archives-ouvertes

Usage Analysis & Demonstrators - Version 2.0
Alain Boulze, Stéphane Bagnier, Julien Forrest, Sébastien Jourdain,
Mohammed El Jai, Claude Meynier, Jérome Besnainou, Marc Dutoo, Marcel
Arrufat Arias, Adrian Mos, et al.

» To cite this version:

Alain Boulze, Stéphane Bagnier, Julien Forrest, Sébastien Jourdain, Mohammed El Jai, et al.. Usage
Analysis & Demonstrators - Version 2.0. [Research Report] 2009. inria-00596055

HAL 1d: inria-00596055
https://hal.inria.fr /inria-00596055

Submitted on 26 May 2011

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.inria.fr/inria-00596055
https://hal.archives-ouvertes.fr

b

SCORWARE

SCOrWare Project

WP3 Specifications
Usage Analysis & Demonstrators

Version 2.0

Funded by

AGENCE NATIONALE DE LA RECHERCHR

http://www.agence-nationale-recherche.fr

Date
Deliverable type
Version

Status

Work Package 3

Access Permissions

Editor
INRIA Tuvalu

Authors

Artenum

EBM Websourcing

Edifixio
Open Wide

March, 10, 2009
Specification

2.0

Revision

Usage Demonstrators
Public

Alain Boulze

Stéphane Bagnier
Julien Forest
Sébastien Jourdain
Mohammed El Jai
Claude Meynier
Jérome Besnainou

Marc Dutoo

Thales Communications SEA/TAI

INRIA Tuvalu

Contributors

Marcel Arrufat Arias
Adrian Mos

Guillaume Vaudaux-Ruth

SCOrWare Consortium

Table of Contents

TINTRODUCTION...cccottnnuriecssssnrecssssasssamsasssssssssssssss 7

2METHODOLOGICAL THOUGHTS 7

3A SCA APPROACH FOR SCIENTIFICCOMPUTING (Task 3.1)..ccccceccerecsssnnerccorsecsssassesssnnnes 9

3.1 Introduction, business / SYSTEIM CONTEXL.......ccrvirrrireeririeerieeeiieeerireeeireesrreesseeesseeessreeessneeesseens 9

31T IMIOTIVALION. .ttt ettt et b e bt et b et et e e et e st es e e st e st eb e e bt e bt eh e e b e bt e e et et e st emse st entententeseenbeeenteenteens 9

3.1.2 RNTL SCOS/V3D context and additional contributions from SCA..........ccceoiiiiiinienineeeree e 11

3.2 TheoretiCal ANalYSIS.......cc.eeiiiiiiieriieeiieciee ettt ettt e e beesteeebeeteeesbeesaeesseesssemmnseessaessseenns 12

3.2.1 Scenario A: Processing and concept of visualization pipeling..............cceverierierierienieneeieneeeeseenesseeneennns 12

3.2.2 Scenario B: Use SCA to make the server side a composite appliCationcceevveeerieviereerieeesreeeireeens 13

3.2.3 Scenario C: Use semantic to €ase process defiNition..........coeceerueiieriiieiieieiieiesteeee ettt 14

3.2.4 Scenario D: Create a new processing unit and test it on the client side..........cccoeverierieneieiinininininiceeee 14

3.2.5 Scenario E: Deploy a new processing unit and test it on the server side...........ccovvvevierieveniieninie e 14

3.2.6 Scenario F: Create an independent application without Server CONNECHionccceevveveeerererieeerreeeneeenns 14

3.3 IMplementation And tESTS.......ccuieruierieeiiierieeieeeie et et eebeesteeeteesteeesbeeseeeenreessaeesbeesseesssnmmesseenne 15

3.3.1 Demonstrator 1: SCA-CassandraPCS...........cocooiiiiiiinieeee ettt s 15

3.3.2 Demonstrator 2: StatiC data PrOCESSING.......ccuerririerrieriertierteerierteeteesesreesseseessesssessesssessesssassesssessesssessessssseesnns 15

3.3.3 Demonstrator 3: SCA for complex data PrOCESSINE.........eerueiiererierieetiereetienie ettt see e see e saeeaee e 16

3.4 Architecture / technical design — SPECIfICAtION........c..eeeurieeiuieeriieeeiie et eeee e 16

3.4.1 Demonstrator 1: SCA-CassandraPCS...........ccoiiiiiiiirieeeee ettt st ebe e 16

3.4.2 Demonstrator 2: StaticC data PrOCESSINE. ... ccuertiriertieientieiente et st ete st etesteestesttentesbeentesbeenteeseenteeneenseesneeennne 19

3.4.3 Demonstrator 3: SOA for compleX data ProCESSING........cceeruerierieriierietieeetiet et eee st eee st ee e eeesreeeeanee 23

3.5 Coverage of the demonstrator (SCA spec, SCOrWare technical platform)...........cccceevvecnnennnne. 26

3.6 Lessons learned / methodology / best practices / demonstrators' results...........cccoceevereriiennennne. 27

3.7 RETETEIICES. ...ttt ettt et e sttt e st e bt e e ab e et e e sabeebeeeseeemnan 28

4COLLABORATIVEDEVELOPMENT (Task 3.2)..cccccecccunreccccnriccscsssscssssassece 28

AT SYSTEM CONEXL ..veeuvrieeiieeeiieeeitieeetteeeteeesteeesteeessseeeasseeensseeansseesnsseeansseeansseesssaeesseeensseeenssaaanns 28

4.1.1F0rge domain MOUEL.........ccooiiiiiiieriiiieiecieie ettt ettt e b e st e bessae s e essesbeesbesseessenseensesseensesseenseens 28

4.1.2Project portal domain MOAEL..........cceiieriiiiiiiieietiet ettt ettt e et esebeess e beessesreessseeentseeessneens 29

4.1.3BUSINESS MOAECL........eiiiieieeee et ettt ettt ettt e et e e e et e e et eae e bt eae et e entenaeeseenaeeneenteeeas 29

4.1 4AADPPLCALION AOMAIN.iitirtititetet ettt ettt ettt et ea et e e b e bbbt b e b s e et et e e et ent et enteeabeebeenne 30

4.1.5Project portal: CMS features in @ FOrZe.......ccviciiriiicieiiiiesieie sttt sae e saessae e essesseessenseensaeens 30

4. 2T SAZE SCENATIOS. ...euveenereenriesureeteesureesseeseseesseaasseesseessseanseassseeseesaseensaeasseenseesnsaamnnseensseenseesssesseens 31

4.2.1Forge #1: new source code revision quality ChecK............coooieiiiiiiiiiiiieeeeee e 31

4.2 2Forge #2: development project r0ad MAP.........c.eecveruiriverieriiereeierieeteseetesseesesseesesseesseeseessesssessesssessesssesseeans 31

4.2.3Project portal #1: managing use cases, features and project iNteGrations............ccecvvevvereerrereerreereessnveesneeens 32

4.2.4Project portal #2: CIMS fEATUIES........oiuiiieitieieitieteet ettt ettt b et s b et et eb et eaee et enbeeeenbeeens 32

] I 1oT ¥ o ISP 32

4.3 TFOTZE COMPONEIILS.....c.uveeutietieeieeniieeteeriteeteestreeseesteeesseenseesaseeseessseessaessseensaesnsesnseessseenseesssesnseessssessnssseessnnnnns 32

4.3.2Quality check SCeNArio r@AlIZAtION.cc.ueiuiiruiiiiieiiieie ettt ettt sttt et ettt e et e ebaeeeabeeens 34

4.3.3Development project progress dashboard scenario realization.............cccceveeierierieeienieiereee e 35

4.3.4Project POrtal COMPONEGILS.cc.eeriieeietieieteetesteete st etesteetesseessesseessesseesseeseassesseeseansesseensessesnsesseensessseennseeans 35

4.3.5F00@E: SCA ESIZN....ecuieiieieiiieiesiteteeteete et eteettete et e seestesseestesseessesseessesseessesssessaessansenssensenssesseenssesansseensseeans 36

4.3.6Project portal: SCA deSIGN......couiiiiiieiieiiee ettt ettt ettt e bt st sbe et e bt et nb e et b e e eabeeens 37

4. 4SCA SPECITICALION COVETAZE....cuvveruiieireeeriereieeiteertteeteesteesseessaeeseesssesseessseessemmmseesseessseesseesseans 42

4.518SS0NS 1CAIMEAvviieiiieeiiee ettt e ettt e et e e et e e s ta e e saaeeesbee e sbaeesaeeensseesnsseeenseeennes 43

4.5 TFTaSCATLL V8. TUSCAINYe.tteutetieieeiiete ettt ettt ettt ettt e et bt e e s bt et e et e e bt es e et e es e e bt emeeebeemeesaeeesbeeennteesnbaeennbeeans 43

4.5.2BENETIES OF SCAL......eiieiiiiieee ettt et e e et ee e ae e bt e s ebe e beestbeesaaesseessaassseessaesaseassaeesnssseseannssseeeennnnes 43
SREUSE AND ENRICHMENT OF COMPONENTS

CORPORATE FRONT-END LINKED WITH SAP BACK-OFFICE (Task 3.3)....cccccceetecscsnnes 44

5.1Introduction — Context 0f the BUSINESS........ccuiiiiiiiiiiiiiiiieieeeee e e 44

5. 2FUnctional SPEeCTTICAtION.........evuieriiieiieiie ettt ettt ettt e et eae s ete e b e esbeesmnmeeseeenee 44

I B N5 (e Yo 18 Lot 5 o) 4 FO OO PRRR 44

5.2.2WED APPIICALION.ottt ettt h et e ettt a et ea e et e e a e e eb e e bt sae e bt e st e nbees bt e e bbeeenteenbeeeanae 46
5.2.3FTONTt ENA SEIVICES. .. uiiitiiiiieitiieieeetie et eette et e e etteeteestteete e teeebe e seeesseesssaesseessseassaasseessaessssesseesssansseessseessssrseens 51
5.2.4R@AI TIIME SETVICE. ..ueeureuieuieuieiieiieteet et sttt st ettt et ettt est bt bbbt e bt bbb s b st et et et e st es s enteneebeebeebeebeeseeentee 52
5.2.5MIAdIE OffICE SETVICE....cueeuieuieuieiietietiite ettt sttt ettt et et ettt bt e bt bttt e b et e et et e be e entensenteaeeseeneeneeneeneeenees 52
5.2.6Front Local Database.cccueiuieiiiieiieiieie ettt ettt sttt sttt et b e et e e bt e e neeeeaeeeanee 52
5.2 TBACK OFTICES. . .uiitiiiiiiciieeie ettt ettt ettt et e st eeve e s teeebe e teeeabe e seeesseesssaesbe e sseassaassseesseesseeaseesssennseessaeeeansraeens 52

IR 11 (51710 (0] (0 o /SRS 52
5.3.1Target ENVITONIMIEIIES. ¢ ..euiiiiiiieieeiieiteeteet ettt ettt ettt s bt et s bt et e s bt et e sh e et e eaee et eaeesbeemeesueeneesbeenneeesnbeeeanne 53

BTN TR0 Yo T OSSO USRUSUPP 55
5.4Technical SPECITICAtION........iiiiiiiiiiieeiee ettt ettt e et e et e e e e etaeeesaeeeaaeesnsaeesnseeennnes 57
5.4.1TeChniCal COMPONENLS.......cceevierierieriertieteesteetesteetesteesesteesesseesseeseasseessasseessesssessesssessesssessesssessesssessessssessnns 57
5.4 2TECHNICAL TOPICS. .. eutetientieiiett ettt ettt ettt ettt et e e s et e st et e et e sae e et e aee bt esee bt emee bt emseebeenteeneenteeneeneeeneeneeenne 58
5.5CoVver Of the dEeMONSIIALOT.cccuiiieiiie ettt ee et e et e e et e e et e e s eeeeenseeennesseeennns 59
S S TCOMNCEPHION. ¢...evteeiieeteieeeiesteeeteeteesbeeteebeestesseesaesseessesseessesseessesssassaessasseassanseesseessessesssessesssessesssesassseesssseessseeennns 60

5.5 2DBVEIOPIMENL.ottt ettt ettt eh ettt e bt e st e et e ea e e ebe et e she et e e bt en bt eh e e bt ee e e bt enee e bbeeenteeebeeeanee 60

IR IR] U1 721 U =13 (o) s WO O T OO SO UR PO UPRUPP 60
5.5 APTOQUCLION. ...ttt ettt ettt b bbb b bttt et et e st e bt e bt e bt e bt e bt e bbbt bt e a bt et nhe e eaeeeatee 61
60RCHESTATION OF TRANSACTIONS (TaSK 3.4).ccccciiiiiiiinnnnnnnniiiccssssssssssssssscosmmessssssssssssassans 61
TNETWORK MONITORING (Task 3.5) 61
T IIMIOTIVATION. ...ttt ettt ettt et et e et e e at e et e e s sbeeabeeseseeaseeesbeenseeeaseenseesnseenseasnseenseesnseenseamnas 61
T 2ATCRIEECIULE. ... e eivieiie ettt ettt ettt ettt e et e s et e e be e teeesbeesseeense e sseenseensseess s esseenseeessaenseenns 62
7. 2. 1COMPONENLS OVEIVICWuvevrerierieereesresteeeesseaseesseessesseassesseessesssessesseessesssssesssensesssesseessesseessessesssessesssesseensseesnns 62
7.2 2WOTKIIOW OVEIVIEW......eiuiitiiiiitiitiitieteete sttt e ettt e et est et e h e e teeb e e bt sbe st e be b e et et e s et ensen s eneeneeseeseeseeseebeesesaensenne 63
7.2.3 ArChItECUIE ©VOIULION. ... etiiiiiieiiet ettt ettt b ettt et et e bt e st e et emeesae et e saeeneesbeensesaeenneeeanee 63
7.3Functional SPECITICAtIONS.....c..uviiirieiiiieiiiieeeiee et ee et e et e et e e st e e st e e s saeeessbaeenssaeesssannneensseeennns 64
7.3.1DISCOVEIY COMPONEILveeveerierterreesresteestesteessesteessesssessesssessesssessesssesseessessesssessesssesseessessssssessesssesssessensesssessnns 64
7.3.2INVENLOTY COMPOIGIIEeiutiiuiitieiieitieteetienteeteeteeteete et ee et eaeesaeemeesbeemeesbeeatesbeemseabeenseebeenteeseenteeneentesneeneesneenseanne 64
7.3.3VisualiZation COMPONEILc.eeuierieeuieteeiierteetesteetesteetesseessesseessesseesesseeseeseenseeseeseensesseensesseensesseensesseenseeesnne 64
7.3.4MONItOTING COMPOMNECILvreurirereiererererretesteteessesseessesseassesseessesseassesssessesssessesssensesssesesssensenssensesssessessssseennns 64
7.4ATechnical SPECTIICATIONS.eeiuiieiieriie ittt ettt ettt et s e et e st eeesneeeseesnaeenseennes 65
7.4.1SCA Component DIAGTAML..........coieruieiiiieieiteee ettt ettt ettt et e et e saeentesaeeneesseentesseenseeeanseeeaneeeeneeennne 65

T A 2BINAINGS.eetieiieeiieieeteete ettt et et e et et e e te s st e etesseeate st este st ente st en b e st an s e eseen st ese e st eRtenseentenseeennneeenneenneeeanne 65
7.4.3Provided fUNCHONALITIES. ..c..evitiieieteieiie ettt sttt ettt es bbbt ebesbe s bt et e s bese et e benseee e 65

T A AWOTKITOWS. ...ttt h et ettt e a et e a et e st sb e e e e s b e e b e s bt et e e bt et e sbeenteeseeteeneenbeesnbeeennne 66
7.4.5Evolution 0f the arChItECTUIEccuiiiiieciecii ettt ettt et e et e e tae e beesaeeesbeessseesbeessseesseesnssseeeennnnes 67

T SCOVETAZE. «...vveeeeeiieee e ettt e e et ee e e ettt e e e ettt e e et beeeeesneteeeeansbeeeeaasssaeeeasssseeesasseeesennsseeaaanennssaeesannns 68
7.5.1FraSCALti and SCA EdItOTc.eouiiuiiiiiiitietiitesteee ettt ettt sttt sttt e st et e et e e et eseeneeseesnbeenbeenne 68
7.5.2FraSCAti-integrated PELALS ...ttt ettt e ee et st este et e sae e eneeeanee 68
T.53TWT QNA SCAIDO ...veenviieiiieiieeiee ettt ettt et e et e et e e ab e e taeeabe e beeesbeeseesabeessseasseessseasseesseseaanssseeesannnes 68
7.6Methodology and TESUILS.......cc.eiiiiiiie ettt et et ebee e 68

7.6.1Project layout and SOA MANAZEMENLeeuiruieiiiriieiieiieie ettt ettt ettt et e st e be et eteessbeeeaneeesneeennne 68

