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Abstract

We give a survey of results on global stability for deterministic compartmental epidemiological models.
Using Lyapunov techniques we revisit a classical result, and give a simple proof. By the same methods
we also give a new result on differential susceptibility and infectivity models with mass action and an
arbitrary number of compartments. These models encompass the so-called differential infectivity and
staged progression models. In the two cases we prove that if the basic reproduction ratio R0 ≤ 1,
then the disease free equilibrium is globally asymptotically stable. If R0 > 1, there exists an unique
endemic equilibrium which is asymptotically stable on the positive orthant.

AMS Subject Classification: 34A34, 34D23, 34D40, 92D30.
Keywords: Nonlinear dynamical systems, global stability, Lyapunov methods, differential suscepti-
bility models.

1. Introduction

The primary objective of this paper is to give two results on global stability for some epidemiological
models using Lyapunov techniques. Using a new result for systems of the type ẋ = A(x) x, we revisit
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a celebrated result of Lajmanovitch and Yorke [39] and give a simple proof. The second result is for
differential susceptibility and infectivity models with mass action. We generalize a result of [26, 29]. But
before we will give an overview of the literature concerning the problem of stability in epidemiological
models

In [59] J.A. Jacquez says:

A major project in deterministic epidemiological modeling of heterogeneous populations is
to find conditions for local and global stability of the equilibria and to work out the relations
among these stability conditions, the threshold of epidemic take-off, and endemicity, and the
basic reproduction.

We denote in this paper by R0 the basic reproduction number. The basic reproduction number, a
key concept in epidemiology, is defined as the expected number of new cases of infection caused by a
typical infected individual in a population of susceptibles only and is an ingredient in almost all papers
using mathematical modeling for infectious diseases. An abundant literature have been devoted to R0

(see [9, 10, 17, 18, 34, 59, 66, 67] and the references therein) after the seminal paper [8].
The citation before was written in 1982, at this time no too many results was known. What is the

situation 25 year later ? As early as 1976 the stability analysis for the classic SIR or SIRS models was
well known [20, 21]. The reason was that the study of stability for these models was reduced to the study
of 2-dimensional systems, hence phase methods could be used : Poincaré-Bendixson theorem. Periodic
orbits are ruled out using Dulac criteria or condition of Busenberg and van den Driessche [7].

For many infectious diseases the transmission occurs in a heterogeneous population, so the epidemi-
ological model must divide the population into subpopulations or groups, in which the members have
similar characteristics. This division into groups can be based not only on mode of transmission, contact
patterns, latent period, infectious period, genetic susceptibility or resistance, and amount of vaccination or
chemotherapy, but also on social, cultural, economic, demographic, or geographic factors. This is the ratio-
nale for the introduction of multi-group models. In the epidemiological literature, the term “multi-group"
usually refers to the division of a heterogeneous population into several homogeneous groups based on
individual behaviour. The interest in multi-group endemic models originally stems from sexual transmitted
diseases such as gonorrhea or HIV/AIDS. The pioneering paper of Lajmanovitch and Yorke in 1976 [39]
provides a complete description of the dynamics of n groups of SIS systems for subpopulations of constant
size. The authors use Lyapunov techniques to prove that either all trajectories in R

n
+ tends to 0, or else

there is a unique endemic equilibrium x̄ in the positive orthant and trajectories in R
n
+\{0} tends to x̄.

Other types of high dimensional systems are the so-called differential infectivity (DI) and staged
progression (SP) models. The staged progression model [23,34,59] has a single uninfected compartment,
and infected individuals progress through several stages of the disease with changing infectivity. This
model is applicable to disease with changing infectivity during the infectious period such that HIV or
disease with asymptomatic carriers such that HBV or tuberculosis. The differential infectivity model
has been also introduced to take into account some specificity of HIV/AIDS. In a DI model the infected
population is subdivided into subgroups of different infectivity. Upon infection, an individual enters some
subgroup with a certain probability and stays in this subgroup until becoming inactive in transmission.

For multigroup SEIRS models of constant size many results have demonstrated the global stability
of the disease free equilibrium when R0 < 1 and the local asymptotic stability of an unique endemic
equilibrium when R0 > 1 [19, 64, 65]. The most difficult task is the global stability of the endemic
equilibrium when R0 > 1, when this is possible. Actually for general multigroup models the uniqueness
of the endemic equilibrium non longer holds and the disease free equilibrium may be locally, but not
globally, asymptotically stable [34, 59, 67].
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The global stability when R0 > 1 of SEIR models with constant size has long been conjectured but
only proven in 1995 [45]. The proof relies heavily on the competitive structure of the system, and the fact
that 3 dimensional competitive systems satisfy the Poincaré-Bendixson theorem [22, 60, 61]. When the
system is not competitive another approach consists to show that the system satisfies a Bendixson criterion
which is robust under C1 perturbation [46, 49, 50, 62].

