
HAL Id: inria-00596461
https://hal.inria.fr/inria-00596461

Submitted on 27 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An event-based reasoning approach to Web services
monitoring

Ehtesham Zahoor, Olivier Perrin, Claude Godart

To cite this version:
Ehtesham Zahoor, Olivier Perrin, Claude Godart. An event-based reasoning approach to Web ser-
vices monitoring. The 9th IEEE International Conference on Web Services (ICWS 2011), Jul 2011,
Washington DC, United States. �inria-00596461�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49985976?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00596461
https://hal.archives-ouvertes.fr

An event-based reasoning approach to Web services monitoring

Ehtesham Zahoor, Olivier Perrin and Claude Godart

Université de Lorraine, Nancy 2, LORIA

BP 239 54506 Vandoeuvre-lès-Nancy Cedex, France

{ehtesham.zahoor, olivier.perrin, claude.godart}@loria.fr

Abstract—In this paper, we propose an event-based frame-
work that allows to specify and reason about the monitoring
properties during composition process execution. The proposed
approach is highly expressive and allows to specify monitoring
properties that can be based on either functional or non-
functional requirements, allows multi-level detection of any
violation, allows to calculate effects of any such violation on
the overall process execution and to recover from it using
a set of recovery actions. The choice of a reasoning based
approach allows to foresee the effects of violations and respects
any functional and non-functional constraints associated with
the process, when performing recovery. In addition, as the
approach builds upon an event-based declarative framework
called DISC, it results in an integrated approach as both
composition design and monitoring framework are event-based.

I. INTRODUCTION

Web services are in the mainstream of information tech-

nology and are paving way for inter and across organiza-

tional application integration. Individual services may need

to be composed to form new added value processes and

the need to monitor the Web services composition process

during execution stems from two major objectives. At one

hand continuously monitoring the resource utilization, SLA’s

violation, or some domain specific Key Performance Indi-

cators (KPI’s) may be required to measure the performance

or to fulfill some domain specific monitoring requirements.

Then, as the Web services are autonomous and only

expose their interfaces, composition process is based on

design level service contracts and the actual execution

of composition process may result in the violation of

the design-level services contracts due to errors such as

network or service failures, change in implementation

or other unforeseen situation. This highlights the need

to detect the errors and react accordingly to cater for

them. The reaction may include to calculate the effect the

violation has on the overall process execution and then to

recover from it. Traditional approaches for the composition

monitoring are proposed as an extension to some particular

run-time and are tightly coupled and limited to it. In

contrast the use of an event-based approach works on

the message-level and thus is unobtrusive, independent

of run-time and allows for integration of other systems

and processes, as discussed in [1]. Then, the traditional

monitoring approaches build upon composition frameworks

that are highly procedural, such as BPEL, an this in-turn

poses two major limitations. First, they limit the benefits

of any event-based monitoring approach as the events are

not first-class objects of the composition design framework

(but rather defined and extracted from it) and functional

and non-functional properties are not expressed in terms

of events and their effects. Then, the use of procedural

approach for process specification make it very difficult to

use recovery actions such as re-planning or alternate path

finding as we discussed in [2]. In this paper, we propose

an event-based framework that allows to reason about

the monitoring properties during execution. The proposed

approach builds upon an event-based declarative framework,

called DISC, and as both composition specification and

monitoring framework are events based, this results in an

integrated approach that is easily able to monitor, detect,

calculate side effects and recover from the monitored

violations. Specifically we make the following contributions

that highlight the uniqueness of our approach:

Event-based monitoring: Event-based approach results in

message-level monitoring approach that allows integration

of other systems. In addition, the proposed monitoring ap-

proach is built upon an event-based declarative composition

design and this results in an integrated approach that allows

to reason about the events and does not require to define and

extract events from process specification, as the events are

first class objects of both design and monitoring frameworks.

Properties specification: The proposed approach is highly

expressive and allows the specification of monitoring prop-

erties that are based on both functional and non-functional

(such as temporal, security or their combinations) require-

ments. These properties are expressed as event-calculus

axioms and can be added to the process specification both

during process design and during the process execution.

Measurement and anomalies detection: The proposed

approach both allows for KPI’s measurement1 (that may be

needed for process evaluation or result in proactive detection

1We will collectively use the term KPI’s measurement in the paper,
however it can signify monitoring the resource utilization, SLA’s fulfillment,
or some domain specific KPIs that may be required to measure the
performance or to fulfill some domain specific monitoring requirements.

of any violations) and the detection of violations once they

happen. Different levels of detection are provided such as

detection to the process execution plan, detection to the

violations based-on any properties and events added during

process execution and others.