Index of illustrations

[lustration 1: canonical Visualization PIPELINE.........c.eeoviiirriiiiiiiieeeee ettt sttt ettt et eseesteeeneeeenee 10
[lustration 2: global architecture of SCOS/V3D, based on a classic Web Services approach...........ccccecevieiiinienniiene 11
INlustration 3: components and service oriented version of the visualization pipeline.........c..cocceeveenievieciinerrenienicneneneenne 14
[lustration 4: NEW COMPONENE CTEATION.eeueerieteerieteeteesttetesteetesstessesseesesseeseeseenseesseseensesseenseeseensesseessesnseesanseesanneesnne 14
Ilustration 5: scientific computing: a standalone client composite apPliCatioN...........ceecveruirviereeriereerieseeieeeereeeenaee s 15
[lustration 6: service exposition of the CassandraPCS processing eNgiNe............ccecveeverveeierieeieneesieneenieseessesneessseeennns 16
Ilustration 7: service oriented architecture of CassandraPCS.............oocoiiiiiiiiiiiieeeee e 17
lustration 8: view of the CassandraPCS CHENL........cc.cueiiiiieieire ettt st st ebee e 18
[lustration 9: view of the use of the visualization service from the pre-existing SPIS application...........cccceeoeevveeneenne 19
[lustration 10: SEIVICES COMPOSTTION. .. .eutitieuiirtieteetieteeteerteetterteeetesteeete st eeste et eenteetee st eaee et eseesbeemeesbeesesbeensesbeenteeneesneeesnne 20
INlustration 11: static processing service based on local Processing UNItS.........ccceeeerererrirererienrerienenteseteeeeeeereenneenne 21
[lustration 12: static processing service based on a set of processing units with one remotely localized......................... 22
[lustration 13: dynamical SErViCe COMPOSITION.......eiuieeverrierrreierteeierteetesseesesseessesseessesseesessaessesssesseessesseessesseessesssessssesnn 23
Ilustration 14: the figure illustrates both a remote processing unit domain and the global processing service domain...25
Ilustration 15: client based on the Java 3D TeNAETET..........ccueiiiiiiiiiietieeee ettt sttt e be e e e 25
lustration 16: client based on the VTK TeNAEIET........c.cccuiiiiiiiiiiiieieite ettt st 26
[lustration 17: Collaborative development: forge domain model...........cccoooiiiiiiiiiiiiiie e 28
[lustration 18: Collaborative development: business MOdEl............ccoiiiiiiiiiiiiiiiieeee et 29
Ilustration 19: Collaborative development: forge components (Z1obal VIEW)........cccceceveririnireninenieneieieieeeeeeeieenne 33
INlustration 20: Collaborative development: forge components (implementation VIEW).........co.eeververveveeeeeereneneseneenne 34
Ilustration 21: Collaborative development: forge scenario #1 (quality Check).........ccvevvivieriiiiieniiiieieieeee e 35
[lustration 22: Collaborative development: forge scenario #2 (project progress dashboard)..........c.ccceeevvierciieeniienineenns 35
Ilustration 23: Collaborative development: SCA view of a quality forge (global design)...........ccccoveevviieevienieriieienneens 36
Ilustration 24: Collaborative development: SCA view of a quality forge (implementation design)...........cccoecvereeveruenns 36
lustration 25: Collaborative development: SCA view of a project portal (global VIEeW)..........ccccevveiiiiiiiiiiiiiiieiieee 38
[lustration 26: Collaborative development: SCA view of a project portal (implementation VIEW)..........cccccueeerueernerenne 39
lustration 27: production application PreSEMtALION.cccetririruirtirerintertertent ettt ettt et et stesbe st sbe st see st eaeseenbeenbeenee 45
[lustration 28: demonstrator application PreSENLAtION.ccereerteriertieiestieieeteeeeeteeeeseeesteseessesseesseentesseenseeanseesnneeennne 46
[ustration 29: deliVEry NOES SCAICH.........c.cciiiieitieiiriieieeiet ettt ste et e e et este e b e stee s e esaessesseesseessesseessesseessesseensneennns 47
[ustration 30: deliVery NOES AETAIL........c.iecieriieiieriieieieete ettt ettt et e st e e sseessesseessessaessessaensesssesseenseennseessneennns 47
Illustration 31: price and availability request screen (Web2 Application)..........c.ccveeverieerieieerieieesieseeieeeeesreeeesseesaeee e 48
Ilustration 32: price and availability request screen (Web ApPlICAtioN)........c.ecveruieierieerieieeieieesieseeieeeeereeeesseesneeenens 48
[lustration 33: price and availability result screen (Web2 AppliCation)..........ccoeererieriiienieiesiee e 49
[lustration 34: price and availability result screen (Web Application)...........ceveiieiiriinieiinieeeee e 49
Ilustration 35: order status list screen (Web ApPLiCation).........cccoererierieieieinininenesesestestesese ettt 50
[lustration 36: order status detail screen (Web APPIiCAION).........ccueruieierierieieeieeeee sttt ee e e enee 50
[lustration 37: order entry screen (Web APPLICATION)........cvecvirieriieieriieiesieetesteestesteetesteessesseesseesaesseessessesssessesssessesssennns 51
Ilustration 38: order entry creates order 2-phase cOMMIt traNSACTIONccvevverieriereieieiieiirieneetese ettt ebeeee 52
[ustration 39: deMONSIration ENVITONMITIENTcc.eiutruirtertirtirtertertetetetetettetteteeteebesteeteetestestensensenaeneenseneebeesseeanneenseenseanne 54
Ilustration 40: develOpMENnt ENVIFONIMENTc..cceecvieieriierierreeeesteetesteetesseesesseesseeseesseeseesseessessesssessesssesseessesssessesssessessnn 54
[lustration 41: INtEZIration ENVIFOMIMEINTccueeiueitieiietieteeteeteeteerteete st eteseeetesaeensesseenseeseeteeseenseaneesseensesseessesnneesnneeesnne 55
[lustration 42: qualification environment (cluster) — out of deMONSIIator SCOPEc.eevervirrueruierieriieieeienieeeeeieeesiee e 55
INlustration 43: tools usage — graphical SUMMATYccceceeriririririneneneer ettt ettt ettt ettt aeneebeebee e 56
[lustration 44: SCA components Of the deMONSIIALOT............cceiieiirieiieiese ettt ee st eeee st et et eetesteeneeesneeesneeeanne 57
TTlustration 45: frONt COMPOSILEerviecierierierierieeeertesteste et eteetesteestesseessesstessesseessesssessesssessesssensesssenseesseessseesnsseenssseesnn 58
[lustration 46: network monitoring functional architeCtUIEccvevieriieiieriieiereete ettt e e esee e enaesseenes 62
Ilustration 47: network monitoring SCA component diQZIAIc.ccceevuerierreiieerieeiesieeeesteeeesreesesreesesreessesssesssseeesnns 65

Index of tables

Table 1: MethodOIOZICAL ChATt...........cceeviiiiiiieieieeteteetete ettt ettt ste et ste e b e ste e b e e seesseeseesseessasseeseesseessesaeessesseensessnesseeans 9
Table 2: SCA and SCOrWare coverage (SCientific COMPULING).......cevuiriiririieriiieiieie ettt ee ettt ee e eeseee e e 26
Table 3: SCA coverage (collaborative devVelOPIMENt)..........ccuevveriririiiriniririeere ettt ettt sttt 42
Table 4: SCA assembly model specification (collaborative development)...........ccoecvevuircieririienesiieseeieseee e 42

Table 5: SCA Java common annotations and APIs (collaborative development)............ccocuveceerieciereerieneeieeeeieeeene e 43

1 INTRODUCTION

This second version of the «Usage Analysis and Demonstrators » document mainly presents four
case studies done during the second part of the SCOrWare project:

e (Task 3.1) Component and service-oriented architecture in the Scientific Software field
(improvements of works done during the first year)

e (Task 3.2) SCA as a SOA design methodology in the domain of CDE (Collaborative
Development Environment). Following the withdraw of one of the partners (eXo Platform,
provider of an open-source portal solution) during the first year, some changes have been
decided during the second part of the project and an alternative demonstrator has been
designed.

e (Task 3.3) How SCA contributes to reusing and enriching software components. Following
the first year projects review, this scenario has been reinforced, and is the major
demonstrator for the SCOrWare platform in the field of enterprise business applications.

e (Task 3.5) Using the SCOrWare platform and a component-oriented architecture in the
context of a network monitoring system. A new partner (Thales Communications, in
collaboration with Open Wide and EBM Websourcing) has joined the SCOrWare consortium
during the second part of the project, following the withdraw of Amadeus.

e Note: the works done during the first year of the project around a service orchestration
platform in the domain of travel reservation systems (Task 3.4) have been stopped, because of
the withdraw of the main actor of this usage scenario (i.e. Amadeus).

In order to achieve the methodological work to be done in the context of the Task 3.3 (“reusing and
enriching software components™), the development of the usage demonstrators has been completed
by collaborative sessions between some partners involved in the Work Package 3. This collaborative
work, led by EBM Websourcing, proposed during the second part of the project an in-depth analysis
of how the demonstrators have been designed and developed, abetter understanding of what
developers have done, and how the SCOrWare platform is used.

This specification presents for every case study:
e motivation, business context, system context
e functional specification, usage scenarios
e architecture, technical design and specification
e coverage of the demonstrator (vs. SCA specification and SCOrWare technical platform)

e lessons learned, methodology, best practices, demonstrators' results

2 METHODOLOGICAL THOUGHTS

The works done around methodology in the context of the Task 3.3 have been conducted to help to
identify how SCA and the SCOrWare platform could be used within a global SOA approach, as
perceived and interpreted from a market point of view, and in particular from a first analysis done
from the commercial competitors and offerings.

In a first stage of this work, we tried to define what a methodology is, and we got the following
proposal:

Considering a problem “p” to be solved and a solution “s”, we use a “SOA/SCA methodology” to
build a solution “s”, and we define “m” as the set of the tasks and their description conducting from
“p”to “s” (“p->s"). We define “methodology” as an extrapolation of “m”,i.e.:

p € P (P is a set of problems with a “p” type), s € S (Sis a set of solutions using SOA/SCA for

problems with a “p” type), m € M (M is a set of best practices for proposing a solution S solving a

problem P using SOA/SCA).

Such an ambitious and global objective has arisen several difficulties and issues, accordingto the
following considerations:

e differences in considering what SOA is, according to the position, role and motivation of the
partner involved in the SCOrWare project: academic or industrial, middleware or application
developer, software editor or integrator, technologist or application, business aware,
developer, designer, architect or business analyst

e level of abstraction and models handled by the different actors in the SCOrWare project:
component level (such as in Fractal), infrastructure and middleware level (such as protocols,
bindings, assembling), Java programing level (policies, properties), application architecture
level (such as using SCA as an assembly of business components), process or workflow level
(such as in environments like Eclipse JWT, Java Workflow Tooling or OW2 Scarbo, SOA
ready SCA powered Eclipse BPM tooling), application or business level (considering the
abstraction of the business application itself), ontology and semantics

e lack of real business features in the usage demonstrators as developed with the SCOrWare
platform, as most of the usage demonstrators are technology-oriented

e difficulties for the developers of the usage demonstrators to be observed ard their work to be
in-depth analyzed and criticized (to be understood under the positive meaning of this
wording), lack of resources and time too.

Finally, this methodological work has shown that such a methodology hasn't been really applied and
used for the usage demonstrators, as the formalization of the business problem was very weakly
treated, and as the usage demonstrators' domains are very close from technologist concerns.
Moreover, even if there were intentions and actions for defining the services (following SOA
concepts) of a New Generation Forge (in the context of the task 3.2), this approach hasn't been finally
concretized and demonstrated by the demonstrator itself.

Nevertheless, the methodological work which has been done has proven the great interest of SCA to
facilitate a common understanding and sharing of the technological architecture for developing the
solutions. In particular, the SCA graphical representation and the related concepts allow to “draw”
and visualize the composition of the application architecture (“SCA Assembly”) to be implemerted
and deployed. Ilustration 12 (for task 3.1), [llustration 23 & Illustration 25 (for task 3.2), Illustration
44 (for task 3.3), and Illustration 47 (for task 3.5) illustrate this main feature of SCA in terms of
methodology. Besides, the demonstrator as developed in the task 3.3 has shown the benefit of having
a “SCA container” integrated into a JBI ESB platform such as PEtALS, for composition of services,
and integration of SCA and JBL

We propose the following chart as a result of the observation and work done in this methodological
work across the different usage demonstrators developedin the task 3.

Usage Business Application Technical | Programing | Deployment &
Demonstrators Context Architecture | Architecture | Model (Java) Volumetric
T3.1 No UML SCA Domain | Serialization FraSCAt
[Scientific formalization & SCA Binding | for large data
Computing] SCA Assembly | RMI & Web SCA Vol.: large data
Service Property ?

T3.2 UML UML SCA Domain| No SCA Tuscany 1.3.2 &
[Collaborative | SOA Design & SCA Binding Policy FraSCAt 0.5
Development] | tentative & | SCA Assembly| Web Service | SCA Property

relationship to Vol.: N/S
BPMN

T3.3 SCA Binding Tuscany

[Corporate F/E Ontology Ul mock-ups | Web Service | SCA Policy ? FraSCAti+

Order Mgt (Semantic UML & EJB RMI SCA PEtALS
linked with Trader & SCA Assembly | JDO2 (JDBC)| Property ? (JBI/SCA)
Back Office] Composer) Assembly JBI (via
[Enterprise Evolution PEtALS) Vol.: number of
Case Study & components,
SCOrWare compilation &
“Pilot”] development time
T3.4 N/A N/A N/A N/A N/A
[Travel
Transaction
Orchestration]
T3.5 No SCA Assembly | SCA Binding | SCA Policy ? FraSCAti+
[Network formalization Assembly Web Service SCA PEtALS
Monitoring] Evolution & JMS (via | Property ? (JBI/SCA)
Multi- PEtALS) Vol.: N/S
compositions

Table 1: Methodological chart

This table describes the following methodological activities, and what are their relationships with the
SCOrWare platform and works:

e Business Context: how the business domain has been described ? what formalization has been
chosen ? impact of SOA at this stage ?

e Application Architecture: which description and formalization of the application architecture ?
impact of SCA at this stage ? usage of SCA tool set ?

e Programing Model, Technical Architecture: which features of SCA and the SCOrWare
platform have been used ?

e Deployment and Volumetric: which SCOrWare runtime platform has been used ? which
volumetric and is it significant ?

e Main characteristics as demonstrated are highlighted (bold+italic) in this chart

Besides this overall classification with relation to a unifying “methodological” approach, every usage
demonstrator as described in this specification givesan overview of best practices, methodological
aspects, and lessons learned from the design and the development of the demonstrators. Acrossthe
different usage demonstrators, this part of the specifications letsappear different points of view and
practices as capitalized during the development of the demonstrators and their design.

3 A SCA APPROACH FOR SCIENTIFIC COMPUTING (Task 3.1)

Change history vs. version 1.0: the first version 1.0 (October, 2007) of the specification wasmainly
describing the business problem and a first theoretical analysis. This final version fully describes the
demonstrator, its technical design and implementation.

3.1 Introduction, business / system context

3.1.1 Motivation

The 3.1 sub work-package addresses the open question of the use of component based and service
oriented architecture in the scientific computing field.

Scientific computing is an advanced area of the computing industry in terms of computing capacity,
amount of data processed and performance expectation. However, tailored software developments in

this field are not leaded by computing specialists then most of the useful codes are written by PhDs in
science, researchers and engineers who stick to quite simple development methods and paradigms.

However, we see nowadays a progressive emergence of service-oriented architectures in the scientific
field, especially in data processing. More and more research projects attempts to offer an access to
their tailored tools through Web Services. In the domain of the exchange of complex data, Corba Bus
have been explored at the late 90s. This technological evolution answers to a significant evolution of
the market, especially for engineering application like in PLM processes or complexdata handling
(e.g CAD models, mesh, experimental data...). The geographical distribution of teams and experts, on
one side, and the wish to control the diffusion of classified software or methods, on the other side,
reinforce this need. One of the first examples could be the Salome platform [1] where each business
components can be distributed remotelyand the data exchange is performed on a CORBA bus. And
more generally, the Integrated Modeling Environments (IMEs) able to remotely address the whole
modeling process and offer tailored declinations (i.e adaptation of the GUI, integration of specific
tools in composite application) introduce a new approach in mathematical modeling and numerical
simulation.

In the present work, we make the choice to focus our study on the distribution of the visualization
process of scientific data.

De facto most of 3D visualization tools present architectures that are close to service-based approach
with the concept of visualization pipeline [2] [3]. In this concept, the whole processingis done by the
composition of a set of basic filters (e.g. cutting plane). Processed scientific data are passed along this
pipeline and 3D virtual reality objects, corresponding to the output data, are generated for the final
rendering and visualization. Illustration 1 below illustrates this principle.

P>

source data set filter data set mapper 3D model Rendering Visualisation

Hllustration 1: canonical visualization pipeline

Data processing and 3D visualization outlines several simple problematic and critical issues that are
actually characteristics of scientific applications more generally speaking.

Some of these issues are directly related to the processed datathemselves:

e Data size: Processed data can become quickly very large and introduce sever constraints in
terms of memory foot print and network bandwidth;

e Data complexity: Scientific data may present sever constraints in terms of complexity, due to
their intrinsic structure (e.g. data fields deployed on mesh, temporal series...) or due to their
implementation. Some data are, for instance, not easily serialisable due to the used
technologies (e.g. Fortran or C/C++ native layer) or structure (cyclic references).

e Data formats and conversion: For both historical and technical reasons, there is no general
consensus regarding a unique and standard data format for scientific data. This situation
generally requires complex and CPU costly conversion processes.

e Performances: Generally speaking, due to the size of processed data and the complexity of the
processing, sciertific data processing induces severe performances constraints.

In the validation process of SCA for scientific computing, several experimentations were done. We
focused our analyses on the following aspects:

e The ease of use for non software developers specialists,

e Existing service exposition,

e The flexibility in the usage and in composition of services,

e Cost in term of performance regarding the binding abstraction,

e The design issue.

3.1.2 RNTL SCOS/V3D context and additional contributions from SCA

This work was performed in parallel to the RNTL/SCOS project and, more specifically, its sub-
project SCOS/V3D.SCOS/V3D aims to create a framework for the high throughput 3D scientific data
visualization, distributed and collaborative.

SCOS/V3D follows the recent evolution of visualization tools where the visualization process is split
into different steps. The data are processed on a remote and high performances server and the
rendering is performed locally in a client application. One of the key innovations of SCOS/V3D is the
possibility to access to the processing service through Web services, using light or semi-rich clients,
and offer collaborative functionalities. This should allow displaying a large amount of data while
offering a quite convenient access to the users. With respect to the existing solutions, several
innovative choices have been done in SCOS/V3D:

e Let the data on the server and avoid all transfer of the raw data to the client side, to optimize
network load and to simplify the requirements on the client workstation.

e Transfer of resulting data to the client under the form of a 3D virtual reality scene, using the
X3D format to offer a better use of the client computing and memory capacities and to offer a
3D fluid navigation with less network communications.

e A high processing capacity by paralklizing the tailored processes on the server side.

e Offer the possibility to compose and test new processing artifacts locally and deploy them on
the server side.

