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Abstract: We propose an abstract interpretation based method to compute
polynomial invariants for imperative programs. Our analysis is a backward
propagation approach that computes preconditions for equalities like g = 0 to
hold at the end of execution. It extends previous work by Müller-Olm and
Seidl to a language that includes both polynomial equalities and disequalities.
Properties are expressed using ideals, a structure that satisfies the descending
chain condition, enabling fixpoints computations to terminate without use of
a widening operator. In the general case, termination is characterized using
ideal membership tests and Gröbner bases computations. In order to optimize
computational complexity, we propose a specialized analysis dealing with induc-
tive invariants which ensures fast termination of fixpoints computations. The
optimized procedure has been shown by experiments to work well in practice,
and to be two orders of magnitude faster than the state of the art analyzer of
Carbonell and Kapur.
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Inférence rapide d’invariants polynomiaux pour

programmes impératifs

Résumé : Nous proposons une méthode fondée sur la théorie de l’interprétation
abstraite pour calculer des invariants polynomiaux de programmes impératifs.
Notre analyse statique suit une approche arrière, qui calcule des préconditions
pour qu’une égalité du type g = 0 soit vérifiée à la fin de l’exécution d’un pro-
gramme. Cette approche étend des travaux précédents de Müller-Olm et Seidl
à un langage qui inclut à la fois des égalités et des inégalités polynomiales. Les
propriétés sont exprimées à l’aide d’idéaux de polynômes. La propriété de chaîne
descendante de l’ensemble des idéaux garantit alors la terminaison des calculs
de point fixe sans avoir besoin de faire appel à un opérateur d’élargissement.
Dans le cas général, cette terminaison est caractérisée par un test d’inclusion
reposant sur le calcul de bases de Gröbner. Afin d’améliorer la complexité, nous
proposons une analyse spécialisée dans la découverte d’invariants inductifs, ce
qui permet une terminaison rapide des calculs. Les expérimentations que nous
avons menées montrent que cette procédure fournit des résultats satisfaisants en
pratique, avec un temps de calcul de deux ordres de grandeur plus court qu’un
analyseur à l’état de l’art, notamment celui de Carbonell et Kapur.

Mots-clés : Analyse statique, génération automatique d’invariants, interpré-
tation abstraite, invariants polynomiaux, idéaux de polynômes
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1 Introduction

The problem of automatically inferring polynomial (non-linear) invariants of
programs is currently one of the major challenges in program verification. This
is in contrast to the case for linear invariants where the initial work by Karr [8]
and Cousot and Halbwachs [5] has lead to efficient implementations based on
variants of the polyhedral domain.

Initial approaches to the non-linear problem proposed extensions of linear
techniques [8, 5, 3, 18] to the non-linear case, made possible by imposing re-
strictions on the programming language. Sankaranarayanan et al. [19] proposed
a constraint-based technique that generates non-linear invariants for programs
containing only equality tests. A concomitant approach by Müller-Olm and
Seidl [11, 12] defines an abstract interpretation method that can generate poly-
nomial invariants for a restrictive class of guarded-loop programs where tests in
conditionals are polynomial disequalities. Their analysis is a backward propa-
gation based method: they start from p and compute the weakest preconditions
of the satisfiability of the relation p = 0. More precisely, in order to prove that
a polynomial relation p = 0 is valid at the end of a program, they show that the
set of zeroes of a polynomial p can be exactly abstracted by a polynomial ideal.
The restrictions imposed on the language are sufficiently strong to ensure that
their method can be proven complete.

Rodríguez-Carbonell and Kapur develop another approach, casting the anal-
ysis as an abstract interpretation problem over a domain of ideals of variety.
Their approach gave rise to two different procedures. The first one [14, 15, 17]
consists in a complete method for computing all polynomial invariants for a
rather restrictive class of programs: it considers simple loops with no conditional
tests and whose assignments functions are required to be so called solvable map-
pings, i.e. a generalization of affine mappings. Thanks to these limitations, the
generation procedure is proved to terminate without making use of a widening
operator, with a number of iterations bounded by the number of variables of the
program. In the second procedure [13, 16], these restrictions are removed and
programs with polynomial equalities or disequalities guards are considered. As
a result, their method is no more complete and may not terminate. To ensure
termination, the authors use a widening operator that consists in dynamically
removing polynomials of a degree greater than a fixed number. It was an open
question at the time whether one could devise an analysis that conciliates both
expressiveness and efficiency.

In this paper, we propose an abstract interpretation based method [4] to
compute polynomial invariants that has both of the previous properties. Our
analysis is a backward propagation approach that extends Müller-Olm and Seidl
work [12] to a general polynomial structured programming language that includes
if and while constructs where branching conditions are both polynomial equal-
ities and inequalities. As in this previous approach, our analysis uses a form
of weakest precondition calculus for showing that a polynomial relation g = 0
holds at the end of a program. Similarly, this verification scheme that ap-
plies to a fixed known polynomial can be derived in a generation scheme by
using parametrized polynomials. Preconditions are expressed in the mathemat-
ical structure of ideals that satisfies the descending chain condition. We show
that the backward approach, well adapted to polynomial disequality guards as
Müller-Olm and Seidl already noticed, can be extended to equality guards by

RR n° 7627



Fast inference of polynomial invariants for imperative programs 4

1. y1 := 0; y2 := 0; y3 := x1;
2. while y3 6= 0 do

3. if x2 = y2 + 1 then

4. y1 := y1 + 1; y2 := 0; y3 := y3 − 1;
5. else

6. y2 := y2 + 1; y3 := y3 − 1;
7.

(a) mannadiv.

1. x := 0;
2. y := n;
3. while y 6= 0 do

4. x := x+ n;
5. y := y− 1;
6.

(b) small.

Figure 1: Two polynomial programs.

using polynomial division and greatest fixpoint computations which corresponds
to a weakest liberal precondition calculus. Focusing on partial correctness has
the consequence that fixpoint iterations in the set of ideals are proved to ter-
minate without the need for a widening operator , as opposed to the general
setting of Rodríguez-Carbonell and Kapur. In the general case, termination
can be tested by solving the ideal membership problem, namely by Gröbner
base computations. In order to reduce computational complexity, we propose a
specialized analysis that infers inductive invariants. This restriction, similar to
the one made by Sankaranarayanan et al. [19], presents the main advantage of
ensuring termination of fixpoint computations in only one iteration. We have
shown that it successfully infer invariants on a sizeable set of examples and gives
excellent performance results.

The following example demonstrates the salient features of the approach.
The algorithm in Figure 1a computes the Euclidean division of x1 by x2 [10].

The invariant computed for this example is non-linear, namely y1 ∗x2+y2+
y3 = x1. Finding this invariant requires examining both branchs of the if con-
struct, taking into account the information obtained by the guard. Our method
is able to compute such invariants, and the relative simplicity of this example
is reflected by the fact that we easily discover it, since we focus on inductive
invariants. We thus need only one iteration for computing the invariant, on the
contrary to Rodríguez-Carbonell and Kapur’s approach that requires an heavier
iterating method. Because the analysis by Sankaranarayanan et al. [19] has not
been implemented, its performance on this type of programs is unknown.

The rest of the paper is organized as follows. In Section 2, we introduce
the mathematical background needed throughout the paper, in particular mul-
tivariate polynomial algebra, division and remainder operators and the lattice
structure of ideals. Section 3 defines the class of programs we are interested
in, namely polynomial programs, as well as their backward collecting semantics.
In Section 4, we dive into the analysis by defining the abstract semantics of
polynomial programs and prove its correctness w.r.t. the concrete semantics.

RR n° 7627
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Section 5 shows how the abstract semantics is used to automatically generate
polynomial invariants. Finally, in Section 6 we propose a heuristic to drastically
reduce computational complexity by making a natural assumption on invariants.
We report on our implementation through a collection of benchmarks from the
litterature.

2 Preliminaries

Our analysis builds a set of polynomial invariants for a given program. We
consider polynomials in R[x1, . . . , xm] where m represents the number of variables
of the program1. In the rest of the paper, we will distinguish between x, element
of Rm, xi element of R, and xi variable of the program.

A set of polynomial invariants {p1 = 0, . . . , ps = 0} naturally has an alge-
braic structure of ideal, as recalled by the following definition.

Definition 1 (Polynomial ideal) A set I ⊆ R[x1, . . . , xm] is a polynomial
ideal if it contains 0, is stable under addition (if p1, p2 ∈ I then p1+p2 ∈ I) and
stable under external multiplication (if q ∈ R[x1, . . . , xm] and p ∈ I then q.p ∈ I).
We write I for the set of polynomial ideals of R[x1, . . . , xm], and <S> for the
polynomial ideal generated by a set S of polynomials. By definition, <S> is the
smallest ideal containing all polynomials of S.

The set I can be given a partial order structure by using the reverse subset
inclusion between ideals. The upper bound of a set of polynomial ideals is then
the intersection of its elements, while the lower bound is the ideal generated by
the union of the elements 2.

Definition 2 (Lattice structure of I) Given I and J two polynomial ideals,

we define I
⊔♯

J = I
⋂

J , I
d♯

J = <I
⋃

J> and ⊑♯ = ⊇. Operators
⊔♯

andd♯
are extended in a standard fashion to range over sets of polynomial ideals.

Equipped with these operators, I is a complete lattice, where the least element
is ⊥♯ = <1> and the greatest element is ⊤♯ = <0>.

