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Low Field Regime for the Relativistic
Vlasov-Maxwell-Fokker-Planck System; the One

and One Half Dimensional Case

Mihai Bostan ∗, Thierry Goudon†

(28th July 2006)

Abstract

We study the asymptotic regime for the relativistic Vlasov-Maxwell-Fokker-
Planck system which corresponds to a mean free path small compared to the
Debye length, chosen as an observation length scale, combined to a large
thermal velocity assumption. We are led to a convection-diffusion equation,
where the convection velocity is obtained by solving a Poisson equation. The
analysis is performed in the one and one half dimensional case and the proof
combines dissipation mechanisms and finite speed of propagation properties.

Keywords: Vlasov-Maxwell-Fokker-Planck system, Asymptotic behavior, Diffu-
sion approximation.

AMS classification: 35Q99, 35B40.

1 Introduction

This paper is devoted to the asymptotic analysis of a system of PDEs describing the
evolution of charged particles. The unknown is the distribution function of particles,
which depends on time t, space x and momentum p. The particles are subject to
collisional mechanisms and to the action of electro-magnetic forces. The latter
are defined in a self-consistent way by the Maxwell equations. We are interested in
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hydrodynamic limits where the relaxation effects induced by the collisional processes
are strong enough and force the distribution function to tend towards an equilibrium
state. Hence, in such a regime the behavior of the particles can be described by
means of a finite set of macroscopic quantities, that is certain averages with respect
to p of the distribution function, see e.g. [23, 24, 37]. We distinguish two asymptotic
regimes:

- the high-field regime corresponds to a situation where the force field has the
same order as the collision term,

- the low-field regime corresponds to a situation where the convection and the
force field are also singular terms within the equations, but at lower order than the
leading contribution of the collisions.
Roughly speaking, the latter regime leads to convection-diffusion limit equations,
while the former yields a purely hyperbolic model. The question has been pointed
out by Poupaud [33], see also [16], motivated by the modeling of semi-conductors
devices; we also refer to the modeling discussions and numerical studies in [1].

In this paper, we assume that the evolution of the particles is governed by the
relativistic Vlasov-Maxwell-Fokker-Planck (VMFP) equations. We write the equa-
tions in dimensionless form, detailing in the Appendix the discussion on the scaling.
The system depends on three dimensionless parameters: θ > 0, 0 < δ < 1 and ε > 0
which is intended to tend to 0. For a momentum p ∈ R3, we define the energy

E(p) =
1/δ2 − 1

2

(√
1 +

4 |p|2
δ2(1/δ2 − 1)2

− 1

)
(1)

and the velocity is given by

v(p) = ∇pE(p) =
2

1− δ2

p√
1 +

4 |p|2
δ2(1/δ2 − 1)2

. (2)

As a matter of fact, notice that the velocity remains dominated by

|v(p)| < δ(1/δ2 − 1)

1− δ2
=

1

δ
. (3)

We are concerned with the following equations

∂tf
ε +

1

ε
v(p) · ∇xf

ε +

(
1

ε
Eε(t, x) + δ2v(p) ∧Bε(t, x)

)
· ∇pf

ε

=
θ

ε2
divp(∇pf

ε + v(p)f ε), (t, x, p) ∈]0, T [×R3 × R3,

(4)

∂tE
ε − curlxB

ε = −j
ε

ε
+ J, ε2δ2∂tB

ε + curlxE
ε = 0, (t, x) ∈]0, T [×R3, (5)

divxE
ε = ρε −D, divxB

ε = 0, (t, x) ∈]0, T [×R3, (6)
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where ρε =
∫
R3 f

ε dp and jε =
∫
R3 v(p)f ε dp are the charge and current densities

associated to the distribution f ε, respectively while D ≥ 0 and J ∈ R3 are the
(given) charge and current densities of a background particle distribution of opposite
charge. Throughout the paper we suppose that the global neutrality condition

∫

R3

∫

R3

f ε(t, x, p) dp dx =

∫

R3

D(t, x) dx, t ∈ [0, T ], ε > 0

holds. We are interested in the asymptotic regime 0 < ε � 1, with 0 < δ < 1 and
θ = O(1) kept fixed.

In plasma physics or semiconductors theory, one often uses a simplified model
where on the one hand relativistic corrections are neglected (which means replacing
v(p) by p), and on the other hand, the full set of Maxwell equations is replaced by
assuming that the force derives from a potential Φ, which itself obeys the Poisson
equation with a right hand side depending on the density of particles. Namely, one
considers the Vlasov-Poisson-Fokker-Planck (VPFP) system

∂tf
ε +

1

ε
p · ∇xf

ε − 1

ε
∇xΦ

ε · ∇pf
ε =

θ

ε2
divp(∇pf

ε + pf ε), (7)

coupled to
−∆xΦ

ε = ρε −D. (8)

The asymptotic behavior of the system (7), (8) when ε goes to 0 has been studied in
[34], where mathematical difficulties depending on the space dimension are clearly
pointed out. It was shown that the limit (ρ,Φ) := limε↘0(ρε,Φε) solves the following
drift-diffusion system

∂tρ− 1

θ
divx(∇xρ+ ρ∇xΦ) = 0, −∆xΦ = ρ(t, x)−D(t, x). (9)

The convergence statement is proven in full generality in dimension one, and two (we
refer to [26] for this case) but with restriction on initial data and on a small enough
time interval in higher dimension. We also mention the tricky analysis recently
performed in [29] for the Boltzmann-Poisson system in a bounded domain which
leads to quite general results. The high field regime relies on the analysis of the
behavior for ε→ 0 of

∂tf
ε + p · ∇xf

ε − 1

ε
∇xΦ

ε · ∇pf
ε =

θ

ε
divp(∇pf

ε + pf ε), (10)

where now the non linear force term ∇xΦ
ε · ∇pf

ε is of the same order of magnitude
that the diffusion Fokker-Planck term. The high-field limit of the VPFP system has
been studied in [31], [25] and leads to

∂tρ− 1

θ
divx(ρ∇xΦ) = 0, −∆xΦ = ρ(t, x)−D(t, x). (11)
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This is a pure transport equation, where the velocity field depends on the density
ρ through the Poisson equation. We refer to [31] for comments on this problem
which shares some features with the pressureless gases model. Therefore, high field
combines with hydrodynamic limits and yields interesting phenomena. We also
mention in this direction the recent developments in [7] and [5]. Of course, another
natural question consists in investigating a vanishing viscosity limit of (9) so that we
recover (11); this has been analyzed in [30]. Clearly, in these asymptotic problems
the mathematical difficulty relies on the treatment of the non linear term ∇xΦ

εf ε.
When analyzing the behavior for small ε’s in (7) (or (10)) with (8) we appeal to the
very specific form of the coupling with the Poisson equation: it allows us to make
use of nice convolution formulae to write the force field by means of the density
(that also makes the role of the space dimension clear). Hence the motivation of the
questions we address is two-fold. First, on a modeling viewpoint, the coupling with
the Maxwell equations takes into account more details of the physics. Second, on a
mathematical viewpoint, we investigate how robust the derivation of low and high
field limits is or if it cucially depends on the original coupling. In [10], we deal with
the high field asymptotics for the (non relativistic) VMFP equations

∂tf
ε + p · ∇xf

ε +

(
1

ε
Eε(t, x) + p ∧Bε(t, x)

)
· ∇pf

ε =
1

ε
divp(pf

ε +∇pf
ε), (12)

∂tE
ε − curlxB

ε = J(t, x)− jε(t, x), ε∂tB
ε + curlxE

ε = 0, (t, x) ∈]0, T [×R3, (13)

divxE
ε = ρε(t, x)−D(t, x), divxB

ε = 0, (t, x) ∈]0, T [×R3. (14)

It yields the following limit system




∂tρ+ divx(ρE) = 0, (t, x) ∈]0, T [×R3,

divxE = ρ(t, x)−D(t, x), curlxE = 0, (t, x) ∈]0, T [×R3,

∂tE− curlxB = J(t, x)− ρ(t, x)E(t, x), divxB = 0, (t, x) ∈]0, T [×R3.
(15)

We analyze here the low field regime taking into account relativistic corrections.
Furthermore, we restrict ourselves to the one and one half dimensional framework
which means that f = f(t, x, p1, p2),E = (E1(t, x), E2(t, x), 0),B = (0, 0, B(t, x))
for any (t, x, p1, p2) ∈ [0, T ]× R3. Precisely, we deal with the equations

∂tf
ε +

1

ε
v1(p)∂xf

ε +

(
1

ε
Eε

1 + δ2v2(p)Bε

)
∂p1f

ε +

(
1

ε
Eε

2 − δ2v1(p)Bε

)
∂p2f

ε

=
θ

ε2
divp(∇pf

ε + v(p)f ε), (t, x, p) ∈]0, T [×R× R2, (16)

∂tE
ε
1 = −1

ε
jε1(t, x) + J(t, x), (t, x) ∈]0, T [×R, (17)

∂tE
ε
2 + ∂xB

ε = −1

ε
jε2(t, x), (t, x) ∈]0, T [×R, (18)
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ε2δ2∂tB
ε + ∂xE

ε
2 = 0, (t, x) ∈]0, T [×R, (19)

∂xE
ε
1 = ρε(t, x)−D(t, x), (t, x) ∈ [0, T ]× R, (20)

where D, J : [0, T ]×R→ R are given functions satisfying D ≥ 0 and the continuity
equation

∂tD + ∂xJ = 0, (t, x) ∈]0, T [×R. (21)

We prescribe initial conditions for the particle distribution and the electro-magnetic
field

f ε(0, x, p) = f ε0 (x, p), (x, p) ∈ R× R2, (22)

Eε(0, x) = Eε
0(x), Bε(0, x) = Bε

0(x), x ∈ R, (23)

satisfying
d

dx
Eε

0,1 =

∫

R2

f ε0 (x, p) dp−D(0, x), x ∈ R. (24)

After integration of (16) with respect to p ∈ R2 we deduce that the charge and the
current densities verify the continuity equation

∂tρ
ε +

1

ε
∂xj

ε
1 = 0, (t, x) ∈]0, T [×R.

By using the continuity equations for positive/negative charges and by taking the
derivative of (17) with respect to x we deduce that (20) is a consequence of (21) and
(24). Notice that if initially the neutrality condition is satisfied i.e.,

∫
R
∫
R2 f

ε
0 dp dx =∫

RD(0, x) dx, then we have
∫
R
∫
R2 f

ε(t, x, p) dp dx =
∫
RD(t, x) dx for any t ∈]0, T ].

In what follows we consider only smooth solutions. Unfortunately, to our knowl-
edge, there are no mathematical results concerning the existence and uniqueness of
strong solution for the VMFP system. For the VPFP system the situation is better :
results concerning the existence of weak solutions can be found in [14], [36] while for
existence and uniqueness results of strong solution we refer to [11], [12], [18], [32].
The existence of classical solutions in the collisionless case has been investigated by
different approaches, see [22], [13], [27]. Recently global existence and uniqueness
results have been obtained for reduced model for laser-plasma interaction, cf. [15],
[9]. In this paper, we restrict our purpose to the asymptotic problem. As ε → 0,
we derive a limit system very similar to (9), which was obtained when analyzing
the VPFP system. Our proofs rely on compactness arguments. One of the crucial
point is to obtain L∞ bounds for the electro-magnetic field, uniformly with respect
to the small parameter ε > 0. This is why we restrict our analysis to solutions
depending on one space variable only. Besides, the relativistic framework provides
better estimates, related to the bound (3) on the velocity.