The architecture of SCOS/V3D is composed of several distinct functional services: a rich client
application, a web server, a visualization server, a data server, and a processing server. Undemeath,
SCOS/V3D requires a high performance computing cluster to support the processing server, a Storage
Area Network to support the data server and a couple of master nodes to support the resource
management and scheduling. This architecture is summarized in the following schema:

— 1
g cptera
.\l:niiﬁl"

0D

HITE

MPED
e &

Gwing

O s sessian

Hlustration 2: global architecture of SCOS/V3D, based on a classic Web Services approach

The semi-rich client application has been developed in Java, using the JOGL library for the 3D
rendering. An independent client library will be developed and will communicate with the
visualization server through the HTTP or XMPP protocols, in order to pass through the industrial IS

constraints (e.g firewalls, proxy...).

The visualization server gather all the component needed to build-up a full 3D collaborative
application, allowing the users to interact on the 3D scenes according to their access rights. Because
all exchanges between the server and the client are done through request-answers based protocols (i.e.
HTTP), a specific notification server has been developed [4], to allow the server to notify dynamically
the client of the 3D scenes recomposition.

The processing server uses the VTK library [3] to process the data and to generate 3D scenes. These
processes have to be efficiently balanced between the hardware nodes of the cluster in order to reach a
high throughput capacity. The input datasets should be streamed directly from the data server and the
output 3D scene should be streamed to the client through the visualization server. Both the settings
and the composition of the processes should be defined from the client side, and communicated to the
processing server thru an abstract set of instructions. These capacities make the processing server a
versatile and highly re-configurable artifact

Last, one additional specificity of this demonstrator is that some tailored components are in a native
language (C/C++) and their integration into a service oriented architecture presents an additional
challenge, especially during the deployment phase.

The objective of the SCOS/V3D project was to mamnly focus on the tailored layers and provide an
operational solution in the duration of the project. For this reason and in spite the innovative
functional choices, the chosen technical solution remains relatively classical.

It was chosen that the visualization server expose a lightweight web interface. This visualization
server does not process any scientific data, and use both the data server and the processing server for
this task. In practice, the SCOS/V3D implementation is a based on a simplified J2EE implementation.
On the server side, the communications between the visualization server and the processing service is
done using dedicated RMI/IIOP protocols.

In the frame of the ANR SCOrWare project, it is proposed to explore one-step further with the
introduction of the complete Service Oriented Approad, using the SCA technology through a set of
prototypes and demonstrators, the final objective being to provide a more versatile, scalable and
adaptable visualization solution.

Reciprocally, the purpose of this set of experimentations is to check the global SCA specifications
and how SCA can answer to the needs of the scientific community.

To address this objectives, a set of application scenarios have been identified, outlining potential
bottlenecks or functional challenges, and a corresponding set of prototypes have been developed.
Some of them are partially based on SCOS/V3D components for the tailored components, like the
VTK based processing engine.

3.2 Theoretical analysis

In first step, a set of applicative scenarios has been identified, corresponding, on one side, to various
practical situations possible in scientific data processing and, on the other side, in function of the
coverage of SCA.

3.2.1 Scenario A: Processing and concept of visualization pipeline

The first proposed step is the modeling of a global SCOS/V3D system as a SCA system. Only the
collaborative aspects of the V3D are excluded to focus on the processing aspects. From practical point
of view, this scenario attempt to address:

e The service oriented description of a global visualization and complex service;
e The various possibility of client-server binding;

e The facility of development, especially for SCA non-expert;

e The facility of deployment, taking into account for some components of native layers;
e The capability to transfer complex and large dataset between services.

On a first approximation (M1), the system is considered as the composition of a graphical component
and a client library on the client side, and of a visualization component, a data access component and
a set of components that we call the processing units, on the server side. On this approximation the
binding between the two client side components does not have to be done using the SCA
specifications. We use SCA on the server side, to describe the components and to bind them to a
composite application (i.e. visualization service). This scenario does not take into account the service
composition explicitly. This simplified model (M1) is sum-up in the following schema:

Client Side !
DIOCesEIng
units

i —

[
[
[
1
[
[
1
[
[
[
[
| '
graphecal —— | Eb-.-nsuahzahﬂr‘ pe
user anl Horany T COMOCNEN s
riarface : camponant
[
[
1
[
|

Server Side

The client library communicates with the visualization component thru web services exposed via
HTTP. The visualization component consumes both data access component and processing units to
render data and to send back 3D scenes. The SCA runtime is typically collocated to the visualization
component and binds it to the consumed components.

Processing units can accept parameters and bind each over in order to create complex processes like
chains of processes. This implies that we should define them as SCA components and be able to use
them through a SCA binding description.

Processing units consume and provide 3D data sets, composed of points, cells defined on those points,
and data attached on the points or on the cells. In this approximation, processing units admit a set of
scalar values or chars as parameters (or XML setting file).

Because this scenario typically corresponds to the integration of pre-existing applications (i.e.
complete 3D viewer, modeling framework, simulation kemel), the purpose of this scenario is also to
evaluate the level of difficulty to expose as services such applications for non-experts.

For this reason, the development tools defined in the WP2 have been used.

3.2.2 Scenario B: Use SCA to make the server side a composite
application

The aim of the second scenario is to focus on the services composition, especially on the server side.
In the scenario each service or “process unit” is associated to a direct processing filter (e.g. cutting
plane or iso-surface computation). The main objectives here are:

e Study the effect or the service granularity in terms of
o Composition facility;
o Impact on the performances;
o Data streaming and transfer.

e Deployment issues and testing process of the whole composite application.

e Evaluate the administration and monitoring features.

Using the components developed in the previous step, the final objective is to make a SCA composite
application on the server side.

Hllustration 3: components and service oriented version of the visualization pipeline

3.2.3 Scenario C: Use semantic to ease process definition

In this step, we will introduce a simple ontology for the concepts we manage in the 3D visualization
field, and use it to implement semantic matching between process units.

3.2.4 Scenario D: Create a new processing unit and test it on the client
side

We will experiment the creation of a new processing unit on the client side by a scientific worker, and
the binding of this new unit into a test workflow.

procassing
units

p—

Client Side

processing
unit

graphical |—L| i |:!:| data
user chent forary { access
terfase |:|t| componant |:‘|:| companant
Server Side

lllustration 4. new component creation

In this step we will create a skeleton of a processing unit and experiment the ease of development and
use of a new component for a developer, which is not skilled in component architecture. We will also
experiment the versatility of the bindings between the components by using a web services remote
access to the client component.

3.2.5 Scenario E: Deploy a new processing unit and test it on the
server side

Will experiment the deployment a new processing unit and testing it on the server side. This step
should use deployment artifacts developedin the frame of the WP2.

3.2.6 Scenario F: Create an independent application without server
connection

Client Side e
umt
graprical i data
usET chand Borary v 5I.IE|IZ.E.1I|:|I"I BCOESS
componant 5
Imtarface compaonant

lllustration 5: scientific computing: a standalone client composite application

We will embed the SCA runtime and basic component implementation on the client side to make a
composite application without server connexion.

3.3 Implementation and tests

To tests and explore these different scenarios, a set of prototypes have been developed. Some of these
are included as code samplein the FraSCAti distribution. However, those software should still
considered as proof-of-concept and not be used for operational application purpose.

3.3.1 Demonstrator 1: SCA-CassandraPCS

This first demonstrator focused on the exposition as a service of an existing application and its use
with SCA and non-SCA based clients. The goal of this demonstrator is to validate the simplicity to
expose with several protocols a single and complex existing component with a total transparency
regarding the 3D visualization client consuming this service. This demonstrator typically corresponds
to the application scenario A.

The scientific context outlines several key issues.

e Because most of software are pre-existing and used in a classic approach since long time and
should maintain the same interfaces in a classic use, it is critical to be able to expose a pre-
existing software in a non intrusive manner, i.e. without modification of this one.

e Reciprocally, an increasing number of scientific applications are parallelized using internal
high performance MPI techniques, deployed on HPC and exposed as Web service. Another
key-issue is then the possibility to access to the exposed service using a standard web service
stack.

e Last, the complexity of the exposition procedureis a critical aspect to be adopted by the
scientific community and non-SCA specialist.

Practically, this demonstrator was based on the integration of the CassandraPCS VTK based
processing engine [5], used in some developments of SCOS/V3D [6]. This integration has been done
without modification of the processing engine and the detailed architecture is given in section 4.1
below.

3.3.2 Demonstrator 2: Static data processing

This demonstrator focused on services composition. In the present context, service composition
should be understood as the building of a system relying in a structured manner to a set of external
components. Those external components could be either local or remote. This demonstrator typically
corresponds to the application scenarios B, D and E, and more generally to the framework oriented
applications.

Here, the concept to service is put at the processing unit or vtkAlgorithm in the VTK vocabulary. In
this approach, the visualization pipeline is here directly modeled by a composition of “basic” services.
However, in this demonstrator, the dynamical aspect of the service composition has not been treated
here, and the visualization process has been modeled in a static manner. In this first step, the focus

was put on:

e Service interoperability: This should be here understood in the sense of “How to replace an
implementation of a component by another one”. Scientific software generally knows several
implementations, based on different numerical models for instance, and addressing the same
problem. The critical issue here is the definition of common, standardized and functionally
based APIs;

e Study the data streaming and transfer between services;

e Remote control or how to use a remote component instead of using a local one;

e Evaluation ofthe constraints of using or exposing a components as a remote service;

e [Evaluate the performances cost of the local binding with respect a classic implementation;

e Evaluate the complexity of each point.

3.3.3 Demonstrator 3: SCA for complex data processing

In this last demonstrator, the flexibility of SCA based architecture wasstudied in details and more
especially the dynamical services re-composition.

As done in the demonstrator 2, the services are defined here at the level of the processing units (i.e.
vtkAlgorithm) and the visualization pipeline directly modeled by composition of services. With
respect to the previous experimentation, the focus was put here on the dynamical aspect of the
services composition to be closer to realistic cases.

3.4 Architecture / technical design — specification

This section presents the detailed architecture of each demonstrator and their specific technical
aspects.

3.4.1 Demonstrator 1: SCA-CassandraPCS

As presented in the section above, this demonstrator is based on the exposition of a global
visualization service. This service is based on CassandraPCS, which is a 3D data processing engine
written in Java and based on VTK. According to the concept of visualization pipeline of VTK, the
principle of Cassandra is to process the scientific data by combination of a set of basic filters (i.e.
vtkAlgorithm). Scientific dataset are given in input and processed along this pipeline. In output,
CassandraPCS generates a 3D reality scene corresponding to the result of the processing (e.g iso-
surface), under the form a X3D/VRML file. The control of the processing engine is done through a set
of commands gathered in a single XML query. The schema in Illustration 6 illustrates this approach.

CassandraPCS

(Es=ny 3 S < <
== @B - B -8 O E=

Lllustration 6: service exposition of the CassandraPCS processing engine

This engine can be piloted by an extemal end-user application, in client-server mode for instance. The
operation of the CassandraPCS processing engine is functionally de facto close to a service approach,
with input data processed ondemand according a given setting (configuration file).

However, a few small adaptations were needed with respect to the initial design of CassandraPCS.

First, SCA requires an interface for the service exposition and a concrete class for its implementation

and in its standard distribution, CassandraPCS did not provide any interface. In consequences, a new
interface and a new implementation were made for the service exposition, providing by the way an
abstraction layer. Second, the standard implementation of CassandraPCS is statefull, which means
that it own an internal state for progressive data processing definition, which could be achieved by
several method’s calls. To deploy the engine in a SCA context, a new implementation has been
developed, providinga stateless service by using the CassandraPCS service as local variable inside
the processing method. Illustration 7 gives a graphical representation of the SCA domain of this
service.

SCACassandraPCS

_ CassandraPCSComponent
\

<«»VS
RMI

SCA

Hllustration 7: service oriented architecture of CassandraPCS

The SCA runtime implicitly offers several bindings. In order to load a SCA service into the runtime,
an XML file must be read and processed by it. Once the processing of this file is done, all the services
and components attached to it become available. The SCA domain is given below as a XML
composite file.

<?xml version="1.0" encoding="IS0-8859-15"?2>
<composite name="SCACassandraPCS" xmlns="http://www.osoa.org/xmlns/sca/1.0" >

<service name="SCACassandraPCS" promote="CassandraPCS/Engine">
<interface.java interface="com.artenum.scorware.cassandra.Engine"/>
</service>

<component name="CassandraPCS">
<implementation.java class="com.artenum.scorware.cassandra.CassandraPCSEngineImpl"/>
<service name="Engine">
<interface.java interface="com.artenum.scorware.cassandra.Engine"/>
<binding.ws uri="http://192.168.0.11:8080/CassandraPCS" />
<binding.rmi host="localhost" serviceName="rmiservice" port="1099"/>
</service>
</component>
</composite>

Composite definition of complex service exposition

To achieve the deployment, an execution class as been done in order to load the service inside the
runtime. A very simple example of the launching application to deploy the service on the server is
given below.

public static void main(String[] argc) throws Exception {
Component scaDomain = AssemblyFactory.getComposite("SCACassandraPCS");
Engine engine = TinfiDomain.getService(scaDomain, Engine.class, "SCACassandraPCS");
System.in.read();

TinfiDomain.close(scaDomain);

Main class for deploying the service

Two dedicated clients have been developed, one based on SCA binding and one based on a default
Web Service stack, in order to test the different ways to access and use the service.

The user interface of these clients is composed of a 3D view, to display the resulting scene generated

http://www.osoa.org/xmlns/sca/1.0
http://192.168.0.11:8080/CassandraPCS

by the service, and a query panel, to control the service. The control of the service is done by editing a
set of commands gathered in a XML based file. The client application simply calls the service and
display the 3D data generated by the service to the user. A view of the client GUI that client is given
in Illustration 8 below.

fan0 Cassandra PCS - SCA

| Center | Zoom In | Zoom Dut |

|| <VtkCmds >
<VtkCmd action="createVtk" class="com.artenum.cassandra.command.VtkDataLoader">
<property name="data.manager.fs.path" value="/Users /seb/Documents /Artenum/Projets /Scorwai|
</VtkCmd>
<VtkCmd action="create" class="com.artenum.cassandra.command.Cutting">
<property name="cutting.cutter.function" value="cutting.cutter.function.plane"/>
<property name="cutting.plane.position.x" value="0.0"/>
<property name="cutting.plane.position.y" value="
<property name="cutting.plane.position.z" value="1.25"
<property name="cutting.plane.normal x" value="0"
<property name="cutting.plane.normal.y" value
<property name="cutting.plane.normal.z" value
<property name="cmd.input.pipeline.id" value="
</VtkCmd>
<VtkCmd action="create" class="com.artenum.cassandra.command.lsoLevel">
<property name="cmd.input.pipeline.id" value="FILE_ID: 0"/>
<property name="isolevel.nb” value="20"/> <property name="isolevel.value" value="23"/><prope|
</VtkCmd>

</VtkCmds>

= i
DATASET_ID: 1;DATASET_ID: 2;FILE_ID: O

335

| Radiateur P8 (Execute)

Hllustration 8: view of the CassandraPCS client

Most of scientific applications have to be deployed in heterogeneous context, where the potential
clients may access to the services in different manners and using different bindings. From this point
of view, SCA presents potentially a strong advantage with respect to other solutions. Both listings for
the SCA and Web Services binding are given below. These main classes show the injection of the
service, instantiation and the initialization of the client and, last, the service closing procedure.

public static void main(String[] argc) throws Exception {
CassandraPCS apps = new CassandraPCS();
// Injection of the engine
Component scaDomain = AssemblyFactory.getComposite("WSClientCassandraPCS");
Engine engine = TinfiDomain.getService(scaDomain, Engine.class, "SCACassandraPCS");
apps.setEngine(engine);
// Build the Frame of the application
JFrame f = new JFrame("Cassandra PCS - SCA");
f.setDefaultCloseOperation(JFrame. EXIT_ON_CLOSE);
f.setSize(500, 500);
f.getContentPane().setLayout(new BorderLayout());
f.getContentPane().add(apps, BorderLayout. CENTER);
f.setVisible(true);
// Initialise the graphical client
apps.init();
// Wait user input to close the generated Engine
System.in.read();
// Close the SCA domain
TinfiDomain.close(scaDomain);

SCA based client

public static void main(String[] argc) throws Exception {
CassandraPCS apps = new CassandraPCS();
// Injection of the engine
ClientProxyFactoryBean factory = new ClientProxyFactoryBean();
factory.setServiceClass(Engine.class);
factory.setAddress("http://88.182.100.19:9000/CassandraPCS");
apps.setEngine((Engine) factory.create());
// Build the Frame of the application
JFrame f=new JFrame("Cassandra PCS - WS");
f.setDefaultCloseOperation(JFrame.EXIT ON_CLOSE);
f.setSize(500, 500);
f.getContentPane().setLayout(new BorderLayout());
f.getContentPane().add(apps, BorderLayout. CENTER);
f.setVisible(true);
// Initialise the graphical client
apps.init();

Standard WebService based client

The last test was to accessto the service from a pre-existing and not specific client. This was done
through the SPIS-UI system [7], based on the Kerridwen IME, by loading a Web Service stack library
and using it dynamically by executing a Python/Jython script. Illustration 9 illustrates the SPIS-UI
GUI, the messages log in Jython console and the results displayed in the integrated viewer.

Spacecraft Plasma Interaction System
File Edit GEOM Mesh Properties Groups Fields Solvers PostProcessing Tasks Data Bus Reporting Tools Options Help
" —— 1 =y SOLVER i [tr a |
= oy T 0 Lo gy e |

Pre-Processing ~ Simulation Post-Processing
06066 4 Cassandra VTK viewer

File Edit View Sources Filters Tools Help

7 T
| Saveimage | XY | XZ | YZ | Reset view
View Tree Pipeline

Actor-

Scalar bar-

Text

start

settings dane

Calling... http://192.168.0.13:8080/CassandraPCS
Processing...

processing done

Exchang file: /tmp/julienspistmpl224685799/Vtk/out.wrl
VRML loading...

Loading done.