Violation side-effects: As the proposed approach uses rea-

soning at the execution-time, it allows for calculating the

effects any monitored violation has on the process execution.

This also allows to cater for the ”ripple effect” any violation

has on the process execution, and for proactive detection of

any possible violation that is bound to happen later in the

process execution, as a result of current detected violation.

Forward and backward recovery schemes: Once a vio-

lation is detected and a recovery solution (re-planning or

alternative path finding) is sought, the proposed approach

allows both to find a new solution based on the current

process state (thus specifying what steps should be taken

now to recover from the violation and hence termed forward

recovery) or to backtrack to some previous activity (if

possible) and try to find a new from there. Then, any

recovery solution takes care of the process specification and

the associated QoS properties, when performing recovery.

Implementation architecture: The proposed approach uses

the DECReasoner as the event-calculus reasoner, however as

we discussed in [2], [3] the event-calculus to SAT encoding

process provided by the reasoner, does not scale well. In this

work, we have modified the DECReasoner code to gain sub-

stantial performance improvement as evident in performance

evaluation results (Section-IX). Further, we have presented a

real world crisis management case-study and discussed how

a process-based approach can be beneficial.

II. MOTIVATING EXAMPLE

The motivation for our work originates from the need

for the process modeling, analysis and monitoring in a

crisis situation. A crisis situation is highly dynamic and

it demands for a process that is possibly partially defined,

is characterized by temporal and security constraints and

uncertainty, multiple and possibly changing goals, and thus

requires the composition process to be more flexible to adapt

to a continuously evolving environment. The crisis scenario

brings together two related dimensions of organization and

situation measurement. The organization dimension encom-

passes the design-time composition process modeling while

the situation measurement requires the composition process

to measure and adapt to continuously changing situation.

In our previous work, we have proposed an event-based

declarative framework, called DISC, for self-healing Web

services composition [2], and later extended the framework

to handle security and temporal requirements in the services

composition [3]. While we discussed some initial ideas for

an event-based monitoring but the focus of our previous

work was to justify the usage, expressiveness and benefits of

an integrated and declarative approach and in this paper, we

propose and discuss the event-based monitoring framework.

For the motivating example, we consider a composition

process being setup to semi-automate the recovery plan for

the Australian National Herbarium (ANH), Canberra2. The

possible threats to the ANH collection include the bush-

fire and lighting strikes due to its location at the base of

Black Mountain and close proximity to bushland. The ANH

recovery plan is in the document form and while we stress

the need for a process based approach to the crisis handling,

space limitations restrict us to go that far and we will only

consider a simple case-study for the recovery of the items for

priority salvage and treatment at ANH, after an unfortunate

fire accident. These items include the Type specimens and

as a result of fire, they may get smoke-damaged and the

recovery plan suggest to either freeze or transfer them to

some other location.

Once the fire-alarms are activated, the composition pro-

cess contacts the Web services provided by different services

such as fire-brigade, police, ambulance and also invokes a

service to call emergency handling staff. Then, once the fire-

brigade has reached the site and after partial or complete fire

containment and given clearance to enter the building, the

collection recovery coordinator (CRR), facilities coordina-

tor (FC), Salvage Controller (SC) enter the premises. The

role of CRR include the overall management of recovery

process while the FC is responsible for ensuring that the

recovery teams have proper equipment for the recovery.

Then, the SC is responsible for initial cleanup, salvaging,

sorting and stabilization of materials by creating recovery

teams. The recovery plan suggests the SC can be either

Librarian or Collection Manager at ANH. In this work we

would not address how such composition can be modeled

in a declarative and flexible way [2], but the focus is to

highlight the need of monitoring certain properties during

execution as crisis handling process can be highly dynamic.

Due to importance and priority of specimens and actively

deteriorating situation, we consider the following monitoring

constraints to be imposed on the composition process:

• REQ-1: The smoke damaged, wet specimens should be

treated as soon as possible and any delay of more than

an hour may result in serious damage to the specimens.

• REQ-2: Once the response message (containing up-

dated arrival information) from the fire-brigade and

emergency contacts calling services have been received

the constraints mentioned above are re-evaluated.

• REQ-3: These constraints must be respected for any

recovery solution to cater for monitored violations.

For this scenario, these constraints are already known

and can be defined at the design-time using a event-based

approach [2]. However, the successful execution of the

process is challenging provided highly dynamic and con-

2http://www.anbg.gov.au/cpbr/disaster-plan/

tinuously changing situation. For instance, the time-taken

by the fire-brigade and emergency staff to reach the site

can be somewhat defined and estimated but the time-taken

for the fire-containment process itself is highly relative.

