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Abstract

The Nordstrom-Vlasov system describes the evolution of a population of
self-gravitating collisionless particles. We study the existence and uniqueness
of mild solution for the Cauchy problem in one dimension. This approach
does not require any derivative for the initial particle density. For any initial
particle density uniformly bounded with respect to the space variable by some
function with finite kinetic energy and any initial smooth data for the field
equation we construct a global solution, preserving the total energy. Moreover
the solution propagates with finite speed. The propagation speed coincides

with the light speed.
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1 Introduction

Consider a population of particles interacting by fields created collectively. We
assume that the collisions are so rare such that we can neglect them meaning that
there is no direct interaction between particles. The fields acting on the particles
depend on the physical model. Typical examples of such collisionless gases occur
in plasma physics and in astrophysics. In plasma physics the particles interact by
electro-magnetic forces and the dynamics of the system is described by the Vlasov-
Maxwell equations. If the particle velocities are small compared to the light speed
then we can neglect the magnetic field and use the quasi-electrostatic approximation
given by Vlasov-Poisson equations, cf. [11], [22], [3]. If the particles interact by
gravitational forces the evolution of the system is given by the Einstein-Vlasov
equations. The Cauchy problem of the former system is well understood, cf. [5], [12],
[13], [14], [15], [17]. The Einstein-Vlasov system is much more difficult. The reader
can refer to [1] for a recent review, see also [19], [20], [21]. The main application
of these equations concern the stellar dynamics: the systems to be considered are
galaxies and the particles are stars.

We analyze here a different relativistic model obtained by coupling the Vlasov
equation to the Nordstrom scalar gravitation theory [18]. Let F' = F(t,z,p) > 0
denote the density of particles in the phase-space, where ¢t € R represents time,
r € RY position and p € RY momentum, with N € {1,2,3}. This density satisfies

the Vlasov equation
OF +0(p) - VoF = (016 + v(p) - Vad)p + (14 [p) 3V.0) - V,F =0,

coupled to the wave equation

F(t
8t2¢ — Ao = _€(N+1)¢(t,m)/ ( ’x’p); d
w (14 p?)!

Here v(p) = 73 denotes the relativistic velocity of a particle with momentum

p
(1+|p|?

p. We normalize the physical units such that the rest mass of each particle, the



gravitational constant and the speed of the light are all equal to unity. For more
details on this model see [6]. It is convenient to rewrite the system in terms of the

unknowns (f, ¢) where f(t,z,p) = eN+DeE2) B(¢, 2. p). The system becomes

auf +0(p) - Vof = ((S0)p+ 1+ ) 75Ve0) - V,f = (N +1)F(S9). (1)

8152¢_ Az¢ = _#(tax)7 (2)
N ft.z.p) 3
p(t, ) /RN Qe P (3)

where S = 0, + v(p) - V, is the free-transport operator. We consider the initial
conditions
f(0,2) = fo, (0,) =0, 09(0,-) = 1. (4)
The system (1), (2), (3), (4) will be referred to as the Nordstréom-Vlasov system.
Recently Calogero and Rein proved in [8] that classical solutions for the initial value
problem with regular data exist at least locally in time in the three dimensional case.
They give also a condition for global existence. The main tool consists in deriving
representation formula for the time and spatial derivatives of ¢, following the ideas
in [15]. In one dimension they obtained the global existence and uniqueness for
smooth compactly supported initial particle density fo € C!(R?) and smooth initial
conditions ¢y € CZ(R), ¢; € C{(R) for the potential (the subscript b indicates
that the functions are bounded together with their derivatives up to the indicated
order). Assuming that the characteristic particle velocity is small compared to the
light speed leads to the gravitational Vlasov-Poisson system, i.e., a Vlasov equation
coupled to a Poisson equation with opposite sign in front of the mass density. This
comes by the fact that the forces are repulsive in the electromagnetic case and
attractive in the gravitational case. This asymptotic regime was justified recently in
[7]. The existence of global weak solution for the Nordstrém-Vlasov system in three
dimensions has been studied as well, see [9]. One of the key points is the smoothing
effect due to momentum averaging, see [12], [16].
The aim of this paper is to prove a more general existence and uniqueness result

for the Nordstrom-Vlasov system in one dimension under less restrictive hypotheses.
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Our method allows us to remove the support compactness of the initial density fy
and the C? regularity of it. We assume that f, is bounded uniformly with respect to
x by some function gy = go(p) having finite kinetic energy and we construct a unique
global solution (f, ) where f is solution by characteristics (or mild solution) of (1)
and ¢ is a classical solution of (2). We call such a solution (f, ¢) a mild solution for
the Nordstrom-Vlasov equations. The same method was used recently for studying
a reduced Vlasov-Maxwell system for laser-plasma interaction, which shares some
common features with the Nordstrom-Vlasov system, see [4], [10]. Results for initial
boundary value problems can be obtained as well by this method, see [2] for an
existence and uniqueness result of the mild solution for the one dimensional Vlasov-

Poisson system. Our existence and uniqueness result is the following

Theorem 1.1 Assume that ¢y € W>*(R), p; € WH*(R), fo € L'(R?) and that
there is some function gy € L>®(R) such that 0 < fo(z,p) < go(p), V (z,p) €
R?, sign(-)go(-) is nonincreasing on R, and [ (14 |p|)go(p) dp < +o0. Then there is
a unique mild solution (f > 0,¢) € L>(]0,T[; L*(R?)) x W2*(]0,T[xR), VT > 0
of the Nordstrom-Vlasov system (1), (2), (3), (4) with N = 1. Moreover [, (1 +
o)) f(-, -, p) dp belongs to L>(]0, T[xR), ¥ T > 0.

Another motivation for this approach is that the proofs of our existence and unique-
ness result provide, after minor changes, the finite speed propagation of the solution.
This property inherit from the relativistic feature of the problem in hand. To our

knowledge this is the first theoretical result in this direction.

Theorem 1.2 Assume that the initial conditions (f, o5, o%)keq1,2) satisfy the hy-
potheses of Theorem 1.1 and denote by (fi, dr)re(1,2y the corresponding global so-
lutions of the one dimensional Nordstrom-Vlasov system. Moreover suppose that
J IpPgb(p) dp < +oo, k € {1,2}. Then for any R > 0 there is a constant
|m

. 2
Cr depending on R, |¢fllwa=wr), letllwrery, 1f5leire), Yomoo | 121962 R)s

k€ {1,2} such that

max (|p1 = 2| + 0201 — Oupo| + |0vp1 — Orpa|) (t, ) < CRD(??

tE[O,R]JI‘SR—t



R
where Dg' = [log =g lwoe (- r.r) + 01 = @ill oo (- ron + g Jo L+ PDIfo — [ ldpda.

Corollary 1.1 Assume that the initial conditions (f§, o, ©F)keq12y satisfy the hy-
potheses of Theorem 1.1 and denote by (fi, Px)ref1,2) the corresponding global solu-
tions of the one dimensional Nordstrém-Viasov system. Suppose also that f(z,p) =
f3(x,p), @o(x) = pi(z), ¢i(x) = ¢i(x),x € [-R, R],p € R. Then we have fi(t,x,p) =
fo(t,z,p), d1(t, x) = ¢po(t,x),t € [0,R],|z| < R—t,p e R.

Hence, the motivation of the question we address is two-fold. First we justify the
well posedness of the one dimensional Nordstrom-Vlasov system in a larger class of
solutions. Roughly speaking we deal with particle densities with finite mass and
kinetic energy (uniformly in space) which are closer to the typical physical candi-
dates, than the compactly supported smooth functions. Second, we highlight the
finite propagation speed of the solutions. For the numerical point of view this prop-
erty has important consequences: it allows us to localize in space when computing
them.

Our paper is organized as follows. In Section 2 we analyze the Vlasov equation.
We introduce the equations of characteristics and we recall the notion of mild so-
lution. We state also some important properties of the characteristics. The details
of proof can be found in the Appendix. In Section 3 we construct the fixed point
application and we obtain estimates for the first and second order derivatives. In
Section 4 we prove the existence and uniqueness of mild solution for the Nordstrom-
Vlasov equations in one dimension. We check also that this solution preserves the

total energy. In the last section we establish the finite speed propagation property.