>

Hllustration 9: view of the use of the visualization service from the pre-existing SPIS application

In this approach the SCA binding is not used. The purpose of this test is mainly to check the facility of
use of the service by another application and using a high-level script language. The corresponding
script is given below. In the present case, the control commands are previously defined in a simple
Python dictionary. The service is then invoked and processed, and the output data are recovered under
the form of a VRML file. This last one is then loaded and displayed in Cassandra 2.0, in a classic
manner.

from org.apache.cxf.frontend import ClientProxyFactoryBean
factory = ClientProxyFactoryBean()
factory.setServiceClass(Engine)

hostAdress = javax.swing.JOptionPane.showInputDialog("Server host address")
factory.setAddress("http://"+hostAdress+":9000/CassandraPCS")
engine = factory.create()

data = engine.process(commande, fields, rep)

vrmlTmpFile = GL_VTK_EXCHANGE+os.sep+"out.wrl"
out = file(vrmITmpFile, "w")

out.write(data.tostring())

out.close()

cassandra = Cassandra()
cassandra.getRendererPanel(). GetRenderer(). RemoveAllProps()

importer = vtk VRMLImporter()
importer.SetFileName(vrmlTmpFile)

importer.SetRenderWindow(cassandra.getPipeLineManager().getCassandraView(). GetRenderWindow())
importer.Update()

Integration of CassandraPCS service inside SPIS framework

3.4.2 Demonstrator 2: Static data processing

In this demonstrator, a component wrapping has been done at the level of the filters themselves
(vtkAlgorithm) as Process Units that are combined into a pre configured processing chain, defined as

a static service composition in a DefaultPipelineComponent.

This DefaultPipelineComponent is the only one to be exposed, either remotely or locally, and handled
by the client applications. Moreover, the Process Units composing the pipeline can themselves be
deployed on the same domain (i.e. computer) than the DefaultPipelineComponent or remotely (i.e.
another computers). [llustration 10 illustrates this configuration.

In such design, the original data models may introduce difficulties in the data sharing between
processing units. Such models are generally linked to pre-existingand tailored algorithms that do not
take into account the requirements of distributed designs and more generally SOA. For instance most
of historical scientific data formats does not support the serialization of data, needed to transfer them
through streams.

Static service composition

4 Pipeline R
file to process @@}@ﬂj}@ﬂj}@é |:3D scene >
// I \\
Filter X ,/ Filter Y __ Filter Z
I
\ Y,

Hllustration 10: services composition

This is the case of vtkDataSet, used here to sore the scientific data, which are written in C++ and for
which ones the corresponding Java object do not implement the Serialisable interface. If here the
difficulty is mainly due to technological reasons, one should outline that similar problems may be due
to the data structure themselves, if this one presents a cyclic structure for instance or if the data are
distributed on a set of sub-sets with cross references.

These aspects have been studied by two different implementations of the demonstrators.

In the first one, the focus was put on the service composition, a local deployment and the direct
manipulation of wrapped native objects, including not serialisable ones, by the processing units. The
graphical representation of the SCA domain is given in the following graphic.

SimpleVTKDataProcessing

Hllustration 11: static processing service based on local processing units

In practice in the present demonstrator, the processing chain has been hard coded and the
configuration of the processing service is static. The final exposed API is simplified in consequences.
The following extract of listing illustrates this configuration.

public class DefaultPipeline implements RemoteFilter {
private LocalFilter clip;
private LocalFilter 1iso;
private LocalFilter reader;
private LocalToRemoteFilter exporter;

@Reference(name = "clip™)

public void setClip(LocalFilter clip) {
this.clip = clip;

}

@Reference(name = "iso")

public void setIso(LocalFilter iso) {
this.iso = iso;

}

@Reference(name = "reader™)

public void setReader(LocalFilter reader) {
this.reader = reader;

}

@Reference(name = "exporter™)

public void setExporter(LocalToRemoteFilter exporter) {
this.exporter = exporter;

}

public byte[] process(Properties properties , byte[] data) throws Exception {

Properties clipl = new Properties();
clipl.setProperty(ClipingPlaneKeys.NORMAL_X, "0");
clipl.setProperty(ClipingPlaneKeys .NORMAL_Y, "1");
clipl.setProperty(ClipingPlaneKeys.NORMAL_Z, "1");
clipl.setProperty(ClipingPlaneKeys.ORIGINE_X, "0");
clipl.setProperty(ClipingPlaneKeys.ORIGINE_Y, "-0.40");
clipl.setProperty(ClipingPlaneKeys.ORIGINE_Z, "0");

Properties clip2 = new Properties();
clip2.setProperty(ClipingPlaneKeys .NORMAL_X, "0");
clip2.setProperty(ClipingPlaneKeys .NORMAL_Y, "-1");
clip2.setProperty(ClipingPlaneKeys .NORMAL_Z, "1");
clip2.setProperty(ClipingPlaneKeys.ORIGINE_X, "0");
clip2.setProperty(ClipingPlaneKeys.ORIGINE_Y, "0.40");
clip2.setProperty(ClipingPlaneKeys.ORIGINE_Z, "0");

double[] scalarRange = { -0.10792893916368484, 0.0016820
Properties isoProp = new Properties();
isoProp.setProperty(IsoLevelKeys.ISO_LEVEL_VALUES, "-0.1:-0.09:-0.08:..:0");

vtkDataSet ds = null;
long startingTime = System.currentTimeMillis();

ds = reader.process(properties, ds);
ds = clip.process(clipl, ds);
ds = clip.process(clip2, ds);
ds = iso.process(isoProp, ds);

byte[] result = exporter.process(null, ds);
System.out.println("Processing time: " + (System.currentTimeMillis() - startingTime));
return result;

}

The next development was based on the same principle but try to use remote processing units inside
the global processing service. To address this configuration, adaptations were needed to provide
serialisable parameters. Regarding the vtkDataSet this has been done by the creation of temporary
structures that are simply converted into byte arrays. Thanks to this and the components abstraction,
Process Units have been deployed both locally and remotely, as illustrated in Illustration 12

SimpleVTKDataProcessing
ClippingPlaneComponent

DefaultPipelineComponent |

RemoteComponent

Hllustration 12: static processing service based on a set of processing units with one remotely
localized

The files listed below respectively correspond to the SCA domains in local and remote deployment of
process units. The comparison of both listings shows that, after a proper definition of services, how is
simple to change from one configuration to another one. Such conclusion may highly useful in
scientific applications, where the scalability of the whole application is frequently a key factor. The
services distribution may also answer to an operational need in some project, where data should be
first pre-processed remotely before any transfer, to reduce their size or complexity, for instance.

<component name="DefaultPipeline">
<implementation.java class="com.artenum.scorware.vtk.pipeline.DefaultPipelineRemote" />
<service name="RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</service>
<reference name="clip" target="ClippingPlaneComponent/RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</reference>
<reference name="iso" target="IsoLevelComponent/RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</reference>
<reference name="reader" target="ReaderComponent/RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</reference>
<reference name="exporter" target="VRMLExporterComponent/RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</reference>
</component>

Local components with remote compliant API

<component name="DefaultPipeline">
<implementation.java class="com.artenum.scorware.vtk.pipeline.DefaultPipelineRemote"/>
<service name="RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</service>
<reference name="clip" target="ClippingPlaneComponent/RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
<binding.ws uri="http://192.168.0.10:8080/remoteClip" /> <!-- CHANGE HERE !!! -->
</reference>
<reference name="iso" target="IsoLevelComponent/RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</reference>
<reference name="reader" target="ReaderComponent/RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</reference>
<reference name="exporter" target="VRMLExporterComponent/RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</reference>
</component>

Use of a remote component forthe clip filter

These files also define the injection rules and the selection ofthe used implementation. As example,
the following extract of listing illustrates how to switch between several implementations. This could
be simply achieved by changing the class name of a component. Such functionality may be very
useful to change of numerical models, for instance, in a same processing chain.

<component name="IsoLevelComponent">
<implementation.java class="com.artenum.scorware.vtk.processing.filter.remote. X X XXXXX"/>
<service name="RemoteFilter">
<interface.java interface="com.artenum.scorware.vtk.processing.RemoteFilter"/>
</service>
</component>

3.4.3 Demonstrator 3: SOA for complex data processing

The final demonstrator tries to highlight the most advanced features of SCA runtimes, by providing a
flexible service exposition to a complex and dynamic data processing service. By flexibility, we mean
a processing service that can be extended by any number of processing units, which could be
indifferently deployed locally or remotely.

Classically, a main set of processing units is defined in the SCA domain before the runtime.

However, the design of FraSCAti allows to dynamically add any extra processing unit to the SCA
domain at the runtime, with some specific implementations. This extensibility has only been done for
remote RMI processing units, but could be as easily extended to any binding.

In order to be closer to the architecture of operational projects like SCOS/V3D, the process units were
distributed on several remote nodes and inter-connect using the RMI and WebService binding.

Flexible service composition

(Pipeline)
configuration D?(D;_}@;E}ED;D}Q_} [SD scene >
ST
P
- \ S

Fiter X -~ FilterY ><~_ FilterZ

@ || -3 | -

Hllustration 13: dynamical service composition

The SCA domain used to describe this application is provided in a figure below. The component

http://localhost:8080/Pipeline

named PipelineComponent is responsible of the configuration and the composition of each registered
processing units.

The process units can then be linked to the PipelineComponent. This last one will offer the way to
manage them through a single injection point, which allows any number of processing units.

Nominally, the SCA specification does not offer the possibility of dynamical service compositing.
The service compositing is done through the definition of the SCA domain and requires a re-starting
of the whole system, if the services connectivity has been modified. But, a dynamical service
composition corresponds to a critical need in most scientific applications. For instance, it appears as
prohibitive to have to restart acomplete visualization system for each modification of the
visualization pipeline.

However, this difficulty has been handled in the demonstrator 3 by the following approach. In a first
step, the Process Units are registered and referenced into the PipelineComponent using the SCA
domain, as usual. By this, the PipelineComponent offers a central reference to each ProcessUnit.

The composition itself, i.e. the connectivity between the Process Units, is not directly expressed in the
SCA domain, but using a dedicated tree managing the services connectivity defined in the
PipelineComponent. This structure can dynamically be defined and modified. Each Process Units is
then processed in the correct ordering, as defined in the PipelineComponent. It should be noticed that,
due to the progressive pipeline definition, the PipelineComponent should be statefull, which can be
easily done by declaring this one with a “Composite” scope in the code annotation.

A last point should be outlined. If the services declaration through the SCA domain is normally done
at the runtime initialization with most of other SCA implementations, FraSCAti offers an additional
API than allows to dynamically declaring new components without need to restart the runtime.

Regarding the user experience, this approach presents the strong advantage to prevent any code
edition, nor compilation to extend the global service. This approach allows a complete and dynamical
way to extend the visualization pipeline. A processing unit definition is shown as example in the SCA
composite file below.

<component name="IsoContourFilterComponent">
<implementation.java class="com.artenum.scorware.vtk.filter.IsoContourFilter" />
<service name="Filter">
<interface.java interface="com.artenum.scorware.vtk.api.LocalFilter" />
</service>
</component>
<wire source="PipelineComponent/filter3" target="IsoContourFilterComponent/Filter" />

The SCAWdomain illustrating the global architecture ofthe application is given below.

VtkDemo

Hllustration 14: the figure illustrates both a remote processing unit domain and the global processing
service domain

Two implementations of the PipelineComponent have been done, one generating a vtkDataSet and
another one generating a standard VRML file. A client application has been developed for each
version of the service, using different technologies of 3D rendering, depending on the nature of the
produced data. Screenshots of both clients are given in [llustration 15 and Illustration 16.

[aNeNa]
il root
[(1) Data Loader
¥ (@ (2) Data Loader
¥ [(5) Iso Contour

[B 8

Distributed 3D viewer

#
#Tue Feb 03 15:08:30 CET 200
geometry.bounds=-5.551115

icutting.normal
cutting.center.z=0
ccutting.normal.y=0
icutting.center.y=0
cutting.normal.x=1
icutting.center.x=0

Hlustration 15: client based on the Java 3D renderer

Distributed 3D viewer

i root
¥ [(1) Data Loader
[

[#
|#Tue Feb 03 14:50:37 CET 200
1geometry.bounds=0.0:2.5:0.0'.
[filter.name=Iso Contour
liso.contour.values=16;17:18:1)
scalar.range=16.0:22.0

Hlustration 16: client based on the VIK renderer

3.5 Coverage of the demonstrator (SCA spec, SCOrWare technical
platform)

In the frame of the WP 3.1, it was decided to support an approach focusing on application cases the
closest possible to realistic situation in scientific computing and data analysis. The scenarios/
demonstrators compliance matrix below summarizes the coverage of the proposed scenarios by the
different demonstrators. By the way, the results may seem global or integrative and any demonstrator
can be explicitly related of a specific feature of SCA or another one. However, thanks to the riches
and the complexity of these scenarios a large set of functionalities is de facto covered:

v Local and remote deployment;

v' Use of different binding (SCA, RMI, Web services...);

v" Integration and deployment of native components through a JNI wrapping;
v

Transfer of large and complex data set and identification of related constraints (i.e.
serialisable structures);

v Modeling of service composition, statically and dynamically;
v" Exposition of stateless and state full services.

The use of abstract semantics was unfortunately not explored in the frame of this study, in spite its
large potential field of application in scientific applications.

Demonstrator 1 Demonstrator 2 Demonstrator 3
Scenario A X X
Scenario B X X
Scenario C
Scenario D X X
Scenario E X
Scenario F X

Table 2: SCA and SCOrWare coverage (scientific computing)

3.6 Lessons learned / methodology / best practices / demonstrators'
results

The demonstrators developed in the frame of the WP 3.1 focused on applications cases related to
scientific applications and, more precisely, 3D data analysis. A step-by-step approach was followedin
order to study the various functionalities offered by SCA. A first step was focused on the service
exposition, with the use of several bindings and different deployment contexts. In a second phase, a
fully SOA based architecture and the services composition was studied in more details, with the
conversion of the canonical visualization pipeline into a composition of services.

From a human point view, the followed methodology was voluntary based on practical cases in order
to evaluate the learning curves of SCA especially for non-experts. Indeed, such social and cultural
aspects may be critical for a success dissemination of a new software technology. The development of
these demonstrators has confirmed that the introduction of SCA does not induce a prohibitive
overhead, if the migration toward a SOA is performed step-by-step. These tests have also confirmed
that SCA answers, in a large part, to the needs of the scientific community in this field.

However, these first tests have shown that a full migration to serviceoriented architecture may
require some design and paradigm modification in existing software. For instance, the distribution of
services on different nodes with SCA forbids the sharing of data, through references, and requires
cloning them while remote communication is involved. Therefore, it becomes impossible to share a
reference between services in a remote context. SCA does not offer an automatic proxy to manage
call-back between distributed objects by just wiring calls among services to the real object instance.
This is at the opposite of ProActive based techniques [8], with Active Object when they are used by
several remote distributed components. This should be taken into account into the global software
design.

This specific point is not a drawback of the SCA technology. But, what is important to understand is
that SCA do not manage the same way its local and remote components.

With the distance, one key point for distributed high performance computing is probably to identify
clearly the right service granularity, depending on the nature of the service, the deployment and
network constraints. For instance, the use of SCA of service exposition of coarse components, like in
demonstrator 1, seems well adapted. The various binding possibilities offered by SCA is here a strong
advantage. The same observation can be done regarding its facility of configuration and deployment,
thanks to the definition of the SCA domain. This does not forbid the use of MPI or ProActive
approaches for the fine components distribution in Intranet on HPC. Both techniques seem
complementary of each other.

The whole performances evaluation was initially a source of worrying, with the evaluation ofthe
over-cost dueto the service exposition. Tests performed, comparing an in-lined version of the
processing chain and the SCA based version, have shown that the difference seems not significant, at
least for applications similar to the demonstrator 1.

The main feedbacks collected to this first experimentation are finally:
e Easy service injection in an independent manner of the service exposition like Spring [9].

e Small impact on code change while exposing a service. (Annotation needed for scope and
references...) The pattem adapter can be used to prevent code intrusion in existing software
where source code can't be changed or annotated.

e The service exposition has been simplified in a drastic manner specially when the same
service is exposed with several protocols.

The developed demonstrators should still be considered as simple proof-of-concept and it is not
recommended to use them for operational applications. The demonstrators 1 and 2 are structured as
Maven based projects and are available on demand. The third demonstrator, illustrating the
dynamically service composition, is packaged under the form of an Ant based project and is including

in the FraSCAUt runtime samples (repository SVN). Released under the terms of the LGPL license, it
can be freely used, modified and extended.

3.7 References

[1] Salome plate-forme Web site, www.salome-plaform.org

[2] VTK Web site, www.vtk.org
[3] OpenDX Web site, http://www.opendx.org

[4] S. Jourdain et. al., ShareX3D, a scientific collaborative 3D viewer over HTTP, Web3D
Symposium 2008, Los Angeles, California, 2008.

[5] Cassandra’s Web page, www.artenum.com/cassandra

[6] SCOS project Web page, www.oscos.org

[7] SPINE community Web site, Www.spis.org
[8] ProActive Web site, http://proactive.inria fr/
[9] Spring Web site, http:/www.springsource.org/

4 COLLABORATIVE DEVELOPMENT (Task 3.2)

Change history vs. version 1.0 the first version 1.0 (October, 2007) of the specification was
describing the first stage of the development of this usage demonstrator (with Tuscany as target
runtime SCA platform), focusing on the functionalities of a New Generation SOA Developmernt
Forge. This final version specifies the integration of a Collaborative Environment, through the so-
called OS2P Portal (Open Source Project Portal). It considers too the replacement of the former portal
technology foreseen in this usage demonstrator (i.e. Exo Portal and WebOS) by anew one (i.e.
Liferay), following the withdraw of the partner eXo Platform during the first year of the project.

4.1 System context
4.1.1 Forge domain model

The domain of CDE inherits from collaborative environment (computer supported collaborative work,
or CSCW) and from software development environment (software engineering) damains.