The paper is organized as follows. In Section 2, we set up the working assump-
tions and state precisely our convergence result. In Section 3 we establish a priori
estimates, uniformly with respect to the small parameter ε > 0. These bounds are
obtained by performing classical computations involving the energy and the entropy
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of the VMFP system and by using also the hyperbolic structure of the Maxwell
equations. We combine the dissipation properties induced by the collisional term –
in the spirit of [34] – to the specific use of the finite speed of propagation that is
reminiscent to [21]. In Section 4 we detail the passage to the limit, while Section 5 is
devoted to some comments and precisions. The dimensional analysis can be found
in the Appendix.

2 Assumptions and Main Result

Throughout the paper, we make use of the following hypotheses

H1) f ε0 ≥ 0, D ≥ 0,

∫

R

∫

R2

f ε0 (x, p) dp dx =

∫

R
D(0, x) dx, ∀ε > 0 ;

H2) sup
ε>0

(∫

R

∫

R2

(1 + | ln f ε0 |+ |x|+ E(p))f ε0 dp dx

+
1

2

∫

R

(|Eε
0|2 + ε2δ2|Bε

0|2
)
dx

)
<∞ ;

H3) D, J are given integrable smooth functions satisfying
∂tD + ∂xJ = 0, (t, x) ∈]0, T [×R ;

H4) J ∈ L1(]0, T [;L2(R)) ∩ L1(]0, T [;L∞(R)) ;

H5) sup
ε>0

(‖Eε
0‖L∞(R) + εδ‖Bε

0‖L∞(R)

)
< +∞ ;

H6) There is r > 1 such that

sup
ε>0

∫

R

∫

R2

(f ε0 (x, p))re(r−1)E(p) dp dx < +∞.
We introduce the notations

M ε
0 :=

∫

R

∫

R2

f ε0 (x, p) dp dx,

W ε
0 :=

∫

R

∫

R2

E(p)f ε0 (x, p) dp dx+
1

2

∫

R
{|Eε

0(x)|2 + ε2δ2|Bε
0(x)|2} dx,

Hε
0 :=

∫

R

∫

R2

| ln f ε0 | f ε0 (x, p) dp dx,

Lε0 :=

∫

R

∫

R2

|x|f ε0 (x, p) dp dx,

Rε
0 := ‖Eε

0‖L∞(R) + εδ‖Bε
0‖L∞(R),
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which are thus uniformly bounded with respect to ε. Our main result states as
follows.

Theorem 2.1 Let (f ε, Eε, Bε)ε>0 be smooth solutions of (16)− (23). Assume that
H1-H6 hold. Then, there exists a sequence (εk)k∈N decreasing to 0 such that

ρεk(t, x) =

∫

R2

f εk(t, x, p) dp ⇀ ρ ≥ 0 weakly in L1(]0, T [×R),

(Eεk
1 , E

εk
2 , δεkB

εk) ⇀ (E1, 0, 0) weakly in L2(]0, T [×R)3

and weakly ? in L∞(]0, T [×R)3,

Eεk
1 → E1, strongly in L1

loc([0, T ]× R).

The limits ρ,E1 satisfy in the distribution sense





θ∂tE1 + ρ(t, x)E1(t, x)− ∂2
xE1 = ∂xD + θJ(t, x), (t, x) ∈]0, T [×R,

∂xE1 = ρ(t, x)−D(t, x), (t, x) ∈ [0, T ]× R,
E1(0, x) = limk→+∞Ek

0,1(x), uniformly on compact sets of R.

The limit equation is nothing but the convection-diffusion model (9) obtained
when dealing with the low field regime of the VPFP system. Indeed, taking the
derivative with respect to x of the evolution equation for E1 and using H3 yield

θ∂tρ+ ∂x(ρE1)− ∂ 2
x ρ = 0.

Let Φ verify ∂xΦ = −E1; since ∂xE1 = ρ − D = −∂ 2
x Φ, we recover (9). This is

not so surprising since our scaling hypothesis assume that the speed of light is large
compared to the reference unit of velocity, see the Appendix; it is well known that in
such a regime relativistic Vlasov-Maxwell and Vlasov-Poisson systems are connected,
see [3, 19, 38]. Here we are coupling the classical limit to the hydrodynamic and low
field regime.

3 A Priori Estimates

In this section we establish a priori estimates for smooth solutions (f ε, Eε, Bε) of the
relativistic VMFP system in one and one half dimension. We split the discussion into
three steps: first, we describe the usual energy and entropy dissipation estimates,
second, we obtain a refined dissipation property and finally we justify a uniform L∞

estimate on the electro-magnetic field.
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3.1 Moments and Entropy Dissipation

Our analysis is based on the moment equations associated to (16). Integrating (16))
with respect to p ∈ R2 yields the continuity equation

∂t

∫

R2

f ε dp+
1

ε
∂x

∫

R2

v1(p)f ε dp = 0. (25)

Multiplying now by p = (p1, p2) and integrating with respect to p ∈ R2 yield

ε∂t

∫

R2

p1f
ε dp+ ∂x

∫

R2

v1(p)p1f
ε dp− Eε

1ρ
ε − εδ2Bεjε2 = θ(∂tE

ε
1 − J), (26)

ε∂t

∫

R2

p2f
ε dp+ ∂x

∫

R2

v1(p)p2f
ε dp− Eε

2ρ
ε + εδ2Bεjε1 = −θ j

ε
2

ε
. (27)

We aim at passing to the limit ε → 0 in these relations. In order to obtain useful
estimates, it is also convenient to multiply (16) by 1 + ln f ε + |x|+ E(p). We are led
to

∂t

∫

R2

(ln f ε + |x|+ E(p))f εdp +
1

ε
∂x

∫

R2

v1(p)(ln f ε + |x|+ E(p))f εdp

+ θ

∫

R2

∣∣∣∣
v(p)
√
f ε + 2∇p

√
f ε

ε

∣∣∣∣
2

dp

=
1

ε

∫

R2

Eε · v(p)f ε dp+
1

ε

∫

R2

x

|x|v1(p)f ε dp. (28)

This is completed by looking at the evolution of the electro-magnetic energy

1

2
∂t(|Eε|2 + ε2δ2|Bε|2) + ∂x(E

ε
2B

ε) = −1

ε
Eε(t, x) · jε(t, x) + Eε

1(t, x)J(t, x). (29)

Proposition 3.1 Let (f ε, Eε, Bε) be a smooth solution of the problem (16)− (23).
Let us set

hε(t, x, p) =
1

ε
(v(p)

√
f ε + 2∇p

√
f ε),

eε(t, x) =

∫

R2

(1/δ2 − 1

2
+ ln f ε + |x|+ E(p)

)
f ε(t, x, p) dp

+
1

2

(|Eε(t, x)|2 + ε2δ2|Bε(t, x)|2) ,

πε(t, x) =

∫

R2

v1(p)
(1/δ2 − 1

2
+ ln f ε + |x|+ E(p)

)
f ε dp+ εEε

2(t, x)Bε(t, x),

rε(t, x) =
1

ε

∫

R2

x

|x|v1(p)f ε dp+ Eε
1(t, x)J(t, x)

=
x

|x|
∫

R2

√
f εhε1 dp+ Eε

1(t, x)J(t, x).

Then, we have

∂te
ε +

1

ε
∂xπ

ε + θ

∫

R2

|hε(t, x, p)|2 dp = rε(t, x), (t, x) ∈]0, T [×R. (30)
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As a consequence of these local properties, we can justify uniform estimates on
the total energy and entropy. To this end, we make use of the following classical
claim.

Lemma 3.1 Assume that f = f(x, p) satisfies f ≥ 0, (|x| + E(p) + | ln f |)f ∈
L1(R× R2), where E(p) is given by (1). Then for all k > 0 we have

f | ln f | ≤ f ln f + 2k(|x|+ E(p))f +
4

e
e−

k
2

(|x|+E(p)),

and∫

R

∫

R2

f | ln f | dp dx ≤
∫

R

∫

R2

f ln f dp dx+ 2k

∫

R

∫

R2

(|x|+ E(p))f dp dx+ Ck,

with Ck = (4/e)
∫
R
∫
R2 e

− k
2

(|x|+E(p)) dp dx.

Proof. Since f | ln f | = f ln f + 2f(ln f)−, it is sufficient to estimate f(ln f)−. Take
k > 0 and remark that 2/e = sup0<y<1{−

√
y ln y}. For any (x, p) ∈ R×R2, we have

f(ln f)−(x, p) = −f ln f · 1{0<f<e−k(|x|+E(p))} − f ln f · 1{e−k(|x|+E(p))≤f<1}

≤ 2

e
e−

k
2

(|x|+E(p)) + k(|x|+ E(p))f.

Therefore, we get∫

R

∫

R2

f(ln f)− dp dx ≤ k

∫

R

∫

R2

(|x|+ E(p))f dp dx+
2

e

∫

R

∫

R2

e−
k
2

(|x|+E(p)) dp dx,

and the conclusion follows easily.

Then, the starting point of our analysis relies on the following statement.

Proposition 3.2 Let (f ε, Eε, Bε) be a smooth solution of the problem (16)− (23).
Assume that the initial conditions satisfy H1, H2 and that H3, H4 hold. Then we
have for any t ∈ [0, T ]

i)

∫

R

∫

R2

f ε(t, x, p) dp dx =

∫

R

∫

R2

f ε0 (x, p) dp dx < +∞,

ii)

∫

R

∫

R2

(| ln f ε|+ |x|+ E(p))f ε(t, x, p) dp dx

+
1

2

∫

R
(|Eε(t, x)|2 + ε2δ2|Bε(t, x)|2) dx

≤ 4

(
T

2θ
M ε

0 + Lε0 +W ε
0 +Hε

0 + C1/4

)
+ 2‖J‖2

L1(]0,T [;L2(R)),

iii) θ

∫ T

0

∫

R

∫

R2

|hε(t, x, p)|2 dp dx dt ≤ 4

(
T

2θ
M ε

0 + Lε0 +W ε
0 +Hε

0 + C1/4

)

+2‖J‖2
L1(]0,T [;L2(R)),

iv)

∥∥∥∥
jε

ε

∥∥∥∥
2

L2(]0,T [;L1(R))

≤M ε
0 ‖hε‖2

L2(]0,T [×R×R2).
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Proof. Integrating (16) with respect to (x, p) ∈ R×R2 yields the charge conserva-
tion

d

dt

∫

R

∫

R2

f ε(t, x, p) dp dx = 0, t ∈]0, T [,

which implies that

∫

R

∫

R2

f ε(t, x, p) dp dx =

∫

R

∫

R2

f ε0 (x, p) dp dx = M ε
0 , t ∈ [0, T ].