Then, it may not be possible to define all the monitoring

properties during composition design and even if the design-

level constraints are respected, the occurrence of external

events during process execution can have impacts on the

process execution. We will use this example as base for

describing different aspects of the proposed framework.

III. RELATED WORK

The problem to effectively monitor and recover from the

anomalies during process execution is highly active and

widely studied research direction and in a broader sense it

spans different related domains. Workflow or Process man-

agement systems, in general, rely on an exception handling

approach to specify exceptions and handles during process

design [4], [5], [6], [7]. Further, for the self-healing systems

a number of approaches have been proposed for monitoring,

diagnosis and recovery from errors during execution [8],

[9]. A detailed discussion about monitoring and recovery in

different systems can be found in [10] and space limitations

restrict us to the discussion of monitoring and recovery

mechanisms for only services based processes, where dif-

ferent services are composed using the approaches such as

BPEL. Traditional services composition approaches, such as

BPEL, build upon the exception handling approach for errors

handling and allow to define different type of exception

handlers and corresponding actions based on process state.

However, it may not be always possible to foresee errors and

specify the exceptions at the design-time. In the literature,

a number of composition process monitoring approaches

have been proposed, but in general, they are proposed as an

extension to some particular run-time and are tightly coupled

and limited to it [11], [12], [13], [14]. As a result and they

do not consider other sub-systems and or processes that can

be used for monitoring [1].

Then, the traditional monitoring approaches [15], [16],

[17] build upon composition frameworks that are highly

procedural, such as BPEL, an this in-turn poses two major

limitations. First, they limit the benefits of any event-based

monitoring approach as the events are not part of the

composition framework and functional and non-functional

properties are not expressed in terms of events and their

effects. Secondly the use of procedural approach for process

specification does not bridge the gap between organization

and situation in a way that it is very difficult to learn from

run-time violations and to change the process instance (or

more importantly process model) at execution time, and

it does not allow for a reasoning approach allowing for

effects calculation and recovery actions such as re-planning

or alternate path finding as we discussed in [2]. In [1] authors

proposed an event based monitoring approach that works on

the message-level and thus is unobtrusive, independent of

run-time and that highlights the need and motivation for

using an event-based monitoring framework. However the

approach aims to extract and define events from procedural

process specification, while our approach builds on an event-

based framework and events are first class objects in both

composition design and monitoring framework. This allows

to reason about events during execution and allows for

effects calculation and different types of recovery actions.

In [18] authors attempt to add monitoring directives to a

declarative approach but still the approach lacks expressive-

ness and does not allow for recovery actions. Our work can

be compared to PAWS framework [19], in which authors

propose to add annotations to the BPEL process to handle

services replacement in case of run-time failure. However, as

the approach is based on BPEL and is procedural, it allows

for limited recovery options (such as service replacement

and not re-planning or alternative path finding) and effects

calculation once a violation is detected. In [10] authors

proposed a model based approach for repair by exploiting

information about the causes of process and deriving repair

strategies based on process structure, however the approach

builds upon BPEL and PAWS and thus does not allow to

reason about monitoring properties and allowing for effects

calculation and different recovery schemes.

IV. BACKGROUND

A. The DISC and DISC-SeT frameworks

We have proposed a declarative event-oriented framework,

called DISC (Declarative Integrated Self-healing web ser-

vices Composition) [2], that serves as a unified framework to

bridge the gap between the process design, verification and

monitoring and thus allowing for self-healing Web services

composition. The proposed DISC framework has four main

stages, Composition design, Instantiation and Verification,

Execution and Composition monitoring (see Figure-1).

Figure 1. The DISC Framework

The composition process starts when the user provides the

composition design, which allows to accommodate various

aspects such as partial or complete process choreography

and exceptions, data relationships and constraints, Web

services dynamic binding, compliance regulations or other

non-functional aspects (see Figure 1-1). The process design

(and so as other process life-cycle stages) is based on event

calculus and a detailed discussion about the motivation for

the usage of event-calculus and models for different aspects

can be found in [2]. The event-calculus model for the com-

position design is then used to instantiate, verify and execute

the composition process (see Figure 1-2). The instantiation

phase involves finding a solution to the composition process

using the event calculus reasoner. As our proposal allows for

specifying only the boundaries to the composition process

and, the instantiation may result in a number of solutions

and the user can be given option to choose one solution,

this choice can also be based on some other criteria such as

overall cost, minimal time and others. The chosen plan is

then executed and the plan generated by the reasoner serves

as a script for the execution of the process (see Figure 1-

3). However, If there are some conflicts in the composition

design and/or the specified constraints are too strict, this

leads to empty solution set and the the reasoner can return

near-miss models and/or conflicting clauses highlighting

the strict constraints or the conflicts. The process is then

monitored during execution using an event-based monitoring

approach, that is the focus of this paper (see Figure 1-4) and

in case of any violation, process specification can be updated

and re-instantiated to find an updated solution. We have also

extended the DISC framework to propose the DISC-SET

framework [3] to add the security and temporal properties

representation, computation and verification.