Since these path-breaking papers numerous results of global stability for the endemic equilibrium have
been obtained for low dimensional systems;

• For SEIRS systems, with fraction of classes (then the system reduces to a 3-dimensional systems)
for small or large temporary immunity [44],

• For SEIR model with vertical transmission [47]. The study of stability is reduced to a 3-dimensional
system. Since this system is not competitive the second approach is used,

• For SEIR model with varying population size [43] for the system of fraction of classes,

• For SIRV models (V for vaccinate class) with constant population size and mild parameters cons-
traints [2],

• For SVEIR models [14] with small mortality,

• For Staged progression models in dimension 3 and 4 [56],

• For SEI models with immigration of latent and infectious [55],

• A model of dengue which is reduced to a 3 dimensional competitive system [67],

• A 5 dimensional staged progression model [13], for which the asymptotic stability of the endemic
equilibrium reduces to a 3 dimensional system permitting to apply the Li-Muldowney technique [46].

For arbitrary dimensional system, the most promising method may be that of Lyapunov. The systematic
use of Lyapunov function in studying stability problems is relatively recent. The exception is the result of
Lajmanovitch andYorke evoked before. However, Lasalle-Lyapunov theory has been used in [34,42,57,59]
to study the stability of classic SIRS models.

In 2004, Korobeinikov and Maini using a Lyapunov function [38] demonstrate simply the result of Li

and Muldowney for the endemic equilibrium. The Lyapunov function used is V =
n∑

i=1

ai(xi − x̄ ln xi).

This function has a long history of application to Lotka-Volterra models [5, 12, 16, 63] and was originally
discovered byVolterra himself, although he did not use the vocabulary and the theory of Lyapunov functions.
Since epidemic models are “Lotka-Volterra" like models, the pertinence of this function is not surprising.
This Volterra-Lyapunov function has been used in epidemiological models at the end of the eighties.

Beretta and Capasso [4] use a skew-symmetry condition on the Jacobian of the matrix of the system to
give a necessary condition for the global stability of the endemic equilibrium.

For a SIRS multigroup model with constant subgroup sizes, Lin and So [41] show that the endemic
equilibrium is globally asymptotically stable if the contact rate between subgroups is small. These two
results are actually perturbation results of the situation where the endemic equilibrium is known to be
globally stable.

Since the publication of the result of Korobeinikov and Maini the “Volterra-like" Lyapunov functions
has been used to address the stability of high-dimensional systems with mass action. The difficulty is
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in choosing the coefficient and in proving that the derivative is nonnegative. The global stability of DI
model with mass action is demonstrated in [52]. The global stability of SP model, eventually with latent
classes, with mass action is proved in [15, 31]. Stability of intra-host models with different strains [30]
(which contained as a particular case, SE1 · · · EkIR models with multiple strains) is treated in [1,30]. The
stability of differential and staged progression latent classes, with one infectious class is solved in [31].
Two models of tuberculosis are studied in [53]. The stability of a model with complex graph interaction
between latent classes and one infectious class is addressed in [54].

We give a brief outline of the paper. In Section 2, we consider a system similar to the system in [39].
We compute R0 and prove that if R0 ≤ 1, the DFE is globally asymptotically stable and if R0 > 1,
then a unique equilibrium exists which is globally asymptotically stable on R

n
+\{0}. In Section 3, we

present a system with different classes of susceptible individuals and staged progression through latency
and infectious classes. Using a “Volterra-like” Lyapunov function we obtain results as before: if R0 ≤ 1
the DFE is globally asymptotically stable and if R0 > 1 then a unique equilibrium exists which is globally
asymptotically stable on the positive orthant.

2. A n Groups SIS Model

Throughout the paper we will use the following classical notations. We identify vectors of R
n with n × 1

column vectors. The euclidean inner product is denoted by 〈 | 〉, then ‖z‖2
2 = 〈z | z〉 is the usual euclidean

norm. The family {e1, · · · , en} denotes the canonical basis of the vector space R
n. We denote by 1 the

vector with all components equal to 1, i.e. 1 = e1 + · · · + en.
If x ∈ R

n we denote by xi the i-th component of x. Equivalently xi = 〈x | ei〉. For a matrix A we
denote by A(i, j) the entry in row i, column j . For matrices A, B we write A ≤ B if A(i, j) ≤ B(i, j)

for all i and j , A < B if A ≤ B and A �= B, A � B if A(i, j) < B(i, j) for all i and j . The notation
AT denotes the transpose of A. Then 〈v1 | v2〉 = vT

1 v2. The notation A−T will denote the transpose of the
inverse of A. If x ∈ R

n, we denote by diag(x) the diagonal matrix whose diagonal elements are given by
x.

A Metzler matrix A is a matrix such that A(i, j) ≥ 0 for any indices i �= j [6, 35, 51]. These matrices
are also called quasipositive matrices [61]. Metzler matrices are the opposite of M-matrices [6, 67]. We
prefer to use Metzler matrices since they appear naturally in compartmental systems.