Similarly by H3 one gets
∫
RD(t, x) dx =

∫
RD(0, x) dx. Integration with respect to

the space variable of the local property (30) leads to

d

dt

∫

R

∫

R2

(ln f ε + |x|+ E(p))f ε dp dx+
1

2

d

dt

∫

R
(|Eε(t, x)|2 + ε2δ2|Bε(t, x)|2) dx

+θ

∫

R

∫

R2

|hε|2 dp dx =

∫

R
JEε

1 dx+
1

ε

∫

R

∫

R2

x

|x|v1(p)f ε(t, x, p) dp dx.

(31)
The last term in the right hand side can be rewritten as follows

1

ε

∫

R

∫

R2

x

|x|(v1(p)f ε + ∂p1f
ε) dp dx ≤

∫

R

∫

R2

√
f ε(t, x, p) |hε1(t, x, p)| dp dx

≤
(∫

R

∫

R2

f ε dp dx

)1/2(∫

R

∫

R2

|hε|2 dp dx
)1/2

≤ 1

2θ
M ε

0 +
θ

2

∫

R

∫

R2

|hε|2 dp dx.

Integrating (31) with respect to time and using Lemma 3.1 with k = 1/4 yield for
any t ∈ [0, T ]

∫

R

∫

R2

(| ln f ε| + |x|+ E(p))f ε(t, x, p) dp dx+
1

2

∫

R
(|Eε(t, x)|2 + ε2δ2|Bε(t, x)|2) dx

+ θ

∫ t

0

∫

R

∫

R2

|hε|2 dp dx ds

≤
∫

R

∫

R2

(ln f ε0 + |x|+ E(p))f ε0 dp dx+
1

2

∫

R
(|Eε

0|2 + ε2δ2|Bε
0|2) dx

+
1

2

∫

R

∫

R2

(|x|+ E(p))f ε(t, x, p) dp dx+
θ

2

∫ t

0

∫

R

∫

R2

|hε|2 dp dx ds

+
t

2θ
M ε

0 + C1/4 +

∫ t

0

‖J(s)‖L2(R)‖Eε(s)‖L2(R)ds, (32)
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which implies
∫

R

∫

R2

(| ln f ε|+ 1

2
(|x|+ E(p)))f ε(t, x, p) dp dx

+
1

2

∫

R
(|Eε(t, x)|2 + ε2δ2|Bε(t, x)|2) dx+

θ

2

∫ t

0

∫

R

∫

R2

|hε|2 dp dx ds

≤ T

2θ
M ε

0 + Lε0 +W ε
0 +Hε

0 + C1/4 +

∫ t

0

‖J(s)‖L2(R)‖Eε(s)‖L2(R) ds.

(33)

Hence ii)-iii) follow easily by using Bellman’s lemma. For proving iv), we write

∫ T

0

∥∥∥∥
jε(t)

ε

∥∥∥∥
2

L1(R)

dt =

∫ T

0

(∫

R

∣∣∣∣
∫

R2

√
f ε(t, x, p)hε(t, x, p) dp

∣∣∣∣ dx
)2

dt,

and we apply the Cauchy-Schwartz inequality.

This statement shows that we can expect a relaxation effect since the estimate
on hε indicates that f ε(t, x, p) ≈ ρ(t, x) e

−E(p)

K
where K =

∫
R2 e

−E(p) dp. For the time
being, let us focus on the discussion of further useful estimates. In particular, for
the macroscopic density we get

Corollary 3.1 Under the hypotheses of Proposition 3.2 we have for any t ∈ [0, T ]

∫

R
ρε(t, x)| ln ρε| dx ≤ CT (1 +M ε

0 + Lε0 +W ε
0 +Hε

0 + ‖J‖2
L1(]0,T [;L2(R))),

for some constant CT depending on T but not on ε.

The proof is an immediate consequence of the following standard result.

Lemma 3.2 Assume that f is a non negative function satisfying
∫

R

∫

R2

(1 + | ln f(x, p)|+ |x|+ E(p))f(x, p) dp dx < +∞,

and denote by ρ(x) =
∫
R2 f(x, p) dp, x ∈ R. Then we have

∫

R
| ln ρ(x)| ρ(x) dx ≤

∫

R

∫

R2

(lnK + | ln f |+ |x|+ E(p))f(x, p) dp dx+
4

e

∫

R
e−
|x|
4 dx,

where K =
∫
R2 e

−E(p) dp.

Proof. Consider the convex function ϕ : [0,+∞[→ R, ϕ(s) = s ln s for s > 0,

ϕ(0) = 0 and the measure dν = e−E(p)

K
dp. By applying the Jensen inequality

ϕ

(∫

R2

g(p)dν

)
≤
∫

R2

ϕ(g(p))dν,

11



with the function g(·) = Kf(x, ·)eE(·) one gets

ρ(x) ln ρ(x) ≤
∫

R2

(lnK + ln f(x, p) + E(p))f(x, p) dp.

As in the proof of Lemma 3.1 one has

ρ(x)| ln ρ(x)| ≤ ρ(x) ln ρ(x) + 2k|x|ρ(x) +
4

e
e−

k|x|
2 ,

and therefore, by taking k = 1/2 one deduces
∫

R
ρ(x)| ln ρ(x)| dx ≤

∫

R
(ln ρ(x) + |x|)ρ(x) dx+

4

e

∫

R
e−
|x|
4 dx

≤
∫

R

∫

R2

(lnK + | ln f |+ |x|+ E(p))f dp dx+
4

e

∫

R
e−
|x|
4 dx.

3.2 Further Dissipation Properties

Another way of estimating the solutions of the Fokker-Planck equation can be
obtained by adapting the strategy of Poupaud-Soler [34]: we multiply (16) by
H ′(feE(p)), where H is a convex function.

Proposition 3.3 Assume that Eε, Bε are bounded smooth functions and that f ε is
a smooth solution of (16), (22) with a non negative initial condition f ε0 satisfying

∫

R

∫

R2

H(f ε0e
E(p))e−E(p) dp dx < +∞,

for some convex non negative function H. Then we have for any t ∈ [0, T ]
∫

R

∫

R2

H(f ε(t)eE(p))e−E(p) dp dx +
θ

2ε2

∫ t

0

∫

R

∫

R2

eE(p)H ′′(f εeE(p))|∇pf
ε + vf ε|2 dp dx ds

≤
∫

R

∫

R2

H(f ε0e
E(p))e−E(p) dp dx

+
1

2θ
(‖Eε

1‖L∞ + ‖Eε
2‖L∞ + 2εδ‖Bε‖L∞)2

×
∫ t

0

∫

R

∫

R2

(f ε)2eE(p)H ′′(f ε(s)eE(p)) dp dx ds.

Proof. We have

∂tH(f εeE(p))e−E(p) +
v1

ε
∂xH(f εeE(p))e−E(p) + ∂p1

{(
Eε

1

ε
+ δ2v2B

ε

)
f ε
}
H ′(f εeE(p))

+ ∂p2

{(
Eε

2

ε
− δ2v1B

ε

)
f ε
}
H ′(f εeE(p))

=
θ

ε2
divp(∇pf

ε + v(p)f ε)H ′(f εeE(p)). (34)
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After integration with respect to (x, p) ∈ R× R2 we get

d

dt

∫

R

∫

R2

H(f εeE(p))e−E(p) dp dx−
∫

R

∫

R2

f εH ′′(f εeE(p))

(
Eε

1

ε
+ δ2v2B

ε

)
∂p1(eE(p)f ε) dp dx

−
∫

R

∫

R2

f εH ′′(f εeE(p))

(
Eε

2

ε
− δ2v1B

ε

)
∂p2(eE(p)f ε) dp dx

=− θ

ε2

∫

R

∫

R2

eE(p)H ′′(f εeE(p))|∇pf
ε + vf ε|2 dp dx. (35)

We introduce the notation Rε(t) = ‖Eε
1(t)‖L∞(R) + ‖Eε

2(t)‖L∞(R) + 2εδ‖Bε(t)‖L∞(R)

and

qεH(t) =
1

ε2

∫

R

∫

R2

eE(p)H ′′(f εeE(p))|∇pf
ε + v(p)f ε|2 dp dx.

By the Cauchy-Schwartz inequality and by taking into account that |v(p)| < 1/δ we
obtain
∫

R

∫

R2

f εH ′′(f εeE(p))

{(
Eε

1

ε
+δ2v2B

ε

)
∂p1(eE(p)f ε)+

(
Eε

2

ε
−δ2v1B

ε

)
∂p2(eE(p)f ε)

}
dp dx

≤ Rε(t)
1

ε

∫

R

∫

R2

f εeE(p)H ′′(f εeE(p))|∇pf
ε + v(p)f ε| dp dx

≤ Rε(t) (qεH(t))1/2

(∫

R

∫

R2

(f ε)2eE(p)H ′′(f εeE(p)) dp dx

)1/2

. (36)

Combining (35), (36) yields

d

dt

∫

R

∫

R2

H(f εeE(p))e−E(p) dp dx + θ qεH(t) ≤ Rε(t) (qεH(t))1/2 (37)

×
(∫

R

∫

R2

(f ε)2eE(p)H ′′(f εeE(p)) dp dx

)1/2

≤ θ
qεH(t)

2
+
Rε(t)2

2θ

∫

R

∫

R2

(f ε)2eE(p)H ′′(f εeE(p)) dp dx.

Finally one gets for any t ∈ [0, T ]
∫

R

∫

R2

H(f εeE(p))e−E(p) dp dx +
θ

2

∫ t

0

qεH(s) ds ≤
∫

R

∫

R2

H(f ε0e
E(p))e−E(p) dp dx

+
‖Rε‖2

L∞

2θ

∫ t

0

∫

R

∫

R2

(f ε(s))2eE(p)H ′′(f ε(s)eE(p)) dp dx ds.

Corollary 3.2 Assume that Eε, Bε are bounded smooth functions and that f ε is a
smooth solution of (16), (22) with a non negative initial condition f ε0 satisfying

∫

R

∫

R2

(f ε0 )re(r−1)E(p) dp dx < +∞,
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for some r > 1. Then for any t ∈ [0, T ] we have

∫

R

∫

R2

(f ε(t))re(r−1)E(p) dp dx ≤ eC
ε(t)

∫

R

∫

R2

(f ε0 )re(r−1)E(p) dp dx,

and

θ

ε2

∫ T

0

∫

R

∫

R2

(f ε)r−2e(r−1)E(p)|∇pf
ε + v(p)f ε|2 dp dx dt ≤ 2eC

ε(T )

r(r − 1)

×
∫

R

∫

R2

(f ε0 )re(r−1)E(p) dp dx,

where Cε(t) = t r(r−1)
2θ

(‖Eε
1‖L∞(]0,T [×R) + ‖Eε

2‖L∞(]0,T [×R) + 2εδ‖Bε‖L∞(]0,T [×R))
2.

Proof. By applying the previous proposition with the convex function H(s) = sr,
s ≥ 0 we obtain

∫

R

∫

R2

(f ε(t))re(r−1)E(p) dp dx +
θ

2

∫ t

0

qεH(s) ds ≤
∫

R

∫

R2

(f ε0 )re(r−1)E(p) dp dx

+ r(r − 1)
‖Rε‖2

L∞

2θ

∫ t

0

∫

R

∫

R2

(f ε(s))re(r−1)E(p) dp dx ds.