One of the main benefit using polynomial ideals is that they are finitely
generated. This property is known in the litterature as Hilbert’s theorem.

Theorem 1 (Hilbert) Every polynomial ideal I ∈ I is finitely generated, i.e.,
I = <S> for a finite subset S of I.

A standard result of multivariate polynomial theory states that Hilbert’s the-
orem is equivalent to the fact that the set I satisfies the descending chain
condition [6]. This is a key property that will be used to ensure termination of
our analysis. Theorem 1 above also exhibits the tight link that exists between
invariant sets and ideal structure. We have already seen that an invariant set
can naturally be represented as an ideal. Conversely, any polynomial ideal can
thus be represented by a finite set of polynomials, that can be seen as an invari-
ant set. Therefore, in the rest of the paper, we will make no difference between
an invariant set and the ideal generated by these invariants.

1A careful reader will see that our analysis can be set in any F[x1, . . . , xm] where F is a
noetherian ring, i.e. a ring satisfiying the ascending chain condition on its ideal set.

2The union set of two ideals is not an ideal in general.
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The notion of division on multivariate polynomial ring will play an important
role when defining the analysis. Contrary to the univariate case, R[x1, . . . , xm] is
not equipped with a Euclidean division. However, it is easy to define a division
according to a monomial ordering [6]. In our case, we define a general division
operator as follows.

Definition 3 (Division operator, remainder) A division operator div is a
function mapping a pair of polynomials (g, p) ∈ R[x1, . . . , xm]

2 to a pair (q, r) ∈
R[x1, . . . , xm]

2 such that g = pq+r. Polynomial r is called the remainder of g by
p according to div, and is noted Rem(g, p, div) or only Rem(g, p) if the division
operator doesn’t need to be explicitly given.

Note that the usual divisions defined by a monomial ordering are division oper-
ators.

Finally, our concrete semantics will handle subsets of R
m 3 whereas our

abstract semantics will deal with polynomial ideals. The link between these two
domains is given by the following Galois connection P(Rm) −−−→←−−−α

γ
I :

α : P(Rm) → I
X 7→ {u ∈ R[x1, . . . , xm] | ∀x ∈ X, u(x) = 0}

γ : I → P(Rm)
I 7→ {x ∈ R

m | ∀u ∈ I, u(x) = 0}

such that ∀X ∈ P(Rm), ∀I ∈ I : X ⊑ γ(I)⇔ α(X) ⊑♯ I.

3 Syntax and semantics of polynomial programs

Our analysis produces invariants of polynomial programs. We consider a variant
of the IMP language [20] where assignments are polynomial and conditional
tests are polynomial (dis)equalities.

Definition 4 (Syntax of polynomial programs)

p ∈ R[x1, . . . , xm] polynomials

V ∋ var ::= x1 | . . . | xm program variables

T ∋ test ::= p ⊲⊳ 0 polynomial guards

P ∋ c ::= var := p polynomial assignments
| c ; c sequence
| if test then c else c conditional structure
| while test do c loop structure
| skip skip assertion

where ⊲⊳ stands for = or 6=. We will also use 6⊲⊳ for the negation of ⊲⊳.

The concrete syntax will be decorated by line numbers in the implementation,
which are omitted in the abstract syntax above. This language abides to the
usual small-step operational semantics (SSOS). We will note →: P × R

m →

3Recall that P(Rm) is naturally equipped with a complete lattice structure (P(Rm),⊆,

⋃

,

⋂
) where ⊆,

⋃
and

⋂
represent respectively the inclusion, union and intersection of sets.
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P × R
m this relation and →+ its transitive closure; the reader can refer to

Appendix A.1 for details. The operational semantics allows us to define the
following notions, linked to reachability.

Definition 5 (Terminating state) A state σ ∈ R
m is called terminating for

a program c if there exists a state σf ∈ R
m such that 〈c, σ〉 →+ σf . A program

c is said to be terminating if each state σ ∈ R
m is terminating for c.

A polynomial is said to be invariant for a program if all its terminating states
lead to states that are zeroes of the polynomial.

Definition 6 (Polynomial invariant) A polynomial g ∈ R[x1, . . . , xm] is said
to be invariant at the end of a program c if, for all σ ∈ R

m,

∃ σf ∈ R
m, 〈c, σ〉 →+ σf ⇒ σf ∈ γ(g)

Note that, for programs with no terminating state, every polynomial will be
invariant, which indicates the absence of information for such programs.

Backward semantics. As standard for abstract interpretation methods, we
define a concrete semantics that we will use as an intermediate between the ab-
stract semantics and the usual operational semantics. Its backward formulation
will come in handy to prove the correctness of the analysis.

Definition 7 (Backward collecting semantics (BCS))

BνJcK : P(Rm)→ P(Rm)

BνJxj := pK S = {x ∈ R
m | x[[p(x)]]j ∈ S}

where x[[p(x)]]j is the element (x1, . . . , xj−1, p(x), xj+1, . . . , xm)

BνJskipK S = S

BνJc1; c2K S = BνJc1K (BνJc2K S)

BνJif p ⊲⊳ 0 then c1 else c2K S = (BνJc1K S
⋂ Jp ⊲⊳ 0K) ⋃ (BνJc2K S

⋂ Jp 6⊲⊳ 0K)
where Jp ⊲⊳ 0K = {x ∈ R

m | p(x) ⊲⊳ 0}

BνJwhile p ⊲⊳ 0 do cK S = νFc,p,S

where Fc,p,S = λX.(Jp 6⊲⊳ 0K
⋂

S)
⋃

(Jp ⊲⊳ 0K
⋂

BνJcK X)

Remark that this intermediate semantics has a greatest fixpoint definition.
Compared to a least fixpoint, this provides less information, but the extra in-
formation a least fixpoint would give has to do with termination and is not
essential to our analysis. In other words, we only deal with partial correctness.
In order to investigate this issue, define the operator BµJ.K by replacing greatest
fixpoint computations by least fixpoints, and consider the following example.

Computing BµJsmallK and BνJsmallK. The program in Figure 1b computes
the square of a natural number n by successively adding the content of the
variable n to a variable x initially containing 0. Thus, the polynomial g = x−n2

is invariant at the end of the program. The weakest precondition of relation
g = 0 holding at the end of the program is given by BµJsmallK γ(g). We start
by computing BµJwhile y 6= 0 do x := x + n; y := y − 1K γ(g), obtaining the

RR n° 7627
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least fixpoint by iterating the function F = λX.(Jy 6= 0K
⋂

γ(g))
⋃

(Jy = 0K
⋂

BµJcK X) from {}.

BµJwhile y 6= 0 do x := x+ n; y := y− 1K γ(g) =
⋃

k≥0
F k({})

where F k({}) = {(x, y, n) ∈ R
3 | (y = 0 ∧ x = n2)

∨ (y = 1 ∧ x+ n = n2)
∨ . . .
∨ (y = k ∧ x+ kn = n2)}

Thus, we have

BµJsmallK γ(g) = BµJx := 0; y := nK (
⋃

k≥0 F k({}) )

= {(x, y, n) ∈ R
3 | ∃k ∈ N such that (0, n, n) ∈ F k({})}

= {(x, y, n) ∈ R
3 | ∃k ∈ N such that n = k}

= R× R× N

This proves that, if initial condition σi = (x, y, n) ∈ R × R × N is satisfied,
we eventually reach the end of the program in a state σf such that g(σf ) = 0.
Condition x ∈ R can easily be expressed with a polynomial (as {x ∈ R | 0 = 0}).
On the contrary, n ∈ N needs an infinite polynomial product to be expressed in
R (as {n ∈ R |

∏

k≥0(n− k) = 0}) which would make our analysis diverge.
On the other hand, we have BνJsmallK γ(g) = R

3. This computation is
an over-approximation of the least fixpoint and its knowledge may seem not to
bring information. However, this must be read as: “relation g = 0 holds for
every final states under no initial condition”.

To sum up, a least fixpoint computation provides very precise information
including termination conditions that have to be fulfilled for the invariant to
hold at the end of the program. On the contrary, greatest fixpoint computations
brings less precise but more relevant information : it reverses the point of view
by focusing on relations satisfied by only final states. We traduce these practical
observations in a formal way in the following paragraph.

Comparing backward semantics with SSOS. In order to stress the ter-
mination condition implicitly expressed in our concrete semantics, we compare
least and greatest fixpoint definitions to SSOS. Theorem 2 states that least
fixpoint semantics collects all terminating states.

Theorem 2 (BµJ.K vs SSOS) For all S ∈ P(Rm) and for all polynomial pro-
gram state σ ∈ R

m,

σ ∈ BµJcK S ⇔ ∃σf ∈ S, 〈c, σ〉 →+ σf

The greatest fixpoint semantics also contains the set of terminating states but
may also contains non-terminating ones.

Theorem 3 (BνJ.K vs SSOS) For all S ∈ P(Rm) and for all polynomial pro-
gram state σ ∈ R

m,

σ ∈ BνJcK S ⇒

{

∃σf ∈ S, 〈c, σ〉 →+ σf

or 〈c, σ〉 →∞

The proofs of both theorems can be found in Appendix A.1. Obviously, if we
only consider terminating programs, there is no difference between BµJ.K and
BνJ.K.

