
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Fig. 2. Transformation to the tangent space: on the left, the input
polygonal curve and on the right, its tangent space representation.

Properties of arcs in the modified tangent space representation The theorem
below allows us to study the properties of a representation in the tangent space of a
polygon that corresponds to an arc or a circle.

Theorem 1. Let C = {Ci}
n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1). The length of

CiCi+1 is li, for i ∈ {0, . . . , n − 1}. The vertices of C are on a real arc of radius R

and of center O such that ∠CiOCi+1 ≤ π
4
for i ∈ {1, . . . , n− 1}. This results below is

obtained.
1

R
<

αi

li+li+1

2

<
1

0.9742979R



Proof. Let us consider figure 3. We have αi = ∠CiOHi−1 + ∠CiOHi. We denote
that αi1 = ∠CiOHi−1 and αi2 = ∠CiOHi. Moreover, ∠C1OH0 = ∠C0OC1

2
≤ π

8
,

∠C1OH1 = ∠C1OC2
2

≤ π
8
. In addition, we have sin∠C1OH0 = l0

2R
, sin∠C1OH1 = l1

2R
.

Therefore, l0+l1
2R

= sinα11 + sinα12. Similarly, we have
li−1+li

2R
= sinαi1 + sinαi2, for

i ∈ {1, . . . , n− 1}. Because of x ≥ sinx ≥ x− x3

6
with x > 0, we have αi1 > sinαi1 >

αi1(1 −
α2
i1
6
) > αi1(1 −

π

8
2

6
) > 0.9742979αi1. Similarly αi2 > sinαi2 > 0.9742979αi2.

Therefore, we have αi >
li−1+li

2R
> 0.9742979αi. This theorem is proved.
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Fig. 3. Property of a set of sequential
chords of a partial circle.
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Fig. 4. Property of a polygon in our modified
tangent space representation.

This theorem allows to deduce that the corresponding curve of midpoints of T(i−1)2Ti1,
1 ≤ i ≤ n in the tangent space of the curve C is quasi collinear. From now on, the
midpoint curve is called MpC. In addition, the more sinαi closes to αi, 1 ≤ i < n,
the more MpC is collinear. Therefore, we can decide if a digital curve approximates an
arc of circle by verifying the collinearity of its MpC in the tangent space. A qualitatif
study on this approximation will be also considered in Section 5.

4 Arc segmentation

Detection of digital arcs Thanks to theorem 1, we introduce now an heuristic
algorithm for (see algo. 1) deciding if a digital curve is an arc. Our main idea is to
work on the representation of a digital curve in the modified tangent space. In this
representation, the set of midpoints MpC = {Mi}

n−1
i=0 (see the above section) will be

constructed. And we will use a linear procedure [13] to test the collinearity of these
points. If the response is positive, we consider that the input digital curve is a digital
arc (a partial circle).

A higher value of the range of vertical ordinate in the tangent space leads to false
positive detection as an example; an helix can be detected as an arc. So, to avoid
this problem, the maximal difference of vertical ordinate is fixed to 2π for detect-
ing an arc. The input parameter αmax of Algorithm 1 allows to control the obtained
error.Parameter ν1 is used for polygonalization by using the recognition of blurred seg-
ments. The input parameter ν2 is used as the width in the algorithm for recognition of
blurred segments [13] to test the collinearity of the midpoint set in the representation
of the tangent space. In practice, αmax (resp. ν1) is chosen as π

4
(resp. 1). In addition,

ν2 can be chosen as a fixed value from 0.15 to 0.25 without problem.
This heuristic algorithm detect well circular arc. In Section 5 (see corollary 1), we

consider an adaptive estimation of ν2 to guarantee the quality of detected arcs. It is



Algorithm 1: Detection of a digital arc/circle

Data: P = {Pi}
n
i=0 digital curve, αmax - maximal admissible angle, ν1- width of

BS for polygonalization, ν2- width of BS for collinear test 1

Result: ARC (resp. CIRCLE): C is a digital arc (resp. circle), FALSE if not.
begin