We conclude by applying the Gronwall lemma.

3.3 L∞ Estimates on the Electro-Magnetic Field

We are looking now for L∞ bounds of the electro-magnetic field. We exploit the
hyperbolic structure of the Maxwell equations and the entropy dissipation of the
Fokker-Planck collision operator. We adapt the method used by Glassey-Schaeffer
[21], who obtained L∞ bounds of the electro-magnetic field for the collisionless re-
lativistic Vlasov-Maxwell system in one and one half dimension. Here, we wish to
justify the following statement.

Proposition 3.4 Let (f ε, Eε, Bε) be a smooth solution of the problem (16) − (23)
and assume that H1-H6 hold. Then we have

‖Eε
1‖L∞(]0,T [×R) ≤ ‖Eε

0,1‖L∞(R) +M ε
0 + ‖J‖L1(]0,T [;L∞(R)),

and

max(‖Eε
2‖L∞(]0,T [×R), εδ‖Bε‖L∞(]0,T [×R))

≤ Rε
0 +

2

1/δ2 − 1

((1/δ2 − 1

2
+

5T

2θ

)
M ε

0 + 6C1/4

+5(W ε
0 + Lε0 +Hε

0) +
5

2
‖J‖2

L1(]0,T [;L2(R))

)
.
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Notice that the Maxwell equations (17), (18), (19) can be written in the following
diagonal form, for (t, x) ∈]0, T [×R,





∂tE
ε
1 = −j

ε
1(t, x)

ε
+ J(t, x),

∂t(E
ε
2 + εδBε) +

1

εδ
∂x(E

ε
2 + εδBε) = −j

ε
2(t, x)

ε
,

∂t(E
ε
2 − εδBε)− 1

εδ
∂x(E

ε
2 − εδBε) = −j

ε
2(t, x)

ε
.

Therefore the electro-magnetic field is given by

Eε
1(t, x) = Eε

0,1(x)− U ε(t, x) +

∫ t

0

J(s, x) ds, (t, x) ∈ [0, T ]× R, (38)

Eε
2(t, x) =

1

2
(Eε

0,2 + εδBε
0)(x− t

εδ
) +

1

2
(Eε

0,2 − εδBε
0)(x+

t

εδ
)

− 1

2
V ε

+(t, x)− 1

2
V ε
−(t, x), (t, x) ∈ [0, T ]× R, (39)

εδBε(t, x) =
1

2
(Eε

0,2 + εδBε
0)(x− t

εδ
)− 1

2
(Eε

0,2 − εδBε
0)(x+

t

εδ
)

− 1

2
V ε

+(t, x) +
1

2
V ε
−(t, x), (t, x) ∈ [0, T ]× R, (40)

where

U ε(t, x) =
1

ε

∫ t

0

jε1(s, x) ds, V ε
±(t, x) =

1

ε

∫ t

0

jε2(s, x∓ t− s
εδ

) ds.

Finally, the question reduces to estimate in L∞ norm the functions U ε, V ε
±. This can

be done by using the local energy conservation and entropy dissipation, namely, we
go back to Proposition 3.1. The proof makes use of the following claims.

Lemma 3.3 Let u, z, w : [0, T ]× R→ R be smooth functions satisfying

∂tu+
1

ε
∂xz = w(t, x), (t, x) ∈]0, T [×R. (41)

Then for any δ > 0 and (t, x) ∈ [0, T ]× R we have

1

ε

∫ t

0

(δ−1u∓ z)

(
s, x∓ t− s

εδ

)
ds± 1

ε

∫ t

0

z(s, x) ds

= ±
∫ x

x∓ t
εδ

u(0, y) dy ±
∫ t

0

∫ x

x∓ t−s
εδ

w(s, y) dy ds,
(42)
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and

1

ε

∫ t

0

(δ−1u− z)

(
s, x− t− s

εδ

)
ds+

1

ε

∫ t

0

(δ−1u+ z)

(
s, x+

t− s
εδ

)
ds

=

∫ x+ t
εδ

x− t
εδ

u(0, y) dy +

∫ t

0

∫ x+ t−s
εδ

x− t−s
εδ

w(s, y) dy ds. (43)

Lemma 3.4 For any p ∈ R2, the following inequality holds
(
E(p) +

1/δ2 − 1

2

)(
1

δ
− |v1(p)|

)
≥ 1/δ2 − 1

2
|v2(p)|.

These results allow us to prove the following statement which in turn, coming
back to (38), (39), (40) justifies Proposition 3.4.

Proposition 3.5 Let (f ε, Eε, Bε) be a smooth solution of the problem (16)− (23),
assume that the initial conditions satisfy H1, H2 and that H3, H4 hold. Then we
have

|U ε(t, x)| ≤M ε
0 , (t, x) ∈ [0, T ]× R,

|V ε
+|+|V ε

−| ≤
4

δ−2 − 1

[(
δ−2 − 1

2
+

5T

2θ

)
M ε

0 +5(W ε
0 +Lε0+Hε

0)+
5

2
‖J‖2

L1
t (L

2
x)+6C1/4

]
.

Proof. Let us start by estimating V ε
±. Combining Proposition 3.1, and Lemma 3.3,

(43) we obtain

1

ε

∫ t

0

∫

R2

(δ−1 − v1)

(
ln f ε +

∣∣∣∣x−
t− s
εδ

∣∣∣∣+ E(p) +
1/δ2 − 1

2

)
f ε(s, x− t− s

εδ
, p) dp ds

+
1

2εδ

∫ t

0

(|Eε|2 + ε2δ2|Bε|2 − 2εδEε
2B

ε)(s, x− t− s
εδ

) ds

+
1

ε

∫ t

0

∫

R2

(δ−1 + v1)

(
ln f ε +

∣∣∣∣x+
t− s
εδ

∣∣∣∣+ E(p) +
1/δ2 − 1

2

)
f ε(s, x+

t− s
εδ

, p) dp ds

+
1

2εδ

∫ t

0

(|Eε|2 + ε2δ2|Bε|2 + 2εδEε
2B

ε)(s, x+
t− s
εδ

) ds

+θ

∫ t

0

∫ x+ t−s
εδ

x− t−s
εδ

∫

R2

|hε(s, y, p)|2 dp dy ds

=

∫ x+ t
εδ

x− t
εδ

∫

R2

(
ln f ε0 + |y|+ E(p) +

1/δ2 − 1

2

)
f ε0 dp dy +

1

2

∫ x+ t
εδ

x− t
εδ

(|Eε
0|2 + ε2δ2|Bε

0|2) dy

+

∫ t

0

∫ x+ t−s
εδ

x− t−s
εδ

(∫

R2

y

|y|
√
f ε(s, y, p) hε1(s, y, p) dp+ Eε

1(s, y)J(s, y)

)
dy ds

≤ 1/δ2 − 1

2
M ε

0 +W ε
0 + Lε0 +Hε

0 +
t

2θ
M ε

0 +
θ

2

∫ t

0

∫ x+ t−s
εδ

x− t−s
εδ

∫

R2

|hε(s, y, p)|2 dp dy ds

+‖Eε‖L∞(]0,T [;L2(R))‖J‖L1(]0,T [;L2(R)). (44)
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Then, we can reproduce the tricks of Lemma 3.1 so that for any fixed (t, x) ∈
[0, T ]× R and s ∈ [0, t] we get

f ε| ln f ε(s, x± t− s
εδ

, p)| ≤
(

ln f ε +
1

2

(
|x± t− s

εδ
|+ E(p)

))
f ε(s, x± t− s

εδ
, p)

+
4

e
e−

1
8

(|x± t−s
εδ
|+E(p)). (45)

Reminding (3), we obtain the inequalities

1

ε

∫ t

0

∫

R2

(δ−1 ± v1(p))| ln f ε|f ε(s, x± t− s
εδ

, p) dp ds (46)

≤ 1

ε

∫ t

0

∫

R2

(δ−1 ± v1(p))(ln f ε)f ε(s, x± t− s
εδ

, p) dp ds

+
1

2ε

∫ t

0

∫

R2

(δ−1 ± v1(p))(|x± t− s
εδ
|+ E(p))f ε(s, x± t− s

εδ
, p) dp ds+ Cεδ,

where the crucial fact consists in remarking that the last term can actually be
bounded uniformly with respect to ε, δ > 0 since

Cεδ =
4

eεδ

∫ t

0

∫

R2

e−(|x± t−s
εδ
|+E(p))/8 dp ds ≤ 4

e

∫

R

∫

R2

e−(|y|+E(p))/8 dp dy = C1/4.

Combining (44), (46) yields

1

ε

∫ t

0

∫

R2

(δ−1 − v1)
(
| ln f ε|+ 1

2
|x− t− s

εδ
|+ E

2
+
δ−2 − 1

2

)
f ε(s, x− t− s

εδ
, p) dp ds

+
1

2εδ

∫ t

0

(|Eε
1|2 + |Eε

2 − εδBε|2)(s, x− t− s
εδ

) ds

+
1

ε

∫ t

0

∫

R2

(δ−1 + v1)
(
| ln f ε|+ 1

2
|x+

t− s
εδ
|+ E

2
+
δ−2 − 1

2

)
f ε(s, x+

t− s
εδ

, p) dp ds

+
1

2εδ

∫ t

0

(|Eε
1|2 + |Eε

2 + εδBε|2)(s, x+
t− s
εδ

) ds

+
θ

2

∫ t

0

∫ x+ t−s
εδ

x− t−s
εδ

∫

R2

|hε(s, y, p)|2 dp dy ds

≤ δ−2−1

2
M ε

0 +W ε
0 + Lε0 +Hε

0 +
tM ε

0

2θ
+ 2C1/4 +

1

2
‖Eε‖2

L∞(]0,T [;L2) +
1

2
‖J‖2

L1(]0,T [;L2)

≤
(
δ−2 − 1

2
+

5T

2θ

)
M ε

0 + 5(Lε0 +W ε
0 +Hε

0) + 6C1/4 + 5
2
‖J‖2

L1(]0,T [;L2(R)) =: Cε
0 .

Since 0 < δ < 1 is kept fixed, notice that H1-H5 guarantees that Cε
0 remains bounded

with respect to ε > 0. We deduce that

1∑

k=0

1

2ε

∫ t

0

∫

R2

(δ−1 + (−1)kv1(p))
(
E(p) +

δ−2 − 1

2

)
f ε(s, x+ (−1)k

t− s
εδ

, p) dp ds ≤ Cε
0 ,

17



and finally by Lemma 3.4 we get

1/δ2 − 1

2
(|V ε

+|+ |V ε
−|)

≤ 1/δ2 − 1

2ε

∫ t

0

∫

R2

|v2|
(
f ε(s, x− t− s

εδ
, p) + f ε(s, x+

t− s
εδ

, p)
)
dp ds

≤ 1

ε

∫ t

0

∫

R2

(δ−1 − v1(p))(E(p) +
1/δ2 − 1

2
)f ε(s, x− t− s

εδ
, p) dp ds

+
1

ε

∫ t

0

∫

R2

(δ−1 + v1(p))(E(p) +
1/δ2 − 1

2
)f ε(s, x+

t− s
εδ

, p) dp ds

≤ 2Cε
0 .