Community | member | peveloper
- participates *

+ [contributor
governs & contributes to

* | rule ki
Policy | 'Project

Hllustration 17: Collaborative development: forge domain
model

The collaborative aspect of the domain defines a community as an aggregation of individual members
achieving collaboration through participation accordinga set of common rules. The development
environment aspect of the domain defines members as software developers that concurrently and
collaboratively contribute to the development of a software project.

A forge is a configured collaborative platform hosting the software development projects of a
community of developers.

http://www.spis.org/
http://www.oscos.org/
http://www.artenum.com/cassandra
http://www.opendx.org/
http://www.vtk.org/
http://www.salome-plaform.org/

4.1.2 Project portal domain model

Software projects are used as foundation or building blocks by software integrators to develop
business- and client- specific solutions. However, in orderto do this, software projects are not merely
put side to side, but integrated together through configuration files, technical "glue" development, and
made to interact using business specific model and logic.

We define the reusable part of this work as a "project integration" for a given use case or business
need. Another way to seeit is 1. that a project integration is in a “uses” relation with the project(s) it
integrates and 2. that it is not a “top-level” project, top-level meaning here that it is not meant to
appeal on its own and outside the scope of the project(s) it integrates.

We also define the largest context of a project portal, which:

1. provides a configured collaborative platform hosting project integrations provided by the
community of software integrators,

2. 2.provides a web publishing solution targeting project users and other software integrators.

4.1.3 Business model

|\-—|
.
- l‘m__
environment
maintainer
R "!;‘5“-13" |
e

-

e O

shared development

data \ﬂ(tool
consteimer |

7

tleireluper forge

o \Ei development process
consimer |:|r|:|/u|:er monitor

development
artefact

Hllustration 18: Collaborative development:
business model

The forge is the interface that implements collaborative development business.

The system shall ease the development and deployment of development oriented services,
participating in the collaborative development workflow.

The system shall enable automation of the development process monitoring.

The project portal shall allow project integrators to manage documented use cases, as well as related
features and project integrations and make information about those available to potential project
users.

Additional roles needed in the project portal solution are : project integrator and technology user
(which may be as well a potential software integrator as a business analyst).

4.1.4 Application domain

The application domain was specifiedin the presentation “Open Forge Standards — Basic
Specifications —FP6 QualiPSo project — Olivier Abdoun, INRIA August 20077, delivered with the
first version 1.0 of the specification (2007, October).

4.1.5 Project portal: CMS features in a forge

4.1.5.1 Context

Open Wide is a software solution integrator and as such collaborative development tools and
middleware such as a “forge” is one of the primary tools used by its development teams to be able to
efficiently develop projects arswering its clients' needs.

Being at the same time not only a specialist in Open Source technologies, but also a practicing
advocate of Open Source methodologies, Open Wide has encountered the need to expand the use of
such forges to new features in orderto be able to target a greater population, comprising not only
developers but also “clients” i.e. business oriented users, as well as fostering use and integration of
said project.

e project communication management and publication
e project evolution, feature requirements and roadmap
e project use cases management

e project integrations management

We name such a project portal applied to open source projects Open Source Project Portal (OS2P). In
this vision, the forge functionalities are integrated into the OS2P portal, and forge tools are accessible
though portlets.

In order to answer these requirements, we can rely on the proposed architecture, with an emphasis on
document management, publication and knowledge management.

4.1.5.2 Project communication management and publication

Its point is to literally make people other than developers welcome on the site. This area will also be a
help to integrators trying to sell solutions integrating this Open Source project, by providing client-
oriented communication information.

This is achieved by a portal-integrated CMS (web content management system). The point is to
provide CMS features integrated to OS2P, including document publication.

4.1.5.3 Project evolution, feature requirements and roadmap

Its point is to foster and aggregate project vision and evolution discussions, user suggestions,
integrator feature requirements as much as possible in order to be able to easily check roadmap
consistency, but as well to track causes of forks and, at a lesser level, of externally developed
extensions, and why not possible concurrency or partner projects.

It has been studied by Open Wide in the first year. However, since itis a rather well-known field of
Open Source project web-based forges such as GForge, it has not been implemented in the final
release.

4.1.5.4 Project use cases management

Use cases are not what Open Source project are most well known for. However it's where a potential
user will most easily recognize its own problematic, and therefore will be interested in a given
project.

This is achieved by a Knowledge Management-like web application, linkedwith the below mentioned
integrations (technology stack) management .

4.1.5.5 Project integrations (technology stack) management

Open Source projects almost alwaysneed some kind of technical integration to become useful. The
work to be done here is neither big nor very difficult, but the knowledge required is usually buried in
FAQ, forums and other community sections - while its source code is most of the time not even SCM
managed.

This is done by managing projects, their “integrates/uses’ relationships, and their top-levelness.

Managing technology stacks that build on this project will be achieved through building on the
features of the entire demonstrator platform.

4.2 Usage scenarios

4.2.1 Forge #1: new source code revision quality check

A developer has modified a project's source code in his local workspace. He wants to integrate the
patch to the forge Source Code Manager. The SCM is configured to verify that the source tree
respects coding standards specified by a policy.

Main sequence

1. the developer submits the patch to the forge SCM

2. the forge evaluates the quality of the submission

3. the evaluation succeeds

4. the forge publishes the evaluation result to content management

5. the forge notifies the developers that a new revision is available
Exceptional sequence

1. the evaluation fails

2. the forge publishes the evaluation to content management

3. the forge notifies the developers of the patch integration failure

4.2.2 Forge #2: development project road map
This scenario provides simple project road map features, and involves two different stakeholders:

e the project manager, who wants to define the road map and have a progress overview of the
project

e the developers, who want to know which tasks have to done and completed
Dashboard model

e project presentation: name, description

e checkpoint identification: milestone

e a milestone is defined by a list of tasks and a deadline
Main sequence

1. the project manager defines the road map

2. the developer looks at the tasks to be completed

3.

Events

the developer sets the task progress

e when a task is completed (notified by the developer)

e when a milestone date is up (notified by the road map service)

4.2.3 Project portal #1: managing use cases, features and project
integrations

Technology users : Adding a proposed use case

1.
2.
3.

the technology user describes the proposed use case
the technology user optionally links it to related features or requested features

the project portal manager approves or disprovesthe proposed use case

Project integrators : Adding a project or a project integration

. the project integrator describes and provides the project and sets its top-levelness
. the project integrator optionally links it to integrated projects

. the project integrator optionally links it to related use cases

. the project integrator optionally links it to related features

. the project integration goes through an approval workflow within the community

4.2.4 Project portal #2: CMS features

Technology users : Publishing project content

1.
2.
3.

the technology user provides the document to be published
it is optionally set to approval (workflow) by the project integrator

the published content is available to download by everybody

4.3 Design

4.3.1 Forge components

The application is split up into components and 3 layers:

the service layer that serves forge functionalities to users in a uniform way and integrates the
business components in a coherent way

the business layer that implements the different functional areas of collaborative software
development

the collaboration support layer that implements human on line collaboration features.

4.3.1.1 Global view

£

m e
Resolrces
{
contributor
AcCCcess

P
adminjstrator
AcCgess

maﬁage
Projects

L .'!-
facfﬁl AR

| <<component>> .-'i

' {Source CodeManager

mangage
Configuration T
i J
explore
History
i <<Components > :
l—| DependencyManager
age

Dependencies -

T e

,A_J 4|

i

|<<com pnnent>> g [—

] = Dependen

2 -

e IW hrﬁ:ﬁ)se

cies '{<campnnent>>ij:;'"

Forge

L
P TIEIDEIEH
Workflow

|
=, _.l |

|<<component>>c3 ||
IssueTracker

query
Issues

III'.-- §
factory

[—RoadmapManager
|1Ihn

":{EDI'H ponent‘}}--- |

i " +— Membership
|1uh [lsh |
Event

Work 1

i. I:j-_,-"l
ASSESS
Progress

Hllustration 19: Collaborative development: forge components (global view)

The Forge component implements the setup of collaboration space for software project development
(administratorAccess interface) and the concurrent and collaborative production of software projects
artifacts (contributorAccess interface). This is realized through usage and promotion of the interfaces
of the software development components (SourceCodeManager, DependencyManager, IssueTracker
and RoadmapMananger). The Membership component provides the team building and awareness
functionalities of a collaborative framework.

4.3.1.2 Implementation view

|_. : 5 J
factory

|: I|

m e
Resources

D

i | <<components> _:j|
{ J {Source CodeManager
manage
Configuration T
II':_"_;L
explore

nranage
endencies

History

{{cnmpunent}}f__:_u
Membership

A 0
P ; - ﬁw browse
ot |<< composite = > J._--"’_' Dependencies |
contributor Forae =1 o |
Acccess a 1 I.;I;-J[i-; = |
== | T_Hh_h‘:_-\?—_‘_‘_—.—-.____ — n |
{ (i —{) Event
adminjstrator et
Acgess =
Vg
P participate
ot Workflow
manage =
Frojects {2
query
Issues (™
i ry
. i<<:cnn1pnnent::—>;!ﬂ
{(_—— RoadmapManager
plan
Work l
()
assess
Progress

Hllustration 20: Collaborative development: forge components (implementation view)

4.3.2 Quality check scenario realization

<< COmMponent=:
QualityProvider

oy _[—I_ =/ Spoon : Qualinnulg-;-g

manage
Configuration | 7
M
| - i
‘7 << COomponent>>
Forge
y— < Code repository (JCR) B —)
|llaﬁage ____ puh_lish
Configuration Event

Hllustration 21: Collaborative development: forge scenario #1 (quality check)
4.3.3 Development project progress dashboard scenario realization

CL<COmMpaonent>=
QualityProvider
Liferay : PortletContainer = | |

CEComponentsz

- |
- L™] Irey

web : Dasllhuard;;.; | Forge
Interface L ' e | | : RoadmapManagercs | |
=T o —

Sy = ==
1
contributor L 5
Acccess o =

I ICR : SourceCodeManager: | |

Hllustration 22: Collaborative development: forge scenario #2 (project progress dashboard)

4.3.4 Project portal components
In addition to the forge components, the project portal solution features:
e a CMS component

e built on top of an ECM component (which also provides the JCR standard ECM API), which
manages use cases, features and information about project integration. Note that it is linked to
the source code versioning system within the forge, since sourcecode and releases of project
integrations are also hosted by it

e avoting system, built on top of a workflow component.

4.3.5 Forge: SCA design

4.3.5.1 Global design

A

Hllustration 23: Collaborative development: SCA view of a quality forge (global design)

This SCA global design is consistent with the design global view, as shown in Illustration 19.

4.3.5.2 Implementation design

Hllustration 24: Collaborative development: SCA view of a quality forge (implementation design)

This SCA implementation design is consistent with the design implementation view, as shown in
[Nlustration 20.

4.3.5.3 Services

Rmp (Roadmap): project plamer browse and query interface

CM (Configuration Management): configuration management (providing or not quality
check) and content access interface

Mbr (Membership): event publishing interface

PL (Project List): existing projects with name and description

4.3.5.4 Components

Notifier: provides features for team building and awareness. These features are split into 2
services:

o producer: provides all the functionalities for sending messages
o consumer: provides all the functionalities to subscribe to a kind of message

Source-code-repository: is able to store source code from different projects and support file
versioning

Roadmap-manager: is able to define different milestones themselves defined by a list of
tasks.

Quality-checker: allows to check if the committed code is well commented

Project-List: manages the list of existing projects

4.3.5.5 Composites

Forge v1: includes all the functionalities of a “basic” forge

Forge extensions: this composite extends the functionalities of the “Forge v1”, by adding
“quality-check”, for checking if the source code contains some comment

4.3.6 Project portal: SCA design

4.3.6.1 Global design

Hereunder is the initial and global design, providedas a SCA diagram for the Project Portal solution.

Hllustration 25: Collaborative development: SCA view of a project portal (global view)

Finally, because of some lack of time and resources for implementation, the UI and Portal
components have not been designed and developed as SCA ones, but are reusing services as exposed
by the SCA Forge, thanks to the SCA binding mechanism. And so, the Dashboard component, as
required by the scenario as shown in Illustration 22, is a set of portlets, which are exteral to the SCA
domain in our case.

The implementation design view is shown below.

4.3.6.2 Implementation design

mf roro etonsion
(with QT checker) gﬂ
|

[GALIFERAY

.

Source code - Forge
browser

Mbr/consumer
Notification
portlet }i—llﬂjproduoer

Project

selector

L

Hllustration 26: Collaborative development: SCA view of a project portal (implementation view)

4.3.6.3 Components

The final implementation is available and documented on the OW2 Scarbo website at
http://scarbo.ow?2.org, as an official Scarbo demonstrator. It has required the demonstrator to be
migrated from SCOrWare to the OW2 consortium.

e Project Portal Ul : UI within the Project Portal for Project Portal Services.

o The Portal standard in Java is the Portlet specification. It is implemented by various Portal
components that are available in Open Source, like Liferay, jBoss Portaland eXo Portal.
Liferay is the most well-known and feature-rich one, moreover available under the liberal
MIT license. For these reasons in addition to itsown expertise, Open Wide Liferay as the
portal of choice for OS2P.

o On the Ul level (which is one of the main areas adressed by Portlets and Portals), the
OS2P Ul is developed as portlets using the Liferay SDK. We choose Struts as the Ul
technology of choice for presentation parts that are native to Liferay, the reason being it is
still the most used Ul java technology and not much complicated which allows to focus on

http://scarbo.ow2.org/

more service-oriented topics.

On the level of portlet definition (the other key area of the Portlet domain), the standard
way to define portlets, extended by Liferay's specificfeatures, are used for OS2P. This has
first been adressed by Open Wide in standard Portlet fashion, by developing Portlets that
are able to use a flexible service layer as defined below. Once specified, first the whole
OS2P architecture has been developed on Tuscany, then on FraSCAti (Java source-based)
prototype, and finally on FraSCAt final 0.5 version (which includes the famed generation
factory to avoid the requirement of providing java sources of classes mentioned in
composites).

In addition, on an idea of INRIA Tuvalu, and with mentioned interest and support of
INRIA Adam, Open Wide specifies and implements an SCAProxyPortlet allowing thanks
to the SCA standard and its FraSCAt implementation to define the (Portlet interface-
implementing) class of a portlet, specify its properties and inject services in it. It is done
by developing an SCAProxyPortletclass implementing Portlet using the delegate pattemn,
and loading a well-defined composite and calling a known Portlet-returning service within
it in order to set this delegate. Additional customization can be achieved by subclassing
the SCAProxyPortkt. In order to use it, the user must develop its portlet as usually, but set
it up in the right SCA composite and configure the portal to rather load SCAProxyPortlet
It is demonstrated in the implementation of some OS2P use cases. NB. This replaces other
ideas that have been studied but not developed because less interesting.

Project Portal Service (PPS) : business service for project portal domain, providing use
cases, requested feaures and project integrations management and linking

O

The service layer is developed as a simple service-oriented, java interface and bean
implementation-based service-oriented application architecture. This architecture is
assembled by applying service injectionpatterns, both for local services (other services of
the PPS business layer) and for remote (ex. Workflow engne, forge, ECM) services. Open
Wide specifies and implements in OS2P various ways of doing both, be it using Spring
(the most widely used IoC container), SCA (which can be seen locally as IoC itself), mere
Java code, or even the Spring SCA implementation for FraSCAti as developed by the
INRIA.

The conclusion is that SCA (with its powerful binding definition) is best used for services
defined in the whole information service's SOA, whileSpring (and its numerous, toolbox-
like helpers) is appropriate to assemble services that are local to the application
architecture. However, using the above-specified SCAProxyPortletto define a portlet's
implementation and injected SOA services, coupled to Spring applicative services injected
in SCA through the SCA Spring implementation brings the benefits of both worlds.

Workflow engine and tooling : this is required for all approval and more widely workflow
features of OS2P.

O

For this, Eclipse JWT (Java Workflow Tooling) is used on the tooling side, while OW2
Bonita is used on the runtime (workflow engine) side. Bonita has seen a major evolution
lately, going from Bonita 3 to Nova Bonita (4) ; Open Wide has gone along with it, first
integrating Bonita 3 in year 1 and then Nova Bonita in year2 in OS2P.

This includes providing through SCA a local version of the Bonita-implemented JWT
WorkflowService, in order to allow OS2P to start and interact with workflows. The
WorkflowService has first been implemented using EJB since Bonita 3 was based on such
an architecture, while the switch to an implementation local to Bonita has been preferred
by Open Wide in the new Nova Bonita since its new lightweight and embeddable
architecture allowsit.

It is to be noted that the new embeddable architecture also allows it to be deployed two
ways : either in platform mode within a webapp with its dedicated web management

console (out of the box), or embedded in an SCA FraSCAti-deployed simple web
application (where FraSCALi is deployed by either anSCAServlet on an
SCAContextListener), which Open Wide develops and provides.

e CMS : CMS features buit on top of the ECM container, see below
e Enterprise Content Management (ECM) : ECM component.

o Various ECM components are available in Open Source, like Alfresco, Nuxeo and eXo
ECM. Alfresco is the most well-known, comprehensive, rich one. It is available under the
GPL license, has a service-oriented applicationarchitecture and implements standards
such as WebServices, JCR and the upcoming CMIS. For these reasons in addition to its
own expertise, Open Wide choses and integrates Alfresco as the ECM of choice for
OS2P.

o To achieve this portal-ECM integration in a service-oriented way, various technologies
are available. On the business domain side, JCR is rejected because of complexity, lack of
market penetration and possible obsolezcence. Because of new standards like CMIS
(Content Management Interoperability Standard). WebServices are well supported by
SCA (including FraSCAt) and most technology stacks, while REST-based protocols offer
a lighter, more agile alternative. In order to implement said use cases while studying
various cases of service integration within a portal, Open Wide uses WS for deep, service-
level integration and REST for light, Ul-level integration.

o Integrating Alfresco through a business or technical standard is especially interesting. For
this the most meaningful are WebServices on the technical side and CMIS on the business
side. To achieve it, possible architectures include SCA bindings but also SCA's
appropriateness for assembling services of a given layer of granularity or business level to
provide services of another such layer. On the basis of these strengthes Open Wide
specifies and prototypes such an integration of FraSCAti-based SCA and Alftresco.