In this section we will consider the following system

ẋ =
[
D + B − diag(x) B

]
x. (2.1)

where D is a stable Metzler matrix and B ≥ 0 is a nonnegative irreducible matrix.
To motivate the consideration of such a system we consider n groups with constant population size and

a disease which confer no immunity after recovery. We model the contact by the mass action law. If we
denote by Si and Ii the respective number of susceptible and infectious individuals in group i, Ni = Si +Ii ,
the system is, for i = 1, · · · , n




Ṡi = µi Ni − µi Si −
n∑

j=1

βi,j

Si

Ni

Ii + γi Ii

İ =
n∑

j=1

βi,j

Si

Ni

Ii − (γi + µi) Ii.

(2.2)
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Since the population is constant, it is sufficient to know the Ii . If we set xi = Ii

Ni

, β̃i,j = βi,j Nj and

αi = γi + µi we obtain a system of ODE

ẋi = (1 − xi)
∑

β̃i,j xj − αi xi. (2.3)

that we can write in compact form

ẋ =
[
D + B − diag(x) B

]
x. (2.4)

with B =
(
β̃i,j

)
and D = −diag(αi). This system is the system considered in [39], where the system

addressed has the structure of (2.1). In this model, the matrix B describes the contact interaction between
groups. We recall the following definition [6, 61, 66].

Definition 2.1. A matrix A of size n×n, n ≥ 2 is called irreducible if for any proper subset I of {1, · · · , n}
there are i ∈ I and j �∈ I such that A(i, j) �= 0.

Epidemiogically speaking the irreducibility of B (or Q) means that no group is contact isolated in and
out from the remaining groups. It is now easy to interpret the meaning of the system (2.1). The matrix
D describes the transfer of individuals out of compartments and B − diag(x) B the disease transmission.
The model can also be written ẋ = [D + diag(1 − x) B] x. It is clear that [0, 1]n is a compact positively
invariant absorbing set for this system.

2.1. The Basic Reproduction Number

We denote by ρ(A) the spectral radius of a matrix A, which is defined, if Sp(A) denotes the spectrum of
A, by

ρ(A) = max{|λ| | λ ∈ (Sp(A)}
and the stability modulus α(A)

α(A) = max{	(λ) | λ ∈ (Sp(A)}.
Using the framework of [67] the matrix −D−1B is the next generation matrix of (2.1) and the basic

reproduction number is R0 = ρ(−D−1B). We now will use a result of Varga [68,69] (rewritten in term of
Metzler matrices).

Definition 2.2. [Regular splitting] For a real Metzler matrix M, M = � + N is a regular splitting if �

is a Metzler stable matrix and N ≥ 0 is a nonnegative matrix.

Now we can give the following classical theorem.

Proposition 2.3. [Varga, 1962, Theorem 3.13, [69]] Let M = � + N be a regular splitting of M, a real
Metzler matrix. Then M is Metzler stable if and only if ρ(−N�−1) < 1.

The proof of Proposition 2.3 is in Varga (1960). It is also in Bermann and Plemmons [6]: the condition
N45 expressed in terms of M-matrices. We see from this proposition, by a continuity argument, that for
any regular splittings of a Metzler matrix M we have

α(M) < 0 ⇐⇒ ρ(−N�−1) < 1,

α(M) = 0 ⇐⇒ ρ(−N�−1) = 1.

(2.5)
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Thus any regular splitting gives an equivalent threshold condition α(M) on the parameters. This has a
consequence for our system : D+B is a regular splitting and the stability of D+B is completely related to
R0 and its position relatively to 1. Since this equivalence is independent from the splitting, we can replace
the system (2.1) by the same system where we assume that D is a diagonal matrix and incorporating the
off-diagonal elements in B, this modification let the new matrix B still irreducible. This does not change
the generality of the conclusion. However only the original ρ(−D−1B) has a biological meaning, the
others are equivalent thresholds. From now on we will assume that D is a diagonal matrix.

2.2. Existence and Uniqueness of an Endemic Equilibrium

We will show that there exists a unique equilibrium x̄ � 0 if and only if R0 > 1. An equilibrium such
that x̄ � 0 is called a strongly endemic equilibrium. The method of proof is inspired by the methods used
by Thieme [19, 64, 66]. We show that if there exists an endemic equilibrium x̄ > 0 then R0 > 1. For the
convenience of the reader we recall the following result on Metzler matrices [6].

Theorem 2.4. Let A be an irreducible Metzler matrix

1. If there exists x > 0 such that A x > λ x then α(A) > λ.

2. If there exists x > 0 such that µ x > A x then µ > α(A).

If A is only Metzler, the preceding relations hold with > replaced by ≥. If A is an irreducible
nonnegative matrix, we have analogous inequalities, obtained in replacing the stability modulus α(A) by
the spectral radius ρ(A) in the preceding inequalities.