The estimate of U ε follows by applying Lemma 3.3 to the continuity equation (25).
Indeed, by (42) we have for any (t, x) ∈ [0, T ]× R

1

ε

∫ t

0

∫

R2

(δ−1 ∓ v1(p))f ε(s, x ∓ t− s
εδ

, p) dp ds± 1

ε

∫ t

0

∫

R2

v1(p)f ε(s, x, p) dp ds

= ±
∫ x

x∓ t
εδ

∫

R2

f ε0 (y, p) dp dy,

and thus we deduce that ±U ε(t, x) ≤M ε
0 .

We can end the proof of Proposition 3.4. By (38) and Proposition 3.5 we get

‖Eε
1‖L∞(]0,T [×R) ≤ ‖Eε

0,1‖L∞(R) +M ε
0 + ‖J‖L1(]0,T [;L∞(R)).

Similarly, combining (39), (40), Proposition 3.5 implies

max(‖Eε
2‖L∞(]0,T [×R), εδ‖Bε‖L∞(]0,T [×R))

≤ ‖Eε
0,2‖L∞(R) + εδ‖Bε

0‖L∞(R) +
2

1/δ2 − 1

[(1/δ2 − 1

2
+

5T

2θ

)
M ε

0 + 6C1/4

+5(W ε
0 + Lε0 +Hε

0) +
5

2
‖J‖2

L1(]0,T [;L2(R))

]
.

It remains to justify Lemma 3.3 and Lemma 3.4.

Proof of Lemma 3.3. For any (t, x) ∈ [0, T ]× R consider the sets ∆ε
± given by

∆ε
+ = {(s, y) ∈]0, T [×R : x− t− s

εδ
< y < x},

∆ε
− = {(s, y) ∈]0, T [×R : x < y < x+

t− s
εδ
}.

Integrating (41) with respect to (s, y) ∈ ∆ε
+ yields

∫ x

x− t
εδ

(
u(t− εδ(x− y), y)− u(0, y)

)
dy +

1

ε

∫ t

0

(
z(s, x)− z(s, x− t− s

εδ
)
)
ds

=

∫ t

0

∫ x

x− t−s
εδ

w(s, y) dy ds,

18



and therefore we obtain

1

ε

∫ t

0

(δ−1u− z)
(
s, x− t− s

εδ

)
ds+

1

ε

∫ t

0

z(s, x) ds =

∫ x

x− t
εδ

u(0, y) dy (47)

+

∫ t

0

∫ x

x− t−s
εδ

w(s, y) dy ds.

Similarly, integrating (41) over ∆ε
− implies

1

ε

∫ t

0

(δ−1u+ z)

(
s, x+

t− s
εδ

)
ds− 1

ε

∫ t

0

z(s, x) ds =

∫ x+ t
εδ

x

u(0, y) dy (48)

+

∫ t

0

∫ x+ t−s
εδ

x

w(s, y) dy ds.

The equality (43) follows by adding (47), (48).

Proof of Lemma 3.4. For any p ∈ R2, we set

Q(p) :=

(
E(p) +

1/δ2 − 1

2

)(
1

δ
− |v1(p)|

)

=
1/δ2 − 1

2

√
1 +

4 |p|2
δ2(1/δ2 − 1)2

× 1

δ




1−
2

δ(1/δ2 − 1)
|p1|

√
1 +

4 |p|2
δ2(1/δ2 − 1)2




=
1/δ2 − 1

2δ

(√
1 +

4 |p|2
δ2(1/δ2 − 1)2

− 2

δ(1/δ2 − 1)
|p1|
)

However, for any q ∈ R2 (= 2p/(δ(1/δ2 − 1))), we have

√
1 + |q|2 − |q1| = 1 + |q2|2√

1 + |q|2 + |q1|
≥ |q2|√

1 + |q|2 .

It follows that

Q(p) ≥ 1

δ2

|p2|√
1 +

4 |p|2
δ2(1/δ2 − 1)2

=
1/δ2 − 1

2
|v2(p)|.
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4 Asymptotic Analysis

We are now in position to perform the asymptotic analysis when ε goes to zero. The
uniform estimates obtained in the previous section allow us to extract converging
sequences as follows.

Proposition 4.1 Assume that H1-H5 hold. Suppose that for any ε > 0 (f ε, Eε, Bε)
is a smooth solution of (16) − (23). Then there is a sequence (εk)k∈N decreasing to
zero such that the sequences

(fk0 , E
k
0 , B

k
0 )k∈N := (f εk0 , Eεk

0 , B
εk
0 )k∈N, (fk, Ek, Bk)k∈N := (f εk , Eεk , Bεk)k∈N,

satisfy
fk0 ⇀ f0 weakly in L1(R2), (49)

ρk0 :=

∫

R2

fk0 dp ⇀ ρ0 :=

∫

R2

f0 dp weakly in L1(R), (50)

Ek
0,1 → E0,1 uniformly on compact sets of R, (51)

Ek
0,2 ⇀ E0,2 weakly in L2(R), (52)

fk ⇀ f weakly in L1(]0, T [×R× R2), (53)

ρk :=

∫

R2

fk dp ⇀ ρ :=

∫

R2

f dp weakly in L1(]0, T [×R), (54)

Ek
1 → E1 strongly in L1

loc([0, T ]×R), weakly in L2(]0, T [×R), weakly ? in L∞, (55)

(Ek
2 , εkδB

k) ⇀ (0, 0) weakly in L2(]0, T [×R)2, weakly ? in L∞(]0, T [×R)2. (56)

Proof. We split the proof into three steps.
Step 1. Proof of (49), (50), (53), (54). By Proposition 3.2 i) and ii) and hypotheses
H1-H5, we can apply the Dunford-Pettis theorem, see e. g. [20] (Th. 4.21.2, p. 274),
which justifies (49) and (53). Moreover the limit f is non negative and satisfies

sup
0≤t≤T

∫

R

∫

R2

(1 + |x|+ E(p))f(t, x, p) dp dx < +∞.

Similarly by Corollary 3.1 we deduce

sup
ε>0,t∈[0,T ]

∫

R
(1 + |x|+ | ln ρε|)ρε(t, x) dx < +∞,

which implies (50), (54).

Step 2. Proof of (51) and (52). Since supε>0

∫
R | ln ρε0|ρε0(x) dx < +∞ we deduce

that for any η > 0 there is h = h(η) > 0 such that
∫ x+h

x
ρε0(y) dy < η for any ε > 0

and x ∈ R. Taking h small enough, since D(0, ·) belongs to L1(R), we also have
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∫ x+h

x
D(0, y) dy < η for any x ∈ R. Therefore, by (24) we have for any ε > 0 and

x ∈ R
|Eε

0,1(x+ h)− Eε
0,1(x)| =

∣∣∣∣
∫ x+h

x

{ρε0(y)−D(0, y)} dy
∣∣∣∣ < 2η,

and since (Eε
0,1)ε is bounded in L∞(R), by using the Arzela-Ascoli theorem we de-

duce (51). The convergence (52) is a direct consequence of H2. Moreover we check
easily that E0,1, E0,2 ∈ L∞(R) and d

dx
E0,1 = ρ0 −D(0, ·).

Step 3. Proof of (55) and (56). We claim that (Eε
1)ε>0 is bounded inW 1,1

loc ([0, T ]×R).
Indeed, (Eε

1)ε>0 is bounded in L∞(]0, T [×R) and thus in L1
loc([0, T ]×R). Moreover,

(∂xE
ε
1)ε>0 = (ρε−D)ε>0 is bounded in L1(]0, T [×R) and (∂tE

ε
1)ε>0 = (−1

ε
jε1 + J)ε>0

is bounded in L1
loc([0, T ] × R) by Proposition 3.2-iv). We deduce that (Eε

1)ε>0 is
relatively compact in L1

loc([0, T ]× R).
Observe also that (Eε

1, E
ε
2, εδB

ε)ε>0 is weakly relatively compact in (L2(]0, T [×R))3

and weakly ? relatively compact in (L∞(]0, T [×R))3. Thus we obtain (55) and
(Ek

2 , εkδB
k) ⇀ (E2, B) weakly in L2(]0, T [×R)2, weakly ? in L∞(]0, T [×R)2. More-

over the limits E1, E2, B belong to L∞(]0, T [;L2(R)) and we have ∂xE1 = ρ − D.
Let us now prove that (E2, B) = (0, 0).

By (19) we have for any ϕ ∈ C1
c (]0, T [×R)

∣∣∣∣
∫ T

0

∫

R
Eε

2∂xϕ dx dt

∣∣∣∣ = ε2δ2

∣∣∣∣
∫ T

0

∫

R
Bε∂tϕ dx dt

∣∣∣∣

≤ εδ‖εδBε‖L∞(]0,T [×R)

∫ T

0

∫

R
|∂tϕ| dx dt.

Since supε>0‖εδBε‖L∞(]0,T [×R) < +∞ we obtain ∂xE2 = 0. Taking into account that
E2 ∈ L∞(]0, T [;L2(R)) we deduce that E2 = 0. Similarly for any ϕ ∈ C1

c (]0, T [×R)
we have by (18)

∣∣∣∣
∫ T

0

∫

R
εδBε∂xϕ dx dt

∣∣∣∣ = εδ

∣∣∣∣
∫ T

0

∫

R

(
jε2
ε
ϕ− Eε

2∂tϕ

)
dx dt

∣∣∣∣

≤ εδ

(
‖ϕ‖C0

∥∥∥∥
jε2
ε

∥∥∥∥
L1(]0,T [×R)

+ ‖Eε
2‖L∞

∫ T

0

∫

R
|∂tϕ| dx dt

)
.

By using the uniform bounds in Proposition 3.2-iv) and Proposition 3.4, we obtain
∂xB = 0 and since we know that B ∈ L∞(]0, T [;L2(R)) we conclude that B = 0.

We focus our attention to the moment equations of (16); namely, let us go back
to (25), (26) and (27). As mentioned above, we guess from the entropy estimate

that f ε(t, x, p) ≈ ρ(t, x) e
−E(p)

K
where K =

∫
R2 e

−E(p) dp. In this case we obtain

∫

R2

v1(p)p1f
ε dp ≈ −ρ(t, x)

K

∫

R2

p1∂p1(e−E(p)) dp = ρ(t, x),
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and ∫

R2

v1(p)p2f
ε dp ≈ −ρ(t, x)

K

∫

R2

p2∂p1(e−E(p)) dp = 0.

Let us make this statement rigorous.

Proposition 4.2 Assume that H1-H6 hold. Suppose that (f ε, Eε, Bε)ε>0 are smooth
solutions of (16)− (23) and consider (εk)k∈N the sequence constructed in Proposition
4.1. Then we have

lim
k→+∞

εk

(
∂t

∫

R2

p1f
k dp, ∂t

∫

R2

p2f
k dp

)
= (0, 0),

lim
k→+∞

(
∂x

∫

R2

v1(p)p1f
k dp, ∂x

∫

R2

v1(p)p2f
k dp

)
= (∂xρ, 0)

in D′([0, T ]× R)2.