2 The Vlasov equation

In this section we assume that ¢ = ¢(¢,x) is a given smooth function and we recall



the notion of solution by characteristics for the Vlasov equation (1) in one dimension

O f +v(p)-0.f — ((S¢)p +(1+p%) m) -0, f =2f(S9¢), (t,z,p) €]0,T[xR?, (5)

with the initial condition

f(07x7p) :fO(x7p>7 ('rup> GRZ' (6)

For any (¢, z,p) € [0,T] x R? we introduce the system of characteristics for (5)

S S 2 L ()}
& = VPO, o = ~P) 0+ oP)0.0) (5 X () = IR ()

with the conditions
X(s=t)=uz, P(s=t)=p. (8)

Notice that if ¢ is a C! function and 0,¢, 0,¢ are Lipschitz with respect to z € R
uniformly on ¢ in [0,77], then there is a unique C' solution for (7), (8), denoted
(X (s;t,z,p), P(s;t,x,p)) or simply (X(s), P(s)). The divergence of the field ap-
pearing in the right hand side terms of (7) is given by

Diviey (0(0), ~(S0)p — (1+9?) 30,0 = —016 — v(p)0s, )

and by observing that £(s, X (s)) = 9,6(s, X (s)) +v(P(s))0:¢(s, X (s)) we deduce

O(X (s;t,x,p),P(s;t,z,p

1e0) ) has the determinant given by

that the jacobian matrix J(s) :=

O(X(s;t,z,p), P(s;t,z,p))
d(z,p)

Multiplying (5) by e2?(®®) and by taking into account that

det J(s) = det < ) = ¢ e X(tep)+oa) £ o (10)
S(fe ™) = e 2Sf + fS(e®) =S f —2fe 2S¢,
we obtain
O fe™) +v(p)0(fe ) = (SO + (1412 30,0) () = 0.

We deduce formally that fe~2¢ is constant along any characteristic of (7) and we

have the usual definition



Definition 2.1 Assume that ¢ € C1([0,T] x R), 0;¢,0,¢ € L>(]0, T[; Wh>°(R))
and fo is a measurable function on R?. The solution by characteristics (or mild

solution) of (5), (6) is given by
f(t2,p) = fo(X(05t,2,p), P(0;1,,p))e?* o) 200X OEED) (¢ o, p) € [0,T] x R”.
In the following proposition we recall some immediate properties of the mild solution

Proposition 2.1 Assume that ¢ € C'([0,T] x R) N L>(]0, T[xR), d;p,0.¢ €
L>(]0, T[; WE>=(R)), fo is measurable. Denote by f the mild solution of (5), (6).
1) If fo is nonnegative then f is nonnegative ;

2) If fo is bounded then f is bounded and we have
||f||L°°(}O,T[><R2) < €4H¢IILOO<J0,T[xR>||f0||LOO(R2) :
3) If fo € LY(R?) then f € L>=(]0,T[; L*(R?)) and
[l dpde < etimmzion | e
RJR

In particular the conservation of the total mass holds

//wwwmﬂmwmzf/mmmwwwwmteﬂﬂ;
RJR RJR

4) If fo € L*(R?) then for any continuous bounded function 1) we have

/OT/R/Rf(t,x,pW(t,:r,p) dpazdl = /R/Rfo(:c,p) /0T¢(t>X(t;Oa%P%P(t?O’””’p))

w  P6X(50,2,p)=0(0:2) 1y dpdz ;
5) If (1+ [pl)fo € LA(R?) then (1+ [p|)f € L=(0,T[; L(E2) and

t
//u+mmmwmﬂ@m:SerwQ+&ww/W@a@mmﬂnmmw>
RJR 0

+&Wm//mmu@me
RJR

6) If fo € L'(R?) then the mild solution f satisfies the following weak formulation
T 1
/// f(t,z, p)e ®t) (@9 + v(p)0.0 — <pS<j§ +(1+p*) 2 mqb) 8p6’) dp dx dt
oJrJR
+ // fola, p)e=?©70(0, 2, p) dpdx = 0, (11)
RJR
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for any 6 € CH[0, T[xR?). In particular, if (1 + |p|)fo € L'(R?), the above formu-
lation holds for any 6 € C}([0,T) x R?) such that 6(T,-,-) = 0.

Proof. The first and second statements are trivial.
3) Assume now that f; € L'(R?) and for any ¢t € [0,T] consider the change of

variables © = X (t;0,v,q), p = P(t;0,y,q). By using (10) we have

//If(t,x,p)ldpdas = //|ftX (1)) e~ ¢EX+60D) g gy
RJR
= //Ifo(y,q)le (EX(ED=009) dg dy
RJR

e2llellee ||f0HL1(R2)-

IN

Similarly we obtain
//|f(t,:c,p)|e—¢<m> dpde = //|f (£, X (1), P(£))] 200X 01609 g
RJR

= //Ifo(y,Q)Ie_ ©9) dq dy.
RJR

4) Take now ¢ € CP([0,T] x R?). By the previous point we already know that
f(t) € LY(R?) for any ¢ € [0,T]. By change of variables we obtain as before

///fl/} dp dx dt ///ftX (O)b(t, X (), P(t))e~ X160 qq gy gt
//fon/¢tX P(t))e?X =009 dt dg dy.

5) By using one more time the change of variables = = X (¢;0,v,q),p = P(t;0,v,q)
and (10) one gets

[+ uhisl dpds

[ [+ 1P@Dlse X, Pyl X0 dgdy
RJR
= [ [ POty e 0 dgay. (12

By (7) we have

(s, X (s
i{P(S>€¢(S,X(s))} ___¢€ (5,X(s))

——0,0(s, X (s)), 13
ds (r P = ) 13)



and therefore

t
P(t)ettXO) — geol0m) _ / e
o (L+[P(s)]?)2

We deduce that for any ¢ € [0,7] we have

H(5:X(5))

0.0(s, X (s))ds.

t
|P(t)] < |q|6¢(0,y)—¢(t,X(t)) +€—¢(t,X(t))/ e¢(S’X(S))|8$¢(s,X(s))| ds
0

t
< |q,62||¢||m+€2¢||mo/ 1056(5)|[ oo (14)
0

Combining (12), (14) yields
t
| [0+ DIs )] dpdo < i (1 p e [ ||ax¢<s>umds> follor e
RJR 0
+ettles [ [l fute.p)] dpds.
RJR

6) For any 6 € C}([0, T[xR?) consider
Uit 2,p) = 0 (90 + v(p)0sd — (pS6+ (1 +97)20,0) 9,0)
Notice that v(s, X(s), P(s)) = e *=X)L{g(s X (s), P(s))}. By applying 4) one

gets

T
/// fe?t2) <8t«9—|—v(p)8$9— <p5¢+(1+p2)_% xqb) 3p6’> dp dx dt
0JrRJR .
= [ [ tep) [ 000, X 0). P ds dp
— _// folx, p)e=?©0(0, x, p) dp dz.
RJR

If (1+]p|) fo € L*(R?) we know that (1+|p|)f € L>=(]0,T[; L'(R?)). Take x € C}(R),
x(u) = 0if [u] > 2, x(u) = 1if [u]| <1, x > 0and xg(-) = x(3), R > 0. In order to
prove (11) for 6 € CL([0,T] x R?), 6(T,-,-) = 0, apply them with 0g = Oxr(x)xr(p)

and let R — 4o0. O

Remark 2.1 Notice that (5) can be written

O ) + 0ulv(p) o) = 0, (pS0+ (1+97) 20,0) fe™*) =0,

which justifies formally the weak formulation (11). In particular the total mass

JoJr f(2, z,p)e”?®?) dpdx is preserved for any t.

9



We end this section with a continuous dependence result of the characteristics with
respect to ¢. It will be used in the next section. The proof is standard and it is
postponed to the Appendix. We use the notation ||ul/1c = ||u|lec + ||t for any
function u € WH*(R).

Proposition 2.2 Assume that ¢, € C*([0,T] x R) N L>(]0, T[xR), Oy¢x, Our €
L>(0, T[; WL>(R)), k € {1,2}. For any (z,p) € R? consider (X.(t), Pu(t)) =
(Xk(t;0,2,p), Pe(t; 0, x,p)) the characteristics corresponding to ¢y, k € {1,2}. Then
for any t € [0,T] there is a constant C depending on sup,e(o g peq1,23 110k (8)[ L +
10:01(8) || L + |02k (8)|| 1} such that for any s € [0,] we have

X1 (5) = Xa(s)] + |Pr(s)eP X0 _ py()et X6 < ¢ p(6r — 6)(0, 2)
+—q/n¢ (oe dr.

The following result is a direct consequence of the above proposition (see the Ap-

pendix for proof details)

Corollary 2.1 Under the hypotheses of Proposition 2.2, there is a constant C' de-

pending on

sup — {[[0k(8) oo + 1000k (5)lloo + 10:61(3)lloo + 10201(5) l|oo + 11050k (5)[loo }

s€[0,T),ke{1,2}

such that we have for any t € [0,T]

2 1 (8, X1 (2))
k€
2V R (I ~ a0l + JACCE 6l )
+ C|p(¢1 — ¢2)(0, )],
2 e¢k(t Xi(t ))8 x| <o . . t ]
Z; LHHC T 0t Xi(0)] < CUAO = dalOlhot [ [61(5) = 62w

+ Clp(g1 — ¢2)(0,2)],

ki (£Xk(0)

§31+u%)nltmmxum

1

SC(l91(t) = da(t)lloo + 110101 (t) — Oucp2 ()|

lﬂwl 9 l1eds + (61 — 62)(0,2)]).