If there exists an endemic equilibrium x̄ > 0 it satisfies

x̄ = −D−1B x̄ + diag(x̄) D−1B x̄.

Since D is a Metzler matrix, then −D−1 > 0 [61]. As B is irreducible and −D diagonal, with positive
diagonal terms, −D−1B is also irreducible. Therefore −D−1B x̄ � 0 and from the preceding relation, we
deduce x̄ � 0. A consequence is also diag(x̄) D−1B x̄ � 0. Finally we obtain

x̄ < −D−1B x̄.

which in turn implies using Theorem 2.4.

R0 = ρ(−D−1B) > 1.

Conversely, we have to show that if R0 > 1, then there exists a unique strongly endemic equilibrium.
An equilibrium satisfies

(D + B) x̄ = diag(x̄) B x̄,

equivalently,
x̄ + diag(x̄)

(−D−1B x̄
) = x̄ + diag(−D−1B x̄) x̄ = −D−1B x̄,

which can be written [
I + diag

(−D−1B x̄
) ]

x̄ = −D−1B x̄.

Hence
x̄ = [

diag
(
1 − D−1B x̄

) ]−1 (−D−1B
)

x̄.
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We are reduced to find a fixed point for the application H : [0, 1]n in [0, 1]n

H(x) = [
diag

(
1 − D−1B x

) ]−1 (−D−1B
)

x.

Let be A = D−1B the next generation matrix. Since R0 = ρ(−D−1B) and A = −D−1B is a
nonnegative irreducible matrix, from the Perron-Frobenius Theorem there exists v � 0 such that

A v = R0 v.

We choose ε sufficiently small such that for any index i

1 + ε R0 vi ≤ R0.

This is possible since R0 > 1. We deduce

1 ≤ R0

1 + ε R0 vi

,

and

ε vi ≤ R0εvi

1 + ε R0 vi

= (A ε v)i

1 + (A ε v)i

.

We have proved that there exists ε > 0 such that ε v ≤ H(ε v). We also have ε > 1 and ε v ≤ v.

A similar argument shows that we can choose λ with 0 < λ vi ≤ 1 and λ large enough such that

R0

1 + R0 λ vi

≤ 1,

which is equivalent to
R0 − 1

R0
≤ λ vi . This implies H(λ v) ≤ λ v. Choosing ε ≤ λ we have ε v ≤ H(ε v)

and H(λ v) ≤ λ v ≤ 1. Since H is a monotone function, H maps the parallelepiped

K = {x | ε v ≤ x ≤ λ v} ⊂ ]0, 1[n,
into itself. By Brouwer fixed point Theorem we know that H has a fixed point ω in K . This is an endemic
equilibrium since 0 � ε v ≤ ω.

It remains to show the uniqueness.

Lemma 2.5. If ω � 0 is a strongly endemic equilibrium and if x̄ is another equilibrium then x̄ ≤ ω.

Proof. Let ξ = max
i=1,··· ,n

x̄1

ω1
. We have x̄ ≤ ξω and there exists an index i0 such that x̄i0 = ξ ωi0 . Since A is

nonnegative and x̄ a fixed point of H we have the following inequalities

x̄i0 = (Ax̄)i0

1 + (Ax̄)i0

≤ (Aξ ω)i0

1 + (A ξ ω)i0

= ξ (A ω)i0

1 + ξ (A ω)i0

.

By contradiction assume that ξ > 1. From the last inequality we have

x̄i0 <
ξ (A ω)i0

1 + (A ω)i0

.

But since ω̄ is a fixed point

x̄i0 <
ξ (A ω)i0

1 + (A ω)i0

= ξ ωi0 = x̄i0 .

iggidr
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Therefore we obtain a contradiction. �

We need a second lemma to end the proof.

Lemma 2.6. If ω > 0 is an endemic equilibrium and if A is irreducible then ω � 0.

Proof. Since ω > 0 and A is irreducible, then we have A ω � 0. Since components of ω are given by

ωj = (A ω)j

1 + (A ω)j

> 0,

the assertion of the lemma is obtained. �

The two lemmas prove that there exists an unique strongly endemic equilibrium.

2.3. A Theorem on Stability

To study the stability we need the following result which can be considered as a dual result to LaSalle’s
theorem [40].

Theorem 2.7. Let G be an open set, containing the origin, which is positively invariant for the system
ẋ = A(x).x, where A(x) is a Metzler matrix, depending continuously on x. We assume that there exists
cT � 0 such that cT A(x) � 0 for any x ∈ G, x �= 0. Then the origin is globally asymptotically stable
on G.

Proof. Let us consider on G the Lyapunov function

V (x) =
n∑

i=1

ci | xi | .