Proof. We shall use the estimates in Proposition 3.2, Corollary 3.2 and Corollary
3.4. Let ϕ ∈ C1

c ([0, T ]× R). For l ∈ {1, 2} we have

sup
k∈N

∣∣∣∣〈∂t
∫

R2

plf
k dp, ϕ〉

∣∣∣∣ ≤ ‖∂tϕ‖L∞sup
k∈N

(
2 sup
t∈[0,T ]

∫

R

∫

R2

|p|fk dp dx+

∫ T

0

∫

R

∫

R2

|p|fkdp dx dt
)
,

and therefore limk→+∞ εk∂t
∫
R2 plf

k dp = 0 in D′([0, T ]× R). Next, observe that

〈∂x
∫

R2

v1(p)plf
k dp, ϕ〉 = −εk

∫ T

0

∫

R

∫

R2

∂xϕ pl
√
fk hk1 dp dx dt−

∫ T

0

∫

R
∂xϕδ1lρ

k dx dt,

and we can conclude provided that for any R > 0 we have

sup
k∈N

∫ T

0

∫ R

−R

∫

R2

|p|
√
fk |hk| dp dx dt < +∞. (57)

By using the Cauchy-Schwartz inequality we deduce that
∫ T

0

∫ R

−R

∫

R2

|p|
√
fk |hk| dp dx dt ≤

(∫ T

0

∫ R

−R

∫

R2

|p|2fk dp dx dt
)1/2

×
(∫ T

0

∫ R

−R

∫

R2

|hk|2 dp dx dt
)1/2

,

and therefore we are done if we prove that supk∈N,t∈[0,T ]

∫ R
−R
∫
R2 |p|2fk(t, x, p) dp dx <

+∞. The Hölder inequality yields

sup
k∈N,t∈[0,T ]

∫ R

−R

∫

R2

|p|2fk(t, x, p) dp ≤ sup
k∈N,t∈[0,T ]

(∫ R

−R

∫

R2

(fk(t))re(r−1)E(p) dp dx

)1/r

×
(∫ R

−R

∫

R2

|p|2r′e−E(p) dp

)1/r′

< +∞

where r′ is the conjugate exponent of r, i.e., 1/r + 1/r′ = 1. This ends the proof of
Proposition 4.2
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Having identified the limit of higher moments involved in (26), (27), the difficulty
relies in the non linear terms.

Proposition 4.3 Assume that H1-H6 hold. Suppose that (f ε, Eε, Bε)ε>0 are smooth
solutions of (16)− (23) and consider (εk)k∈N the sequence constructed in Proposition
4.1. Then we have

lim
k→+∞

(Ek
1ρ

k, Ek
2ρ

k) = (E1ρ, 0) in D′([0, T ]× R)2, (58)

lim
k→+∞

(εkδ
2Bkjk1 , εkδ

2Bkjk2 ) = (0, 0) in L1(]0, T [×R)2. (59)

Proof. We write Ek
1ρ

k = Ek
1 (∂xE

k
1 + D). Since (Ek

1 )k∈N converges towards E1

weakly ? in L∞(]0, T [×R) we have for any ϕ ∈ C1
c ([0, T ]× R)

lim
k→+∞

∫ T

0

∫

R
Ek

1 (t, x)D(t, x)ϕ(t, x) dx dt =

∫ T

0

∫

R
E1(t, x)D(t, x)ϕ(t, x) dx dt.

It remains to analyze the term Ek
1∂xE

k
1

|〈Ek
1∂xE

k
1 −E1∂xE1, ϕ〉| =

∣∣∣∣
∫ T

0

∫

R

1

2
∂x|Ek

1 |2ϕ dx dt−
1

2
〈∂x|E1|2, ϕ〉

∣∣∣∣

=

∣∣∣∣−
1

2

∫ T

0

∫

R
(Ek

1 − E1)Ek
1∂xϕ dx dt+

1

2

∫ T

0

∫

R
E1(E1 − Ek

1 )∂xϕ dx dt

∣∣∣∣
≤ ‖ϕ‖C1 sup

k′∈N
‖Ek′

1 ‖L∞(]0,T [×R)‖Ek
1 − E1‖L1(suppϕ),

and therefore limk→+∞Ek
1ρ

k = E1ρ in D′([0, T ]× R) by using (55).
Consider now the term Ek

2ρ
k. Since (Ek

2 )k∈N is bounded in L∞(]0, T [×R) and
(ρk)k∈N is bounded in L∞(]0, T [;L1(R)) it is sufficient to prove that Ek

2ρ
k = Ek

2 (∂xE
k
1 +

D)→ 0 in D′(]0, T [×R). Take ϕ ∈ C1
c (]0, T [×R). As before we have

lim
k→+∞

∫ T

0

∫

R
Ek

2 (t, x)D(t, x)ϕ(t, x) dx dt =

∫ T

0

∫

R
E2(t, x)D(t, x)ϕ(t, x) dx dt,

and for the term Ek
2∂xE

k
1 we write

|〈Ek
2∂xE

k
1 , ϕ〉| =

∣∣∣∣
∫ T

0

∫

R
(∂x(E

k
2E

k
1 )− ∂xEk

2E
k
1 )ϕ dx dt

∣∣∣∣
≤ Qk

1 +Qk
2, (60)

where Qk
1 :=

∣∣∣
∫ T

0

∫
RE

k
2E

k
1∂xϕ dx dt

∣∣∣ and Qk
2 :=

∣∣∣
∫ T

0

∫
R ∂xE

k
2E

k
1ϕ dx dt

∣∣∣. Observe that

Qk
1 ≤

∣∣∣∣
∫ T

0

∫

R
Ek

2 (Ek
1 − E1)∂xϕ dx dt

∣∣∣∣+

∣∣∣∣
∫ T

0

∫

R
E1E

k
2∂xϕ dx dt

∣∣∣∣ , (61)
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and therefore, by using the strong convergence of (Ek
1 )k∈N in L1

loc([0, T ]×R) and the
weak convergence of (Ek

2 )k∈N in L2(]0, T [×R) we deduce that limk→+∞Qk
1 = 0. By

using (19), (17) we have

Qk
2 = εkδ

∣∣∣∣
∫ T

0

∫

R
εkδB

kEk
1∂tϕ dx dt

∣∣∣∣+ εkδ

∣∣∣∣
∫ T

0

∫

R
εkδB

k∂tE
k
1ϕ dx dt

∣∣∣∣

≤ εkδ‖εkδBk‖L∞(]0,T [×R)‖Ek
1‖L∞(]0,T [×R)

∫ T

0

∫

R
|∂tϕ| dx dt

+ εkδ‖εkδBk‖L∞(]0,T [×R)

∣∣∣∣
∫ T

0

∫

R

(
J − jk1

εk

)
ϕ dx dt

∣∣∣∣ .

Since (Ek
1 )k∈N, (εkδB

k)k∈N are bounded in L∞(]0, T [×R), (
jk1
εk

)k∈N is bounded in

L2(]0, T [;L1(R)) and J belongs to L1(]0, T [;L∞(R)) we deduce that limk→+∞Qk
2 =

0. Thus we proved that limk→+∞Ek
2 ∂xE

k
1 = 0 in D′(]0, T [×R) and therefore

the second convergence in (58) holds. The convergence (59) follows easily since

(εkδB
k)k∈N is bounded in L∞(]0, T [×R) and ( j

k

εk
)k∈N is bounded in L2(]0, T [;L1(R)).

We have

‖εkδ2Bkjk‖L1(]0,T [×R) ≤ εkδ sup
k′∈N

(
‖εk′δBk′‖L∞(]0,T [×R)

∥∥∥∥
jk
′

εk′

∥∥∥∥
L1(]0,T [×R)

)
.

Remark 4.1 By easy density arguments we deduce that limk→+∞
∫ T

0

∫
RE

k
2ρ

kϕ dx dt =
0 for any continuous bounded function ϕ ∈ C0([0, T ]× R) (use the uniform bounds
supk∈N‖Ek

2‖L∞(]0,T [×R) < +∞ and supk∈N,t∈[0,T ]

∫
R (1 + |x|)ρk(t, x) dx < +∞).

Remark 4.2 Notice that assuming H6 with r = 2 we have the uniform bound
supε>0‖ j

ε

ε
‖L2(]0,T [×R) < +∞. Indeed, by Corollary 3.2 we know that

sup
ε>0

∫ T

0

∫

R

∫

R2

f εeE(p)|hε|2 dp dx dt = sup
ε>0

1

ε2

∫ T

0

∫

R

∫

R2

eE(p)|∇pf
ε+v(p)f ε|2 dp dx dt <∞,

and thus we obtain for any (t, x) ∈ [0, T ]× R
∣∣∣∣
jε(t, x)

ε

∣∣∣∣
2

=

∣∣∣∣
∫

R2

√
f εhε(t, x, p) dp

∣∣∣∣
2

≤
∫

R2

f εeE(p)|hε|2 dp
∫

R2

e−E(p) dp,

implying that

sup
ε>0

∥∥∥∥
jε

ε

∥∥∥∥
2

L2(]0,T [×R)

≤
(∫

R2

e−E(p) dp

)
sup
ε>0

∫ T

0

∫

R

∫

R2

f εeE(p)|hε|2 dp dx dt.
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The convergences of Propositions 4.2 and 4.3 are sufficient for passing to the
limit with respect to k in (26). We obtain the equations

θ∂tE1 + ρE1 − ∂2
xE1 = ∂xD + θJ, (t, x) ∈]0, T [×R,

∂xE1 = ρ−D, (t, x) ∈ [0, T ]× R,
E1(0, x) = E0,1(x), x ∈ R.

This finishes the proof of Theorem 2.1.
Let us only check that the initial data is preserved for the limit equation. We

rewrite (26) as follows

∂t

(
θEε

1 − ε
∫

R2

p1f
ε dp
)

= ∂x

∫

R2

p1v1(p)f ε dp− Eε
1ρ

ε − εδ2Bεjε2 + θJ.

For any ϕ ∈ C∞c (R), by virtue of the estimates established above, the set

{∫

R

(
θEε

1(·, x)− ε
∫

R2

p1f
ε(·, x, p) dp

)
ϕ(x) dx, ε > 0

}

is relatively compact in C0([0, T ]), as a consequence of the Arzela-Ascoli theo-
rem. Since

∫
R2 p1f

ε dp is bounded in L∞(]0, T [;L1(R)), the conclusion applies to{ ∫
RE

ε
1(t, x)ϕ(x) dx, ε > 0

}
as well. Using an approximation argument we can

consider a trial function ϕ ∈ L1(R). Finally, by separability, we use a diagonal
argument and we conclude that we can extract a subsequence (εk)k∈N decreasing to
0 such that for any ϕ ∈ L1(R),

lim
k→+∞

∫

R
Eεk

1 (t, x)ϕ(x) dx =

∫

R
E1(t, x)ϕ(x) dx uniformly on [0, T ].