10



3 Fixed point application

Assume that ¢g € W2®(R),p; € WH2(R), fo € LY(R?), fo > 0 and take an
arbitrary 1" > 0. Since ¢ satisfies a one dimensional wave equation, a natural

definition for the fixed point application is F¢ = ¢ for any ¢ in the set
Dl = {¢ € Cl([ou T] XR) : <¢7 at(b)(ou ) = (9007 801)7 at(ba az(b € Loo(]()? T[J WLOO(R))},

where ¢ is given by d’Alembert formula

$e0) = Soattane-0)+s [ )y

2 oy

1 t px+(t—s)
- —// w(s,y) dy ds, (t,x)€[0,T] xR, (15)

2 0Jz—(t—s)

the function p is given by
t
u(t,z) = / JG2D) ) e (0,7] x R, (16)
R(1+p?)2

and f is the mild solution of (5), (6) corresponding to ¢.

3.1 Estimate of F

Since the initial density f, is nonnegative, we know that any mild solution f is

nonnegative and by (15) we deduce the a priori estimate

o(t,x) < llgollos + tllerlloos (£,2) €0, T] x R. (17)
Actually we can restrict the application F to the set

T
Dy = Din{¢ : —|lvolloc = Tl1]loo — 562”“00H""JFTH“DIH°"||f0||L1 < o(t,r)

< leolloo + Tllealloo, V(¢ ) € [0,T] x R},
and we check easily that for any ¢ € D, we have for (¢,x) € [0,7] x R

T
—||<Po||<>o—T!|901||<>o—562”“’0”""*T”“’l”""||fo||L1 < Fo(t,x) < [lpolloc +Tlerlloo- (18)

11



Indeed, for any ¢ € D,, by using the definition of the mild solution f and the

conservation of the total mass, cf. Proposition 2.1, we obtain for any 0 < s <t < T

z+(t—s) f
/ n(s,y) dy < / /
z—(t—s) 1+p
< e [ /f@,y,pww
= //fo y,p)e W dp dy

< 62llwo||oo+T||so1lloc||f0||L1‘

Therefore (15), (17) imply (18).

3.2 Estimate of DF¢

The d’Alembert formula (15) implies
~ 1 1
0d(ta) = Llpgle 1) —gile ~ 0} + ylerle )+ pale — 1)
- %/ (i(s, 2+t — )+ pls,x — (t— 5)} ds, (19)
0

and

0.8(1:2) = Flelle+0)+pile ~ O} + 3lora +0) = (e — 1))

— %/0{u(s,x+t—8)—M(3>$—(t—s))} ds. (20)

In order to estimate the L> norms of 9,0, 896& we need to estimate the L norm

of p. In particular we have to assume that pg(- fR Solup) 2)7 dp € L*(R). Tt is
convenient to suppose that there is some function gg € LOO(R) such that

0 < folz,p) < go(p), (z,p) € R? sign(-)go(-) is nonincreasing on R, (21)
and

/—( 9o () dp < +o0. (22)

1+ p?)z

12



Proposition 3.1 Assume that oo € W**(R), o1 € WH(R), fo € L*(R?) and
(21), (22) hold. Then for any ¢ € Dy we have

t
(Bl < Cy +02/ 1024 (7)o d7, T € [0,T],
0

where

¢y = dp? Co = 2e"M|go|| L=,

\/min(1, e*M) / 1+p

and

T
M = ||900||oo +T ||S01||oo + 562||<P0||00+T H%H‘”HfoHLl-

Proof. For (t,z,p) € [0,T] x R? consider (X(s), P(s)) = (X(s;t,x,p), P(s;t,z,p)),
s € [0,T]. By (13) we deduce that for any s € [0, 7] we have

s o(m, X (7
45 X() p(g) = (olta)), _ / e m X ) 1
o (L [P()P)3
In particular we obtain

t
£H0.X0) p(g) — o00)), 4 /
o (

0. 0(1, X (1)) dr. (23)

X ()
L+|P(r)2)2
We denote by M a bound for ||¢||~, for example

0p0(7, X (1)) dr. (24)

T
M = [[golloo + T 11l + 5 #0011 o,

and for any ¢ € [0,7] we introduce the notation R(t fo |026(7)]|00 dT. Observe
that for any p > e R(t) formula (24) implies e¢(0’X(0))P(0) >e Mp—eMR(t) >0,
and thus

P(0;t,2,p) > e *Mp — R(t) > 0. (25)
Similarly, if p < —e*R(t), formula (24) implies —e?©@XO)P(0) > =M (—p) —
eMR(t) > 0. In this case we obtain

—P(0;t,2,p) > e *M(—p) — R(t) > 0. (26)

We can estimate o as follows

f(t,z,p) /f(ta;p)
t,x) = —1 e2M d —1 e2M d
’u( ) /(1 p ) {lp‘< R(t)} p R(]. ) {|p|> R(t)} P

= w(t,z) + po(t,z), (t,z) € [0,T] x R. (27)

13



By the definition of the mild solution we have

(0:¢, 2, p), P(0: ¢ .
wt,z) = / Jo(X (05, 2,p), (0,2, P)) 26(t.0)-20(0.X 0t
(I+p )
S €4M\/gO(P(07t7x;p))
R (1+p%)2
< 2|l R(D). (t.2) € [0.T] x R (28)

Lyjpj<e2n p(ry} dp

Lijpi<e2n g(ry} dp

In order to estimate po observe that (25), (26) and the monotonicity of gy yields
fo(X(0;t,2,p), P(0;t,2,p)) < go(P(0;t,2,p)) < go(e *p — R(t)), ¥V p > MR(1),
respectively

fo(X(0:t,2,p), P(0;t,2,p)) < go(P(0:t,2,p)) < go(e M p+R(t)), ¥ p < —e*M R(2).

Therefore we have as before

f t,x , P f y Ly P
po(t, ) = / g1{p< e2M (1)} dp + gl{wewmudp

(1+p?)2 R(1+p?)2
< 4MZ/90 (0;t,z p )1{( epmeaat oy dp
AM go(e —1)*R(?))
= Z/ )5 L(-1ypze2n ryy dp
= I7(t)+1(t). (29)

By direct computations (use the changes of variable e 2Mp + R(t) = ¢ < 0, respec-
tively e 2Mp — R(t) = q > 0) one gets

+e 6M +oo 9 <p)

\/mln (1, €4M (1 +p2)%

Finally from (27), (28), (29), (30) one gets

I=(t) dp. (30)

dp+2€6M||go||oo (t), tel0,T].  (31)

lise)leo < W/ 1+p
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Now we obtain easily estimates for the L™ norms of 9,0, d,¢. Indeed, (20) and

Proposition 3.1 imply for any ¢ € [0, T
10:6) o0 < lleglloo + [l lloo +/Ot 114(5)[|oos
< Nedlle+ et + [ {1+ CaRO s
< Nellet ol + OGP+ G [ (0060 ds. (2
We restrict the application F to
Dy =Don{¢ + max([|0:0(1)|ocs 10:6(1)l|oe) < (g lloot 1 o +-Ci1T) 2 € [0, TT}.
By using (32) we check easily that for any ¢ € D3 we have
10:F S (1) loo = 10:0(E)lo < (25 llo0 + 01lloc + CLT)E™T, Wt € 0, 7). (33)
Notice that for any ¢ € D5 we have by (19)
0F6O < Vel + ol + [ ) s

t
< 193l + il + COT + CST [ 0,005 s
0
(il + o1l + TS V€ DT (31)

IN

By (31) we deduce also that for any ¢ € D3 we have

t
Ol < i+ Ca [ Ul + lloale + )T ds
0

€CQTt -1

= Ci+ (leglloe + llerlloe + C1T) ———

T (35)

3.3 Estimate of D?F¢

We intend to estimate the second derivatives of q~5 = Fo¢, for any ¢ € D3. We have
27 1 Vi " 1 / /
0pp(t,x) = Slyole+1) +yole =)+ Slei(e +1) — gz — 1)}
1 1
§8$D+(t, x)+ §8zD_(t, ), (36)
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where D*(t, z) fo s,z £ (t — s)) ds. Obviously we have for any ¢ € [0, 7]

1 1o
1826(t)llee < lI6lloo + ll91lloo + 510 0¥ (Dlloo + 510 D7 (Do (37)

and thus it remains to estimate the L* norms of 9,D*. For any test function

¥ € CHR) we can write

+ / _ f(s,x £ ( t—s
/RD (t,z)Y (x) de = // 0t p) ¢(x)dpdxds

_ // f”p F(t—s) dpduds.  (38)