B. Event-calculus

The DISC framework is based on event-calculus (EC)

which is a logic programming formalism for representing

events and their side-effects. It comprises the following

elements: A is the set of events (or actions), F is the set

of fluents, T is the set of time points, and X is a set of

objects related to the particular context. In EC, events are the

core concept that triggers changes to the world. A fluent is

anything whose value is subject to change over time. EC uses

predicates to specify actions and their effects. A detailed

discussion about event-calculus can be found in [18] and

we discussed the motivation for usage of event-calculus in

[2]. Some basic event calculus predicates used for modeling

the proposed framework are:
• Initiates(e, f, t) - fluent f holds after time point t if event

e happens at t.
• Happens(e, t) specifies that event e happens at time point t.
• HoldsAt(f, t) is true iff fluent f holds at time point t.

Given an event-calculus based specification, different rea-

soning modes can be used and Figure-2 summarizes different

reasoning modes used during different process stages.

Figure 2. EC Reasoning modes for the DISC framework

C. Example

Using the DISC framework for the process specification

we can model the composition process for the motivating

example in a declarative and flexible way [2]. We can

define events/fluents for services invocation, for activities

representation and domain specific events such as mod-

eling the arrival of support staff. For simplicity, we will

abstract different processes such as fire-containment, recov-

ery and the responsibilities of the collections coordinator

and other users as activities however they can be service

based sub-processes. We consider the following design-level

constraints; the firefighters arrive within 15 minutes after the

service invocation, the support staff arrival varies and may

take 25 minutes for their arrival. Then, the time taken for the

fire-containment process is highly relative and provided the

central location of priority salvage items, it may be possible

to contain the fire within 20 minutes. Finally, the recovery

process may take 10 minutes once fire is (possibly partially)

contained. Space limitations restrict us to discuss the design

model in detail and we here present the instantiated solution

returned by the reasoner, the serves as a plan for process

execution and we will use it as a base for monitoring

violations detection. The instantiated model is shown below:

0 Happens(InvokeService(CallEmergencyStaff), 0)

Happens(InvokeService(FireBrigade), 0).

1 +ResponseReceived(CallEmergencyStaff). +ResponseReceived(FireBrigade).

Happens(ValidateAndUpdatePlan(CallEmergencyStaff), 1).

Happens(ValidateAndUpdatePlan(FireBrigade), 1).

2 +PlanValidatedAndUpdated(CallEmergencyStaff)...

...

15 Happens(Arrives(FireFighters), 15).

16 +HasArrived(FireFighters). Happens(Start(FireContainement), 15).

17 +Started(FireContainement).

...

25 Happens(Arrives(CollectionCoordinator), 25).

Happens(Arrives(CollectionManager), 25). Happens(Arrives(Librarian), 25).

26 +HasArrived(CollectionCoordinator). +HasArrived(Librarian). ...

...

35 Happens(End(FireContainement), 35).

36 +Finished(FireContainement). Happens(Start(Collections

CoordProcess), 35). Happens(Start(FacilitiesCoordProcess), 36).

Happens(Start(SalvageControllerProcess), 36).

37 +Started(CollectionsCoordProcess). +Started(Facilities

CoordProcess). +Started(SalvageControllerProcess).

Happens(Start(RecoveryProcess), 37).

38 +Started(RecoveryProcess).

...

46 Happens(End(RecoveryProcess), 46).

47 +Finished(RecoveryProcess).

The instantiated model shows that there exists a solution

based on design level contracts,the left column shows the

time points while the right column shows the event or

process state (+ sign shows that a particular fluent holds at

that time point). We will use this instantiated model as base

for describing different aspects of the proposed monitoring

framework.

V. PROPOSED MONITORING FRAMEWORK

The proposed event-based monitoring framework allows

to specify and reason about the monitoring properties during

composition process execution. The composition process

is specified using the event-calculus and is then used to

instantiate, verify and execute the composition process (see

Figure 3-➀). The instantiation phase involves finding a

solution to the composition process using the event calculus

reasoner and the instantiated plan is then executed using the

execution engine (see Figure 3-➁).