4.3.6.4 Composites

e Project Portal (including Use case and success story portlet) : built as a Struts-based
SCAPortlet that loads

e Project content portlet : configured using SCAProxyPortlet, built using light ECM integration

e Various versions of the previous ones providing various alternative configurations, and other
“helper” composites

4.3.6.5 Project development

e Liferay, Alfresco and even Bonita are rather development platforms than mere components.
This means that they have their own (ant-based) build mechanism and development practices,
which means integrating them together and with such a wide range of middleware as
FraSCAt and Tuscany (whose build are maven-based) are themselves integrating quite a
challenge. Open Wide has studied this challenge in year one, and answered by a complete
build mechanism integrating maven for the SCA part and ant for the Portal and ECM parts,
relying on the maven-ant integration and making heavy use of “excludes” to work around
dependency conflicts between all integrated packages. This has first being done in first year
on Tuscany, then on FraSCAti's prototype, and finally on FraSCAti final 0.5 version.

e Integration with the Forge perimeter is done in standard Portlet fashion. Forge portlets (Forge
notification and Forge repository command) are made available right along OS2P portlets in
the portal.

4.4 SCA specification coverage

Assembly model | Simple component |Service Rmp, CM, QT, Mbr, PL, OS2P
Reference Rmp, CM, QT, Mbr, PL
Composite Service Rmp, CM, Mbr, PL, OS2P

Reference CM, OS2P

Component | Notifier,Source-code Repository,
Roadmap-manager , Quality-checker,
Project-List, OS2P

Composite <none>

include

Java Component

Notifier, Source-code Repository,

Implementation Roadmap-manager , Quality-checker,
Project-List, OS2P
Java Annotations Used for implementation of the following
and APIs services: Rmp, CM, OT, Mbr, PL, OS2P
Web Services Rmp, CM, QT, Mbr, PL, OS2P
Binding
Table 3: SCA coverage (collaborative development)
Component X
Composite X
Wire X
Property X
Binding Web Service X
Service (Local & Remotable) X
Domain -
Interface X
Implementation (Java) X

Table 4: SCA assembly model specification (collaborative development)

@Service

@Reference

@Property

@Scope

@Remotable

@Conversational

@OneWay

UL R X)| < R

@AllowsPassByReference

@Callback

b

@ComponentName -

@Conversation -
@Constructor -
@Context -
@Destroy -
@EagerlInit -
@EndConversation -
@Init X
@ConversationAttribute -
@ConversationID -

Table 5: SCA Java common annotations and APIs (collaborative development)
4.5 Lessons learned

4.5.1 FraSCAti vs. Tuscany

e Binding as provided by FraSCAti allows a fine-grained configuration for Web Services,
unlike Tuscany

e Memory footprint: our tests done on a development version of the Forge have given a smallest
one for FraSCAti vs. Tuscany (92 Mo vs. 101 Mo)

e Error messages: for this topic, some enhancements should be done in FraSCAi, as error
messages appearing in Tuscany are more detailed and clearer

e (@Remotable: this annotation is not mandatory in FraSCAt for exposing a service with a
binding, and so it facilitates a standard interface, which could keep unchanged

4.5.2 Benefits of SCA

Benefits of SCA are the following ones, according to the two stages where SCA is used.

4.5.2.1 At design stage
e standardized architecture approach
e conceptual standardization
e normalization in the graphical representation mode
e component (code base) reusing

e concrete service reusing.

4.5.2.2 At development stage
e the annotations allow to decrease the number of coding lines and offer high-quality services

e binding mechanisms allow to expose and use services with different communication
protocols, without any extra cost in programing

e there is no impact of the protocol as chosen on the component itself .

5 REUSE AND ENRICHMENT OF COMPONENTS
CORPORATE FRONT-END LINKED WITH SAP BACK-OFFICE
(Task 3.3)

Change history vs. version 1.0: the first version 1.0 (October, 2007) of the specification was
describing the first implementation of this usage demonstrator, using the Tuscany SCA platform as
deployment and runtime platform. This final version specifies the final usage demonstrator, enriching
it with the extensions as required following the first year project review with ANR (and its expert),
including extended functionalities (e.g. a SAP real platform), demonstration of the capabilities of the
SCOrWare platform both in terms of functionalities, and volumetric, deployment on the SCA
platform (both FraSCAt and PetALS). Following the first year project review, and as required by the
ANR and its expert, this usage demonstrator is considered as the main one (‘“Pilot”) for a complete
demonstration of the SCOrWare platform.

5.1 Introduction — Context of the Business

EdifiXio implements custom applications for some large industrial groups. Most of these applications
are designed and specified in collaboration with Corporate and then deployed and adjusted for each
Business Untit of the group. Of course, the Business context is very different for each Unit and implies
a high capacity of modulation and adjustment.

EdifiXio has developed a specific methodology to address this specific business and improves itall
the time in order to be always more efficient and competitive on this sector.

The key factor is to continuously decrease the cost of the customization and the deployment of a new
instance of the application. The cost of the maintenance enhancements is also on the critical way.

A major technical step has been made in the last years with the ability to run all the Business Unit
instances of the application on a single runtime with a single version of source code. This
improvement has been lead by the JEE standard.

The current step of improvement is based on the modularity, the assemblage of parametrized business
modules in order to achievea high level of re usability of the existing business code. The JEE
standard is our main technical support for doing so. Unfortunately, JEE does not provide all the
expected flexibility.

The task 3.3 of the SCOrWare project gives us the opportunity to study how the new SCA standard
and more specially the SCOrWare platform, could provide us with more flexibility and more
efficiency. The contribution of EdifiXio will focus on the two following topics :

e Reuse and enrichment of components.

e SCA and JEE.
Both will be covered in a demonstrator specified in this current document.

In this document, we assume that the following technical points are managed in the SCOrWare
platform even if we still don't know how they will be implemented and if they will be part ofa
demonstrator. These points are mandatory for our business:
e Transaction Management and especially the Two Phases Commit.
e Automate integration chain and especially a first level of quality assurance including unit
testing execution and code coverage estimation for business applications.
e Several target environments are operational (Tuscany/Tinfi/FraSCAti Standalone/Integrated
Tomcat/JOnAS, ...)

5.2 Functional Specification

5.2.1 Introduction
Our demonstrator will be a Corporate Front-End Order Management application linked to Back

Offices.

Architecture should be adapted to Production Application even if the implementation is limited to the
Demonstrator scope.

A production application is composed of a single Business Logic connected to several Back Offices.
This application is accessible from Internet through different ways : PDA, Portal, Standalone
WebApplication, Web2 Application.

Here is a presentation of a standard architecture on production:

[] []
[]
'n| §
End-User End-User 'nl
End-User Distributor French Distributor Spain
Commercial French End-User ®

\ ﬁg Integrator USA
jﬁ Flex II
u End-User
/ Distributor USA

Internet

-
—

i T
,/ Business Logic =

Middle Office
7
v

POWERED BY

* % e

-‘\—_—/
&

—_—
.
CustomERP US

-

2 .
2 “| JD Edwards ES

T

Hllustration 27: production application presentation

For demonstrator purpose we will
e Limit the application accessibility to the standalone Web Applicationand the Web2
Application.
e Use only simulated Back Offices. One of them (French one) running on a SAP Netweaver
Application server.
e Use a single user audience on 3 different Business Units (France, USA and Spain).

@ @
End-User End-User
Distributor French Distributor Spain

/ End-User
ﬁg Distributor USA

Flex

Internet

Hlustration 28: demonstrator application presentation

As aresult, the demonstrator will be composed ofa Web Application and Web2 Application linked to
a set of Front Order Management services (Delivery Notes, Price and Availability, Order Status and
Order Entry) using Local Database and Back Offices. Part on this set of Front Order Management
services (Delivery Notes) will be kept in a JEE architecture. Back Office will be called through Real
Time flow (Price and Availability) and asynchronous flow through Middle Office (Order Entry).
Moreover, the Back Offices will be scheduled to send data to populate Front Local Database through
the Middle Office component (Order, Productand Price).

User and Account management (provisioning, right, security ...) will not be part of this demonstrator.
A set of User and Account will be previously created.

5.2.2 Web Application

The Web Application will be composed of these following screens
e Delivery Notes
o Delivery Notes search screen

corWare - WP3.3 - Delivery Note: indows Internet Explorer

o 4 | cong =
[o F 5% | B
Google[C~ | ervover 6 @ B v | ¥ Mestavorise Ei0bomués(s) | 5 Onthographe v s Envoyer 3w Q rarenetress fSmIOWO
U b | scomare - wpa.3-elvery iotes = B B v eage s+
3 Edifixio ScerWare Deminstrafor SCORATE R
[Home] [Price and Availability] [Order Status] [Delivery Notes] [Order Entry] [Logout]
Delivery Notes
Delivery Note No. Sold To Delivery Date Status
12345 000055667798 Mon Mar 02 13:05:03 CET 2009 Submitted
12345 000055667788 Mon Mar 02 13:05:03 CET 2009 Submitted
12345 000055667788 Mon Mar 02 13:05:03 CET 2009 Submitted
12345 000055667798 Mon Mar 02 13:05:03 CET 2009 Submitted
12345 000055667798 Mon Mar 02 13:05:03 CET 2009 Submitted
Delivery Note No. | |
Status
Delivery Date Beginning
Delivery Date End
Edifizio - 2008
@ Ireermet

Hllustration 29: delivery notes search

o Delivery Note detail screen

corWare - WP3.3 - Delivery Note Def ndows Internet Explorer
@‘\..J.v\& s 3% %] [coos 12
Google [C v Evoyer o @) B | O Mesfavarise Ehobloauée(s) | P Orthearaphe ~ [ab Envover 4+ D paramitres~ Hemmorwro
U | @ scomere - wea,a-elvery hote Detal ‘7‘ B B v hPase - Gouls -
3 Edifixio ScorWare Demspstrator A 4
[Homa] [Price and Availability] [Order Status] [Delivery Notes] [Order Entry] [Logout]
Delivery Note Detail
Delivery Note Detail
Delivery Note No.: 12345
Sold To: 000055667788
Delivery Date: Mon Mar 02 13:09:19 CET 2009
Status: Submitted
Carrier: DHL
Delivery Address: 75008 Paris
Back
Edifizio - 2008
@ lrieret w100 -

lllustration 30: delivery notes detail

e Price and Availability
o Price and Availability request screen

Order Status | Delivery Notes | Order Entry

| Check Price and Awailability

Catalog Numb. i

atalog Number Febae: M August 2008 | »
(.5 =)

Quantity 4 s M T W T F %

do 2
34567“9

10 11 12 12 14 15 1s
L7 8 AF 2O 2T 22025
24 25 26 27 28 29 30

| Submit

Profile Price
Availability

Product Description

Hllustration 31: price and availability request screen (Web2 Application)

%3 : ScorWare - WP3.3 - Price and Availability :. - Mozilla Firefox

ichage Historique Qutils 7

= Eomb ao 73] (e =)

g Edifixio SceeWave Demenstrater scoﬁw$$

[Home] [Price and Availability] [Order Status] [Delivery Notes] [Order Entry] [Logout]

Price and Availability

Marque-pages

Price and Availabil

Catalog Number [Prociuita
Quantity 1 I
Price Date (mm/dd/yyyy) [11/11/2008

Edifizio - 2008

Terming

‘5 demarrer [O Pl SVl Bar. ['5 m s - [sca 72 . o & BIES

Hllustration 32: price and availability request screen (Web Application)

Price and Availability result screen

Check Price and Availability
Profile Price
Availability

Product Description

Catalog Number Produita Quantity 10
Product Number refa Package Quantity 10
Descripton Jérdre Package Restrictions Mo
Category Super Bien Unit Weight 132 KiE

Retumable Item Mo

Hllustration 33: price and availability result screen (Web2 Applzcatlon)

%) . SconWare - WP3.3 - Price and Availability ;. - Mozilla Firefox

Fichier Edtion Affichage Historigue Marque-pages Outls 2.

& - - @ (% (L hepsgjscor - ko do =[#) [C-]on |
3
g Edifixio ScorWare Demsnsteator scomare
[Home] [Price and Availability] [Order Status] [Delivery Notes] [Order Entry] [Logout]
Price and Availability
—Price and Availabilit
Catalog Number [Froduia]
Quantity 20 |
Price Date (mm/dd/yyyy) [1mpos
Requested Date:
Price Date List Into Stock Extended Into Stock Drop Ship Extended Drop Ship Rebate Extended Rebate
Price Price Price Price Frice Price Price
Tue Aug 12 08:16:32
CEST 2008 2ot
Catalog Number Produita,
Quantity 10
Product Number refa
Description JEprEZme
Category Super Bien
@
Terming N0

L& rwerrs e 1 = T [=g T e - [
5 dématrrer. CEBOEADCE [Ba. 3 o -Th <o ST R @l.ew([08:27

Hllustration 34: price and avazlabzlzty result screen (Web Application)

e Order Status
o Order Status search screen

Eichier Edition Affichage Historiqus s pages Qutls 2

& - -@ e dilE] ¢ ecfisi i d [=[B] [l [&]
3
Edifixio ScerWare Demensteator SCORWarz
[Home] [Price and Availability] [Order Status] [Delivery Notes] [Order Entry] [Logout]
Order Status
—Order Statu:
Order n User Requested Order
Nismbeg Order Name Sold To Ship To Name Status Release Date Delivery Date Express Tracking
romisre Mon Aug 04 Mon Aug 04
1 000055667788 123456 Jerome Submitted 00:00:00 CEST 00:00:00 CEST false false
Commande 2008 2008
e Mon Aug 04 Mon Aug 04
2 000055667788 123456 Philippe Delivered 00:00:00 CEST 00:00:00 CEST false false
Commande
2008 enog
I Mon Aug 04 Tue Aug 11
2000000001 coucou 000055667788 jerome JA@rA 'me Opened 00:00:00 CEST 00:00:00 CEST false false
2008 2009
Troisieme Mon Aug 04 Mon Aug 04
3 c DOD0SS667788 123456 Thomas Opened 00:00:00 CEST 00:00:00 CEST true true
ommande
2008 enog
Order Number ‘ ‘
Order Name i |
Catalog Number ‘ ‘
Ship To ‘ ‘
User Name [|
[a

Termiing LM
f i Z:

&

Hllustration 35: order status list screen (Web Application)

o Order Status detail screen

ScorWare - WP3.3 - Order Status De

Fichier Edition Affichage Historigue Marque-pages Outlls 7

@ O vl dorort—s [=[%] [IGl]s=o [&]

Edifixio SeorWare Demenstratsr SCORW$#

[Home] [Price and Availability] [Order Status] [Delivery Notes] [Order Entry] [Logout]

Order Status Detail

[~ Order Status Detail

Order Number: 1

Order Name: Premiers Commande
Sold To: 000055667758

Ship To: 123456

User Name: Jerome

Status: Submitted

Line Number Catalog Number
1 Produits,
L Praduits
3 Praduits
+ Praduitc
Back
Edifigio - 2008

Terming % @

J demarrer & 8

Hllustration 36: order status detail screen (Web Application)

Order Entry
o Order Entry screen

)..; ScorWare - WP3.3 - Order Entry :. - ozilla Firefox

Fichier Ediion Affichage Historique Marque-pages Qutls 2

& - @ (3 | hemiscarmareintza net. e, o rderEntry.co [] [E]

f:%ﬁ Egifi)(io ScorWare Demsnstvator SCORW$#

[Home] [Price and

ility] [Order Status] [Delivery Notes] [Order Entry] [Logout]

Order Entry

(mm/dd/yyyy)
Express Delivery

Requested Delivery Date

Sold To 000055667788

@nNo Oves

Tracking

@No O ves

Line Number Catalog Number

Quantity

O [
Oz [
O3z il

Add Line Delete.Checked

14 démarrer EBMADCg [Be. G [Em [fmze [[Fis. 0.k,

Hllustration 37: order entry screen (Web Application)

e @EES®C - me
P

5.2.3 Front End services

The Front End will be divided in 4 services: Delivery Notes, Price and Availability, Order Status and
Order Entry.

5.2.3.1 Delivery Notes

This service provides the Delivery Notes on a given Account. This service is composed of 2
functions:
e the last n Delivery Notes of an Account. The Delivery Notes information is coming from
Front Local Database.
e the full detail of a Delivery Note of an Account. The Delivery Note information is coming
from Back Office through the Real Time service.

5.2.3.2 Price and Availability service

This service provides the Price and Availability of a given Product for a given quantity and a given
date.

First the Service checks if the Product exists in the local database then it tries to retrieve the full price
and availability information of this product through the Real Time service. If Real Time failed (Back
Office unavailable for instance) then full Product and Price information are retrieved from Front
Local Database (rescue mode).

5.2.3.3 Order Status service

This service provides the Order Status on a given Account. This service is composed of 2 functions:
e the last n Orders of an Account. The Orders information is coming from Front Local
Database.
e the full detail of an Order of an Account. The Order information is coming from Front Local
Database.

5.2.3.4 Order Entry service

This service will make an Order Entry on a given Account for a given User. It allows to fill a
Shopping Cart (Header and Lines) and to purchase this Shopping Cart.
The Purchase functionality will first store the Shopping Cart (which became an Order) into Front

Local Database and then send it to the Middle Office service. Then, the end-user can follow his
navigation while in an asynchronous mode, the Middle Office service sends the Order to the Back
Office.

Note: storing Shopping Cart into Front Local Database and then sending it to the Middle Office
service should be in the same transaction. As we are using two persistence systems (Middle Office
service one and Front Local Database one), the transaction should be_inside a two phases commit
mechanism. If one failed, both are roll backed.

Order Entry Order Datalayer MiddleOffice
Composite Composite Composite

Start transaction l
—————————————————— B
-

Include in caller

Post Order into Midgle Office

””” o | Ask for Commit
,,,,,,, e e e

nd Transaction
- Sl Middle Office had aknoledge
End-User can do an other action. acdloe g the Order and is ready to

send it to Back Office

He is sure that is order is stored in
local databse and that middle office

had aknoledge it

Hllustration 38: order entry creates order 2-phase commit transaction

5.2.4 Real Time service

This service will perform a Real Time call to Back Offices. It’s just an intermediary between Front
Services and Back Offices.