1—|—p

By Proposition 2.1 we can write

£t ) - = p)e—ol®) t€¢(s,X(s))¢'(X( s)F (t—s)) s dpda,
/D % )d //fO ?) /0 At P
(39)

where (X (s), P(s)) = (X (s;0,z,p), P(s;0,2,p)), (s,z,p) € [0,t] x R2. We need to

estimate the integrals

t e¢(S>X(5)
Ii(ta x7p) = / T A, N1
o (

= [ SO P £ (L PERDIX ) F (=) d
where

and



The terms Ii*, I can be estimated by
1| < 2614 [P(1)]), 13| < 2el#0l>=(1 4 |p]). (41)

By using (7) and the bounds for the L* norms of ¢,d,¢,0;¢ one gets by direct

computations that
IF(s)| < C(1+|P(s)]), VO<s<t<T, (42)

for some constant C' depending only on the initial conditions ¢q, 1, fo and T". There-

fore combining (39), (40), (41), (42) yields

/R D(t, 2)0 (2) da

< C / / fola, p)(1 + [p)( F )] dpds (43)
e / / folep) (1 + [PODIX (D)) dpdz
e / / fole,p) / (1+ [PEDIGX(s) F (¢ — )] dpdz,

for any t € [0,T], ¢ € C}(R) and for some constant depending only on the initial

conditions and T'. We will use the following lemma

Lemma 3.1 Assume that oo € W>*®(R), ¢; € WH(R), fo € LY(R?) and that
(21) holds for some function gy € L>®(R) satisfying

/R(l +[p1)go(p) dp < +o0. (44)

Then for any ¢ € D5 we have || [5(1+ [p|)f(-, - p) deLoo(}o,T[xR) < Cs, where f is
the mild solution of (5), (6) corresponding to ¢ and Cy depends only on the initial

conditions and T'.

Proof. Tt is very similar to those of Proposition 3.1. For any (¢,x) € [0,T] x R let
k(t,z) = [o(1+|p|)f(t,z,p) dp. We have

k(t,(]}) = /R(l + ‘p’)f(t, x,p)1{|p‘<62MR(t)} dp + /R(1 + ‘p’)f(t, xap)]-ﬂp\ZeQMR(t)} dp

= k’l(t, l’) + kﬁg(t, iL‘), (45)

17



where M = [[polloc + T l|1]|oc + FeIe0l=t et | fo 11 and R(t) = [ [10:6(5)l|oc ds.
Note that since ¢ belongs to Ds, sup,co 7 f2(t) can be bounded by some constant
depending only on the initial conditions (observe that hypothesis (44) is stronger
than (22)) and 7. For the first term k; we can write

k1 (ta l‘) = /RfO(X(O’ t,x, p)7 P<07 l,x, p>>e2¢(t,m)72¢(0,X(0))(1 + |p‘)1{\p|<62MR(t)} dp

< 2eM(1+ M R())R(E) ] gol o (46)

For the second term ko we have

2
ko(t,x) < e4MZ/go(P(0;t,$,p))(1+\p!)l{(1)kpze2MR<t>} dp
k=1"R

< M i /Rgo(e2Mp — (=) R(£)) (1 + [p)L{(1ykpze2n peryy dp
k=1
< Mmax{e®™, 1+ M R(t)} /R(l + |p|)go(p) dp. (47)
Our conclusion follows from (45), (46), (47). O
We prove also a more general result for later use

Lemma 3.2 Assume that pg € W>*(R), ¢, € WH*(R), fo € L'(R?) and that
(21) holds for some function go € L®(R) satisfying [5 [p|™'g0(p) dp < +oo with
m € N. Consider r : R* — [0, +oc0[ verifying [; r(z,p) dz < afp|+ 6, V p € R.

Then for any ¢ € D3 we have || [o [ 1pI™f(-, 2, p)r(z,p) dpdx”Loo(]O,TD < (a+p)C,
where f is the mild solution of (5), (6) corresponding to ¢ and C' depends only on

the initial conditions and T'.

Proof. With the same notations as before we have for any ¢ € [0, 7]

/ / P f(t, 2, p)r(a,p) dpdz = / / D™ (¢, 2, p)r (2, p) Ly orst ey dpde
RJR RJR

+ //’p‘mf(tax7p)r(xap)1{|p>62MR(t)} dpdiL‘
RJR
— )+ I, (48)

18



For the first term we have

e4M||g0||OO/R|p|m1{|p|<ezMR(t)} (/Rr(x,p) d:c) dp

< (a+p)CT, (49)

1"(1)

IN

with CJ* = 2e2MG+m)(R(T))™+ max{1, e* R(T)}||go|lo. For the second term we

can write

2
B0 < Y / " 50(P0: ) L sy dp
< 4MZ / LI = (D R DI sy dp e
< (asB)C, (50)
with Ot = MO+ el [ (p] + R(T))"go(p) dp, 2 fo ([pl + B(T))™ g0 (p) dp}.

The conclusion follows by (48), (49), (50). O

Remark 3.1 If a = 0 the conclusion of Lemma 3.2 holds true by assuming only

J= 1™ 90(p) dp < +oo.

Now, under the hypotheses of Lemma 3.1, by using (43) we can find estimates for
the L* norms of 9,D*. Indeed, for the first term in the right hand side of (43) we
have for any t € [0, T

/R / 1+ [P fole (e F0)| dpde = / (e F )] /R<1+\p|>fo<x,p> dp da
< / (e T 1) / (1+ [pl)go(p) dp de
- Ago<p><1+|p|>dp||w||Ll. (51)

For the other terms in (43) let us estimate |- [5 fo(z,p)(1 + |P(s)))[¥(X(s) F (t —

s))| dpdx for any 0 < s <t < T. By changing variables along characteristics (see

19



Proposition 2.1) we obtain

/R/Rfo(%pﬂl +[P(s)])|[(X (s) F (t — s))| dpdx
=[5 X(0), PN (1 PN (5) F (¢ = )] dpda
=[5, X(6), PN 1 [PL)DIGX () F (0 = )] det T(s) dpdo

< ol / (X F (£ — 5)) / f(s.X. P)(1 + |P]) dP dX

< W= Cyly 1. (52)

Combining (43), (51), (52) we obtain that | [ D*(t,2)¢/(z) dz| < Cyl[)[|rr, V¥ €
C!(R), for some constant Cy depending only on the initial conditions and 7. We
deduce that ||0,D*||, < Cy and therefore (37) implies

102610 < Il lloe + 1€} lloe + Ca =: C. (53)
Observe that from (19) we have
2 7 1 Vi " 1 / /
Ond(t.x) = Slvo(z +1) —wolz =)} + Siwi(z +1) +oi(z — )}
1 1
— §6xD+(t,x) — éaID_(t, lL‘)7

and therefore we obtain the same bound [|02,¢sc < |94]lsc + |¢{llee + Cs = Cs. For

estimating the second derivative afé we can write
07 6(t, x)| = |026(t, ) — p(t, )] < Cs + | ] oo-

By using (35) one gets
167l < Cs, (54)

for some constant depending only on the initial conditions and 7.

Remark 3.2 The computations of the paragraphs 3.1, 3.2, 3.3 show that under the
hypotheses of Lemma 3.1 D3 is left invariant by the application F and we have

sup {Haiasnoo, 12,31 1826

¢€D3

Je deOO} < too,

20



where ¢ = F¢ and f is the mild solution of (5), (6). It is convenient to restrict one

more time the application F to the set

Dy=DsN{¢ : max{[|0;¢loc, [0%:0]lc} < C5, [1078llc < Ci},

which 1s also left invariant by F.

3.4 Estimate of F¢p, — Foo

The following step is to estimate F¢py — F ¢y in terms of ¢y — ¢ for any ¢, g2 € Dy.
Consider ¢y € Dy, k € {1,2} and denote by fi, k € {1,2} the mild solutions of (5),
(6) corresponding to ¢, k € {1,2}. For any ¢ € L'(R) and ¢ € [0, T] we have

A(él(t,y)—éz(t,y))¢(y) dy = ——//// U - f2 Sxp)iﬁ(y)

X Lijg—y|<t—s} dpdx ds dy (55)

_ __/// fim Bo) b(s. I))é dp dz ds,

where 0(s,z) = f$+(t ? ¥ (y) dy. Denote by (Xx(s), Px(s)) the characteristics cor-

responding to ¢y, k € {1, 2}. We obtain by Proposition 2.1

1 — 4 = 2 —1)k . p)e#o@) t (S Xk( )
2/R(¢1(t,y) ¢2(t,9))(y) dy ;( 1) /R/Rfo( D) /0 1+ |B(s) )
x (X)) ds dp da. (56)

By using Remark 3.2 and Corollary 2.1 (with ¢, ¢o satisfying ¢1(0) = ¢2(0) = ¢o)

we deduce that there is a constant C' depending only on the initial conditions and

T such that
0 (161(5) = a3+ [ 161(7) = 6u(r) e )

(57)

2 k e¢k(57Xk(S))

-1 .
AT RS

k=1
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We deduce that

122:(—

[y PR
1
o (1+ [Pe(s)]?)