We define εz = sign(z), i.e. |xi | = εxi
xi . This function is locally Lipschitz. The Dini derivative can be

defined [40]. We have

V̇ =
n∑

i=1

ci εxi
ẋi

=
n∑

i=1

ci εxi

n∑
j=1

aij xj

=
n∑

i=1

n∑
j=1

ci εxi
aij xj

=
n∑

j=1

εxj
xj

n∑
i=1

ci εxj
εxi

aij

=
n∑

j=1

εxj
xj


cj ajj +

∑
i �=j

ci εxj
εxi

aij




≤
n∑

j=1

εxj
xj


cj ajj +

∑
i �=j

ci aij


 =

n∑
j=1

|xj | (cT A)j ≤ 0.

Since cT A(x) � 0 on G, then the function V̇ is negative definite. This ends the proof by the Lyapunov
theorem. �
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2.4. Global Stability of the DFE

We have the following result.

Theorem 2.8. The DFE of the system (2.1), which is the origin, is globally asymptotically stable if and
only if R0 ≤ 1.

Proof. Assume that R0 = ρ(−D−1B) ≤ 1. We have seen from Proposition 2.3 that this is equivalent to the
stability of the matrix D + N . From the Perron-Frobenius theorem, since D + B is irreducible, it follows
that there exists an eigenvector c � 0 such that (D + B)T c = α(D + B) c. We choose the Lyapunov
function

V (x) = 〈c | x〉,
positive definite on R

n
+ and we have

V̇ (x) = 〈(D + B)T c | x〉 − 〈diag(x)Bx | c〉 ≤ 0.

If D + B is stable, i.e. α(D + B) < 0, the proof is finished, since this quantity is negative definite. It
remains to study the case where α(D + B) = 0, or equivalently R0 = 1.

We apply Lasalle’s invariance principle. We consider the largest invariant set contained in

E = {x | diag(x)Bx = 0}.
The irreducibility of B implies L = {0}. Indeed if x ∈ L ⊂ E we have for all (i, j), xi

∑
j

βij xj = 0.

The quantities are positive, this implies that for any couple of indices βij xi xj = 0. By contradiction
assume that i0 is such that xi0 �= 0. There exists an index i1 such that βi1,i0 �= 0, from the irreducibility
of B. It follows xi1 = 0. The trajectory x(t) from x, satisfies for a small positive time x(t)i0 �= 0. Hence
x(t)i1 = 0. By invariance of L we must have

ẋi1 = −
∑

j

βi1,j xj = 0.

Which in turn implies xi2 = 0 for any βi1,i2 �= 0. In the other words, if the node i2 is connected by an
oriented path to the node i1, then xi2 = 0. By a finite induction we deduce that we have xi = 0 for any
node connected to the node i1. Since by irreducibility [6] the graph associated to B is strongly connected,
we have xi0 = 0. This gives a contradiction. �

2.5. Global Stability of the Endemic Equilibrium

Theorem 2.9. The endemic equilibrium of the system (2.1) is globally asymptotically stable on R
n \ {0}

if and only if R0 > 1.

Proof. Since R0 > 1, then there exists an unique equilibrium ω � 0. We write (2.4) under new coordinates
x + X + ω. Using the definition of ω: (D + B) ω − diag(x)Bx = 0, we get

Ẋ = [
D + diag(1 − X − ω) B − diag(B ω)

]
X. (2.6)

Since ω is in ]0, 1[n which is an absorbing set, it is sufficient to consider (2.1) on this set, or equivalently,
when x ≤ 1. In this case diag(1 − X − ω) = diag(1 − x) and the matrix

A(X) = D + diag(1 − X − ω) B − diag(B ω)

iggidr
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is Metzler. X is in the compact set −ω + [0, 1]n.
We apply (2.7). We know that for any irreducible B ≥ 0, for any Metzler stable D such that

ρ(−D−1B) > 1 there exists ω � 0 such that

(D − diag(B ω) + B) ω = 0.

In other words A(−ω) satisfies A(−ω) ω = 0. From Proposition (2.4) we deduce α(A(−ω)) = 0.
Since this matrix is irreducible, and transposing, we know that there exists c � 0 such that

cT A(−ω) = cT (D − diag(B ω) + B) = 0.

Then for X + ω � 0 (i.e. x � 0, we have

cT A(X) = −cT (X + ω) B � 0.

This proves the stability on ]0, 1[n. Since the vector field is strictly entrant, this ends the proof on
R

n \ {0}. �

3. A Differential Susceptibility and Infectivity Model

We consider the following model



Ṡ = � − µ S − diag(B I) S

İ = 〈B I | S〉 e1 + A I,

(3.1)

where S ∈ R
n
+ is the state of susceptible individuals and I ∈ R

k
+ is the state of infectious. The matrix

B ≥ 0 represents the coefficients of infectivity, actually B(i, j) is the contact and infectivity of Ij in the
group Si . As usual, e1 is the first vector of the canonical basis of R

k. Finally, A is a stable Metzler matrix
and represents the evolution through the infectious stages. This model encompass known models of DI,
SP, or differential susceptibility models . We generalize the results obtained in [26, 29].