Use algorithm [13] to polygonalize P into BS of width ν1: C = {C}mi=0;
Represent C in the modified tangent space by T (C); BS = ∅;
if there exists i such that |Ti2.y − Ti1.y| > αmax then return FALSE;
Determine midpoint set MpC = {Mi}

m−1
i=0 of {Ti2T(i+1)1}

m−1
i=0 ; i = 1;

while |Mi.y −M0.y| ≤ 2π do BS = BS ∪Mi; i++;
Use algorithm [13] to verify if BS is a blurred segment of width ν2;
if BS is a blurred segment of with ν2 then

if |Mm−1.y −M0.y| == 2 ∗ π then return CIRCLE;
else return ARC;

else return FALSE;
end

evident that we can lightly change Algorithm 1 to check the condition of Corollary 1
and Proposition 2 in linear time also.

The algorithms of polygonalization and of blurred segment recognition are linear. The
complexity of the tangent space transform, and the construction of midpoint curve
MpC = {Mi}

m−1
i=1 is in O(m). Because m << n, the total complexity of our detection

method is then in O(n).
Segmentation of curves into digital arcs Based on the above idea for detection of
an arc, we then develop a linear method for the segmentation of digital arcs by using
a width ν blurred segment [13] polygonalization on the curve of midpoints. Its main
idea, illustrated in figure 5, is based on the polygonalization of the midpoint curve (Fig.
5.e). Contrariwise to Algorithm 1, we polygonalize the midpoint curve MpC in spite of
recognizing if MpC is a BS and then each line segment corresponds to a circular arc.
Experimental results and application to real images We have implemented
this linear method. An example of a curve segmented into arcs is presented in Fig. 5.
Firstly, the approximating polygon (see Fig. 5.b) is constructed from the input curve
in Fig. 5.a. After that, we transform it into the modified tangent space representation
(see Fig. 5.c). Then, by polygonalizing the curve of midpoints in this tangent space
(see Fig. 5.d), the corresponding arcs can be detected (see Fig. 5.e).

Fig. 6 shows an experimentation on technical drawing images. Figs. 6.a, 6.d are
input images. Figs. 6.c, 6.f present the extracted arcs from the borders presented in
6.b, 6.e. Our method gives good results on this type of images which frequently contain
arc and circle primitives. Fig. 7 presents our obtained result with a real image.

5 Study of quasi collinearity property of midpoint curve

Algorithm 1 works well in practice. However, we have a problem to estimate error
approximation in general case when the value of ν2 is fixed. In this section, we present
a first study concerning the utilization of this algorithm where ν2 is chosen adaptively.

1 By default, αmax = π
4
, ν1 = 1 for normal curves and ν2 = 0.2 (see algo. 1).
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Fig. 5. Arc segmentation results on a digital curve: (a) Input curve, (b) Approximated
polygon, (c) Results of arc segmentation.
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Fig. 6. Experimentation on technical drawing images.
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Fig. 7. Experimentation on a real image at width 2.



Let us suppose that αmax = max{αi}
n
i=1. Let us suppose that Ri is the radius of the

approximating circle that passes through 3 points Ci−1, Ci, Ci+1; αi1 = ∠Hi−1OCi,
αi2 = ∠HiOCi (see Fig. 3). We suppose that αi1, αi2 ≤ π

8
for i = 1, . . . , n − 1 to

guarantee the condition sinx ≃ x in Theorem 1. It means that we consider the condition
sinx ≃ x with x ∈ [0, π

8
]. Therefore, we have αi ≤

π
4
.