RR n° 7627



Fast inference of polynomial invariants for imperative programs 9

4 Abstract semantics

The fundamental idea behind abstraction is to correctly export concrete analysis
in a coarser world were computations are easier. In our case, the concrete
semantics is not computable because of the presence of fixpoint computations
in the infinite lattice R

m that does not satisfy the ascending chain condition. In
this section, we propose an abstract semantics that approximates the concrete
semantics and whose underlying workset is I, the set of polynomials ideals. As
I is a lattice satisfying the descending chain condition, greatest fixpoints are
computable.

We begin by defining the abstract semantics of polynomial programs and
then prove that this abstraction correctly approximates the concrete semantics.

Definition 8 (Abstraction of polynomial programs)

JcK♯ : I → I
Jxj := pK♯I = {q[[xj 7→ p]], q ∈ I}
where q[[xj 7→ p]] is the polynomial q(x1, . . . , xj−1, p(x1, . . . , xm), xj+1, . . . , xm)

JskipK♯I = I

Js1; s2K♯I = Js1K♯(Js2K♯I)
Jif p 6= 0 then c1 else c2K♯I = <p.(Jc1K♯I), Rem(Jc2K♯I, p)>
Jif p = 0 then c1 else c2K♯I = <p.(Jc2K♯I), Rem(Jc1K♯I, p)>
Jwhile p 6= 0 do cK♯I = ν(F ♯

c,p,I)

where F ♯
c,p,I = λJ.<p.(JcK♯J), Rem(I, p)>

Jwhile p = 0 do cK♯I = ν(F
♯

c,p,I)

where F
♯

c,p,I = λJ.<p.I, Rem(JcK♯J, p)>

A few comments on this semantics: first, note that as our analysis acts
backward, assignment-semantics only consists in a substitution and does not
require the use of fresh variables. Let us elaborate on the presence of the Rem-
operator in the semantics of the if construct. Considering an if statement
guarded by a (dis)equality p, this semantics is based on the following simple
idea: if we want to prove that relation g = 0 holds and we know that relation
p = 0 holds, it suffices to compute Rem(g, p) = g− pq for a certain polynomial q
and to prove that relation Rem(g, p) = 0 holds. We point out that this property
does not depend on the choice of q; in particular, this choice does not impact
the correctness of our approach. However, some choices are not really relevant
and may later lead to the generation of the trivial invariant “0 = 0”. Additional
details on how to find a suitable division operator are given in Section 6.

Remark 1 In the special case of a program c ≡ if p 6= 0 then c1 else skip,
the best choice for a quotient is given by q = 0, which defines Rem(g, p) = g. The
abstract semantics of c is then given by JcK♯I = <I, p.(Jc1K♯I)>. This coincides
with Müller-Olm and Seidl’s abstract function, which is proven to be an exact
abstraction of the concrete transfer function [12].

The semantics for while is derived from that of if . Note that, similarly
to the concrete semantics, it is defined by a greatest fixpoint definition. The

RR n° 7627



Fast inference of polynomial invariants for imperative programs 10

abstract transfer function for while is computed with a Kleene fixpoint iteration
starting from ⊤♯ = <0>, the top element of the lattice I. More precisely, for
all V ∈ I,

Jwhile p 6= 0 do cK♯V =
d♯

n≥0(F
♯
c,p,V )

n(⊤♯)

According to Theorem 1, this iteration terminates in finitely many steps. As
{(F ♯

c,p,V )
n(<0>)}n∈N is an increasing sequence4, the stopping criterion consists

in checking if the polynomials at step n+1 belong to the ideal generated at step
n. Note that this ideal membership problem is decidable thanks to Gröbner base
computations [6]. As incremental computations are involved here, we propose
to use Faugère’s F5 algorithm to this purpose [7].

Remark 2 As the abstract transfer function for while is derived from c ≡
if p 6= 0 then c1 else skip, and following Remark 1, the abstract definition of
a while statement guarded by a polynomial disequality is given by the trivial divi-
sion operator that leaves its argument unchanged. This simplifies the definition
of F ♯

c,p,I into λJ.<p.(JcK♯J), I>.

Correctness of the analysis. We now have to prove that our abstract seman-
tics is correct with respect to the concrete one. Both semantics are compared
using the Galois connexion defined in Section 2.

Theorem 4 (Correctness) Let g be a polynomial and c a polynomial program.
Then:

γ(JcK♯<g>) ⊆ BνJcK γ<g>

We prove Theorem 4 by induction on the syntax of polynomial programs. The
complete proof can be found in Appendix B. Note that this theorem, and its
corollary hereafter, are key to show that our analysis indeed generates polyno-
mial invariants.

Corollary 1 Let g be a polynomial in R[x1, . . . , xm] and c a polynomial program.
If g satisfies JcK♯<g> = <0>, then g is a polynomial invariant at the end of c.

Proof. For a given polynomial g, if JcK♯<g> = <0>, then γ(JcK♯<g>) = R
m.

As γ(JcK♯<g>) ⊆ BνJcK γ<g>, we have BνJcK γ<g> ⊇ R
m, which proves

that BνJcK γ<g> = R
m. Using Theorem 3, this implies that, for any initial

state σ ∈ R
m, if there exists σf such that 〈c, σ〉 →+ σf , then σf ∈ γ(g). Thus,

g is a polynomial invariant. ⊓⊔
Corollary 1 provides a method to verify that a given polynomial g is invariant.
It consists in computing the abstract semantics on <g> and comparing the
result with the zero ideal <0>. In the next section, we will show how to use
Corollary 1 to generate polynomial invariants.

5 Generating polynomial invariants

As noticed with Corollary 1, the abstract semantics naturally provides a way
to validate an invariant candidate. We now show how the additional use of
parametrized polynomials allows for automatically generating invariants.

4Note that this sequence is decreasing if we consider the order induced by ⊑♯.
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Definition 9 (linear ai-parametrized polynomial) We denote by ai (i ∈
N) a set of parameters. A polynomial g ∈ R[x1, . . . , xm] is said to be a linear
ai-parametrized polynomial (noted ai-lpp) if its coefficients are a linear combi-
nation of the ai-parameters. For example, a0+a1.x1+a2.x2+a3.x1x2+a4.x1

2+
a5.x2

2 is the most generic linear ai-parametrized polynomial of R[x1, x2] of de-
gree 2. An ideal is said to be a linear ai-parametrized ideal if it is generated by
linear ai-parametrized polynomials.

input : a polynomial program c, a natural number d
output: a set of polynomials G

begin1

start from g, the most generic ai-lpp of degree d;2

compute the abstract semantics JcK♯<g>;3

generate Cg,c, the set of constraints equivalent to: JcK♯<g> = <0>;4

compute Sg,c, the set of solutions of Cg,c;5

define G as the set of all instances of g by elements of Sg,c;6

end7

Algorithm 1: Invariant set generation

Algorithm 1 generates polynomial invariants of degree d for a program c.
Line 4 brings up the most significant difference with the verification scheme
detailled by Corollary 1. Indeed, as we start from an ai-lpp polynomial, JcK♯<g>
is a set of parametrized polynomials. More precisely, we can show by induction
on the syntax of polynomial programs that JcK♯<g> is a linear ai-parametrized
ideal. Now, proving that equality JcK♯<g> = <0> holds is equivalent to proving
that all polynomials in JcK♯<g> are null. As a polynomial is null if all its
coefficients are null, Cg,c contains the coefficients of all polynomials in JcK♯<g>.
These coefficients are linear combination of the ai parameters. Thus, Cg,c is
an homogeneous system of ai-linear equations, and Sg,c can be obtained by a
simple Gaussian elimination algorithm. Thanks to Sg,c, each ai can be rewritten
into a linear combination of a subset of the initial parameters, that corresponds
to a basis of the linear system. Similarly, the ai-lpp polynomial g is rewritten
using this same basis, yielding the parametrized polynomial g̃. The remaining
ais being left unconstrained, any instantiation of these parameters constitute
a program invariant: these instantiations form the set G. These remarks are
summarized in the following correctness theorem.

Theorem 5 Let c ∈ P and d ∈ N. Polynomials computed by Algorithm 1 are
invariants for c of degree less or equal to d.

An important remark here is that generating Cg,c can be costly, as the stop-
ping criterion requires computing Gröbner bases on parametrized polynomials.
We are exploring several avenues to deal with this complexity in the general
case, starting with naïvely capping the number of iterations. This would allow
us to produce polynomial invariant candidates, which are simpler to verify. In
the next section, we propose another way to cope with this complexity issue.
By making a natural assumption on the polynomial relations we want to gen-
erate, we prove that only one iteration suffices to compute fixpoints for while
statements guarded by a polynomial disequality.
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1. r := 0;
2. s := 1;
3. t := 1;
4. while s ≤ n do

5. r := r+ 1;
6. t := t+ 2;
7. s := s+ t;
8.

I1 I4[
1/t;

1/s;
0/r]

I4 I8
d♯ I15

d♯ I25
d♯ I35

d♯ I45
d♯ I55

I15 <a0+a1(r+1)+a2(s+t+2)+a3(t+2)+a4n+
a5(r+1)2+a6(r+1)(s+t+2)+a7(r+1)(t+2)+
a8(r+1)n+a9(s+t+2)2+a10(s+t+2)(t+2)+
a11(s+t+2)n+a12(t+2)2+a13(t+2)n+a14n

2>

I8 <a0 + a1r + a2s + a3t + a4n + a5r + a6rs +
a7rt + a8rn + a9s

2 + a10st + a11sn + a12t
2 +

a13tn+ a14n
2>

Figure 2: A polynomial program to compute a square root: sqrt.