It is straightforward to check that the nonnegative orthant is positively invariant by this system, that
there exists a compact positively invariant absorbing set. The DFE is given by (S∗, 0) ∈ R

n
+ × R

k
+ where

S∗ = 1

µ
�.

3.1. Basic Reproduction Ratio

We can give a simple elegant formula for the R0 (compare with [26, 29]). To obtain R0 we can use the
techniques developed in [67]. We claim that

R0 = 〈B(−A−1) e1 | S∗〉. (3.2)

We use the expression (−A−1) to put the emphasis on the fact that (−A−1) > 0 because A is Metzler
stable. Using the framework of [67], we denote by Fi(S, I ) the rate of appearance of new infections in
compartment i, and by Vi(S, I ) the rate of transfer of individuals in and out the compartment i by all other
means. The matrix V is the “mass” balance of the compartments. Note that our V is the opposite of the
same used in [67]. Then

F(S, I ) =
[

0
〈B I | S〉 e1

]
,
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and

V(S, I ) =
[
� − µ S − diag(B I) S

A I

]
.

The Jacobian matrices are

DF(x, y) =
[

0 0
e1 (BI)T e1 ST B

]
, DV(x, y) =

[−µ I − diag(BI) −diag(S) B

0 A

]

Noting that we have sorted the variables in the reverse order in comparison with [67], we setF = x∗ b βT

and V = A. It is proved in [67] that the basic reproduction number is the spectral radius of the next
generation matrix for the model, namely −FV −1 computed at the DFE (the minus sign comes from
Metzler matrices used in place of M-matrices),

R0 = ρ(−FV −1) = ρ(e1 S∗T B (−A−1)).

It is clear that e1 S∗T B (−A−1) is a rank one matrix, the only nonzero eigenvalue is given byS∗T B (−A−1) e1,
which is exactly our claim.

3.2. Global Stability of the DFE

We have the following theorem.

Theorem 3.1. If R0 ≤ 1 then the DFE is globally asymptotically stable on the nonnegative orthant. If
R0 > 1 the DFE is unstable.

Proof. We will introduce some notation to simplify the exposition of the proof. Actually these notations
are used in MATLAB and SCILAB. For two matrices M and N of same size we denote by D = M./N

the matrix which is defined by D(i, j) = M(i, j)/N(i, j). In the same spirit L = ln M will denote
the matrix defined by L(i, j) = ln(M(i, j)). We can now define the Lyapunov-LaSalle function on
R

n
+ × R

k
+ \ {S∗} × R

k
+:

VDFE(S, I ) = R0 〈1 | S − S∗〉 − R0 〈S∗ | ln S − ln S∗〉 + 〈B(−A−1) I | S∗〉.
We have, using the fact that � = µ S∗:

V̇DFE = µ R0 〈1 | S∗〉 − R0 〈1 | diag(BI) S〉 − µ R0 〈1 | S〉
− µ R0 〈S∗./S | S∗〉 + R0 〈diag(BI) 1 | S∗〉 + µ R0 〈1 | S∗〉

+ 〈BI | S〉 〈B(−A−1) e1 | S∗〉 − 〈BI | S∗〉. (3.3)

Taking into account the formula (3.2) on R0 with the relations

〈1 | diag(BI) S〉 = 〈BI | S〉, 〈diag(BI) 1 | S∗〉 = 〈BI | S∗〉
and 〈1 | S〉 = 〈S∗ | S./S∗〉 the preceding equation becomes

V̇DFE = µ R0 〈2 − S∗./S − S./S∗ | S∗〉 + (R0 − 1) 〈BI | S∗〉.
The inequality between the arithmetic and the geometric means and R0 ≤ 1 imply V̇DFE ≤ 0. The largest
invariant set contained in the set {(S, I ) | V̇DFE(S, I ) = 0} satisfies the relation S = S∗. Since A is a stable
Metzler matrix, by Lasalle’s invariance principle [40] the DFE is globally asymptotically stable. This ends
the proof. �
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3.3. Endemic Equilibrium

Theorem 3.2. There exists a unique endemic equilibrium in the nonnegative orthant if and only if R0 > 1.