!"#$%&'()'*)*+,-!./#(+0$#1,

!"#$%&'()'*)*+,-(+#.,.#')(/(0"#,1/2'#++,+1#'34'(02$,($.,

3$+%($0(%#.,+2)*02$5,-(+#.,2$,%6#,789:,;/(<#=2/>,

2,

30$4%014$5,61(7#8019,
&  !"#$%&$'()*5,,
&  +#,#$()*-.-/0#$,1-2'3$43'()*5,

&  5#1")*1#,

:,!;#'*<0$,!$54$#,

!?#'*%#,%6#,'2<12+302$,

1/2'#++,*+3$@,%6#,+2)*02$,
/#%*/$#.,-A,%6#,#"#$%&
'()'*)*+,/#(+2$#/,,,

=,

B!C,

C"D,

D!B,

Figure 3. Proposed monitoring framework

The proposed monitoring framework (see Figure 3-➂)

works during the composition process execution and is

divided into three phases. The specification phase requires

the user to specify the functional and non-functional prop-

erties that needs to be monitored to identify anomalies or

needed for KPI’s measurement. Then, the detection and

effects calculation phase is both responsible for detecting

any violations based on the specified properties and to

calculate the side-effects the detected violation has on the

overall process. Then, the response phase uses the user-

specified actions to respond to the monitored property. In

the sections to follow, we will first discuss the monitoring

properties specification in Section-VI and then will discuss

how the detection and effects calculation works once a

violation is detected, in Section-VII. Then, we will discuss

the possible response actions to cater for the monitoring

properties, in Section-VIII.

VI. PROPERTIES SPECIFICATION

The specification phase requires the user to specify the

functional and non-functional properties that needs to be

monitored to identify anomalies or needs for KPI’s measure-

ment. The properties that need to be monitored are added

to process description either at the process design (if they

are already known – figure 3-➀) or they can be added to

the process specification at the execution time. In the later

case the process specification is updated and an updated

instantiated solution is sought, in order to verify any conflicts

and to get an updated execution plan as a result of process

change during execution (see Figure 3–3➝1).

Properties that can be monitored include the functional

aspects such as monitoring the invocation and execution

order or they can be based on non functional aspects such

as temporal aspects requiring to monitor the response time

for a service, delay between successive invocations of the

service or monitoring invocation time-frame for a service.

Further, the properties can also be based on data such

as monitoring the data availability, validity and expiry or

based on the security properties such as monitoring the

data integrity, confidentiality, access-control. The choice

of highly-expressive event-calculus formalism even allows

to combine the properties related to temporal, security

and other aspects such as monitoring the data validity and

access control within specific time frame which may be

needed for instance, during dynamic task delegation (see

[20] for details). Below we discuss event-calculus models

for some of these properties:

Happens(StartInvoke(S1), time1) & Happens(EndInvoke(S1), time2) & time2 -

time1 = SomeTimeValue → Happens(Terminateprocess(), time2).

Happens(InvalidateResponse(service), time) → Happens (SendAlertNotifica-

tion(), time).

The first axiom in the model above specifies a monitoring

property for monitoring the response time for a service. If

the difference in the occurrence of the Start and End event is

greater than SomeTimeValue, the process is terminated. The

monitoring properties have the general form Property →
Response and we will discuss different response actions

later in Section-VIII. The second axiom above specifies to

send Alert notification once the response message from any

service does not remain valid. Space limitations restrict us

to discuss event-calculus models for other aspects, a detailed

discussion about how different security and temporal aspects

can be modeled using event-calculus can be found in [3].

Regarding the motivating example, we first consider dif-

ferent monitoring properties already known at the composi-

tion design stage as identified in the motivating example. The

event-calculus axioms for these properties have been added

to the composition design, and thus the solution returned

by the reasoner caters for these properties (see Figure 3-➀).

Then, as the proposed approach also allows to specify the

monitoring properties during process execution, we consider

the following properties added to the process specification

once the response message from the fire-brigade and emer-

gency staff calling services have been received.

• REQ-4: Arrival time of staff members (and completion

of activities) should be logged.

• REQ-5: Salvage process should only be handled by

Collection manager as the Librarian does not possess

the expertise to handle the degraded specimens. How-

ever in the presence and help from the conservator, he

can handle the salvage process.

Adding the monitoring properties may require updating

the process specification (see Figure 3–3➝1), such as new

axioms/event for logging should be added. The last axiom

in the event-calculus model below handles the REQ-5 while

other axioms handle REQ-4:

Activity LogArrival

Happens(Arrives(user), time) → Happens(Start(LogArrival), time).

Happens(Start(SalvageControllerProcess), time) → HoldsAt(HasArrived (Col-

lectionManager),time).