2 P (5,X1(5))

Z 1 + |Pi(s)P?)2

k=

0(s, Xi(s))| < [6(s, Xu(s)

[\

el S (1)kg(s, X ))‘
k=1
< Ol (||¢1< — a8l + / e >||1de)
Xa(s)—(t—s) 5)+(t—s)
+ C dy| + C dyl . 58
/X L vy /X e V) (58)
Combining (56), (58) we obtain
_ _ t
2 /Rwl—qsgxt,y)wy) dy\ < c / / / Foll el (61(s) = éa(s) o
+ /nasl (e dr) dpde ds
Xa(s)—(t—s)
C dy| dpdxd
4 /0 / / fo /X 0 ) dy| dparas
Xa(s)+(t—)
dy| dpdxd
e LA
— L) + D) + Ts(0),. (59)

For the first term in the right hand side of (59) we have for some constant C
(depending on the initial conditions and T')

L(t) < CWHLII\foHu/O [$1(5) = @2(s) 1,00 ds. (60)

In order to estimate the second term in the right hand side of (59) observe that for

any 0 < s <t <T we have
—s)
//fo w dZ/

Xi(s)—

dp dx </ A Jolb W)L gy—(x1(9)-(t=s)) <1X1 ()~ Xa(s) 1Ay dp dT

:/R|1/J(y)|/R/R Jodlgly—(x1 (s)—(t—s))|<| X1 (s)— Xa(s)]} AP dT dy.

(61)
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Since ¢1(0) = ¢2(0) = o we deduce by Proposition 2.2 that | X (s)—Xa(s)| < CR(s)
where R(s) = [ [[¢1(7) — ¢2(7)|l1,00 d7. By using Lemma 3.1 we obtain after the

change of variables along characteristics (cf. Proposition 2.1)

/R/R Jo Lgy—xi(s)—(t—s)) | <|x1(s)—Xa(s)]} AP A < /R/R Jol{ly—x1(9)~(t-s))I<CR(s)) AP dv
:/R/R f1(8,X1(8),Pl(s))e“’o(z)*‘ﬁl(s»Xl(s))1{\@,_()(1(s)_(t_s))\<CR(s)} det J1(s) dpdx
< e"“”“"°°+¢1"°°// Fi(5, X, Py (x—-spl<cnes)y AP dX
RJR
— 6I|s00||oo+¢1||oo/R1{|y(X(ts))<CR(s)}/Rf1(S,X,P) dP dX

< 9CelPolletldrl

Aﬁmummﬂwlﬂwmﬂ—¢xﬂmmdr (62)

From (61), (62) we obtain for any ¢ € [0, T

L) < CH@DHLl/O [f1(5) = P2(8) 1,00 ds, (63)

for some constant depending on the initial conditions and 7. A similar estimate

holds for the term I3(¢) and finally (59) implies

A&—@mww@mﬁsmwméu@@—@@mm@, (64)

for any ¢t € [0, 7] and ¢ € L'(R). We deduce that for any ¢y, ¢s € D,

[Fr(t) = Foa(t)llo < C/O [61(5) = P2(s)l1.00 ds. (65)

3.5 Estimate of 0,F ¢ — 0, F P

We need to estimate also the difference of spatial derivatives 9, F ¢, 0, F ¢, in terms

of @1 — ¢9 for any ¢, ¢ € D,. With the notations of the previous paragraphs, by
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using (20), we have for any function ¢ € L'(R)
/R 0.0 — by dr = 3 / / {in(s, = (t— 8)) — pials, 2 — (t — ) }() dods
_ l/ /{,ul(s,x—i- (= 8)) = psls, 2 + (t — ) }ob(x) dads

_ /// Fi— f)(s,2 — (t — )p)(lﬁ(;) dp dz ds
- §/O/R/R(f1—fz)(s,x+(t—5>7p)% dpd ds

= %14(75) - %[5(75). (66)

[N

We analyze only the term I4(t). The estimate for I;(t) follows in similar way. By

Proposition 2.1 we have

/// f1— f2)(s, ,p)w(f+(;)%>) dpdzx ds

_ z.p)e Po@) Y ek (5, Xk(5)) . vk
//fo( D) /OZ( 1) 1+\Pk(s)|2)%¢<Xk( )+ (t —s))ds dpd

) / JRC / (1 [Pl + Pis)) o)
0
Xi(s)+(t—s)
X Y(u) du ds dp dx
dS Xk (t)
= // fola, p)e”®WI4(t, x, p) dp de. (67)
RJR
After integration by parts with respect to the variable s one gets
2 L Xk (1)
Lito.p) = YD+ +pen® [ pudu (68)
x+t

X (s)+(t—s)

2

d )

= [0 (RO e ) s
0 = ds (1)

By direct computations we obtain

ek (s, Xk (s))

(L+|Pu(s)P?)2

DL+ 1Bl + Buls)) et ] =

(Ocdx — Our).  (69)
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We can write

2 d L Xp(s)+t—s

S (A PP+ A e} [y

— ds Xi(t)

k=1 k

22:( ) e (5, X1(s)) (it — 0u0) Xk<s)+2/?(s v
= —1 1Pk — Oz Pk / u)au

k=1 (1+ [Pr(s)]? ) Xp(t)

2 bi(5,X1(s)) Xo(s)+t—s
(&
< el (Oudr — )| + C / o(u)du
kX: + [Pr(s)[?)2 X1 (s)+t—s
Xa(t)
+ Y (u)du (70)
Xl(t)
By (67), (68), (70) one gets
Xo(t)
o< e [anari|[ s dpds
RJR X1 (t)
Clole [ [ 1 2 D e B.60)| ds dpd
+ Lt 0 1 k — Uz@k S apax
(L+ |Puls)[2)2
+t S
+ //fo/ u)du| ds dp dx
+t s

We estimate now one by one the three terms (7;);<;<3. It is easily seen, by using
(13), that 1+ |p| < C(1+ |Pyi(t)]). By performing similar computations as those in
(62) and by using Proposition 2.2, Lemma 3.1, one gets

1< ¢ [ [ hena+ @D [ -xoino-xon d dpds

< c/w |//f1tX1 Pu()em @011 ()
X L X 01<C R on(s)—a(s) 1,medsy A€ 1 (E) dp da dy
< aet=stat-cz | [ fl(t,-,p)(1+|pl)de Il / 161(5) = 62(s) 1 ceds
R 0o 0
< Ol / 161(5) — da(8)1.dls, (72)
0
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for some constant C'" depending only on the initial conditions and 7. By using now

Remark 3.2 and Corollary 2.1 we have
T < ol [ [ ) [ 10n(s) = 62(5) s+ 1001(5) = (o)
+ / lp1(7) — P2(T)||1,00 dT}ds dp dx
0
t
< el follz /0 {llg1(5) = d2(s)ll1.00 + 10:01(s) — Or2(s)lloc bds. (73)
The term 73 can be estimated as before (see (61), (62), (63)). We obtain
T3 < C||¢||L1/ [61(s) — ¢2(s)||1,00ds. (74)
0
Combining (71), (72), (73), (74) we deduce

L] < Cl[lls /0 {ll¢1(s) = da(8)ll1.00 + [|0ep1(5) — Ducha()loc }ls,

for any ¢t € [0,T], v € L' and for some constant C' depending only on the initial

conditions and T'. A similar inequality holds for I5 and thus (66) implies

< Ol / {161(5) — a8 e
T l0d(s) - Bn(s)ll}ds,  (75)

/R<arq~§1(t7 ‘T) - az(%2(t7 I))l/}(l’) dx

saying that for any ¢ € [0, 7] and any ¢, ¢» € D, we have
10:F $1(t) = 0o F o (1) loo < C/Ot{HQh(S) = ¢2(8) 1,00 + [|101001(5) — Oepa(s)loc }ds.
(76)
3.6 Estimate of 0,F ¢, — 0, F ¢
By (19) we know that for any ¢1, ¢s € Dy we have
0(1 — do)(t,7) = —% /Ot{(/ll — p2)(s,x = (t =) + (1 — p2) (s, 2 + (£ — s)) }ds.