5 Comments

5.1 Rate of Convergence for the Electro-Magnetic Field

Let us now show that the behavior of Ek
2 and Bk can be made precise with the

strengthened assumption

H8) limR→+∞ supε>0

∫
|x|>R

( |Eε0,2(x)|
ε

+ δ|Bε
0(x)|

)
dx = 0.

Proposition 5.1 If in addition to the hypotheses of Theorem 2.1, H8 holds, then
we have

lim
k→+∞

(
Ek

2

εk
, δBk) = (0, 0), in D′(]0, T [×R)2.
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Proof. For any ϕ ∈ C1
c (]0, T [×R) we have by (40)

∣∣∣∣
∫ T

0

∫

R
δBkϕ dx dt

∣∣∣∣ ≤
1

2

∣∣∣∣∣
∫ T

0

∫

R
(
Ek

0,2

εk
+ δBk

0 )(x)ϕ(t, x+
t

εkδ
) dx dt

∣∣∣∣∣

+
1

2

∣∣∣∣∣
∫ T

0

∫

R
(
Ek

0,2

εk
− δBk

0 )(x)ϕ(t, x− t

εkδ
) dx dt

∣∣∣∣∣

+
1

2

∣∣∣∣
∫ T

0

∫

R
V k

+

ϕ

εk
dx dt

∣∣∣∣+
1

2

∣∣∣∣
∫ T

0

∫

R
V k
−
ϕ

εk
dx dt

∣∣∣∣ . (62)

Take R large enough such that
∫
|x|>R (

Ek0,2(x)

εk
+ δ|Bk

0 (x)|) dx ≤ η for any k. Take

d > 0 large enough such that supp ϕ ⊂ [1
d
, T − 1

d
] × [−d, d]. Then for any (t, x) ∈

[1
d
, T ]× [−R,R] and k satisfying εk <

1
δd(R+d)

we have |x± t
εkδ
| ≥ 1

dεkδ
−R > d saying

that ∫ T

0

∫ R

−R
(Ek

0,2 ± εkδBk
0 )(x)ϕ(t, x± t

εkδ
) dx dt = 0,

and thus we have
∣∣∣∣∣
∫ T

0

∫

R
(
Ek

0,2

εk
± δBk

0 )(x)ϕ(t, x± t

εkδ
) dx dt

∣∣∣∣∣ ≤ ‖ϕ‖L∞
∫ T

0

∫

|x|>R
(
|Ek

0,2|
εk

+ δ|Bk
0 |) dxdt

≤ η‖ϕ‖L∞ .

Therefore the first and second term in the right hand side of (62) vanish as k → +∞.
For the last two terms observe that we have

∫ T

0

∫

R
V k
±(t, x)

ϕ(t, x)

εk
dx dt =

∫ T

0

∫

R

jk2 (t, x)

εk
ψk±(t, x) dx dt, (63)

where for any (t, x) ∈ [0, T ]× R

ψk±(t, x) =
1

εk

∫ T

t

ϕ(s, x± s− t
εkδ

) ds = ±δ
∫ x±T−t

εkδ

x

ϕ(t± εkδ(y − x), y) dy.

By using (27) we can write

−θ
∫ T

0

∫

R
V k
±
ϕ

εk
dx dt =

∫ T

0

∫

R
εk∂t

(∫

R2

p2f
k dp

)
ψk± dx dt

+

∫ T

0

∫

R
∂x

(∫

R2

v1(p)p2f
k dp

)
ψk± dx dt

−
∫ T

0

∫

R
Ek

2ρ
kψk± dx dt+

∫ T

0

∫

R
εkδ

2Bkjk1ψ
k
± dx dt

= T k±,1 + T k±,2 + T k±,3 + T k±,4. (64)
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We are done if we prove that limk→+∞ T k±,l = 0, l ∈ {1, 2, 3, 4}. Observe that

∂tψ
k
±(t, x) = ±δ

∫ x±T−t
εkδ

x

∂tϕ(t± εkδ(y − x), y) dy, (65)

and

∂xψ
k
±(t, x) = −εkδ2

∫ x±T−t
εkδ

x

∂tϕ(t± εkδ(y − x), y) dy ∓ δϕ(t, x)

= ∓εkδ∂tψk± ∓ δϕ(t, x). (66)

Notice that ψk±, ∂tψ
k
±, ∂xψ

k
± are uniformly bounded for k ≥ 1

‖ψk±‖L∞(]0,T [×R) ≤ δ

∫

R
sup
t∈[0,T ]

|ϕ(t, x)| dx,

‖∂tψk±‖L∞(]0,T [×R) ≤ δ

∫

R
sup
t∈[0,T ]

|∂tϕ(t, x)| dx,

‖∂xψk±‖L∞(]0,T [×R) ≤ δ‖ϕ‖L∞(]0,T [×R) + ε1δ
2

∫

R
sup
t∈[0,T ]

|∂tϕ(t, x)| dx.

After integration by parts, by taking into account that ψk±(T, ·) = 0 we find

|T k±,1| ≤
∣∣∣∣εk
∫

R

∫

R2

p2f
k
0 (x, p)ψk±(0, x) dp dx

∣∣∣∣

+

∣∣∣∣εk
∫ T

0

∫

R

∫

R2

p2f
k(t, x, p)∂tψ

k
± dp dx dt

∣∣∣∣

≤ Cεk

(
sup
k′

∫

R

∫

R2

|p|fk′0 dp dx+ sup
k′

∫ T

0

∫

R

∫

R2

|p|fk′ dp dx dt
)
,

implying that limk→+∞ T k±,1 = 0. Similarly one gets by using (66)

|T k±,2| ≤
∣∣∣∣
∫ T

0

∫

R

∫

R2

v1(p)p2f
kεkδ∂tψ

k
± dp dx dt

∣∣∣∣

+

∣∣∣∣
∫ T

0

∫

R

∫

R2

v1(p)p2f
kδϕ dp dx dt

∣∣∣∣

≤ εk‖∂tψk±‖L∞
∫ T

0

∫

R

∫

R2

|p|fk dp dx dt+ εkδ

∣∣∣∣
∫ T

0

∫

R

∫

R2

p2

√
fk hk1ϕ dp dx dt

∣∣∣∣ .

Notice that ϕ has compact support and then we deduce by (57) that limk→+∞ T k±,2 =
0. The convergence limk→+∞ T k±,4 = 0 follows by (59). Let us concentrate our
attention on the convergence of (T k±,3)k∈N. Consider the functions

ψ̃±(t, x) = ±δ
∫ ±∞
x

ϕ(t, y) dy, (t, x) ∈ [0, T ]× R.
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Here ϕ ∈ C1
c (]0, T [×R) with supp ⊂ [1

d
, T − 1

d
] × [−d, d] with d > 0 large enough.

By Remark 4.1 we know that

lim
k→+∞

∫ T

0

∫

R
Ek

2ρ
kψ̃± dx dt = 0.

Since (Ek
2 )k∈N is bounded in L∞(]0, T [×R), supk∈N,t∈[0,T ]

∫
R(1+ |x|)ρk(t, x) dx < +∞

and supk∈N‖ψk±‖L∞(]0,T [×R) < +∞ for any η > 0 there is R = R(η) large enough such
that

∣∣∣∣
∫ T

0

∫

|x|>R
Ek

2ρ
kψk± dx dt

∣∣∣∣ < η,

∣∣∣∣
∫ T

0

∫

|x|>R
Ek

2ρ
kψ̃± dx dt

∣∣∣∣ < η, k ≥ 1.

Take k1(η) such that
∣∣∣∣
∫ T

0

∫

R
Ek

2ρ
kψ̃± dx dt

∣∣∣∣ < η, k ≥ k1(η).

Therefore we can write for any k ≥ k1(η)
∣∣∣∣
∫ T

0

∫

R
Ek

2ρ
kψk± dx dt

∣∣∣∣ < η +

∣∣∣∣
∫ T

0

∫

R
Ek

2ρ
k(ψk± − ψ̃±) dx dt

∣∣∣∣

< 3η +

∣∣∣∣
∫ T

0

∫ R

−R
Ek

2ρ
k(ψk± − ψ̃±) dx dt

∣∣∣∣

= 3η +

∣∣∣∣∣
∫ T− 1

d

0

∫ R

−R
Ek

2ρ
k(ψk± − ψ̃±) dx dt

∣∣∣∣∣ . (67)

Take now k2 large enough such that 1
dεkδ

> R + d for any k ≥ k2. Observe that for

all (t, x) ∈ [0, T − 1
d
]× [−R,R] and k ≥ k2 we have

x+
T − t
εkδ

≥ 1

dεkδ
−R > d, x− T − t

εkδ
≤ R− 1

dεkδ
< −d,

saying that for any (t, x) ∈ [0, T − 1
d
]× [−R,R] and k ≥ k2 we have

ψ̃±(t, x) = ±δ
∫ ±∞
x

ϕ(t, y) dy = ±δ
∫ x±T−t

εkδ

x

ϕ(t, y) dy.

Thus for any (t, x) ∈ [0, T − 1
d
]× [−R,R] and k ≥ k2 we have

|ψk±(t, x)− ψ̃±(t, x)| = δ

∣∣∣∣∣
∫ x±T−t

εkδ

x

{ϕ(t± εkδ(y − x), y)− ϕ(t, y)} dy
∣∣∣∣∣

≤ δ

∣∣∣∣∣
∫ x±T−t

εkδ

x

‖∂tϕ‖L∞ εkδ |y − x|1{y∈[−d,d]} dy

∣∣∣∣∣
≤ 2‖∂tϕ‖L∞ εkδ

2(d+R)d. (68)
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Combining (67), (68) yields for any k ≥ max{k1(η), k2}
∣∣∣∣
∫ T

0

∫

R
Ek

2ρ
kψk± dx dt

∣∣∣∣ < 3η + 2‖∂tϕ‖L∞εkδ2(d+R)d sup
k′
‖Ek′

2 ‖L∞T sup
k′
‖ρk′0 ‖L1 ,

and we deduce that limk→+∞
∫ T

0

∫
RE

k
2ρ

kψk± dx dt = 0. The above computations show

also that (
Ek2
εk

)k∈N converges to 0 in D′(]0, T [×R) (use (39)).

5.2 Convergence to the Equilibrium Function

It is possible to show that (fk)k∈N converges towards ρ(t, x) e−E(p)/
∫
R2 e

−E(q)dq
in some sense. We need to establish first that (ρk)k∈N converges towards ρ in
C0([0, T ]; w−L1(R)).

Lemma 5.1 Assume that (ρε)ε>0, (jε1)ε>0 satisfy ρε ≥ 0,

∂tρ
ε + ∂x

jε1
ε

= 0, in D′(]0, T [×R),

sup
ε>0,t∈[0,T ]

∫

R
(1 + |x|+ | ln ρε|)ρε(t, x) dx < +∞,

and

sup
ε>0

∫ T

0

(∫

R

|jε1(t, x)|
ε

dx

)2

dt < +∞.

Then (ρε)ε>0 is relatively compact in C0([0, T ]; w−L1(R)).