Comparison of radius of local circumcircles to the global radius

Proposition 1. Let C = {Ci}
n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1). The length

of CiCi+1 is li, for i ∈ {0, . . . , n− 1}. We denote Oi (resp. Ri) respectively the center
(resp. the radius) of circumcirle that passes through 3 points Ci−1, Ci, Ci+1, Hi the
projection of Oi on CiCi+1. Suppose that Ri − OHi ≤ h for i ∈ {1, . . . , n − 1}. This

results below is obtained. Riαi ≥
li−1+li

2
≥ Riαi − 0.3377hαi

Proof. We denote αi1 = ∠Hi−1OiCi, αi2 = ∠HiOiCi (see Fig. 3). Firstly, cosαi1 = 1−

2 sin2 αi1
2

= OHi

Ri
≥ Ri−h

Ri
= 1− h

Ri
. In addition, thanks to αi1 ≤ π

8
and sin(x)

x
is decreas-

ing in [0, π
16
], we have sinx ≥ x

sin π

16
π

16
. Therefore h

Ri
≥ 2 sin2 αi

2
≥ 2 ·

( sin π

16
π

16

)2(αi1
2

)2
>

0.9872
2

α2
i1. Similarly, we have h

Ri
> 0.9872

2
α2
i2, for i ∈ {1, . . . , n− 1} (1).

In addition, we have this remark x ≥ sinx ≥ x − x3

6
with π

4
≥ x ≥ 0. So, αi ≥

sinαi1 + sinαi2 > αi1 + αi2 −
1
6
(α3

i1 + α3
i2) = (αi1 + αi2)(1−

1
6
(α2

i1 − αi1αi2 + α2
i2)) =

αi(1−
1
6
(α2

i1 − αi1αi2 + α2
i2)) ≥ αi(1−

1
6
(α2

i1 + α2
i2))), for i ∈ {1, . . . , n− 1} (2).

Thanks to (1) and (2), we obtain sinαi1 + sinαi2 > α1(1 − 1
3·0.9872

h
R
), for i ∈

{1, . . . , n− 1} (3).
Moreover, we have αi = αi1 + αi2 and αi1, αi2 ≤ π

8
. In addition, we have sinαi1 =

li−1

2R
, sinαi2 = li

2R
. Therefore, we have

li−1+li
2R

= sinαi1 + sinαi2, for 1 ≤ i < n (4).

Thanks to (3) and (4), we obtain Riαi ≥
li−1+li

2
≥ Riαi(1−

1
3·0.9872

h
Ri

) = αi(Ri −
h

3·0.9872
) ⇔ Riαi ≥

li−1+li
2

≥ Riαi − 0.3377hαi.

Now we consider a set of midpoints MpC is a blurred segment whose horizontal width
is ǫ. Let us suppose that the slope of this blurred segment is 1

R
, R ∈ R.

Mi−1

Mi

A

B

ǫ

Fig. 8.
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O
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Fig. 9. {O
′

i , O
′′

i }
n−1
i=1 is in a compact zone.

Let us consider Fig. 8, A and B respectively are horizontal projection of Mi−1

and Mi on the left leaning line. We have: Mi.x − Mi−1.x = (B.x − A.x) + MiB −
AMi−1 = Rαi + MiB − AMi−1. Because of Mi and Mi−1 are limited by 2 leaning
lines, we have MiB ≤ ǫ and AMi−1 ≤ ǫ, so −ǫ ≤ MiB − AMi−1 ≤ ǫ. Therefore,



we have Rαi + ǫ ≥
li−1+li

2
≥ Rαi − ǫ. This double inequations can be rewrited as

li−1+li
2

= Rαi + ǫi, where ǫi ∈ [−ǫ, ǫ].
Thank to proposition 1, we have: Riαi > Rαi + ǫi > Riαi − 0.3377hαi ⇔ Ri >

R+ ǫi
αi

> Ri − 0.3377h. So, ǫ
αi

< Ri −R < ǫ
αi

+ 0.3377h. So, we have corollary 1.

Corollary 1 Let C = {Ci}
n
i=0 be a polygon, αi = ∠(

−−−−→
Ci−1Ci,

−−−−→
CiCi+1). The length of

CiCi+1 is li, for i ∈ {0, . . . , n− 1}. The set of midpoints {Mi}
n−1
i=0 is a blurred segment

whose horizontal width is ǫ. We denote Oi (resp. Ri) respectively the center (resp. the
radius) of circumcirle that passes through 3 points Ci−1, Ci, Ci+1, Hi the projection of
Oi on CiCi+1. Suppose that Ri −OHi ≤ h for i ∈ {1, . . . , n− 1}. This results below is
obtained. 0 < Ri −R < ǫ

αi
+ 0.3377h ≤ ǫ

min{αi}
n
i=1

+ 0.3377h.