Example 1 (invariant for sqrt) In this paragraph, we illustrate Algorithm 1
on the small and didactic example of Figure 2. We deliberately make the choice
of a simple example, where the guard is not taken into account, to be able to
display each step of Algorithm 1. The table on the right of Figure 2 contains key
abstract values of the analysis. In this example, we aim at computing invariants
of degree less than or equal to 2. Note that this is not indicative of a limitation
of the analysis, which is in no way bound to the quadratic case. Examples in
Section 6 deal with full guards and higher-degree invariants.

Abstract computations start from ideal I8 that only contains g, the most
generic ai-lpp polynomial of degree 2 in variables r, s, t, n. As the guard of
the while statement is not a polynomial (dis)equality, it is replaced by a non
deterministic choice, and the loop is unfolded until a fixpoint is reached.

I4 = Jwhile (∗) do r := r+ 1; t := t+ 2; s := s+ tK♯g = <g, g1, g2, g3, . . . >

where gi corresponds to the polynomial computed on line 5 at step i (g0 = g and
for i ≥ 1, gi = Ii5 = Jr := r+ 1; t := t+ 2; s := s+ tK♯(gi−1)). By Theorem 1,
we know that this iteration terminates in finitely many steps. Gröbner bases
computation show that g6 ∈ <g, g1, g2, g3, g4, g5>, which is sufficient to prove
that I4 = <g, g1, g2, g3, g4, g5>. Finally, I1 is built by substituting the program
variables in I4 by the values given by the initial assignments. The next step
of Algorithm 1 consists in obtaining the linear constraints equivalent to equality
I1 = <0>. For example, the constraint a0+a2+a3+a9+a10+a12 = 0 is obtained
by equating the coefficient of degree 0 in g[1/t;

1/s;
0/r] to zero. For lack of space,

we do not detail the whole linear system and skip directly to the computation of
its solution (line 5 of Algorithm 1). Taking the set {a0, a2, a7, a10, a12} as basis
parameters yields

Sg,sqrt =











a1 = 2a0 − a7 − 2a12 a6 = −2a10

a3 = −a0 − a2 − a10 − a12 a8 = −2a13

a4 = −a13 a9 = a11 = a14 = 0
a5 = −a2 − 2a7 − a10 − 4a12

Substituting the ai-parameters according to this solution, we conclude that, for
all a0, a2, a7, a10, a12 ∈ R

a0(1 + 2r − t) + a2(s− t− r2) + a7(−r − 2r2 + rt)
+ a10(−t− r2 − 2rs+ st)+ a12(−2r − t− 4r2 + t2)+ a13(−n− 2rn+ tn)= 0

Each polynomial that appears after parameters a0, . . . , a13 in this formula is
invariant at the end of program sqrt. These invariants are subsumed by t =
2r + 1 and s = (r + 1)2.
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As already noticed, the use of Gröbner base computations to decide ter-
mination can be avoided in certain cases, while retaining the precision of our
approach. The following Section explores a subclass of program invariants, on
which termination is obtained in a single iteration step.

6 Fast generation of inductive invariants for loops

The basic idea for accelerating convergence consists in restricting the set of
invariant candidates by making a natural assumption: an invariant g is said to
be inductive for a loop if the relation g = 0 is satisfied at the beginning of the
loop and remains true when iterating.

Definition 10 (Inductive (loop) invariants) Let us consider a loop program
w ≡ while b do c. An invariant is said to be inductive for w if, for all σ in γ(g),
if there exists σ′ ∈ R

m such that 〈c, σ〉 →+ σ′, then σ′ ∈ γ(g).

This definition can be rewritten using the backward concrete semantics, as
stated by the following lemma, which is a direct consequence of Theorem 3.

Lemma 1 Let w ≡ while b do c be a polynomial loop program and g a poly-
nomial in R[x1, . . . , xm]. Then, g is an inductive invariant for w if and only if
γ(g) ⊆ BνJcK γ(g).

The notion of inductive invariant now has to be translated into the abstract
semantics. The following theorem gives a sufficient condition for having an
inductive invariant.

Theorem 6 (Inductive hypothesis) Assuming the notations of Lemma 1, if
JcK♯<g> = <g>, then g is an inductive invariant.

Proof. By Theorem 4, we have γ(JcK♯<g>) ⊆ BνJcK γ<g>. Hypothesis
JcK♯g = <g> and Lemma 1 allow to conclude the proof. ⊓⊔
This theorem has a direct consequence on fixpoint computations: by positing
the inductive hypothesis, we can prove that iterating is not needed to compute
abstract while statements guarded by a polynomial disequality.

Lemma 2 Let g ∈ P and w ≡ while p 6= 0 do c be a polynomial loop program.
Suppose that JcK♯<g> = <g>. Then JwK♯<g> = <g>.

Proof. According to Remark 2, we have

Jwhile p 6= 0 do cK♯<g> = <g, p.(JcK♯g), . . . >

By hypothesis, JcK♯<g> = <g>. Thus, p.(JcK♯<g>) = p<g> ⊆ <g>, which
proves that stabilization is reached and concludes the proof. ⊓⊔

In the case of loops wih positive guards, the analysis still needs to iterate
through the successive remainder computations. The termination of this process
is still ensured by the descending chain property of polynomial ideals, and the
analysis proceeds as in the general case of Section 4. An alternative is to over-
approximate the solution set by treating positive guards nondeterministically;
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this brings us back to the quick single iteration case. In practice however,
positive guarded loops are a rare occurrence: for instance, none of Carbonell
and Kapur’s polynomial program benchmarks [16, 17] include such conditionals.

The following example illustrates two important points: it explains the Rem-
computations and demonstrates the use of the inductive hypothesis.

Example 2 (inductive invariant for mannadiv) Recall algorithm from Fig-
ure 1a. As in Section 5, we call Ii the ideal generated from unfolding the se-
mantics of the instruction at line i. The analysis starts from ideal I7 = <g>,
containing the most generic quadratic ai-lpp polynomial g, and performs a series
of variable instantiations before evaluating the if instruction of line 3. We note
g1 = g[y3−1/y3

; 0/y2
; y1+1/y1

] and g2 = g[y3−1/y3
; y2+1/y2

] the polynomials pro-
duced by these instantiations. Ideal I3 is defined using the operation Rem(g1, p)
where p = x2 − y2 − 1. As already mentioned in Section 4, the choice of the
division operator is crucial for our analysis and a bad choice may lead to a
loss of precision. To avoid this issue, we perform division by a parametrized
polynomial. In this example, computation of Rem(g1, p) is done as follows. We
introduce q the most generic bi-lpp of degree deg(g1)− deg(p) = 1, and define

Rem(g1, p) = g1−q.p = g1− (b0+b1 x1+b2 x2+b3 y1+b4 y2+b5 y3).(x2−y2−1)

Note that the resulting polynomial is in {ai, bi}-lpp form, which is essential
for the linearity of the constraints generated further. Ideal I3 = <(x2 − y2 −
1).g2, Rem(g1, p)> is then built from this definition.

The while instruction from line 2 triggers the use of the inductive hypothesis
(Theorem 6), indicating that the loop body maintains the original invariant,
constraining I3 to be equal to I7. This constraint can be satisfied by enforcing
both Rem(g1, p) = g and g2 = g. Let Cw1

and Cw2
be these respective constraints.

What is more, by Lemma 2 we have I2 = I7. The substitutions on line 1 operate
on I2; enforcing the nullness of I1 generates another set of constraints Ci. The
important point here is that the constraints Cw∗

and Ci express two different
properties of the invariant (inductiveness, and initial nullness), and that solving
only Ci would yield an incomplete solution.

Step 4 of Algorithm 1 consists in solving the conjunct of all constraints:

Ci Cw2
Cw1

a6 + a10 + a20 = 0 a20 = a18 a10 = a8 a18 + a13 = 0
a1 + a5 = 0 a19 = 2 a18 a20 = a15 a9 = a16 = a19 = 0
a7 + a14 = 0 a17 = a16 b4 + a13 = 0 b1 = b2 = b3 = b5 = 0
a0 = a2 = a11 = 0 a4 = a5 b0 = a12 − a14

a10 = a9 a5 = a3 − a14 + a12

a7 + a14 a4 = a12 − a13 − a14

a14 = a13 a17 = 2 a15

These resolve into a12 = a5 = a4 = b0 = −a1, and all other parameters equating
to 0. Finally, the direct instantiation of the ai-lpp polynomial returns the single
program invariant: x1 = y1 x2 + y2 + y3.