Proof. Following the ideas in [25] we can extract a sequence (εk)k∈N decreasing
towards 0 such that for any ϕ ∈ C0(R) ∩ L∞(R) we have

lim
k→+∞

∫

R
ρk(t, x)ϕ(x) dx =

∫

R
ρ(t, x)ϕ(x) dx, uniformly in t ∈ [0, T ]. (69)

Actually (69) holds for any ϕ ∈ L∞(R). Indeed, for any η > 0 take R > 0 large
enough such that

sup
k∈N,t∈[0,T ]

∫

|x|>R
ρk(t, x) dx < η, sup

t∈[0,T ]

∫

|x|>R
ρ(t, x) dx < η. (70)

By the hypotheses we can find µ = µ(η) > 0 such that for any t ∈ [0, T ] and
measurable set A satisfying meas(A) < µ we have

sup
ε>0,t∈[0,T ]

∫

A

ρε(t, x) dx < η, sup
t∈[0,T ]

∫

A

ρ(t, x) dx < η. (71)
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By Lusin theorem (cf. [35], p. 52) there is a function ϕη ∈ C0
c (R), ‖ϕη‖L∞ ≤ ‖ϕ‖L∞

such that
meas ({x ∈ [−R,R] : ϕη(x) 6= ϕ(x)}) < µ. (72)

Combining (70), (71), (72) yields

∣∣∣∣
∫

R
(ρk(t, x)− ρ(t, x))ϕ(x) dx

∣∣∣∣ ≤
∣∣∣∣
∫

R
(ρk(t, x)− ρ(t, x))ϕη(x) dx

∣∣∣∣

+

∣∣∣∣
∫ R

−R
(ρk(t, x)− ρ(t, x))(ϕ(x)− ϕη(x)) dx

∣∣∣∣

+

∣∣∣∣
∫

|x|>R
(ρk(t, x)− ρ(t, x))(ϕ(x)− ϕη(x)) dx

∣∣∣∣

≤
∣∣∣∣
∫

R
(ρk(t, x)− ρ(t, x))ϕη(x) dx

∣∣∣∣+ 8η‖ϕ‖L∞ .

Since we know that limk→+∞
∫
R ρk(t, x)ϕη(x) dx =

∫
R ρ(t, x)ϕη(x) dx uniformly

in t ∈ [0, T ] we conclude that limk→+∞
∫
R ρk(t, x)ϕ(x) dx =

∫
R ρ(t, x)ϕ(x) dx

uniformly in t ∈ [0, T ].

Corollary 5.1 Let us set M(p) = e−E(p)/
∫
R2 e

−E(q)dq for any p ∈ R2. Under the
assumptions of Theorem 2.1, (fk)k∈N converges towards ρ(t, x)M(p) in the following
sense

lim
k→+∞

∫ T

0

∫

R2

∣∣∣∣
∫

R
(fk(t, x, p)− ρ(t, x)M(p))ϕ(x) dx

∣∣∣∣ dp dt = 0,

for any test function ϕ ∈ L∞(R).

Proof. We write fk − ρ(t, x)M(p) = fk − ρk(t, x)M(p) + (ρk(t, x) − ρ(t, x))M(p).
Consider now ϕ ∈ L∞(R). By Lemma 5.1 we have

lim
k→+∞

∫

R
(ρk(t, x)− ρ(t, x))ϕ(x) dx = 0, uniformly in t ∈ [0, T ].

By using the dominated convergence theorem we have

lim
k→+∞

∫ T

0

∫

R2

∣∣∣∣
∫

R
(ρk(t, x)− ρ(t, x))M(p)ϕ(x) dx

∣∣∣∣ dp dt = 0.
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It remains to discuss fk − ρkM . By logarithmic Sobolev inequality (see [4], [2]) we
obtain

0 ≤
∫

R2

{
fk

ρkM(p)
ln

(
fk

ρkM(p)

)
− fk

ρkM(p)
+ 1

}
ρkM(p) dp

=

∫

R2

fk ln

(
fk

ρkM(p)

)
dp

≤ λ

∫

R2

∣∣∣∣∣∇p

√
fk

M(p)

∣∣∣∣∣

2

M(p) dp

=
λε2

k

4

∫

R2

|hk(t, x, p)|2 dp,

for some λ > 0. We conclude by using the Csiszar-Kullback-Pinsker inequality, see
[17], [28]

(∫

R

∫

R2

|fk − ρkM(p)| dp dx
)2

≤ µ

∫

R

∫

R2

fk ln

(
fk

ρkM(p)

)
dp dx,

for some µ > 0 which implies that

∫ T

0

∫

R2

∣∣∣∣
∫

R
(fk − ρkM)ϕ dx

∣∣∣∣ dpdt ≤ ‖ϕ‖L∞
√
T

(∫ T

0

(∫

R

∫

R2

|fk − ρkM | dp dx
)2

dt

)1/2

≤ ‖ϕ‖L∞
√
µT

(∫ T

0

∫

R

∫

R2

fk ln

(
fk

ρkM

)
dp dx dt

)1/2

≤ ‖ϕ‖L∞
√
λµT

εk
2

(∫ T

0

∫

R

∫

R2

|hk|2 dp dx dt
)1/2

(73)

tends to 0 as k →∞.

6 Appendix

We detail here the dimensional analysis of the equations and the physical meaning
of the different parameters. We introduce the following physical constants
- ε0 the vacuum permittivity,
- c0 the vacuum light speed,
- q the charge of particles,
- m the mass of particles,
- τ the relaxation time which characterizes the interactions of the particles with the
thermal bath,
- KB the Boltzmann constant,
- Tth the temperature of the thermal bath.
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We will also need the total number of particles involved in the physical system under
consideration, denoted by N . We define the thermal potential by

Uth =
KBTth

q
.

The thermal impulsion pth > 0 is given by the relation

mc2
0

(√
1 +

p2
th

m2c2
0

− 1

)
= KBTth,

which leads to

pth =
√

(KBTth)2/c2
0 + 2KBTthm.

Eventually, we denote by vth > 0 the thermal velocity given by

vth =
pth

m
√

1 +
p2

th

m2c20

= c0

√√√√1− 1(
1 + KBTth

mc20

)2 .

Remark that
pthvth

KBTth

=
KBTth + 2mc2

0

KBTth +mc2
0

= ϑ ∈]1, 2[.

We are interested in the evolution of the distribution function f(t, x, p) of the
charged particles; it depends on time t > 0, space x ∈ R3 and impulsion p ∈ R3.
Given a momentum p, the associated energy reads

E(p) = mc2
0

(√
1 + |p|2/(m2c2

0)− 1
)

and the velocity is given by

v(p) = ∇pE(p) =
p

m
√

1 + |p|2/(m2c2
0)
.

Then, the evolution of f obeys the Fokker-Planck equation

∂tf + v(p) · ∇xf + q(E(t, x) + v(p) ∧B(t, x)) · ∇pf = LFP (f),

for (t, x, p) ∈]0,+∞[×R3×R3, where the relativistic Fokker-Planck collision operator
reads

LFP (f) =
p2

th

τ
divp

(
v(p)

KBTth

f +∇pf

)
=
p2

th

τ
divp

(
M(p)∇p

(
f

M(p)

))
.
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Here M(p) = e−E(p)/(KBTth) is the relativistic Maxwellian. The force acting on the
particles depends on the electro-magnetic field (E,B) the evolution of which is driven
by the Maxwell equations





∂tE − c2
0 curlxB = −q j(t, x)

ε0

, ∂tB + curlxE = 0, (t, x) ∈]0,+∞[×R3,

divxE = q
ρ(t, x)

ε0

, divxB = 0, (t, x) ∈]0,+∞[×R3,

where ρ =
∫
R3 f dp, j =

∫
R3 v(p)f dp are respectively the charge and current densi-

ties.

Let us write the equations in dimensionless form. To this end, we introduce a
length unit L, and a time unit T . As impulsion unit we set P = pth. We define
dimensionless variables and unknowns by the relations

t = Tt′, x = Lx′, p = pthp
′,

f(t, x, p) =
N

L3p3
th

f ′
( t
T
,
x

L
,
p

P

)
, E(t, x) =

Uth

L
E ′
( t
T
,
x

L

)
, B(t, x) =

Uth

Tc2
0

B′
( t
T
,
x

L

)
.

We set

E ′(p′) =
E(pthp

′)
KBTth

, v′(p′) = ∇p′E ′(p′) =
p2

th

mKBTth

p′√
1 +

p2
th

m2c2
0

|p′|2
.

As a matter of fact, note that v(p) = KBTth

pth
v′(p/pth). We also introduce the Debye

length

λD =

√
ε0KBTthL

3

q2N .

Then, the equation becomes (having dropped the primes)

∂tf +
KBTth

pth

T

L
v(p) · ∇xf +

qUth

pth

T

L

(
E(t, x) +

KBTth

pth

L

Tc2
0

v(p) ∧B(t, x)

)
· ∇pf

=
T

τ
divp(fv(p) +∇pf)

coupled to




∂tE − curlxB = −
( L
λD

)2KBTth

pth

T

L
j(t, x), ∂tB +

(c0T

L

)2

curlxE = 0,

divxE =
( L
λD

)2

ρ(t, x), divxB = 0,

with

ρ(t, x) =

∫

R3

f(t, x, p) dp, j(t, x) =

∫

R3

v(p)f(t, x, p) dp.
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We are concerned with the physical situation where




λD = L,

1� KBTth

pth

T

L
=

1

ε
� T

τ
=

θ

ε2
,

where θ > 0 is a fixed dimensionless parameter. The first relation determines the
length unit L = q2N /(ε0KBTth). The second says that the time unit is large com-
pared to Lpth/(KBTth) which is itself larger than the relaxation time. Accordingly,
it means that the thermal velocity vth is large compared to the reference velocity
L/T (the ratio being of order O(1/ε)). Besides, the mean free path ` = vthτ is small
compared to both the Debye length λD and the length unit L (the ratio being of
order O(ε)). Next, we check that

c0T

L
=

c0

vth

vthpth

KBTth

KBTthT

pthL
=

1√
1−

(
1 +

KBTth

mc2
0

)−2

ϑ

ε
.

We denote
c0T

L
=

1

δε

where, by definition, the parameter δ = (1 + 2mc2
0/(KBTth))−1/2 belongs to (0, 1).

As a matter of fact, we remark that the magnetic effects are always dominated
by the electric forces. Eventually, let us go back to the expression of the rescaled
velocity which involves the dimensionless quantities

p2
th

mKBTth

and
p2

th

m2c2
0

.

It turns out that we can rewrite these quantities by means of the previously defined
coefficient and we get





v(p) =
2

1− δ2

p√
1 +

4

δ2(1/δ2 − 1)2
|p|2

,

E(p) =
1/δ2 − 1

2

(√
1 +

4

δ2(1/δ2 − 1)2
|p|2 − 1

)
.

We recap the asymptotic problem as follows




∂tf +
1

ε
v(p) · ∇xf +

(
1

ε
E(t, x) + δ2v(p) ∧B(t, x)

)
· ∇pf =

θ

ε2
divp(v(p)f +∇pf),

∂tE − curlxB = −1

ε
j(t, x), ε2δ2∂tB + curlxE = 0,

divxE = ρ(t, x), divxB = 0.
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