VII. DETECTION AND EFFECTS CALCULATION

A. Detection

The detection of the violations can be handled at different

levels using the proposed framework. At a basic level we

first consider the violations to the execution plan, which

is handled by maintaining an event repository which keeps

track of all the messages exchanged between the compo-

sition process and the participating services during process

execution. This repository is then used to find any mismatch

between the temporal ordering of actual events and the ones

mentioned in the initial instantiated plan. Using the basic

detection technique, it is possible to find violations to the

execution plan or the invocation and execution order of the

services. However such a detection level may not be useful

in detecting data values based or other low-level violations,

as using the event-calculus, the process is modeled at an

abstract level. This can be handled by also abstracting the

processing of verifying the data values and other low level

service details by using event-calculus fluents. For instance,

we can have a fluent ResponseValid(SomeService) and an

event called ValidateResponse(SomeService), and whenever

data is received from a service we check for its validity.

Then, if the data is not considered valid, based on application

level checks on data, the fluent ResponseValid(SomeService)

does not hold and in-turn results in a mismatch between

the initial instantiated plan and actual service execution.

The detection phase may thus require the execution engine

support (for instance checking data validity, see Figure 3-➁).

Then, in order to detect the monitoring properties added at

the execution time (e.g. based on external events not there

in the initial instantiated plan), the ”abduction reasoning”

mode can be used by adding the newly added events and

monitoring properties to the process model and re-invoking

the reasoner. In case of no conflict and violation, the

reasoner returns an updated plan based on the added events

and monitoring axioms. However, if there is some conflict

based on addition of new events or if the newly added

monitoring property is not satisfied, the reasoner returns a set

of unsatisfied clauses highlighting the error. The detection

phase may thus also require the reasoner support (see Figure

3–3➝1).

B. Effects calculation

Once a violation to some monitoring property is detected,

the effects calculation phase is responsible for calculating

the side-effects this violation has on the overall process

flow. This allows to prioritize the violations based on their

impact and it may be possible to ignore some violations,

for instance if the response time delay for a service has no

effect on the overall process goal and other functional and

non-functional properties associated with the composition

process. As the proposed approach allows to reason about

the composition process and as the approach is based on

event-calculus with different reasoning modes, the effects

calculation is achieved by adding the partial plan with the

violation to the initial plan and re-invoking the reasoner.

Although the process may seem similar to the detection

of monitoring properties added at the execution-time, there

is one major difference; instead of using the ”abduction

reasoning” we use ”deduction reasoning” in the effects

calculation phase. This may further allow to foresee any

anomalies which may not be evident now but may happen

later in the process execution. The effects calculation phase

thus requires the support from the event-calculus reasoner

to perform deductive reasoning (see Figure 3–3➝1).

C. Example

Let us now review the monitoring properties identified

earlier for the motivating example and discuss how any

violation to these properties can be detected. The properties

REQ-1 and REQ-3 are implicit and these properties are

evaluated whenever the reasoner is reinvoked. For instance,

the property REQ-1 specifies the composition goal and is

evaluated every time the abductive reasoning is sought.

Then, the property REQ-2 relies on application level data

validity checks and requires to update the process specifica-

tion based on data received from the participating Web ser-

vices. The event added at the design-time, ValidateAndUp-

datePlan(service), models this behavior. Then, updating the

process specification during execution may result in conflicts

and inconsistencies, such as the axiom added for REQ-5

may contradict with the one already there in the process

description. However, the proposed framework allows to

identify and resolve these conflicts as adding these axioms

and re-invoking the reasoner will either provide an updated

solution (as for REQ-4) or will return the conflicting clauses.

Adding property REQ-4 to the specification and invoke

reasoner for ”abductive reasoning” returns the following

updated model:
...

25 Happens(Arrives(CollectionCoordinator), 25).

Happens(Arrives(CollectionManager), 25). Happens(Arrives(Librarian), 25).

Happens(Start(LogArrival), 25)...

The model above now contains the events added for

logging and instructs the execution engine to log the arrivals

of support staff. Further, adding the monitoring property,

REQ-5 and re-invoking the reasoner, returns the a set of

conflicting clauses including the following:

2708 -550 0: (HoldsAt(HasArrived(CollectionManager), 36) — !Hap-

pens(Start(SalvageControllerProcess), 36)).

The model above shows that adding the execution-time

properties can result in a conflict, as at the design time it

was specified that either the Librarian or Collection Manager

can perform the role of SC and a solution exists at design

time (showing Librarian can be there early and do the job).

However, at execution time, the constraint has been modified

to only allow Collection Manager to act as a SC and as he

is not there, the process shows there is a conflict. However,

the property REQ-5 allowed Librarian to do the task if

Conservator is there. Let us consider that the Conservator

does arrive in time, and re-invoking the reasoner gives

following updated model:
...

35 Happens(Arrives(Conservator), 35).

Happens(End(FireContainement), 35)

36 +Finished(FireContainement). +HasArrived(Conservator).