Localization of centers of local circumcircles In this section, we consider the
convergence of local circumcircle centers if this condition below is satisfied: |Ri−R| ≤ δ,
R ∈ R, 1 ≤ i, j ≤ n − 1. Let us consider Fig. 10. To prove the convergence of centers
of local circumcircle, we show this property for an approximation of a half of circle.

Proposition 2. Let us consider a sequence of points {C}ni=0. There exist R and δ

such that R, δ ∈ R, 0 ≤ Ri −R ≤ δ, i = 1, . . . , n− 1. Suppose that ∠CkCjCj+1 > π
2
for

k ∈ {0, 1}, k < j < n. Therefore, we have this property 0 ≤ R
′

i−R ≤ δ, 0 ≤ R
′′

i −R ≤ δ,
for 1 ≤ i ≤ n− 1.

Proof. We denote O
′

i (resp. O
′′

i ) and R
′

i (resp. R
′′

i ) the centers and radius of circum-
circles that passes through 3 points C0 (resp. C1), Ci, Ci+1. Firstly, we have a trivial
remark: the perpendicular bisector of CiCk is between that of CiCj and CjCk. Now,
we prove this proposition by induction.

Because of R
′

1 = R1, the proposition is true with i = 1. Suppose that |R
′

i−1−R| ≤ δ.

Let us consider Fig. 10. We denote H
′

i , Hi are respectively the midpoint of C0Ci,

Ci−1Ci. Thank to the above remark, we haveO
′

i−1H
′

i is betweenO
′

i−1H
′

i−1 andO
′

i−1Hi.

We consider now the position of Ci+1 with the circle of center O
′

i−1, of radius R
′

i−1.

The proposition if trivial if Ci+1 is on this circle because of R
′

i = R
′

i−1. If Ci+1 is

outside of this circle (see Fig. 10.a), we then deduce O
′

i−1 ∈ [O
′

iH
′

i ], O
′

i ∈ [OiHi+1].

Therefore, we have Oi+1Ci > O
′

iCi, O
′

iCi > O
′

i−1Ci. It means that Ri+1 > R
′

i > R
′

i−1.

Thank to 0 ≤ Ri+1 −R ≤ δ and 0 ≤ R
′

i−1 −R ≤ δ, we have 0 ≤ R
′

i −R ≤ δ. In other

case (see Fig. 10.b), by applying the same arguments, we obtain Ri+1 < R
′

i < R
′

i−1.

Therefore, we have 0 ≤ R
′

i−R ≤ δ, for 1 ≤ i ≤ n−1. By replacing C0 by C1 and using

the same argument, we have 0 ≤ R
′′

i −R ≤ δ, for 1 ≤ i ≤ n− 1.

We have a simple remark: a triangle ABC that satisfies ∠ABC ≥ 7π
8

have : AC >

BC + cos π
8
·AB. It is trivial because of AC2 = BC2 +AB2 − 2BC ·AB cos∠ABC >

BC2 + cos2 π
8
AB2 + 2BC · AB cos π

8
. Therefore, we have: O

′

iO
′′

i ≤
|R

′

i
−R

′′

i
|

cos π

8
≤ δ

cos π

8
≤

1.1δ, for i = 1, . . . , n − 1. Thanks to this result and proposition 2, it is trivial now to

show that set of center O
′

i , O
′′

i is in a compact zone (see Fig. 9).

6 Conclusions

We have presented a linear method for the detection of digital circles or digital arcs.
A linear method for the segmentation of a curve into digital arcs is also proposed.
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Fig. 10. Position between Ci+1 and circumcircle of C0Ci−1Ci.

This method is based on a discrete geometry approach. It is simple, easy and robust
to implement. A more complete demonstration of the algorithm is under process.
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