With the notations of the previous paragraph we obtain for any function ¢ € L'(R)

[@n(t.) = didalt.o)ite) da = —316) = 51560
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By the computations of paragraph 3.5 one gets for any ¥ € L'(R), ¢1, ¢ € Dy

/R@t(@ - éz)iﬂ(x) dx

implying that

<Ol 0{H¢>1(8) = 02(8) 100 + [|0:01(5) = Dia(s)[|oc }ds,

10 F 61(1) = 01 F o ()| oo SC/O {ll¢1(s)=@2() 1,00 +1011 (5) = Orpa(s) [ oo . (77)

4 Existence and uniqueness for the one dimen-
sional Nordstrom-Vlasov equations

Assume that ¢y € W2®(R), o1 € WH2(R), fo € LY(R?), fo > 0 and that (21), (44)
hold. Take an arbitrary 7" > 0. The application F satisfies F(D,) C D4 where the

set D, contains all functions ¢ such that
¢ € C([0,T] x R), $(0,-) = o, (0, ") = 1,
Mol — Tllnlloo = 3 I+ T ]l 11 < 9(2,) < [lgollc + Tl
max{[|0z6(t)l|oc, 10:0(t)lloc} < (gglloe + llp1lloo + CLT)E™T, V t € [0, T,
max{]|0;¢(t) ]|, 056 (t)llc} < Cs, 107l < Cs, ¥t € (0,77,

where the constants C, Cy are defined in Proposition 3.1 and the constants Cs, Cg
are defined in (53), (54). For any function u € W?%*(]0, T[xR) we introduce the
notation |||u(t)||| == ||u(t)|lco + || Oxtu(t)|| oo + || Orus(t)]| s ¥ T € [0,T]. From (65), (76),
(77) we know that there is a constant C' depending only on the initial conditions

and T such that

[IFo1(t) = Fou()]]] < C/O [@1(s) = G2(s)ll| ds, V 1,2 € Da. (78)

We have the uniqueness result

Proposition 4.1 Assume that oo € W**(R),p; € WH(R), fo € LY(R?), fo >0
and that (21), (44) hold. Then there is at most one mild solution (f, @) (i.e., ¢ €
CH[0,T] x R), 0y, 0.0 € L>®(]0, T[; WH>*(R)) and f is solution by characteristics)

for the Nordstrom-Vlasov system.
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Proof. Consider two mild solutions ( fx, ¢ )ref1,2} for the Nordstrom-Vlasov system,
which means that (¢y)req1,2) are fixed points for F. Repeating the computations of

paragraphs 3.1, 3.2, 3.3 one gets that (¢ )req1,2y C D4 and therefore (78) implies

H@1(t) = @O = [[|For(t) = Fu()]]] < C/O [ll¢1(s) = @a2(s)lllds, ¥ ¢ € [0,T].

We conclude by Gronwall lemma. O
We prove now the existence of mild solution for the Nordstrom-Vlasov system.

Proof. (of Theorem 1.1) Consider the sequence (¢,,)n>1 C Dy defined by

nlt.a) = 3lole )+ =01+ 3 [ i) dy, () € 0.7) xR

and ¢n11 = Foy, ¥V n > 0. By using (78) we deduce easily that (¢,),>1 converges in
C1([0,T] x R) towards a fixed point of F. Actually ¢ € Dy. Denote by f the mild
solution of (5), (6) corresponding to ¢ and let pu(t,z) = [Lf(t,z,p)(1 + p2)’% dp,
(t,z) € [0,T] x R. By the definition of the application F we deduce easily that

(f, ®) solves the Nordstrom-Vlasov system. O

In the following we show that the global solution constructed above preserves

the total energy. We introduce the notations

plt, z) = e00) / F(t.2,p) dp, j(t,z) = o) / o(p)f(t, 2. p) dp.
R R

clt.o)i= [(14 )25 (ta.p) dp+ 5l00(0.2)F + 50w .a)

n(t, z) = / pf(t,2,p) dp — Du(t, 2)Aud(L, 7).

Proposition 4.2 Assume that o € W2 (R), pJ € L*(R), ¢; € WH(R)NL*(R),
(1+ |p|)fo € L'(R?) and that (21), (44) hold. Then the solution of the one dimen-

sional Nordstrom-Vlasov system satisfies
Op+ 0,7 =0, inD'([0,+00[xR), (79)
e + 0,m =0, in D'([0, +o0[xR). (80)
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In particular the total mass and energy are preserved for any t > 0

/Rp(t,x) dq::/R (0, 2) dz, /Re(t,x) da::/Re(O,x) da.

Proof. Note that by Theorem 1.1 we know that [, (14|p|)f(-,-,p) dp is bounded on
[0,T] xR,V T > 0 and therefore p, j, e and 7 are well defined for (¢, z) € [0, +oo[xR.
Let us prove now the continuity equation. For any 6 € C}([0, +oo[xR) we have by

Proposition 2.1

“+o00 “+o00
/ / (p(t, 2)040 + j(t, 2)0,0} dw dt — / / foe— 0@ / Lot x 1)) dt dpda
0 R RJR 0 dt

= —/Rp((),x)Q(O,x) dx,

and thus 0;p + 0,7 = 0 holds in D’([0,4+00[xR). The conservation of the total
mass has been already checked. In order to prove (80) we intend to apply the
weak formulation (11) with the test function (¢, z, p) = e?@00(t,z)(1 + p?)z, for
any 6 € C([0,+00[xR). Actually ¢ is not a C} function but we can apply first
the weak formulation with ¥z = ¥ xgr(p) and then let R — +oo. We skip these

standard arguments. We find that

// 14 p%)70 Oa:)fo(:vp)dpda:—/+oo// (1+ p*)2(8,0 + v(p)d,0) f dpdx dt

/m//{ (1+ 2} (00 + v(9)0,0)

— w(p)(pSe + (1 +p*)"20,0)}0f dpdx dt
+oo
= / // (14 p?) 8t9+p09)fdpdxdt

+ /0 /R/L(t,:c) (t,2)0,¢ dx dt. (81)

By multiplying the wave equation by 6(t, x)0,¢ one gets

+00 +oo
/ / { |0l — 920 atgb} dx dt + / / p(t, z)0(t, x)0wp dx dt = 0.
o JR

After integration by parts we obtain

1 [T
- 5| [0+ 0Py dedt =5 [ Ua@F + (o) }00.2) do
+oo +oo
+ /0 /R@mgb@tgb@x& dx dt + /o /R,u(t,m)ﬁ(t,x)atgb dx dt = 0. (82)
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Combining (81), (82) yields
oo
—/0 R{e(t, x)0l + m(t,2)0,0} do dt — /Re((), z)0(0,x) dz = 0,

and thus (80) holds. In order to prove that the total energy is conserved, observe
that 9,¢,0,¢ € L>(]0,T[; L*(R)), V T > 0. Indeed, since @7, p1 € L*(R), by using
the representation formula for 0,¢,0;¢ (see (20), (19)) it is sufficient to check that
D*(t, ) fo s,z + (t — s)) ds belong to L*(R) for any ¢ € [0,T], T > 0. This is
obvious since we have for any t € [0, 7]

NDE@) <t
L(]0,T[xR)

HDi@NmStHthwp%m

/f@%M@Mx
RJR

L>(]0,77) '
In particular 9,¢ 9;¢ € L*>°(]0,T[; L*(R)), T > 0. By Proposition 2.1 we know also
that (14 p?)2f € L=2(]0,T[; L'(R2)) for any T > 0. Take now 5 € C1([0,40c[) and
apply (80) with 6(¢,z) = n(t)xr(z), R > 0. We obtain

+o0 +oo
/ / (t,x)n' xr dx dt — / / (t,r)—= / R) dx dt — /e(O,x)n(O)XR dx = 0.
R

After letting R — +00 one gets — f0+°° @ [e(t,x) do dt —n(0) [e(0,2) dv = 0 and
thus [Le(t,z) dv = [Le(0,z) dz, ¥Vt > 0. O

5 Finite speed propagation

Assume that (ff, ¢f, ¢§)req1,2) satisfy the hypotheses of Theorem 1.2 and denote by
(fr, @r)req1,2y the global solutions of the one dimensional Nordstrom-Vlasov system.
We intend to estimate (¢ — ¢o) with respect to (fa — f2,0h — 02, o1 — ¢?). In
particular we deduce that the solution of the Nordstrom-Vlasov system propagates
with finite speed, which coincides with the waves speed in (2). Surely, the key point
here is that we are dealing with relativistic particles and therefore the characteristics
propagate with finite speed |X'(s)| = |v(P(s))] < 1. Let us explain how we can
adapt the computations in the paragraphs 3.4, 3.5, 3.6 for the above purposes. Take
0 <t < Rand v € LY (R) compactly supported in [—(R—t), R—t]. From now on the
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notation Cg stands for various constants depending on R, ||¢f |2 r), [|¢F]|w1o®),

||fé“||L1(R2), an:o | |p|mg’g||L1(R), k€ {1,2}. As in formula (55) one gets

/R(¢1(ta?/) — ¢ao(t, y))V dy‘ < (les — @alloe(-rr) + R lle1 — @il e rmp) 1]l e
1
+ §|]7(t)|, (83)
where

/// fi— 1) sxp)( O(s, 2 ; dp dz ds, G(S,x):/::r:t:)lﬁ(y) dy.