Examples and benchmarks. Table 3 presents the results of the Maple im-
plementation of our analysis. It is run on Rodríguez-Carbonell and Kapur’s
inductive benchmarks [17, 16], and measured to their best and worst results.
Our method is systematically better, and on average 2.2 orders of magnitude
faster. A few examples deserve additional comments: we have added petter30
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Name d Var Comparing performance

RCK approach Fast Ind RCK/Fast Ind

fastest slowest in seconds worst best

cohencu 2 4 0.7 1.88 0.009 78 209
divbin 2 5 0.99 2.1 0.005 198 420
freire1 2 3 0.38 0.7 0.006 63 116
freire2 2 4 0.7 1.0 0.007 100 143
mannadiv 2 5 1.12 2.96 0.005 224 592
knuth 3 9 2.61 55.4 0.084 31 659

prod4br 3 6 4.63 > 300 0.013 356 > 23.103

euclidex2 2 8 1.95 15.15 0.008 244 1894
fermat1 2 5 0.8 2.57 0.006 133 428
fermat2 2 5 0.92 1.49 0.006 153 248
lcm1 2 6 1.0 2.49 0.006 167 415
lcm2 2 6 1.21 2.05 0.006 202 342
petter1 2 2 0.5 1.0 0.003 83 167

petter5 6 2 1.4 > 300 0.006 233 > 50.103

sqrt 2 3 0.46 − 0.010 46 −

z3sqrt 2 4 0.82 − 0.006 137 −

cohencu 3 4 − − 0.018 − −

freire2 3 4 − − 0.012 − −

petter30 31 2 − − 1.423 − −

Figure 3: Performance results for the Maple implementation

that yields an invariant of degree 31, and run cohencu and freire2 with a
different set of parameters in order to find a more interesting, higher-order in-
variant (resp. x = n3, and 4r3 − 6r2 + 3r + 4x − 4a = 1). Our analysis had
more mixed results with the knuth program: we had to introduce two additional
variables to encode the non-polynomial initial assignements, which significantly
increased the size of the linear system. It is unclear how Rodríguez-Carbonell
and Kapur dealt with these assignments. Unfortunately, we were not able to
compare to Sankaranarayanan et al.’ s approach, for lack of an implementation.

An OCaml implementation of this analysis for Java bytecode, using the
Sawja5 static analysis libraries to derive annotations and intermediate code
representation, provides a fully automated invariant generation tool. Early re-
sults have been competitive with the Maple implementation, and a prototype
is available at www.irisa.fr/celtique/ext/polyinv. A thorough analysis of
our results can be found in Appendix C.

7 Related work

As already mentioned in the introduction of this paper, our approach extends
Müller-Olm and Seidl’s work [12] to a structured language with both polyno-
mial equality and disequality guards. In the case of programs with negative
guards only, our abstract function coincides with theirs, thus inheriting the
completeness property. In terms of computational complexity, we propose a
practical alternative to iteration-based methods, by extending the hypotheses
of Sankaranarayanan et al. [19] to a more general setting without sacrificing
efficiency. More precisely, the condition JcK♯<g> = g, which provides the most
efficient invariant computation, corresponds to their notion of constant value
consecution, and the condition JcK♯<g> = <g>, which is the inductive hypoth-
esis of Theorem 6, corresponds to their notion of constant-scale consecution.

5sawja.inria.fr
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Rodríguez-Carbonell and Kapur [16] propose a method adapted to both kinds
of guards, but at the price of a high degree of computational and conceptual
complexity. First, their abstract domain is the set of ideal varieties, i.e., ide-
als such that α ◦ γ(I) = I (called the IV property). The transfer function for
disequality guards comes down to computing ideal quotients in this abstract do-
main. The IV property is costly to maintain, since it relies on the computation
of radical ideals. By default, their implementation skips these computations
and ignores disequality guards, thus inducing over-approximations. In their for-
ward approach, abstract assignments are handled by fresh variable introduction
and elimination. This requires computing ideal intersections. Abstract equality
tests, which are easier to handle in a forward approach, still need IV computa-
tions due to the nature of the abstract domain. These are also generally skipped
in practice. Finally, even if their approach can be adapted to bound the number
of iterations by making strong assumptions on programs [17], it systematically
demands iterative fixpoint computations. The process of computing all poly-
nomial invariants for a given structure of programs was extended by Kovács
in [9] which provides, again through iterative fixpoint computation, a complete
invariant generation method for a specific loop pattern with nested conditionals.

8 Conclusion

We have presented a backwards polynomial invariant generation method that
enjoys both programming language expressiveness and, for a large class of in-
variants, a fast generation procedure.

The proposed method constitutes a solid foundation for extensions to an
analysis tool that covers a full-fledged language, such as the Java bytecode.
The analysis has good scalability properties as the limiting factor is the number
of variables and not the degree of the variables nor the size of the code. The
integration of the analysis into the Sawja static analysis framework for Java
yields good results on benchmarks from the litterature and will enable us to
back these claims with experiments on large code bases.

In addition, there are at least two specific avenues we will investigate in
further work. For one, the non inductive invariant generation case still requires
Gröbner bases computation in order to know when loop unfolding has to be
stopped. We are currently experimenting to identify which kind of algorithm is
well adapted to our particular form of ideals. Second, on a more theoretical side,
the abstract transfer functions for handling our if and while control structures
are based on remainder computations, where any remainder function yields a
correct abstract semantics. We have found a way to implicitly generate “good”
remainder functions for inductive invariants, but an exact characterization of
such functions in the general case is still to be found.

We also undertook the mechanized formalization of all the material of this
paper with the Coq proof assistant, following Besson et al.’s approach [2] to
linear invariant generation. In addition to the gain in confidence, this lays
the groundwork for a certifying analysis toolchain, i.e., the combination of an
analyzer that generates certificates in predefined format, and a formally verified
checker that validates them.
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seq
〈c1; c2, σ〉 ∼ 〈c2, 〈c1, σ〉〉

σ → σ′

congruence
〈c, σ〉 → 〈c, σ′〉

skip
〈skip, σ〉 → σ

p(σ) = v
assign

〈xj := p, σ〉 → σ[[v]]j

p(σ) ⊲⊳ 0 ≡ true
if

〈if p ⊲⊳ 0 then c1 else c2, σ〉 → 〈c1, σ〉
where

0 = 0
v 6= 0

}

≡ true

p(σ) ⊲⊳ 0 ≡ false
if

〈if p ⊲⊳ 0 then c1 else c2, σ〉 → 〈c2, σ〉
where

0 6= 0
v = 0

}

≡ false

while
〈while b do c, σ〉 ∼ 〈if b then (c;while b do c) else skip, σ〉

Notation: given σ = (σ1, . . . , σm), we note σ[[v]]j the updated state

(σ1, . . . , σj−1, v, σj+1, . . . , σm).

Figure 4: Small-step operational semantics.

A Semantical Frameworks and Relations

A.1 Wright-Felleisen small-step semantics of polynomial

programs.

The semantics of polynomial programs is defined as a relation between closed
terms c. We use a congruence rule to lift the primitive deduction rules to a
standard, left-to-right, innermost-to-outermost interpretation of the language.

Definition 11 (Small-step operational semantics (SSOS)) Let c be a poly-
nomial program, v a program value, and σ, σ′ ∈ R

m be states of the program c.
The reduction semantics of our language is provided by the rules in Figure 4.

Remark that we use the ∼ relation to denote macro-like expansion. We
use this notation to refrain from introducing additional steps in the small-step
reductions.

A.2 Relation between backward and operational seman-

tics

A.2.1 Comparing BµJ.K with SSOS.

We begin by comparing the backward least fixpoint collecting semantics BµJ.K
with SSOS. Theorem 7 states that least fixpoint semantics collects all terminat-
ing states.

Theorem 7 (BµJ.K vs SSOS) For all S ∈ P(Rm) and for all polynomial pro-
gram state σ,

σ ∈ BµJcK S ⇔ ∃σf ∈ S, 〈c, σ〉 →+ σf

First, remark that, according to the definition of the SSOS, there is no program
c and states σ, σf ∈ R

m such that 〈c, σ〉 →0 σf . Thus, if 〈c, σ〉 →∗ σf is satisfied
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for σ, σf ∈ R
m then 〈c, σ〉 →+ σf . This property will be used in further proofs

without mentioning it.
In order to improve the readability of Theorem 7, we divide it in two lemmas

stating one or the other side of the equivalence.

Lemma 3 For all S ∈ P(Rm), for all σ ∈ R
m and polynomial program c ∈ P,

σ ∈ BµJcK S ⇐ ∃σf ∈ S, 〈c, σ〉 →+ σf

Proof. By mathematical induction on the length k of the derivation sequence,
we prove the following property for all k ∈ N:

σ ∈ BµJcK S ⇐ ∃σf ∈ S, 〈c, σ〉 →k σf

Induction base If k = 0 then the property trivially holds since there is no σf

such that 〈c, σ〉 →0 σf

Induction step We assume the property for k ≤ m and prove it holds for
m+ 1. Assume there exists σf ∈ S such that 〈c, σ〉 →m+1 σf .

If c ≡ skip then 〈c, σ〉 →1 σ. Thus m = 0 and σf = σ. As BµJcK S = S,
the property trivially holds for this case.

If c ≡ xj := p then 〈c, σ〉 →1 σ[v]j for v = p(σ). Thus m = 0 and σf =

σ[v]j . As BµJcK S = {σ ∈ R
m | σ[p(σ)]j ∈ S}, the property trivially

holds for this case.

If c ≡ c1; c2 then 〈c1, σ〉 →k1 σ′ and 〈c2, σ′〉 →k2 σf for k1 and k2 such
that 1 ≤ ki ≤ m and k1 + k2 = m. By induction hypothesis, σ′ ∈
BµJc2K S and σ ∈ BµJc1K (BµJc2K S). As BµJcK S = BµJc1K (BµJc2K S),
the property holds for this case.

If c ≡ if p ⊲⊳ 0 then c1 else c2

Recall BµJcK S = (Jp ⊲⊳ 0K
⋂

BµJc1K S)
⋃

(Jp 6⊲⊳ 0K
⋂

BµJc2K S).

Assume p(σ) ⊲⊳ 0 ≡ true then 〈c, σ〉 →1 〈c1, σ〉 →
m σf . By induc-

tion hypothesis, we get σ ∈ BµJc1K S. Thus, σ ∈ Jp ⊲⊳ 0K ⋂

BµJc1K S and as a consequence σ ∈ BµJcK S.