Happens(Start(CollectionsCoordProcess), 36). Happens(Start

(FacilitiesCoordProcess), 36). Happens(Start(SalvageControllerProcess), 36).

VIII. RESPONSE

The response for the monitoring properties may involve

some domain specific actions to cater for or measure the

KPI’s and other parameters (such as logging, performance

evaluation) needed for the successful process execution.

Then, in order to cater for the monitoring violations detected

at the execution time, different recovery actions can be used

in-order to recover from the violation. These actions may

include to ignore the violation, terminate the process, re-

invoke or substitute the service, find an alternative solution

based on current process state or backtrack to some previous

state and then seek an alternative solution and others. Below

we briefly discuss the alternative-path as a recovery action

as it highlights the need for a reasoning-based approach.

The recovery process is handled by adding the current

process state (with the violation) and re-invoking the rea-

soner to perform abductive reasoning for the goal. However,

it is not always possible to recover from a violation AND

respecting the associated constraints and composition goal.

As a result, some constraints may require to be relaxed

and the proposed approach allows to identify the conflicting

clauses and hard-constraint if a recovery solution is not

possible. The proposed approach thus preserves all the

functional and non-functional constraints associated with the

composition process (unless needed to be relaxed) while

performing recovery. Further, the proposed approach allows

both to find a new solution based on the current process state

(thus specifying what steps should be taken now to recover

from the violation and hence termed forward recovery) or

to backtrack to some previous activity (if possible) and try

to find a new from there. The response phase may require

the execution run-time support (for instance actions such

as logging, KPI’s measurement, see Figure 3–3➝2) and

may also require the support from the DECReasoner in

order to do abductive reasoning for actions such as finding

alternatives (see Figure 3–3➝1).

In relation to the motivating example, we will consider the

case when the fire-containment process is taking more time

than initially estimated. As a result, a violation is detected at

time point and a recovery solution is sought requiring to find

alternative path for successful process execution. As a result,

the reasoner is re-invoked with the updated process state

(with the violation and new estimate for the fire containment,

it would probably take 30 minutes instead of 20 minutes, as

planned) and we get the updated model as below:
...

35 Happens(Arrives(Conservator), 35).

36 +HasArrived(Conservator).

...

45 Happens(End(FireContainement), 35)

46 +Finished(FireContainement).

Happens(Start(CollectionsCoordProcess), 46). Happens(Start

(FacilitiesCoordProcess), 46). Happens(Start(SalvageControllerProcess), 46).

...
47 +Started(CollectionsCoordProcess). +Started(Facilities

CoordProcess). +Started(SalvageControllerProcess).

Happens(Start(RecoveryProcess), 47).

48 +Started(RecoveryProcess).

...

56 Happens(End(RecoveryProcess), 56).

57 +Finished(RecoveryProcess).

The updated model shows that even with the violation,

the goal is still achievable satisfying all the associated con-

straints. However, had it not been the case, some constraints

may need to be relaxed (if possible) to achieve the goal.

IX. PERFORMANCE EVALUATION

In order to test our proposal, we have implemented the

proposed model using the discrete event calculus language

[21] and discussion about the implementation architecture

for the DISC framework can be found in [2]. The proposed

monitoring approach requires to reason about the composi-

tion process at various stages of the framework. In our pre-

vious work [2], [3] we concluded that although the solution

finding by SAT solver is highly efficient, the event-calculus-

to-SAT encoding process does not scale well with the

increase in time points and complexity of the composition

process. In this work, we have thus modified the encoding

process by two approaches. First, the process encoding is

done only once during the instantiation phase of the DISC

framework and encoding for any subsequent changes to the

process description, such as during process execution or

during effects calculation phase of the proposed monitoring

framework, is added to the initial process encoding. Then,

we have modified the c language code for the encoding

process (changes include modifying the hash function to

have less collisions) and the results show a substantial gain

in performance. The performance evaluation tests for the

motivating example were conducted on a MacBook Pro Core

2 Duo 2.53 Ghz and 4GB RAM running Mac OS-X 10.6.

The DECReasoner version 1.0 and the SAT reasoner, relsat-

2.0 were used for reasoning. The performance evaluation

results are shown in Figure-4, with Y-axis showing the time-

taken in seconds while the X-axis showing the problem size,

which is obtained by multiplying the composition problem

(with same dependencies) and increasing the time points.

This results in a highly complex process needed to test the

original and modified encoding process. The performance

evaluation results show substantial gain in event-calculus to

SAT encoding process. The solution computation by relsat

solver is highly efficient and the recovery process always

takes less (or same) time than the initial solution as we have

a partial plan and that reduces the problem size.