By Proposition 2.1 one have

/// Fuls xp s, x; dpdads = /R/ng(x,p)e—%’“x)/ot( fé’z(jp)é

w  eP(Xk(5)) g dp dz,

m\»—t

where (X, Py) are the characteristics corresponding to ¢y, k € {1,2}. Observe that
for any x > R and s € [0,¢] we have X(s;0,2,p) — (t —s) > R — t implying that
0(s, Xr(s)) = 0. Similarly, for any z < —R and s € [0,t] we have X(s;0,z,p) +
(t —s) < —R +t implying that 6(s, Xi(s)) = 0. Therefore we have (s, Xi(s)) =
9(s, Xr(s)) 1{z)<ry and thus we obtain

mol < o[ / 1 p)e 0| dpds 6]
R
+ / /fo T, p)e —¢o(@) / (5, X5(5)) _e®&Xe()) ds dp dx
S
— 1ol + 5 (0)]. e

For any (x,p) € [-R, R] x R, k € {1,2} we define
sk(t, x,p) = sup{s € [0,4] : |[Xi(s;0,2,p)| < R — s},

Observing that the function s — |Xk(s;0,2,p)| — (R — s) is strictly increasing
we deduce that |Xj(s;0,z,p)] < R —s,s € [0,s,(t,x,p)] and |Xy(s;0,2,p)| >
R —s,s €]si(t, x,p), t]. Notice that for any (z,p) € [-R, R] x R the characteristics
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(Xk(+;0,2,p), Pe(;0,2,p)), k € {1,2} satisfy the property (102) on [0, s(t,z,p)],
where s(t, x, p) = maxge(1,2y sk(t, ,p). If s €]s(t, x, p), t] we claim that 0(s, X;(s)) =
0, k € {1,2}. Indeed, assuming that Xy(s) > R — s implies Xy(s) — (t—s) > R—t
and if Xj(s) < —(R—s) implies X (s)+ (t —s) < —(R—t). Therefore in both cases
[Xk(s) = (t — ), Xi(s) + (t — s)] Nsupp ¥ = 0 and thus 0(s, Xi(s)) =0, k € {1,2}.
By the above considerations and the properties of characteristics satisfying (102)

(see the comments in the Appendix) we obtain as in (59)
s(t,z,p) X
()] = / /f0€ %/ Z (5, Xi(s)) —e? X)) g5 dp da
1 + \Pk( )?)2

L S(twp)
cmwmﬂ/RAﬁk@{A (161(5) — o)l = ((—(rosps)

S

+ |¢1(T) = 2(7) [wree((—(rr),r—r)) dT + [P() — ¢5)(2)]) ds dp da
0

R s(t,z,p) Xa(s)—(t—s)
+ CR/ /fle%/ / Y(y) dy| ds dpdx
-R 0 Xi(s)—(t—s)

R L [sap) | pXa(s)+(t—s)
+ CR/ /f&e“%/ / U(y) dy| ds dpdx
—-RJR 0 X1(s)+(t—s)

IN

We introduce the notations D(s) = |1(8)—2(5) Lo (= (R—s),B—5])» DE(s) = ||0ath1(s)—

O0a®2(8)|| Lo (|- (R—s),r—s))s @ € {x,t}. The term I1o(t) can be estimated as follows
¢
1olt) < Caltllos (I = @limonay + [ (D7) + DR} ds). (0
0
For the term I;;(t) we proceed as in (61), (62)
s(t,x,p)
()< CR/@H/ /fo/l{y (X1 ()~ (t— )| <Cr(lpl 03— e2 oot rmy b S (DR+DR)ar)}ds dp da dy
< C’R/|@/J(y)|/ //fl(s,X,P)r(s,y,X,P) dP dX ds dy,
R o JRJR

where 7(s,y, X, P) = 1y (x~(-s)|<Cr(+1PDleb—lLuoe(r,my+ ¢ (DRE+DE()ar}- OP-
serve that for any (s,y, P) € [0,t] x R? we have [, 7(s,y,X,P)dX < a|P|+ ( with

t
@ = 2Crlleh~lim-nmy. 8= 2Cn{lh = Blim-nmy+ (D) + D) ar},
0
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and therefore, by Lemma 3.2

In(t) < Callllu (||¢é—¢3r|Loo<[-R,m>+ [ 1)+ D)) ds). (87)

A similar estimate holds for [15(¢) and finally collecting (83), (84), (85), (86), (87)

implies
R
D(t) < Cg (H@é — @ollzee(—rm) + o1 — Pl (- r.R) +/R/R |fo — f5l dpdw)
t
+ CR/ {DR(S) + Df(s)} ds. (88)
0

The next step is to estimate DF(¢). As in (66) we have

/(ax¢1 — Dup2) ) dy‘ < Nll(les” — @8l Le=r,m) + o1 — €5l Lo (=R, R))
R

1 1
§|~713(75)| + §|114(t)|a (89)

Lt /// fio— B — (- )p)%dpdwds,

T4(t) /// fi—f)(s,z+(t—s),p)—— $(@) - dpdz ds.

(1+p2)>
Performing the same steps as in (67), (68), (69) one gets

where

and

2 Xk (t)
Ba(t) (-1 /R/Rfo«up) “’)/m (u) du dpde (90)
2 t (s, Xk(s)) Xi(s)+(t—s)
0 — 0O, du ds dp dzx.
D B | T =2 [ e o

Notice that for any (s, z,p) € [0,¢] x R? such that |z| > R we have f:i’i(t) P(u) du =

X (s)+(t—s)
X (1)

respect to x can be restricted to [—R, R|. Observe also that for any s €|si(t, x, p), t]

¥(u) du = 0. Therefore in the above equality the integrations with

we have f +(t 9 Y (u) du = 0 and therefore we obtain

R
] < Calwlss [ ) / {0+ DI = Sl + 1 fae# = fe ]} dpda
+  Ii5(t), (91)
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where

R Xz(t)
) < [ [ Repusinon| [ ) d dpds
—RJR X1 (t
R s(tz,p) | 2 Pk (5, Xk(s))
+ Cgllv / /fI/ —1)* — Oy — Opdr)| ds dp dx
R” HL " RO : ;( ) (1—0—‘Pk(8)’2)§( t¥k k‘)
R s(t,z,p) Xo(s)+(t—s)
s [Ren [ ] () dul ds dpda
—-RJR 0 X1(s)+(t—s)

Notice that f;{(f(%) ¥ (u) du vanishes on ([—R, R| x R) — A(t), where A(t) = {(z,p) €
R, R xR : 3Xe[0,1],AX1(t)+ (1 -\ Xa(t)] < R—t} and if (z,p) € A(%), then
(Xk, Pp)req,2y verify the property (102) on [0,t]. Therefore for any (z,p) € A(t) we
can apply (106) and we obtain as in (72)

Xz(t)
/ Y(u) du| dpdz

X1(t)

R
Lg(t) < CR/ /f&(:c,p)(HIPl(t)|)1{<x,p>eA(t>}
—-RJR

< Cn / () / / (1 + [P £t X, P)i(u, X, P) dP dX du,

where (1, X, P) = 1y _uj<cp((L1P) leh—edll oo np+ ({DR()+DE(o)as)) APPIYING

now Lemma 3.2 yields

o) < Calldlos (||wé—so%||mmm>+ / {DR<s>+D£§<s>}ds>. (93)

Observe that at this step we have used the assumption [ [p|*¢5(p) dp < +oo.
Taking into account that (106) applies on [0, s(t, x,p)| for (X, Pr)(+;0,2z,p), k €
{1,2} we deduce as in (73), (74) (use also Lemma 3.2 for estimating [15(t))

1r(t) < Call] (Hwé ~ A= + [ (D) + DE) + DI} ds) e

and

t
Lis(t) < Cinll (IIs@é - Ale=nm + [ (D) + D) ds) . ()

Collecting all the partial results (89), (91), (93), (94), (95) yields
t
DX(t) < Cg (D§+ / {D"(s) + DE(s) + Df(s)} ds) . (96)
0
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A similar estimate holds for D} and therefore (88), (96) implies
t
DE(t) + DE(t) + DE(t) < Cg (D(J;z + / {D®(s) + DE(s) + DE(s)} ds> :
0

The statement in Theorem 1.2 follows by Gronwall lemma.