Assume p(σ) ⊲⊳ 0 ≡ false then 〈c, σ〉 →1 〈c2, σ〉 →
m σf . By in-

duction hypothesis, we get σ ∈ BµJc2K S. Thus, σ ∈ Jp 6⊲⊳ 0K
⋂

BµJc2K S and as a consequence σ ∈ BµJcK S.

Thus the property holds for this case.
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If c ≡ while p ⊲⊳ 0 do c1

Assume p(σ) ⊲⊳ 0 ≡ true then 〈c, σ〉 →1 〈c1; c, σ〉 →
m σf . By in-

duction hypothesis, we get σ ∈ BµJc1; cK S = BµJc1K (BµJcK S).
Moreover, by the fixpoint definition of the backward semantics
of the while-statement, we have:

BµJcK S = Fc,p,S(B
µJcK S)

= (Jp 6⊲⊳ 0K
⋂

S)
⋃

(Jp ⊲⊳ 0K
⋂

BµJc1K (BµJcK S))

As σ ∈ Jp ⊲⊳ 0K ⋂ BµJc1K (BµJcK S), we have σ ∈ BµJcK S.

Assume p(σ) ⊲⊳ 0 ≡ false then 〈c, σ〉 →1 〈skip, σ〉 →m σf and
m = 1 and σf = σ. By induction hypothesis, we get σ ∈
BµJskipK S = S. Moreover, we have:

BµJcK S = µFc1,p,S

= µλX.(Jp 6⊲⊳ 0K ⋂ S)
⋃

(Jp ⊲⊳ 0K ⋂ BµJc1K X)
= (Jp 6⊲⊳ 0K ⋂ S)

⋃

(µλX.Jp ⊲⊳ 0K ⋂ BµJc1K X)

As σ ∈ Jp 6⊲⊳ 0K ⋂ S, we have σ ∈ BµJcK S.

The property holds for this last case, which proves that it always holds.
⊓⊔

We can now prove the other side of the equivalence.

Lemma 4 For all σ ∈ R
m, for all S ∈ P(Rm) and polynomial program c, we

have:
σ ∈ BµJcK S ⇒ ∃σf ∈ S, 〈c, σ〉 →+ σf

Proof. By syntactic induction on polynomial programs. We proceed by case.

If c ≡ skip then we have both BµJcK S = S, and for all σ ∈ R
m,

skip
〈skip, σ〉 → σ

which holds, a fortiori, for σ ∈ BµJcK S ⊆ R
m. Thus we have σf = σ.

If c ≡ xj := p then we have both BµJcK S = {x ∈ R
m | x[[p(x)]]j ∈ S}, and for

all σ ∈ R
m,

p(σ) = v
assign

〈xj := p, σ〉 → σ[[v]]j
where σ[[v]]j = (σ1, . . . , σj−1, v, σj+1, . . . , σm)

Thus we have σf = σ[[v]]j.

If c ≡ if p ⊲⊳ 0 then c1 else c2 then we have:

BµJcK S = (BµJc1K S
⋂

Jp 6= 0K)
⋃

(BµJc2K S
⋂

Jp = 0K)

Now consider σ ∈ BµJcK S; two cases arise:
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either p(σ) ⊲⊳ 0 ≡ true thus σ ∈ BµJc1K S. The induction hypothesis
states ∃σ′ ∈ S, 〈c1, σ〉 →

+ σ′. And the small-step semantics provides
the step:

p(σ) ⊲⊳ 0 ≡ true
if

〈if p ⊲⊳ 0 then c1 else c2, σ〉 → 〈c1, σ〉

or p(σ) ⊲⊳ 0 ≡ false is the mirror case: take σ ∈ BµJc2K S. The induction
hypothesis states ∃σ′ ∈ S, 〈c2, σ〉 →

+ σ′. What is more:

p(σ) ⊲⊳ 0 ≡ false
if

〈if p ⊲⊳ 0 then c1 else c2, σ〉 → 〈c2, σ〉

Thus, σf = σ′ and 〈c, σ〉 →+ σ′.

If c ≡ while p ⊲⊳ 0 do c1 then we have, using the Kleene iteration theorem:

BµJcK S = µFc1,p,S =
⋃

n≥0
Fn
c1,p,S({})

Now consider σ ∈ BµJcK S; thus, ∃n0 ∈ N such that σ ∈ Fn0

c1,p,S
({}). To

conclude this case, we prove by mathematical induction that:

∀n ∈ N, σ ∈ Fn
c1,p,S({}) ⇒ ∃σf ∈ S, 〈c, σ〉 →+ σf

• Case n = 0. As F 0
c1,p,S

({}) = {}, the implication is valid because its
premise is false.

• n→ n+ 1. Let n ∈ N such that σ ∈ Fn
c1,p,S

({}) ⇒ ∃σf ∈ S, 〈c1, σ〉 →
+

σf . Let now suppose that σ ∈ Fn+1
c1,p,S

({}). We have:

Fn+1
c1,p,S

({}) = Fc1,p,S(F
n
c1,p,S

({}))

= (Jp 6⊲⊳ 0K ⋂ S)
⋃

(Jp ⊲⊳ 0K ⋂ BµJc1K (Fn
c1,p,S

({})))

Two cases can arise:

either p(σ) ⊲⊳ 0 ≡ false then after macro expansion, the small-step
semantics provides the step:

p(σ) ⊲⊳ 0 ≡ false
if

〈c, σ〉 → 〈skip, σ〉

Thus σf = σ and 〈c, σ〉 →+ σf .
or p(σ) ⊲⊳ 0 ≡ true then σ ∈ BµJc1K (Fn

c1,p,S
({})). By induction hy-

pothesis on c1, there exists σ′′ such that 〈c1, σ〉 →+ σ′′, and by
induction hypothesis on n, we get that 〈c1, σ′′〉 →+ σf . What is
more:

p(σ) ⊲⊳ 0 ≡ true
if

〈c, σ〉 → 〈c1; c, σ〉

Thus, 〈c, σ〉 →+ σf .

This proves that the property holds for this last case and thus always
holds.

⊓⊔
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A.2.2 Comparing SSOS with BνJ.K.
The greatest fixpoint semantics also contains the set of terminating states but
may also contains non-terminating states, putting aside termination condition.

Theorem 8 (BνJ.K vs SSOS) For all S ∈ P(Rm) and for all polynomial pro-
gram state σ,

σ ∈ BνJcK S ⇒

{

∃σf ∈ S, 〈c, σ〉 →+ σf

or 〈c, σ〉 →∞

Proof. By syntactic induction on the polynomial program c. We proceed by
case.

If c ≡ skip then we have both BνJcK S = S, and for all σ ∈ R
m,

skip
〈skip, σ〉 → σ

which holds, a fortiori, for σ ∈ BνJcK S ⊆ R
m. Thus we have σf = σ.

If c ≡ xj := p then we have both BνJcK S = {x ∈ R
m | x[[p(x)]]j ∈ S}, and for

all σ ∈ R
m,

p(σ) = v
assign

〈xj := p, σ〉 → σ[[v]]j
where σ[[v]]j = (σ1, . . . , σj−1, v, σj+1, . . . , σm)

Thus we have σf = σ[[v]]j.

If c ≡ c1; c2 then we have

BνJc1; c2K S = BνJc1K (BνJc2K S)

By induction hypothesis, we have:

1. σ′ ∈ BνJc2K S ⇒

{

∃σ′′ ∈ S, 〈c2, σ
′〉 →+ σ′′

or 〈c2, σ
′〉 →∞

2. σ ∈ BνJc1K (BνJc2K S) ⇒

{

∃σ′ ∈ BνJc2K S, 〈c1, σ〉 →
+ σ′

or 〈c1, σ〉 →
∞

Thus the compound application of the seq and congruence rules yields
the following derivation tree:

〈c1; c2, σ〉 ✲
1〈c2, 〈c1, σ〉〉 ✲

+〈c2, σ
′〉 ✲

+σ′′

∞

✲

∞

✲

Hence, either c diverges, or σf = σ′′.

If c ≡ if p ⊲⊳ 0 then c1 else c2 then we have:

BνJcK S = (BνJc1K S
⋂

Jp ⊲⊳ 0K)
⋃

(BνJc2K S
⋂

Jp 6⊲⊳ 0K)

Now consider σ ∈ BνJcK S; two cases arise:
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either p(σ) ⊲⊳ 0 ≡ true thus σ ∈ BνJc1K S. The induction hypothesis
states ∃σ′ ∈ S, 〈c1, σ〉 →

+ σ′ or 〈c1, σ〉 →∞. And the small-step
semantics provides the first step:

p(σ) ⊲⊳ 0 ≡ true
if

〈if p ⊲⊳ 0 then c1 else c2, σ〉 → 〈c1, σ〉

or p(σ) ⊲⊳ 0 ≡ false is the mirror case: take σ ∈ BνJc2K S. The induction
hypothesis states ∃σ′ ∈ S, 〈c2, σ〉 →

+ σ′ or 〈c2, σ〉 →∞. What is
more:

p(σ) ⊲⊳ 0 ≡ false
if

〈if p ⊲⊳ 0 then c1 else c2, σ〉 → 〈c2, σ〉

Thus, either c diverges, or σf = σ′.