Proof. We look for an equilibrium (S̄, Ī ) with Ī > 0. From the relations



0 = � − µ S̄ − diag(B̄ Ī ) S̄,

0 = 〈B̄ Ī | S̄〉 e1 + A Ī

(3.4)

we deduce, since A is Metzler stable, that Ī = 〈B̄ Ī | S̄〉 (−A−1) e1. From the second relation of (3.4) and
taking the inner product with e1 we obtain 〈B̄ Ī | S̄〉 = −〈A Ī | e1〉. Finally

Ī = −〈A Ī | e1〉 (−A−1) e1. (3.5)

Then to compute Ī it is sufficient to find −〈A Ī | e1〉.
Again with the expression Ī = 〈B̄ Ī | S̄〉 (−A−1) e1, we get

〈B̄ Ī | S̄〉 = 〈B̄ Ī | S̄〉 〈B(−A−1)e1 | S̄〉.
If 〈B̄ Ī | S̄〉 �= 0 then we have

〈B(−A−1)e1 | S̄〉 = 1. (3.6)

From the first equation in (3.4) we have

S̄ = [
diag(µ 1 + BĪ)

]−1
� =

[
diag

(
1 + 1

µ
BĪ

)]−1

S∗. (3.7)

Using this value of S̄ and of BĪ in (3.6) gives

〈
B(−A−1)e1


[

diag

(
1 − 〈A Ī | e1〉

µ
B(−A−1)e1

)]−1

S∗
〉

= 1.

In other words −〈A Ī | e1〉 is a solution of H(x) = 1 with

H(x) =
〈
B(−A−1)e1


[

diag

(
1 + x

µ
B(−A−1)e1

)]−1

S∗
〉
.

It is clear that H(x) is a strictly decreasing function satisfying lim
x→+∞ H(x) = 0 . Then a unique positive

solution exists if and only if H(0) > 1. Since H(0) = R0 we have a positive solution. Since, from (3.7)
we have S̄ � 0 and from (3.5), with −〈A Ī | e1〉 > 0, Ī > 0, then the equilibrium is endemic. Moreover
〈B̄ Ī | S̄〉 �= 0 > 0. From the preceding analysis we see that if R0 = 1 then the unique equilibrium is the
DFE. In the case R0 < 1 we have Ī < 0, that is the equilibrium is not biologically feasible. �

3.4. Global Stability of the Endemic Equilibrium

To prove the global stability of the endemic equilibrium we need to study in more detail the structure of A.
We will treat in this section one example. For the sake of brevity we will consider a model of two susceptible
classes and two infective classes with stage progression. It is not difficult, but certainly more involved, to
treat exactly in the same way the case of n susceptible compartments and k infectious compartments. The
compartimental model is represented in figure 1.
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S1 S2

I1

I2

R

p1Λ p2Λ

γ1

γ2

µ

µ+δ1

µ+δ2

µ µ

β11I1+β12I2 β21I1+β22I2

Figure 1: The two susceptible classes and two infectious classes model

The model is given by the following system of ordinary differential equations.




Ṡ1 = p1 � − µS1 − β11 I1 S1 − β12 I2 S1

Ṡ2 = p2 � − µS2 − β21 I1 S2 − β22 I2 S2

İ1 = β11 I1 S1 + β12 I2 S1 + β21 I1 S2 + β22 I2 S2 − (µ + γ1 + δ1) I1

İ2 = γ1 I1 − (µ + γ1 + δ2) I2

Ṙ = γ2 I2 − µ R.

(3.8)

Theorem 3.3. If R0 > 1, then the unique endemic equilibrium is globally asymptotically stable. The
basic reproduction number is given by

R0 = γ1(β12S
∗
1 + β22S

∗
2 ) + (µ + γ1 + δ2)(β11S

∗
1 + β21S

∗
2 )

(µ + γ1 + δ1)(µ + γ1 + δ2)
.

Proof. The basic reproduction ratio is obtained by applying (3.2). From the general theory we know that
there exists a unique endemic equilibrium which satisfies the following relations




p1 � = µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1

p2 � = µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2

β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2 = (µ + γ1 + δ1) Ī1

γ1 Ī1 = (µ + γ1 + δ2) Ī2

γ2Ī2 = µR̄.

(3.9)
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Let us consider a possible Lyapunov function

VEE = (S1 − S̄1 ln S1) + (S2 − S̄2 ln S2) + (I1 − Ī1 ln I1) +
(

β12S̄1 + β22S̄2

(µ + γ1 + δ2)

)
(I2 − Ī2 ln I2)

Setting d = β12S̄1 + β22S̄2

(µ + γ1 + δ2)
, its derivative along the trajectories of (3.8) is

V̇EE =
[
p1 � − µS1 − β11 I1 S1 − β12 I2 S1 − p1 �

S̄1

S1
+ µS̄1 + β11 I1 S̄1 + β12 I2 S̄1

]

+
[
p2 � − µS2 − β21 I1 S2 − β22 I2 S2 − p2 �

S̄2

S2
+ µS̄2 + β21 I1 S̄2 + β22 I2 S̄2

]

+
[
β11 I1 S1 + β12 I2 S1 + β21 I1 S2 + β22 I2 S2 − (µ + γ1 + δ1) I1

−β11 Ī1 S1 − β12 I2
Ī1

I1
S1 − β21 Ī1 S2 − β22 I2

Ī1

I1
S2 + (µ + γ1 + δ1) Ī1

]

+d

[
γ1 I1 − (µ + γ1 + δ2) I2 − γ1 I1

Ī2

I2
+ (µ + γ1 + δ2) Ī2

]
.