82 4 6

120

0

10

20

30

40

50

60

70

80

90

100

110

Problem size (incrementing activities, constraints and time-points)

T
im

e
 (

in
 s

e
c
o
n
d
s
)

Encoding (DECReasoner)

Encoding (Modified)

Solution computation

Figure 4. Performance evaluation results

X. CONCLUSION

In this paper, we have presented an integrated event-

based framework that allows to specify and reason about

the monitoring properties during process execution. The

proposed approach builds upon an event-based declarative

composition design [2] and does not require to define events

as an extension to the composition design as the events are

first class objects of both composition design and monitoring

framework. The proposed approach is highly expressive

and allows the specification of monitoring properties that

are based on both functional and non-functional (such as

temporal and security) requirements, that can be added to

the process specification during design or process execution.

Further, it allows for identifying any violations based on

the specified properties and for calculating the effects any

monitored violation has on the overall process execution.

Then, any recovery solution takes care of the process specifi-

cation and the associated QoS properties associated with the

process. We have presented a real world crisis management

case-study that highlights the proposed framework. Further,

we have modified the encoding process for DECReasoner

tool, as it does not scale well, and it results in substantial

performance improvement.

REFERENCES

[1] O. Moser, F. Rosenberg, and S. Dustdar, “Event driven
monitoring for service composition infrastructures,” in WISE,
2010, pp. 38–51.

[2] E. Zahoor, O. Perrin, and C. Godart, “Disc: A declarative
framework for self-healing web services composition,” in
ICWS, 2010.

[3] ——, “Disc-set: Handling temporal and security aspects in
the web services composition,” in ECOWS, 2010.

[4] N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede,
“Workflow exception patterns,” in CAiSE, 2006, pp. 288–302.

[5] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures. Springer, 2007.

[6] J. Vanhatalo, H. Völzer, and F. Leymann, “Faster and more
focused control-flow analysis for business process models
through sese decomposition,” in ICSOC, 2007, pp. 43–55.

[7] J. Vanhatalo, H. Völzer, F. Leymann, and S. Moser, “Auto-
matic workflow graph refactoring and completion,” in ICSOC,
2008, pp. 100–115.

[8] D. Ghosh, R. Sharman, H. R. Rao, and S. J. Upadhyaya,
“Self-healing systems - survey and synthesis,” Decision Sup-
port Systems, vol. 42, no. 4, pp. 2164–2185, 2007.

[9] R. Griffith, G. E. Kaiser, and J. A. López, “Multi-perspective
evaluation of self-healing systems using simple probabilistic
models,” in ICAC, 2009, pp. 59–60.

[10] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni,
“Exception handling for repair in service-based processes,”
IEEE Trans. Software Eng., vol. 36, no. 2, pp. 198–215, 2010.

[11] C. Beeri, A. Eyal, T. Milo, and A. Pilberg, “Bp-mon: query-
based monitoring of bpel business processes,” SIGMOD
Record, vol. 37, no. 1, pp. 21–24, 2008.

[12] L. Baresi, S. Guinea, O. Nano, and G. Spanoudakis, “Com-
prehensive monitoring of bpel processes,” IEEE Internet
Computing, vol. 14, no. 3, pp. 50–57, 2010.

[13] M. Sun, B. Li, and P. Zhang, “Monitoring bpel-based web
service composition using aop,” in ACIS-ICIS, 2009.

[14] G. Wu, J. Wei, and T. Huang, “Flexible pattern monitoring for
ws-bpel through stateful aspect extension,” in ICWS, 2008.

[15] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-
time monitoring of instances and classes of web service
compositions,” in ICWS, 2006, pp. 63–71.

[16] L. Baresi, S. Guinea, M. Pistore, and M. Trainotti, “Dynamo
+ astro: An integrated approach for bpel monitoring,” ICWS,
pp. 230–237, 2009.

[17] K. Mahbub and G. Spanoudakis, “A framework for requirents
monitoring of service based systems,” in ICSOC’04, 2004.

[18] R. A. Kowalski and M. J. Sergot, “A logic-based calculus of
events,” New Generation Comput., vol. 4, no. 1, 1986.

[19] D. Ardagna, M. Comuzzi, E. Mussi, B. Pernici, and P. Ple-
bani, “Paws: A framework for executing adaptive web-service
processes,” IEEE Software, vol. 24, no. 6, 2007.

[20] K. Gaaloul, E. Zahoor, F. Charoy, and C. Godart, “Dynamic
authorisation policies for event-based task delegation,” in
CAiSE, 2010.

[21] E. T. Mueller, Commonsense Reasoning. CA, USA: Morgan
Kaufmann Publishers Inc., 2006.