If c ≡ while p ⊲⊳ 0 do c1 then the backward semantics yields σ ∈ νFc1,p,S

where:

Fc1,p,S = λX.(Jp 6⊲⊳ 0K
⋂

S)
⋃

(Jp ⊲⊳ 0K
⋂

BνJc1K X)

Backward concrete while-semantics is obtained by iterating from the top
element R

m. Thus, we have

BνJcK S =
⋂

n≥1
Fn
c1,p,S(R

m)

and, as σ ∈ BνJcK S, then ∀i ∈ N, σ ∈ F i
c1,p,S

(Rm).

Since BνJc1K is a
⋃

-morphism, we have:

F i
c1,p,S

(Rm) = Jp 6⊲⊳ 0K
⋂

S

(0)
⋃

( Jp ⊲⊳ 0K ⋂ BνJc1K (Jp 6⊲⊳ 0K ⋂ S) )
(1)

⋃

( Jp ⊲⊳ 0K ⋂ BνJc1K (Jp ⊲⊳ 0K ⋂ BνJc1K (Jp 6⊲⊳ 0K ⋂ S)) )
(2)

⋃

· · ·
...
⋃

· · ·

⋃

( Jp ⊲⊳ 0K ⋂ BνJc1K (Jp ⊲⊳ 0K ⋂ · · · ⋂ BνJc1K (Jp 6⊲⊳ 0K ⋂ S)) · · · )) )
(

⋃

( Jp ⊲⊳ 0K ⋂ BνJc1K (Jp ⊲⊳ 0K ⋂ · · · ⋂ BνJc1K (Jp ⊲⊳ 0K) ⋂ BνJc1K (Rm)) · · · )) )
(

F i
c1,p,S

(Rm) is defined by the union of i + 1 sets, corresponding to the
successive unfoldings of the loop. In the rest of the proof, we need to know
precisely in which of these i + 1 sets we can found σ. For that matter,
we note j .F

i the set appearing at line j of F i
c1,p,S

(Rm). To remove any
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ambiguity, we can formally define j .F
i by the following recurrence:







































0.F
1 = Jp 6⊲⊳ 0K ⋂ S

j .F
j+1 = Jp ⊲⊳ 0K ⋂ BνJc1K (j−1.F

j), ∀j ≥ 1

1.F
1 = Jp ⊲⊳ 0K ⋂ BνJc1K (Rm)

j .F
j = Jp ⊲⊳ 0K ⋂ BνJc1K (j−1.F

j−1), ∀j ≥ 2

t.F
j+1 = t.F

t+1, ∀1 ≤ t ≤ j

The proof is based on the following idea. If we are able to find a derivation
of 〈c, σ〉 that reaches the set Jp 6⊲⊳ 0K, then, by unfolding the loop once
more, we make this derivation terminate in one more step. This case is
characterized by the fact that σ belongs to a t.F

i for a 0 ≤ t ≤ i−1. Note
that, thanks to the last line of the above recurrence, this property can
be reformulated as σ ∈ i−1.F

i for a certain i ≥ 1. If we can’t find such
a derivation, it means that we keep infinitely deriving in the set Jp ⊲⊳ 0K
and never leave the loop. This case is characterized by the fact that for
all i ≥ 1, σ belongs to i.F

i. Note that either one of this characterization
is realized. The rest of the proof consists in formalizing this idea.

The following lemma expresses what occurs if the first case is satisfied.

Lemma 5 (First case) Let c ≡ while p ⊲⊳ 0 do c1. Then,

∀σ ∈ R
m, ∀j ≥ 1,

(

σ ∈ j−1.F
j ⇒

{

∃σf ∈ S, 〈c, σ〉 →+ σf

or 〈c, σ〉 →∞

)

Proof. By recurrence on j. Let σ ∈ R
m.

• If j = 1. Then σ ∈ 0.F
1 = Jp 6⊲⊳ 0K

⋂

S and

p(σ) ⊲⊳ 0 ≡ false
if

〈c, σ〉 → σ

Defining σf = σ concludes this case.

• Suppose that property holds at rank j and let σ ∈ j .F
j+1 = Jp ⊲⊳

0K
⋂

BνJc1K (j−1.F
j). Then, we have

p(σ) ⊲⊳ 0 ≡ true
if

〈c, σ〉 → 〈(c1; c), σ〉

and finally

〈c1; c, σ〉 ∼ 〈c, 〈c1, σ〉〉 ✲
+〈c, σ′〉 ✲

+σ′′

∞

✲

∞

✲

First step is just a macro expansion. Second step is the result
of syntactic induction: as σ ∈ j .F

j+1 ⊆ BνJc1K (j−1.F
j), either

there exists a state σ′ such that σ′ ∈ j−1.F
j and 〈c1, σ〉 →+ σ′ or

〈c1, σ〉 →
∞. The final step results from the recurrence hypothesis.

Defining σf = σ′′ concludes this case.
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⊓⊔

The second case is treated with help to the following lemma.

Lemma 6 (Second case) Let c ≡ while p ⊲⊳ 0 do c1. Then,

∀σ ∈ R
m, ∀j ≥ 1,

(

σ ∈ j .F
j ⇒

{

∃ij ≥ j − 1, σ′ ∈ Jp ⊲⊳ 0K, 〈c, σ〉 →ij 〈c, σ′〉
or 〈c, σ〉 →∞

)

Proof. By recurrence on j. Let σ ∈ R
m.

• If j = 1. Then σ ∈ 1.F
1 = Jp ⊲⊳ 0K ⋂ BνJprog1K (Rm). As 〈c, σ〉 →0

〈c, σ〉, defining σ′ = σ concludes the case.

• Suppose that property holds at rank j and let
σ ∈ j+1.F

j+1 = Jp ⊲⊳ 0K ⋂ BνJc1K (j .F
j). Then, we have

p(σ) ⊲⊳ 0 ≡ true
if

〈c, σ〉 → 〈(c1; c), σ〉

which provides, as in the previous lemma

〈c1; c, σ〉 ∼ 〈c, 〈c1, σ〉〉 ✲
+〈c, σ′〉 ✲

ijσ′′

∞

✲

∞

✲

First step is just a macro expansion. Second step is the result of
syntactic induction: as σ ∈ j+1.F

j+1 ⊆ BνJc1K (j .F
j), either there

exists a state σ′ such that σ′ ∈ j .F
j and 〈c1, σ〉 →+ σ′ or 〈c1, σ〉 →∞.

The final step results from the recurrence hypothesis. Note that the
whole derivation is done in more than j steps, which concludes this
case.

⊓⊔

Now that we have stated these two lemmas, it remains to conclude the
proof. To do it, we consider the set Aux = {i ∈ N | σ ∈ i−1.F

i}. Then,
two cases can arise.

1. Either Aux is not empty, and there exists k ∈ Aux.
Then, σ ∈ k−1.F

k and Lemma 5 allows to conclude this case.

2. Or Aux is empty.
Then, ∀j ≥ 1, σ ∈ j .F

j . By Lemma 6, we get that either ∃j ≥ 1 such
that (σ ∈ j .F

j ⇒ 〈c, σ〉 →∞) or ∀j ≥ 1, ∃ij ≥ j−1, 〈c, σ〉 →ij 〈c, σ′〉.
This means that we can always find a derivation as long as we want.
In other words, 〈c, σ〉 →∞. This concludes this last case and the
proof.

⊓⊔

B Correctness

Theorem 9 (Correctness) Let I be a polynomial ideal and c a polynomial
program. Then:

γ(JcK♯I) ⊆ BνJcK γ(I)

We now prove Theorem 9 by syntactic induction on polynomial programs.
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Proof. Let I be a polynomial ideal. Note that, by Theorem 1, I is finitely gen-
erated. Thus, there exist g1, . . . , gs ∈ R[x1, . . . , xm] such that I = <g1, . . . , gs>.

If c ≡ skip then
JcK♯I = I

BνJcK γ(I) = γ(I)
And thus, this case is trivial.

If c ≡ xj := p then

JcK♯I = I[[xj 7→ p]]
BνJcK γ(I) = {y ∈ R

m | y[[p(y)]]j ∈ γ(I)} = γ(I[[xj 7→ p]])
where we define I[[xj 7→ p]] = <g1[[xj 7→ p]], . . . , gs[[xj 7→ p]]>.
This case is thus also trivial.

If c ≡ c1; c2 then
JcK♯I = Jc1K♯(Jc2K♯(I))

BνJcK γ(I) = BνJc1K (BνJc2K γ(I))
By induction on c1, we have:

γ(Jc1K♯(Jc2K♯I)) ⊆ BνJc1K γ(Jc2K♯I)

Now, by induction on c2, we have:

γ(Jc2K♯I) ⊆ BνJc2K γ(I)

As the concrete semantics BνJcK is a monotonic function, we conclude
this case by applying BνJc1K to each member of the subset inequality.