5.2.5 Middle Office service

This service will be an asynchronous Middle Office between Front Services and Back Offices (Order
Entry) or between Back Offices and Front Office through the Front Local Database (Order, Product
and Price).

5.2.6 Front Local Database

This database will store the Order, Product, Price, User and Account information. User and Account
will be initialized in the Demonstrator installation procedure. Product and Price information will be
filled with the Back Offices information. Order will be filled with Front and Back Offices

information.

5.2.7 Back Offices

In this demonstrator, we will use three simulated Back Offices (Business Unit France, Spain and
USA). One of these simulated Back Office will be working inside a SAP Netweaver Application
server. These simulated Back Offices will have the same interfaces as a real one (SAP for instance).

5.3 Methodology

During the implementation of the demonstrator, we propose to apply as much as possible our best

practices and to report any practice that has to be changed.

5.3.1 Target Environments

The demonstrator and more generally a real project may be developed by several developers in
several separated teams. As a result we need to be able to provide an adapted working environment
for development purposes and integration between the different teams. We also have to use a
qualification environment closest as possible to the target production environment. The Pre-
Production environment allows us to validate the hosting infrastructure with an already qualified code
version (qualified in qualification environment). Furthermore, it allows the Operation Teamto train
for the Production installation.

Moreover, for the demonstration purpose, a demo environment has to be set.

Environment\Quality Performance Hardware Hosting Installation Time
Cost Cost

Demonstration medium cheap cheap short
Development medium cheap cheap short
Integration medium medium cheap medium
Qualification good expensive cheap long
Pre-Production medium medium expensive medium
Production very good very expensive expensive long

Note: for the demonstrator, we won’t have qualification, pre-production and production
environments. However, we describe them in order to illustrate the constraints of environments we
may have in a real project.
Check points:
v" Only Environment Parameters need to be changed during the transportation from one
environment to another.
v Environment Parameters are well separated from Architecture Parameters and Applicative
Parameters.

5.3.1.1 Demonstration environment

The aim of this environment is to allow the commercial to do a demonstration of the demonstrator in
a simple environment (no internet connection ...).

As aresult we will use a Windows laptop where all components are installed inside. The Back offices
are Simulated ones.

* Front-end WebApplication
e Flex Web2Application

o=

|
|
|
|
|
|
|
|
|
|
|
[
: j ® J2EE composite
| JOnAS
|
= Front composite
® Real Time composite
SCOrWARE * Middle Office compusit%
* Simulated Back Office |
composite |

Demo Laptop

@ PostgreSQ

| Data Base
Ilustration 39: demonstration environment

5.3.1.2 Development environment

The aim of this environment is to allow several front developers to work in parallel in this
demonstrator. Consequently, each developerneeds to have its own environment. Only database will
be shared between developers.

As aresult, we will use a Windows computer where all components are installed inside, except the
database. The Back offices are Simulated ones.

. ? # Front-end WebApplication
J"ﬁ&z\ « Flox Web2Application

» Front-end WebApplication
* Flex Web2Application

Tomcat

I

I

|

| e

| X g

; /

|

I

| 4

1 § .

I ? s J2EE composite

{ OnAS
il

I

I

|

I

|

[}

|

I

OnAS

= Front composite
4 e Real Tima composite :
SCORWARE » Middle Office compositg
’ * Simulated Back Office “
composite 1

SCOrWARE ‘ » Middle Office compositg

 Simulated Back Office :
composite |

|
|
|
I
I
|
|
I
|
|
| = J2EE composite
|
[
I
|
|
I
I
|
|
I

Development PC 1

ORACLE’

DATABASE
L e S Database shared server

Hllustration 40: development environment

108

—————qm—————
1
)
)
1

5.3.1.3 Integration environment

The aim of this environment is to allow the integration between Back Offices teams and front
developers team(s).

We would use a Linux server for front purpose. This server would be connected to its database and to
Back Offices servers. For demonstrator purpose we won't use real Back Offices but we will deploy a
simulated Back Office in a Sap NetWeaver Application server

Integration server

Database server

SCORWﬂﬁ’

® Front-end WebApplication
® Flex Web2Application

* J2EE composite

= Front composite

= Real Time composite

= Middle Office compositg

= Simulated Back Office |
composite i

= Simulated Back
Office composite

ORACLE
DATABASE

10¢

SAP server
lllustration 41: integration environment

5.3.1.4 Qualification environment (out of demonstrator scope)

The aim of this environment is to allow Operation and Qualification teams to install and test the
Application. The Qualification environment has to be as close as possible to the target production
environment. This environment won't be used for the Demonstrator.

We would use several Unix servers for front purpose. These servers would be connected to the
database and to Back Offices servers.

All servers are duplicated for fail over and load balancing mechanism.

AU |
SCORWARE’ ;

; | ! |
o |
! | ! |
' i SCORWARE ' |
- |
b l :

2 | -
Eront-End :- Front-end Wab.f\pp_lrcatmn « Eront composite « Real Time composite
WebApp I. Flex Web2Application
______________ d - L P A L L A .______________J
server fi
r _i F “!
l i Front Real 1' i
| g | server Time | :
et | 2server | SCORWAHE‘ 1
|]
2 I 1
! ORACLE | JZEE [EEE BN oo
Database | Middle | 1
| eMiddle Office com osue!
server | DATABASE j: BERYED Ofﬁce ! it
SRR SR SR SRR S server —————————————— ;
A et I o
=iy 1 | : | POWERED BY |
2 | e : | | i P NetWeaver :
| : | | | T
JDEdwards | |/DEDWARDS | ! | ! i :
sever | ___________ |} doms | N
____________ | RYWARE
3 _ i ls J2EE composite | ! * l
——d i : | | | :
Luslemery: - |
| SR ! & |
CustomERP - 2 SAP server | NN ® |
server

Hllustration 42: qualification environment (cluster) — out of demonstrator scope

5.3.2 Tools

Here is the list of tools we want to integrate with the Project life cycle.
The developers will use in order to

e develop Eclipse with SCOrWare tool plugins

e compile Maven

e validate unitary his work Junit
e archive SVN
Thanks to shell scripts (or better tools), the integration environment will be able to

e install all the desired software:
o FraSCAt, Tuscany, Tomcat, JOnAS
o Maven for compilation
o Emma for coverage
o Junitee for integration test

e build a new version coming from SVN thanks to Maven and provide a full report on code
quality thanks to Emma and Junitee

. | ¢

sconw

® Eclipse W ,J@ @m
shell
SYN

maven Mmaven
*‘ Integration
Developer \/ == Hwnﬁz‘ Junitee Senver

Junit

TUSCANY

Hllustration 43: tools usage — graphical summary

5.4 Technical Specification

S T Demonstrator Overwiew
Application I

RealTime Composite

Deliveryfiotes getReallimeFlow

Front Compaosite] :D
Price & Afailabi RMI LIJ
Order En y— RMI /WS

BackOffice Composite
ﬁ Asynchrone | &
| Middle Office Composite
endOrder TpBackOffice
. I

HightP forityFlow JBI

LowPrigrityFlow

ﬁ Legend:
L DataBase [:’ Functional SCA D High Level Composite
______ Composite
—_—— D Service
r I Other Composite
L » Binding

Hlustration 44: SCA components of the demonstrator

5.4.1 Technical Components

5.4.1.1 Web Application

The Web Application will be hosted on a Tomcat server. The communication with the Front end
services will be done through RMI protocol.

5.4.1.2 Front end services

Depending on the environment, the Front end services will be hosted in one or several SCA
containers (Tuscany and/or Tinfi). The communication with Real Time service will be done through
RMI protocol. The communication with the Middle Office service will be done through JMS
protocol. The communication with Front local database will be done through JDO2 API (using JDBC)
or JPA APL

Front Composite

N J Price & Availability Composite I

Price n.c.
Price & Av. s.C. sk, >
& %
Productp.c
1> 7
2D

Order Status Compasite
- _ Order Status s.c Orderp.c,
Order Statu%_ >

Order Entry Composite

Productp.c
5>
= Order Entry sc
Order Entry_%. >—Z g -

Hllustration 45: front composite

Delivery Notes

J2EE Composite

Price & Availability >

Real Time Flow

Real Time Composite

Read Data

DataBase Composite

Price p.c. DataBase Compaosite

Send Order to
Back Office

MiddleOffice Compasite

Orderp.c.

3>
—
—»

5.4.1.3 Real Time service

The Real Time service will be hosted in an SCA container (Tuscany and/or Tinfi).

The communications with Back Offices will be done through Web Service using JBI or with a direct
HTTP Client call.

5.4.1.4 Middle Office service

The Middle Office service will be hosted in an SCA container (Tuscany and/or Tinfi).

The communications with Back Offices will be done through Web Service using JBI or with a direct
HTTP Client call. The communication with the Front local database will be done through JDO2 API
(using JDBC) or JPA APL

5.4.1.5 Front Local Database

Depending on the environment, the Front local database is an Oracle or a PostgreSQL one.

5.4.1.6 Back Offices

The Back Offices are split in two categories: Simulated ones and Real ones. Both have same
interface. The Simulated Back Office has no logic and always returns the same result while a Real
Back Office (SAP, JD Edwards, CustomERP, ...) is a real Back Office which answers the query done
on it. Real Back Offices are out of the Demonstrator scope.

5.4.1.7 JEE Service

The JEE service only contains the Delivery Note business logic. This is a set of EJB 2.1 hosted in
JOnAS and accessible through RMI protocol. It manages its own access to the front local database
and to the Back Offices (based on our JEE framework).

5.4.2 Technical topics

5.4.2.1 JBI Integration

We think to use a JBI binding in order to integrate
e Middle Office Composite and Back Office Composite

e Real Time Composite and Back Office Composite
This will be allowed by the PEtALS SCA implementation. The idea is to increase the monitoring
level of the message going through Middle Office and Back Office.
In fact, in such a case we are more interested in awell monitor message system than an efficient one.

The integration of FraSCAti as a PEtALS service engine has resulted in the definition of a JBI
binding (a binding according to the SCA specification). This binding allows one to expose SCA
application services as PEtALS services (that is to say as JBI end-points). It also allows an SCA
composite to reference any PEtALS service and use it in an SCA application.

Because this binding relies on JBI specifics, it only makes sense in the scope of PEtALS (and
potentially of any other JBI ESB).

Notice: in the following lines, when we mention an SCA application / composite running into
PEtALS, it means it runs into the SCA service engine based on FraSCAti.

In the context of the demonstrator, using the JBI binding brings additional value on the following
points:

e Monitor any remote call made through PEtALS (by using its monitoring console).

e Use PEtALS policies (reliability, security ..) for the communications between different SCA
composites running into PEtALS (Middle Office, Back Office Composite and Real Time
Composite).

e Enable loosely coupling between the SCA composites running into PEtALS and the
referenced services.

o This way, when a reference changes, e.g. its address orits protocol, we simply need to
update the PEtALS configuration. There is no need of modifying or redeploying the SCA
composite.

5.4.2.2 Contextual Application

The semantic approach will be used to link references to services.

The more adequate usage should be the links between Real Time, Middle Office and Back Office
composites at runtime.

At development time, we will try to illustrate the semantics SCOrWare tools in order to increase the
re usability of components by a better knowledge of the already develop components

5.5 Cover of the demonstrator

During the realisation of the demonstrator we will evaluate the SCOrWare tools and the SCA
platform for the reuse and enrichment of components. We will compare it with a JEE approach with
our actual best practices.
As aresult, the demonstrator will be lead by two main axis:
e Reuse and enrichment of components
e SCA and JEE
We will evaluate these axis on each step of a project and framework management:
e Conception
Development
Installation
Production

In this chapter we list all interesting check points we would like to validate.

5.5.1 Conception

Iterative and Retro conception are most in used in EdifiXio project. As a result we will try to point out
if SCA and SCOrWare tools leads to any incompatibility of such approaches.

The idea is to see if SCA approach can be easily used with EdifiXio project without any major
changes or if such approach imply some radical changes. In this second case, the demonstrator will
help us to listall these changes.

Then we will focus on the two following check points for evaluate SCA and SCOrWare tools at
conception level :

e Re usability of a concept or a pattern.

e Impact of component scales for development costs and production performances.

5.5.2 Development

Even if the demonstrator will be composed of few SCA components, we will try to illustrate the
reality of EdifiXio Framework. This means that we will try to measure the impact on SCA approach
in a real industrial context.
As aresult, the components management at developmernt time will be point out regarding these
criteria:
e Able to deal with more than 200 components
Cost of adding a components
Cost of finding an existing component
Cost for enrichment of an existing component
Packaging time
Compilation time
Learning curve
e Tools dependencies
Then all these data will be compared with our current JEE approach.

The re usability of JEE component into SCA components will be illustrated with the EJB Delivery
Note component integrated on the Front Office SCA composite.
The goal of such case is to evaluate the compatibility and relevance of

e using already created JEE components into a new SCA projects.

e Migrating functionality by functionality an existing project into SCA standard.

Then thanks to the Order Entry component, we will stress on a particular technical point: the
transaction management and especially two phase commit (see §2.3.4 for more details)

Moreover, we will evaluate the integration of SCA and SCOrWare tools with our existing Tools (see
§3.2), API (JDO2, JPA, Struts, Flex, ...) and Framework (Speedq JOnAS, JORAM, Tomcat, SAP
Netweaver, ...). Thanks to that we will evaluate the work to migrate or use the EdifiXio Framework
with SCA.

5.5.3 Installation

The cost of an SCA project installation will be evaluated in terms of time and complexity.
The SCOrWare tools impacts will be pointed out.

Even if we won't set up a specific Qualification environment for the demonstrator. We will try to
identify any blocking point. For instance, we are expecting that only Environment parameters had to
be changed from an Integration environment to a Qualification one (and then to a Production one).
The isolation of such Environment parameters from Architecture parameters and Applicative
parameters would be an important check point.

As aresult the Demonstrator is split in several runtime, running on SCA standalone (the business

service), on Tomcat embedded (presentation layer), on JOnAS JEE (JEE components) and on SAP
Netweaver (back office components).

5.5.4 Production

The demonstrator production target simulation should illustrate how SCA and SCOrWare tools may
help us to reduce project costs with a better usage of the existing components.

The global performance (time response, resource consumption, ...) will be an important check point.
Another important check point from a production project is the availability to be monitored from a
technical point of view (Break down detection, Pool, Memory, I/O, ...) and a functional one (Alert
mechanism, data traceability).

Even if we are not expected SCA to have an already implemented monitoring solution, we will expect
SCA and SCOrWare tools to easily allow us to plug a monitoring system. For instance, the usage an
JBI binding instead of a RMI one should allow us to take benefice of the PEtALS monitoring and
traceability message system.

6 ORCHESTATION OF TRANSACTIONS (Task 3.4)

Change history vs. version 1.0: the works done for this usage demonstrator are fully specified in the
first version 1.0 (October, 2007) of the specification, as no more work has been done, since the
withdraw of the main partner involved in this task, i.e. Amadeus, during the 1* year of the project.

7 NETWORK MONITORING (Task 3.5)

Change history vs. version 1.0: this usage demonstrator has been proposed during the second part of
the project, introducing a new industrial partner (Thales Communications), following the withdraw of
Amadeus. This part of the final version of the specification presents this new usage demonstrator, not
included of course in the first version 1.0 (October, 2007).

7.1 Motivation

Thales is right now moving towards a new business perspective: from product provider, it is moving
progressively to product and service provider. This implies an emerging interest in minimizing the
cost of integrating different “pieces of software”. In these terms, Thales is studying different
approaches to bring flexibility and dynamical capabilities into software integration. One of the main
topics of interest on which we could apply the SCA technology is network management and
monitoring. Typically, these applications cover a set of different but interconnected subjects: Trouble
Ticketing, Inventory, Monitoring, Discovery, Fault Management, etc. The main goal of our scenario
is to bring some of these modules into the SCA world in order to build components that can be
reused, exchanged and easily extended for network monitoring and management purposes. In the
scenario a system administrator will manage the network by using the functionalities of four different
components. The application will allow the system administrator to:

e Store information about the entities of the network in an inventory. This permits having a list
of hosts and services that are currently in the network.

e Discover automatically running hosts and services. Inventory allows to create entities
manually, but when deploying new equipment it might be more useful to discover the
equipment and then just export the data to the inventory

e Monitor the services running in the hosts of the network. The administrator would have access
to a list of alarms generated by the monitoring component. These alarms are generated
whenever the status of a service of a host changes.

e Launch these tasks from a management GUI. This interface will show the list of entities of the
inventory, allow managing discovery processes and listing the generated alarms.

With this scenario we believe we can prove the effectiveness of SCA applications under the scope of

typical information system management. Acquiring, testing, replacing, upgrading and integrating
different software components is a real challenge, which imposes always an important financial cost.
They match with SOA and the different approaches proposed by entities like the TeleManagement
Forum (TMF). Moreovernot only does the SCA approach match perfectly the SOA approach taken in
OSS (Operation Support Systams), but it also fits the crucial requirement of flexible design of various
monitoring networks accordingto changing deployment contexts and their assembly out of the basic
standard components that have been outlined above. Finally, SCOrWare-specific enrichments around
the SCA standard maximize such flexibility : below the service layer, the integration layer provided
by the SCA-compatible PEtALS ESB; above, the business workflow layer provided by the JWT /
Scarbo SOA-ready BPM solution; and the methodology and tools developed and tested all along the
project.

7.2 Architecture

The architecture can be decomposed in 4 different parts: the discovery module, which is in charge of
the discovery of new network elements and services. It will provide info to populate the inventory; the
inventory module, which stores information of hosts and services (imported from the discovery or
created explicitly); the monitoring module, which notifies detected problems onthe hosts and
services, and the visualization module, which displays host and service information and the list of
generated alerts. There is another element which will play a part in the scenario which is the creation
of a virtualized network that will be used to perform both the discovery processes and monitoring.

@ =] =]

(s

VNUML
Wﬁuaﬁzﬂed Network

lllustration 46: network monitoring functional architecture

7.2.1 Components overview

As seen in the architecture, the four different modules will be built as four different SCA components.