Proof. (of Corollary 1.1) Notice that under the hypotheses of Corollary 1.1 we can
apply Theorem 1.2. Indeed, the only step in the proof of Theorem 1.2 where we
need the additional hypothesis [ [p|*g5(p) dp < +oc is in (93). But in our case
led — @5l L(—r,r) = 0 and thus, by Remark 3.1, the inequality (93) still holds
true by assuming only [ [plgf(p) dp < 4+o00. We deduce that ¢;(t,z) = ¢a(t, ),
t € [0, R], |z| < R—t. Observe also that for any ¢ € [0, R], z € [-(R—t), R—t],p € R
we have | Xy (s;t,z,p)| < |z|+ (t—s) < R—s, s€[0,t], k€ {1,2}. By (106) one
gets for any t € [0, R, || < R—t,pe R

(1X1=Xa+1Qu—Qal)(0:t,2,p) < Ci prl — o)t 7)|+ /O{DR<3> + DX (s)} ds) —0,

implying that (X1, P1)(0;¢,z,p) = (X2, P)(0;¢,z,p). We deduce easily that fi(t,z,p) =
fo(t,z,p) for any t € [0, R}, |x| < R —t,p € R. O

6 Appendix

We give here the details for the proofs of Proposition 2.2 and Corollary 2.1. If ¢ is
smooth and (X (s), P(s)) is a characteristic corresponding to ¢ we denote by Q(s)
the quantity Q(s) = e?*X(*) P(s). Recall that we have (see (13))

dQ - e®(s:X(s))
o= —(1 N ‘P(S)P)%E)mgb(s,X(s)), Vs € [0,T7. (97)

We start with the following easy lemma (the proof is left to the reader).
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Lemma 6.1 Consider ¢, € C*([0, T|xR)NL>®(]0, T[xR), O,¢x, Ordr € L>=(]0, T[; Wh(R)),
ke {1,2} and (Xy, P.) two characteristics corresponding to ¢, k € {1,2}. We de-

note C(s) = maxpe(1,2} ||@r(s)||ree. Then we have for any s € [0,T]

2

Z k o0k (5, Xk (s))

[Pi(s) = Pa(s)] < e“@1Qa(s)|(161(5) — da(s)llzoe + 10201 (s) Lo | X1 (s) — Xa(s)])
C(s)|Q1(3) — Qa(s)], (99)

< CO(I61(5) = a(s) 1+ 92515 121 Xi (5) — Xa(5)]), (98)

< (|| (5) — d2(8) || + 1051 ()| e | X1 (5) — Xa(s)])

+ e“DIQ(s) — Qa(s)], (100)

[0(Pi(s)) —v(Pa(s))] < 2% (||g1(s) — da(s) | + 10261(5) || <] X1 (5) — Xa(s)])
+ 2e791Q1(s) — Qa(s)]. (101)

At this point let us make some remarks which will be useful when studying the
finite speed propagation property. Take 0 < t < R and assume that (Xj, Py) are
characteristics corresponding to ¢, k € {1,2}, which satisfy the following property

Vse0,8], IAs) €[0,1] ¢ [MNs)Xi(s)+ (1 —A(s)Xals)| < R—s,  (102)

saying that at any time s € [0,¢] the segment between X;(s), X2(s) has non void
intersection with [—(R — s), R — s|. Then all the statements in Lemma 6.1 hold
with [ g1(s) — 6a(s)]| = replaced by [[61(5) = 6a(s)]] o= (—(r—s)n) and |1 (5) .~
replaced by maxieq1 2} ||020k(5)| <. Indeed, let us check this for formula (98), the
same applying for the other. Denote by Y (s) the number of [—(R — s), R — s] such
that Y'(s) = A(s)X1(s) + (1 — A(s))Xa(s), A(s) € [0,1]. We have

2

Z k & (8, Xk(s))

k=1

< e“Ofg1(s, Y (5)) — dals, V(s |+Z|¢>k 5, Y (s)) — du(s, Xu(s))I}

< ey (s, X1(s)) — pals, Xa(s))|

< 0 (101(6) = 0u(6) = -y + s 1000(5)= X3(6) = Xe(o)]).
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Proof. (of Proposition 2.2) We have for any s € [0, 7]

1ile() Xa(s)]* = (u(Pi(s)) — v(Pa(s))(Xi1(s) — Xa(s))

[ X1(s) = Xa(s)|[o(Pi(s)) — v(Pa(s))]

IN

We introduce the notations

Cs) = max [[6u(s)llz=, C(s) = max [19:6x(s) =, C(s s) = max [0 (s)]l -

We deduce by Lemma 6.1, inequality (101)

d%|X1(S) = Xa(s)| < 262CN([|gn(s) = Pals)llzoe + (1001 (5) 1| X1 () — Xa(s)])
+ 2e“|Q1(s) — Qa(s)]. (103)

Using now (97) yields
2 Or(.X1(5))

Z 1 + | P(s)[?)?

k=

Y

1d
§E|Q1(8) Q2(s))* < |Qu(s

a:cgbk(s) Xk(s))

and therefore we obtain
ek (5, X5 (s))

2

; 1+|Pk( )I2)2
2
kZ: 1—|—|Pk

As usual we have the estimate

’Ql - Or (s, Xi(s))

2

Z et eX D, 6 (5, Xi(s)) |

k=

, (104)

IA

2

Z(_l)ke¢kax¢k

k=1

2

Z k qbk 5, X (s Z kax¢k S Xk:( ))

k=1 k=1

< OO )101(5) = da(s) |z + Cs)[ Xa(s) — Xa(s)[}
+ X101 (5) — Dutals)llne + C () Xa(s) = Xa(s)]}- (105)

2
+ ¢

Combining (100), (103), (104), (105) yields for any 0 < s <t < T

d%{\Xl(S) = Xo(s)] 4+ [Qu(s) = Qa(s)]} < C{[Xi(s) = Xa(s)| + |Qu(s) — Qa(s)[}
+ Clllo1(s) = da(s)llLoe + [102¢1(5) — Dupa(s)llL>},
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for some constant depending on sup,¢(o 4{C(s) + C(s)+ C:'(s)} We deduce that for

any 0 < s <t <T we have
[ X1(s) — Xa(s)| +Q1(s) — Q2(s)] < C/OEIXl(T) — Xo(7)[ +|@1(7) — Q2(7)|}dT

+ Clp(dr = ¢2)(0,2)[ + C/O {l¢2(7) = da2(7) [l + 10201(7) = Dupa(T) || Loe }dT.

By Gronwall lemma we obtain for any 0 < s <t < T

X1 — Xol(s) + Q1 — Qs (s) < Ce <\p(¢1 — ¢2)(0, 7] +/O [f1(7) — ¢2(T)||W1»ood7) :

Notice that if (X, Py)req1,2y satisfy the property (102), then in formula (105) we

can replace [[¢1(s) — da(s)l[L= by [[91(s) = 2(s)llLoe(-(r-s).r-s) and [|Ougr(s) —
02¢2(5)||Lee by ||02¢1(5) — 02 ()| oo (|- (r—s),r—s))- Finally one gets for such charac-

teristics

[X1(s) = Xa(s)] +1Qi(s) = Qa(s)] < Ce“[p(¢1 — ¢2)(0,2))| (106)
-+ C’eCS/O ”¢1(7') — ¢2(7-)“WLOO([—(R—T),R—T])dT-

[

Proof. (of Corollary 2.1) Using (98), (100) and Proposition 2.2 yields for any
te[0,T]
Y eon (.0 (0)

2
Z 1+|Pk 2)

k=1

< C(l|on(t) = d2(t)||z + [Xa(t) — Xo(8)] + [Qu(t) — Qa(t)])

< 0@@( . /W@ |mmw)

+ Clp(o1 — ¢2)(0, 2)],

where C' depends only on maxye1 23{||Pk||Lqo,r;w2r))}- In order to check the
second inequality we can write
e®k (6, Xk (1))

-1
PR (1+[Pe(t)?)z

k=1

2 Pk (6, Xk (1))

—1)k
2 >(1+|Pk(t)!2)

k=1

+ elle2®lie (119,61 (1) — Oupa ()| e + |07 P2 (t)]| 1o | X1 (£) — Xo(2)])
(1001 = 2)0.0)|+ 610) = )+ [ on(s) = o)l ).

T Ou i (b, Xi (1)) < [[0201(1) || o

1
2
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The third inequality follows in similar manner. As before it is easily seen that, for

characteristics satisfying (102), all the statements of Corollary 2.1 hold with ||¢1(s)—
P2(8)l|zoes [|002)01(5) — Opayd2(s)|| Lo replaced by [[1(s) — do(s)||oo(-(r-s),m-s);

19¢,2)91(5) = Ot,0)P2()l| L= (1~ (R-s),R—s))- -
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