If c ≡ if p 6= 0 then c1 else c2 then
JcK♯I = < p.(Jc1K♯I), Rem(Jc2K♯I, p) >

BνJcK γ(I) = (Jp 6= 0K ⋂

BνJc1K γ(I))
⋃

(Jp = 0K ⋂

BνJc2K γ(I))
The variety of the abstract semantics is:

γ(<p.(Jc1K♯I), Rem(Jc2K♯I, p)>)
= γ(p.(Jc1K♯I))

⋂

γ(Rem(Jc2K♯I, p))
= (γ(p)

⋃

γ(Jc1K♯I))
⋂

γ(Rem(Jc2K♯I, p))
= γ(p)

⋂

γ(Rem(Jc2K♯I, p)) } A
⋃

γ(Jc1K♯I)
⋂

γ(Rem(Jc2K♯I, p)) } B

In order to improve the readability of the proof, we introduce the capital
letters A and B (on the right of the previous formula). Now, writing R

m

as (Jp 6= 0K ⋃ γ(p)), we have:

A
⋃

B
= (A

⋃

B)
⋂

(Jp 6= 0K
⋃

γ(p))
= ( A

⋂

(Jp 6= 0K ⋃ γ(p)) )
⋃

( B
⋂

(Jp 6= 0K ⋃ γ(p)) )
= A

⋃

(B
⋂ Jp 6= 0K) ⋃

(B
⋂

γ(p))
= A

⋃

(B
⋂ Jp 6= 0K)
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The former equality is a direct consequence of the fact that:

B
⋂

γ(p) = A
⋂

γ(Jc1K♯I) ⊆ A

To conclude the proof, we prove that:

B
⋂

Jp 6= 0K ⊆ (Jp 6= 0K
⋂

BνJc1K γ(I)) (1)

A ⊆ (Jp = 0K
⋂

BνJc2K γ(I)) (2)

We first prove inequality (1). By induction hypothesis on c1, we have:

γ(Jc1K♯I) ⊆ BνJc1K γ(I)

Then, intersecting each member of the inclusion by Jp 6= 0K, we get:

(Jp 6= 0K
⋂

γ(Jc1K♯I)) ⊆ (Jp 6= 0K
⋂

BνJc1K γ(I))

which proves (1).

We now prove inequality (2). Let x be an element of A and u be an ele-
ment of Jc2K♯I. We note t = Rem(u, p) and q the quotient associated to this
division: u = q.p + t. As x ∈ A, x ∈ γ(p) and so p(x) = 0. We also have
x ∈ γ(Rem(Jc2K♯I, p)). Thus, t(x) = 0, which implies that u(x) = 0. We
proved that for all u ∈ Jc2K♯I, u(x) = 0, which means that x ∈ γ(Jc2K♯I)
and demonstrates that A ⊆ Jp = 0K

⋂

γ(Jc2K♯I). We conclude the proof
of inequality (2) thanks to the induction hypothesis on c2.

If c ≡ if p = 0 then c1 else c2 : this case is symmetric to the previous one
and can be treated in the same way. We do not develop it here.

If c ≡ while p 6= 0 do c1 then
JcK♯I = νλJ. < p.(Jc1K♯(J)), Rem(I, p) >

BνJcK γ(I) = νλX.(Jp = 0K
⋂

γ(I))
⋃

(Jp 6= 0K
⋂

BνJc1K X)
To deal with this case, very similar to the previous one, we use the follow-
ing theorem on fixpoints [1].

Lemma 7 Transfer lemma
Let (A,⊑), (A♯,⊑♯) be two complete lattices and γ : A♯ → A a function.

Let f : A → A and f ♯ : A♯ → A♯ be two monotonic functions such that

γ ◦ f ♯
.
⊑ f ◦ γ

Then we have:
γ(νf ♯) ⊑ νf
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Proof. Let us apply the hypothesis to νf ♯. We obtain γ(f ♯(νf ♯)) ⊑
f(γ(νf ♯)). νf ♯ being a fixpoint of f ♯, we have f ♯(νf ♯) = νf ♯. Thus, we
have γ(νf ♯) ⊑ f(γ(νf ♯)) meaning that γ(νf ♯) is a prefixpoint of f . By
definition of νf , we conclude that γ(νf ♯) ⊑ νf .

⊓⊔

We note f the concrete function and f ♯ the abstract function defined by:

f = λX.(Jp = 0K
⋂

γ(I))
⋃

(Jp 6= 0K
⋂

BνJc1K X)
f ♯ = λJ. < p.(Jc1K♯(J)), Rem(I, p) >

and show that γ ◦ f ♯
.
⊆ f ◦ γ.

Let J0 be a polynomial ideal. One the one hand, we have:

f ◦ γ(J0)
= (Jp = 0K ⋂ γ(I))

⋃

(Jp 6= 0K ⋃ BνJc1K γ(J0))

On the other hand, we have:

γ ◦ f ♯(J0)
= γ(<p.(Jc1K♯J0), Rem(I, p)>)
= ( γ(p)

⋃

γ(Jc1K♯J0) )
⋂

γ(Rem(I, p))
= ( γ(p)

⋂

γ(Rem(I, p)) )
⋃

( γ(Jc1K♯J0)
⋂

γ(Rem(I, p)) )
= ( γ(p)

⋂

γ(Rem(I, p)) )
⋃

( Jp 6= 0K ⋂ γ(Jc1K♯J0)
⋂

γ(Rem(I, p)) )

The former equality is obtained reasoning the same way as in the if -case,
writing R

m = Jp = 0K
⋃

Jp 6= 0K. Now, by induction hypothesis on c1, we
have γ(Jc1K♯J0) ⊆ BνJc1K γ(J0). Reasoning again as in the if -case, we get
γ(p)

⋂

γ(Rem(I, p)) ⊆ γ(p)
⋂

γ(I). Combining these two inclusions, we
get γ ◦ f ♯

.
⊆ f ◦ γ, which proves by Lemma 7:

γ(νf ♯) ⊆ νf
q q

γ(JcK♯I) ⊆ BνJcK γ(I)

This concludes this case.

If c ≡ while p = 0 do c1 : this case is symmetric to the previous one and can
be treated in the same way. We do not develop it here.

⊓⊔

C Benchmarks

Table 5 presents the results of the Maple implementation of our analysis. Our
tests were run on a 2.8 GHz Intel Core 2 Duo sporting 4 Go of DDR3 RAM, on
Rodríguez-Carbonell and Kapur’s inductive benchmarks [17, 16], and measured
to their best and worst results. Our method is systematically better, and on
average 2.2 orders of magnitude faster.

A few examples deserve additional comments. We found an higher-order
invariant (x = n3) for cohencu starting from the most generic ai-lpp of degree
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Name d Var Comparing performance

RCK approach Fast Ind RCK/Fast Ind

fastest slowest in seconds worst best

cohencu 2 4 0.7 1.88 0.009 78 209
divbin 2 5 0.99 2.1 0.005 198 420
freire1 2 3 0.38 0.7 0.006 63 116
freire2 2 4 0.7 1.0 0.007 100 143
mannadiv 2 5 1.12 2.96 0.005 224 592
knuth 3 9 2.61 55.4 0.084 31 659

prod4br 3 6 4.63 > 300 0.013 356 > 23.103

euclidex2 2 8 1.95 15.15 0.008 244 1894
fermat1 2 5 0.8 2.57 0.006 133 428
fermat2 2 5 0.92 1.49 0.006 153 248
lcm1 2 6 1.0 2.49 0.006 167 415
lcm2 2 6 1.21 2.05 0.006 202 342
petter1 2 2 0.5 1.0 0.003 83 167

petter5 6 2 1.4 > 300 0.006 233 > 50.103

sqrt 2 3 0.46 − 0.010 46 −

z3sqrt 2 4 0.82 − 0.006 137 −

cohencu 3 4 − − 0.018 − −

freire2 3 4 − − 0.012 − −

petter30 31 2 − − 1.423 − −

Figure 5: Performance results for the Maple implementation

3 and not restricting ourselves to degree 2 as it is done in Rodríguez-Carbonell
and Kapur’s work. The same way, we found the higher-order invariant 4r3 −
6r2+3r+4x−4a = 1 for freire2. In Figure 6, we formally define petter30, a
polynomial program that computes the sum of the first n numbers to the power
30 and provides the following invariant of degree 31 at the end of the program.

1. x := 0;
2. y := 0;
3. while y 6= n do

4. x := x+ y30;
5. y := y+ 1;
6.

Figure 6: petter30, a polynomial program.

The knuth program has non-polynomial initial assignments: r = n%d; rp =
n%(d − 2); q = 4 ∗ (n/(d − 2) − n/d); where % denote the modulo operator
and / denote the integer division. We introduce two variables n1 and n2 to
code the integer division and rewrite the assignments into: r = n−n1 ∗ d; rp =
n−n2 ∗(d−2); q = 4∗(n2−n1);. These new variables are necessary to generate
the sufficient initial constraints to infer the program invariant.

Finally, Figure 7a and 7b define two programs derived from mannadiv. Their
main interest is to introduce non linear polynomial guards in the loop or in
the if statements. Proceeding the same way as it is done in the mannadiv

example, we infer respectively the polynomial invariants x2 + 2t + y − n = 0
and x3 +3t+ y− n = 0 at the end of the program. These changes do not cause
a significative loss of performance of our method since they are respectively
generated in 0.005 seconds and 0.008 seconds.
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1. y := n;
2. x := 0;
3. t := 0;
4. while y.(y− 1) 6= 0 do

5. if t = x then

6. y := y− 1;
7. t := 0;
8. x := x+ 1;
9. else

10. y := y− 2;
11. t := t+ 1;
12.

(a) mannadiv2.

1. y := n;
2. x := 0;
3. t := 0;
4. while y > 0 do

5. if t = x2 then

6. y := y− 3x− 1;
7. t := 0;
8. x := x+ 1;
9. else

10. y := y− 3;
11. t := t+ 1;
12.

(b) mannadiv3.

Figure 7: Two polynomial programs derived from mannadiv.
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