By using the endemic relations in the system (3.9) we obtain,

V̇EE =
[
µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1 − µS̄1

S1

S̄1

−(µS̄1 + β11 Ī1 S̄1 + β12 Ī2 S̄1)
S̄1

S1
+ µS̄1 + β11 I1 S̄1 + β12 I2 S̄1

]

+
[
µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2 − µS̄2

S2

S̄2

−(µS̄2 + β21 Ī1 S̄2 + β22 Ī2 S̄2)
S̄2

S2
+ µS̄2 + β21 I1 S̄2 + β22 I2 S̄2

]
− (µ + γ1 + δ1) I1

−β11 Ī1 S̄1
S1

S̄1
− β12 Ī2S̄1

S1

S̄1

Ī1

I1

I2

Ī2
+ β21 Ī1 S̄2

S2

S̄2
− β22 Ī2S̄2

S2

S̄2

Ī1

I1

I2

Ī2

+β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2

+d

[
γ1 I1 − (µ + γ1 + δ2) I2 − γ1 I1

Ī2

I2
+ γ1 Ī1

]

= µS̄1

[
2 − S̄1

S1
− S1

S̄1

]
+ µS̄2

[
2 − S̄2

S2
− S2

S̄2

]

+β11 Ī1 S̄1

[
2 − S̄1

S1
− S1

S̄1

]
+ β12 Ī2 S̄1)

[
2 − S̄1

S1
− S1

S̄1

Ī1

I1

I2

Ī2

]

+β21 Ī1 S̄2

[
2 − S̄2

S2
− S2

S̄2

]
+ β22 Ī2 S̄2

[
2 − S̄2

S2
− S2

S̄2

Ī1

I1

I2

Ī2

]

+(β11 S̄1 + β21 S̄2 + d γ1 − (µ + γ1 + δ1)) I1

+(β12S̄1 + β22 S̄2 − d (µ + γ1 + δ2)) I2 − d γ1 Ī1
I1

Ī1

Ī2

I2
+ d γ1 Ī1.
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Using the expression for d, we observe that

β12S̄1 + β22 S̄2 − d (µ + γ1 + δ2) = 0

and
β11 S̄1 + β21 S̄2 + d γ1 − (µ + γ1 + δ1)

= β11 S̄1 + β21 S̄2 + β12S̄1 + β22S̄2

(µ + γ1 + δ2)
γ1 − (µ + γ1 + δ1)

= (µ + γ1 + δ2)(β11 S̄1 + β21 S̄2) + γ1 (β12S̄1 + β22S̄2)

(µ + γ1 + δ2)
− (µ + γ1 + δ1)

= (µ + γ1 + δ1)

[
(µ + γ1 + δ2)(β11 S̄1 + β21 S̄2) + γ1 (β12S̄1 + β22S̄2)

(µ + γ1 + δ1)(µ + γ1 + δ2)
− 1

]

= 0.

Substituting the endemic relations in the third equation of system (3.9), we obtain

β11 Ī1 S̄1 + β12 Ī2 S̄1 + β21 Ī1 S̄2 + β22 Ī2 S̄2 = (µ + γ1 + δ1) Ī1,

(β11 S̄1 + β21 S̄2 + γ1

(µ + γ1 + δ2)
(β12 S̄1 + β22 S̄2)) = (µ + γ1 + δ1),

(µ + γ1 + δ2)(β11 S̄1 + β21 S̄2) + γ1 (β12S̄1 + β22S̄2)

(µ + γ1 + δ1)(µ + γ1 + δ2)
= 1,

d γ1 Ī1 = β12S̄1 + β22S̄2

(µ + γ1 + δ2)
γ1 Ī1

= γ1

(µ + γ1 + δ2)
(β12Ī1S̄1 + β22Ī1S̄2)

= β12Ī2S̄1 + β22Ī2S̄2.

and finally we have the following expression for V̇EE

V̇EE = µS̄1

[
2 − S̄1

S1
− S1

S̄1

]
+ µS̄2

[
2 − S̄2

S2
− S2

S̄2

]

+β11 Ī1 S̄1

[
2 − S̄1

S1
− S1

S̄1

]
+ β12 Ī2 S̄1)

[
3 − S̄1

S1
− S1

S̄1

Ī1

I1

I2

Ī2
− I1

Ī1

Ī2

I2

]

+β21 Ī1 S̄2

[
2 − S̄2

S2
− S2

S̄2

]
+ β22 Ī2 S̄2

[
3 − S̄2

S2
− S2

S̄2

Ī1

I1

I2

Ī2
− I1

Ī1

Ī2

I2

]

≤ 0

Using the comparison between the arithmetical and the geometrical means we see that V̇EE is negative
definite. This ends the proof of the theorem. �
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