7.2.1.1 Discovery component

The discovery module will be in charge of performing the discovery of new entities in the network.
Entities to discover can be hosts, that is physical computers, or technical services running inside a
host, such as http, SMTP, netbios or other services. A discovery agent is in charge of collecting this
information and adapting it to the desired format. The export functionality permits obtaining
information about discovered network resources in an easy way, which can be used to populate the
inventory.

7.2.1.2 Inventory component

The inventory module stores information about network entities found in the information system. This
module allows the creation and persistence of entities (also known as managed entities). There are
two different ways of creating this entities:

e Using make and create methods: methods for entity creation are generic, so it is possible to
create any type of entity supported in the implementation by using the same set of methods.

e Using the import capabilities of the module: by invoking first the export functionality of the
discovery module it is possible to import the discovery data automatically into the inventory.

7.2.1.3 Visualization component

The visualization module permits the utilization of all the functionalities available in the other
modules. In first place, the GUI shows a graphical representation of the entities in the inventory, hosts
and their services. Furthermore it allows creating, updating and removing these entities in an easy
way. On the other hand, a console shows information about the events and status of the application.
The different menus permit launching discovery process and performing the export/import
capabilities.

7.2.1.4 Monitoring component

The monitoring module is in charge of firing alarms whenever a service does not function properly.
This information will be sent to the visualization module, so the administrator can react and fix the
detected problem. Different types of alert detectors can be set up for monitoring services in different
machines.

7.2.2 Workflow overview
There are two typical workflows that can take place in our scenario.

A first scenario would consist in the deployment of a new local area network. The administrator
would launch, in first place, a discovery process which will obtain information about all the new
equipment found in the network (hosts and their services). Then, by using the export/import
functionality of the discovery and inventory modules, the inventory will be populated with
information about the discovered entities. Finally, the administrator can show a graphical
representation of all the entities thanks to the visualization module. Since the discovery process may
not have been accurate enough, the administrator can edit/update information in each entity.

The second scenario would consist in alarm surveillance. At first, the administrator would decide
which machines and services should be monitored. Once they are selected, the GUI will alert the
administrator of the generation of new alarms. The administrator would then fix the problem
manually (no reconfiguration module in the demonstrator).

7.2.3 Architecture evolution

The business of doing network monitoring is a pretty straightforward one. Focusing on the “Deploy
new network” scenario, it always involve the steps of getting data about network services first, then

storing it, then manually polishing it. What changes is the context, that is the monitored network(s),
that may change over time or be completely new. In order to address ths problematic in an efficient
manner, we’ll demonstrate several approaches to handle (at methodology, design and runtime level)
the case of how two Discovery processes deployedin different networks can report to a single
inventory.

First this will be done by SCA configuration of a simple additional Discovery service implementation
that composes two other referenced Discovery services.

Following this, we’ll show how a “deploy new network™ workflow process can canpose any number
of Discovery services.

Then we’ll show how such processes can follow changes in the design of SCA services they use,
thanks to the bridge built by the STP Intermediate Meta model between the SCA editor that changes
them and the JWT Workflow Editor that helps adapt to these changes.

Finally we’ll create an abstract template of the “deploy new network” workflow from which any such
workflow canbe designed for any concrete network(s) to monitor. We’ll also study how semantics
may help doing the link from abstract to concrete in a business-meaningful way.

7.3 Functional specifications

7.3.1 Discovery component

The discovery module provide two different sets of functionalities: in first place, the ones related to
the discovery process management: launching or stopping discovery processes. It is also possible to
obtain a list of running discovery processes. Besides, the export functionality permits obtaining the

information retrieved during a discovery process.

7.3.2 Inventory component

The inventory module stores information about network entities found in the information system. In
these terms, the inventory allows creating, reading, updating and deleting entities. Since these
methods are generic, each method allows the creation of different types of entities. Besides, it is
possible to retrieve information about the types supported in the inventory.

7.3.3 Visualization component

In first place, the visualization component permits the visualization of network entities in a GUI.
Entities are represented in a graph where hosts are interconnected and each technical service is
attached to its corresponding host. Moreover, the GUI contains a console which will show
information about fired alarms. Finally, the administrator will be able to use all discovery, inventory
and monitoring functionalities from the graphical interface.

7.3.4 Monitoring component

The monitoring module will provide information about the alarms generated when monitoring the
devices in the virtual network. The component provides lists of alarms, which indicates the current
state of a service in a specific machine. Then, thanks to this information, the administrator will verify
manually the behavior of a service in order to ensure the performance of the service.

7.4 Technical specifications

7.4.1 SCA Component Diagram

lllustration 47: network monitoring SCA component diagram

7.4.2 Bindings

In our case, we will use a Web Service binding for component communication, since these four
modules are usually detached. However, in order to generate the callbacks from the discovery and
monitoring components to the visualization, we will use a JMS binding via PetALS.

7.4.3 Provided functionalities

7.4.3.1 Discovery component

This is the list of functionalities provided by the discovery module:

generated discovery
report

Method Parameters Return type Description
startDiscovery None Id: identities the Launches a new
discovery process discovery process (non-
started blocking), and retums
an identifier of the
current process
StopDiscovery Id: identities the Id: identities the Tries to stop the
discovery process to discovery process discovery process with
stop started the given identifier
exportDiscoveryData | url: location of the None Creates a report (XML)

file with information of
the discovery

7.4.3.2 Inventory component

This is the list of functionalities provided by the inventory module:

Method Parameters Return type Description
Create/read/update/del | (to be specified per (to be specified per Creates, reads, updates
ete Managed Entity method) method) and deletes hosts or

services from the
inventory
ImportDiscoveryReport |Discovery Report: the | None Obtains a report (XML)
discovery report with file with information of
the information of the the discovery
discovery
getManagedEntityType |None Array of types An array with the types
s supported by the
inventory

7.4.3.3 Visualization component

The visualization exposes as services all the services from other components (so references are
reachable from the application) that have to invoked by the GUI. Apart from these services, the
visualization component needs two callbacks in order to update the graphical interface responding

two different events:

Method Parameters Return type Description
OnDiscoveryProcessFi | A text representation | None The method is invoked
nished (reference from |informing of the end of when a discovery
the Discovery Module) |the discovery process process is finished. A

notification message is

shown in the GUI
OnNewAlarm The created alarm None The method is invoked
(reference from the when a new alarm is
Monitoring Module) created. The alarm is

shown in the alarm list

7.4.3.4 Monitoring component

This is the list of services provided by the monitoring module:

Method Parameters Return type Description
getAllAlarms None A list of Alarms Returns a list of all
generated alarms
getAlarmsByTemplate |None A list of Alarms Returns a list of all
alarms generated that
match the given alarm

7.4.4 Workflows

7.4.4.1

“Deploy new network” workflow and wizard

Open Wide adds a new “Tool” sub menu action “Deploy new network” to the OSSj GUI that shows

the GUI to input necessary network discovery information and then executes a configured “Deploy
new network” workflow. Open Wide designs such a workflow using JWT WE by letting it call the
default discovery service and then the default inventory service using Web Services.

7.4.4.2 “Handle alarm” workflows

Open Wide will define a workflow designed to handle monitoring alarms. This workflow alerts an
administrator, then allows him to manually fix the problem in a manual workflow task, then notify
listeners. To implement this use case, the administration interface of the Nova Bonita workflow
engine will be used as UL

Open Wide will study real time notification to start and end the workflow, using the PEtALS JMS
binding integrated in the demonstrator by EBM WebSourcing.

7.4.5 Evolution of the architecture

Here is how Open Wide implements said different approaches of how two Discovery processes (and
more) deployed in different networks can report to a single inventory.

7.4.5.1 SCA-composed Discovery services

Simple SCA configuration will achieve it with the help of an additional DiscoveryService Java
implementation that calls successively two other SCA-injected DiscoveryService references. This will
be done by Thales with the help of Open Wide.

7.4.5.2 Workflow-composed Discovery services

Then several “deploy new network™ workflow process will be designed using JWT to compare
designing calls to SCA-defined services versus Web (WSDL defined) services.

7.4.5.3 Following service design changes in JWT processes design

To achieve this, Open Wide develops in JWT synchronization of a JWT model's service applications
with services managed by a given underlaying STP IM model. The underlaying STP IM model being
used is configured in a JWT EMF Aspect meta model extension of the JWT model. Synchronization
is started by aJWT external Action. Existing service applications are recognized by their
configuration (type, service interface, ...), missingones are created, deleted ones are traced through
warnings.

Once done, Open Wide showcases it in the following use case : the composite configuring the default
DiscoveryService implementation being edited in the SCA editor, its service definition is changed,
then (through the SCA Editor’s integration with STP IM) this change is published in the common
underlaying STP IM model ; then the previous “Deploy new workflow” beingedited in JWT, the user
synchronizes JWT service applications with services managed by the common underlaying STP IM
model, and changes the workflow as necessary.

7.4.5.4 Abstract semantical workflow template

Finally we’ll create an abstract template of the “deploy new network” workflow from which any such
workflow can be designed for any concrete network(s) to monitor. We’ll also study how semantics
may help doing the link from abstract to concrete in a business-meaningful way.

7.5 Coverage

7.5.1 FraSCAti and SCA Editor

Java implementation, interface and annotations, WS and SCA binding, Service, Reference in all
components ; included composite in “SCA-composed Discovery services’use case

7.5.2 FraSCAti-integrated PEtALS

The SCA Service Engine enables integration of FraSCAti in PEtALS. Features ofthis component are:
e Instantiate SCA components using FraSCAti during deployment.
e Expose the services of the SCA composite to the NMR

o Unmarshall incoming message exchanges to Java method call.Marshall returning results in
message exchanges.

e Call distant references of the SCA composite as JBI endpoints.

Such an integration implements delegation of PEtALS the management of binding references in SCA
composites. Such a delegation conforms to the “spirit” of SCA as it decouples component
implementations from bindings: component implementations are run by the SCA runtime, the SCA
Service Engine, whereas binding are bound by PEtALS binding components.

In the context of the demonstrator, using the SCA service engine brings additional value on the
following points:

e Generate the callbacks from the discovery and monitoring components to the visualization,
using the JMS binding component.

o The discovery and monitoring composites send notification ata JMS queue using the
SCA reference with JMS binding.

o The visualization composite has a service with a JMS binding to receive notification from
a JMS queue.

e Monitor any remote call made through PEtALS (by using its monitoring console).

e We can use PEtALS policies (reliability, security ..) for the communications between different
SCA composites running into PEtALS (discovery, monitoring and visualization composite).

7.5.3 JWT and Scarbo

e Workflow business and technical design, meta model extensions (aspects), integration with
SCA editor, calls of WS and SCA services, execution as packaged XPDL on Scarbo
(TaskEngineFramework, FraSCA1, Nova Bonita) runtime in all workflows.

e Synchronization with SCA Editor through STP IM in “service design evolution” use case,
ontology view and semantic resolution of abstract annotated SCA services in “abstract
workflow template” use case .

7.6 Methodology and results

7.6.1 Project layout and SOA management

SOA management revolves around managing service definitions and their uses (implementors and
clients). In this demonstrator, decoupled remoting is achieved mainly through Web services (which
FraSCAUti supports through its CXF integration). Therefore being SOA implies that we have to
manage their WSDL interfaces. Moreover, one of the benefits of FraSCAti as a native Java SCA

implementation is that it allows developments to be done fully in the Java world . Therefore to take
advantage of it, we'll design servicesin a Java-first way and manage both their Java interface and
generated WSDL.

The layout of (maven-built and assembled) development projects mirrors such SOA requirements.

Domain services (i.e. "the Monitoring SOA") are all defined in the monitoring-API project. They are
defined as Java interfaces, WSDL is generated from there, but these Java interfaces can be used in
SCA composites as such ones.

Each service implementation implies at least two projects. Let's takethe Discovery process
implementation as an example:

e monitoring-discovery-impl contains applicationspecific local implementation code ofthe
service, as well as its unit tests (using annotated Junit4)

e monitoring-discovery-sca contains SCA files configuring the actual deployment. Remote
exposition of the service uses mainly WS bindings, and required remote services are injected
in them thanks to WS bindings as well. Here are also integration, and finally the Launcher of
the implementation (does a FraSCAti standalone startup).

Other projects can provide JBI artifacts (Service Units, Service Assemblies) required to deploy
PEtALS specific features of the demonstrator. Finally maven repo is a private maven repository to
put any kind of non-public maven dependencies required by implementations.

	1INTRODUCTION
	2METHODOLOGICAL THOUGHTS
	3A SCA APPROACH FOR SCIENTIFIC COMPUTING (Task 3.1)
	3.1 Introduction, business / system context
	3.1.1 Motivation
	3.1.2 RNTL SCOS/V3D context and additional contributions from SCA

	3.2 Theoretical analysis
	3.2.1 Scenario A: Processing and concept of visualization pipeline
	3.2.2 Scenario B: Use SCA to make the server side a composite application
	3.2.3 Scenario C: Use semantic to ease process definition
	3.2.4 Scenario D: Create a new processing unit and test it on the client side
	3.2.5 Scenario E: Deploy a new processing unit and test it on the server side
	3.2.6 Scenario F: Create an independent application without server connection

	3.3 Implementation and tests
	3.3.1 Demonstrator 1: SCA-CassandraPCS
	3.3.2 Demonstrator 2: Static data processing
	3.3.3 Demonstrator 3: SCA for complex data processing

	3.4 Architecture / technical design – specification
	3.4.1 Demonstrator 1: SCA-CassandraPCS
	3.4.2 Demonstrator 2: Static data processing
	3.4.3 Demonstrator 3: SOA for complex data processing

	3.5 Coverage of the demonstrator (SCA spec, SCOrWare technical platform)
	3.6 Lessons learned / methodology / best practices / demonstrators' results
	3.7 References

	4COLLABORATIVE DEVELOPMENT (Task 3.2)
	4.1System context
	4.1.1Forge domain model
	4.1.2Project portal domain model
	4.1.3Business model
	4.1.4Application domain
	4.1.5Project portal: CMS features in a forge
	4.1.5.1Context
	4.1.5.2Project communication management and publication
	4.1.5.3Project evolution, feature requirements and roadmap
	4.1.5.4Project use cases management
	4.1.5.5Project integrations (technology stack) management

	4.2Usage scenarios
	4.2.1Forge #1: new source code revision quality check
	4.2.2Forge #2: development project road map
	4.2.3Project portal #1: managing use cases, features and project integrations
	4.2.4Project portal #2: CMS features

	4.3Design
	4.3.1Forge components
	4.3.1.1Global view
	4.3.1.2Implementation view

	4.3.2Quality check scenario realization
	4.3.3Development project progress dashboard scenario realization
	4.3.4Project portal components
	4.3.5Forge: SCA design
	4.3.5.1Global design
	4.3.5.2Implementation design
	4.3.5.3Services
	4.3.5.4Components
	4.3.5.5Composites

	4.3.6Project portal: SCA design
	4.3.6.1Global design
	4.3.6.2Implementation design
	4.3.6.3Components
	4.3.6.4Composites
	4.3.6.5Project development

	4.4SCA specification coverage
	4.5Lessons learned
	4.5.1FraSCAti vs. Tuscany
	4.5.2Benefits of SCA
	4.5.2.1At design stage
	4.5.2.2At development stage

	5REUSE AND ENRICHMENT OF COMPONENTS
CORPORATE FRONT-END LINKED WITH SAP BACK-OFFICE (Task 3.3)
	5.1Introduction – Context of the Business
	5.2Functional Specification
	5.2.1Introduction
	5.2.2Web Application
	5.2.3Front End services
	5.2.3.1Delivery Notes
	5.2.3.2Price and Availability service
	5.2.3.3Order Status service
	5.2.3.4Order Entry service

	5.2.4Real Time service
	5.2.5Middle Office service
	5.2.6Front Local Database
	5.2.7Back Offices

	5.3Methodology
	5.3.1Target Environments
	5.3.1.1Demonstration environment
	5.3.1.2Development environment
	5.3.1.3Integration environment
	5.3.1.4Qualification environment (out of demonstrator scope)

	5.3.2Tools

	5.4Technical Specification
	5.4.1Technical Components
	5.4.1.1Web Application
	5.4.1.2Front end services
	5.4.1.3Real Time service
	5.4.1.4Middle Office service
	5.4.1.5Front Local Database
	5.4.1.6Back Offices
	5.4.1.7JEE Service

	5.4.2Technical topics
	5.4.2.1JBI Integration
	5.4.2.2Contextual Application

	5.5Cover of the demonstrator
	5.5.1Conception
	5.5.2Development
	5.5.3Installation
	5.5.4Production

	6ORCHESTATION OF TRANSACTIONS (Task 3.4)
	7NETWORK MONITORING (Task 3.5)
	7.1Motivation
	7.2Architecture
	7.2.1Components overview
	7.2.1.1Discovery component
	7.2.1.2Inventory component
	7.2.1.3Visualization component
	7.2.1.4Monitoring component

	7.2.2Workflow overview
	7.2.3Architecture evolution

	7.3Functional specifications
	7.3.1Discovery component
	7.3.2Inventory component
	7.3.3Visualization component
	7.3.4Monitoring component

	7.4Technical specifications
	7.4.1SCA Component Diagram
	7.4.2Bindings
	7.4.3Provided functionalities
	7.4.3.1Discovery component
	7.4.3.2Inventory component
	7.4.3.3Visualization component
	7.4.3.4Monitoring component

	7.4.4Workflows
	7.4.4.1“Deploy new network” workflow and wizard
	7.4.4.2“Handle alarm” workflows

	7.4.5Evolution of the architecture
	7.4.5.1SCA-composed Discovery services
	7.4.5.2Workflow-composed Discovery services
	7.4.5.3Following service design changes in JWT processes design
	7.4.5.4Abstract semantical workflow template

	7.5Coverage
	7.5.1FraSCAti and SCA Editor
	7.5.2FraSCAti-integrated PEtALS
	7.5.3JWT and Scarbo

	7.6Methodology and results
	7.6.1Project layout and SOA management

