
HAL Id: hal-00597033
https://hal.archives-ouvertes.fr/hal-00597033

Preprint submitted on 30 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generic Traces and Constraints, GenTra4CP revisited
Pierre Deransart

To cite this version:

Pierre Deransart. Generic Traces and Constraints, GenTra4CP revisited. 2011. �hal-00597033�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49985471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00597033
https://hal.archives-ouvertes.fr

Generic Traces and Constraints,

GenTra4CP revisited

Pierre Deransart

Inria Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France
Pierre.Deransart@inria.fr

Abstract. The generic trace format GenTra4CP has been defined in
2004 with the goal of becoming a standard trace format for the obser-
vation of constraint solvers over finite domains. It has not been used
since. This paper defines the concept of generic trace formally, based on
simple transformations of traces. It then analyzes, and occasionally cor-
rects, shortcomings of the proposed initial format and shows the interest
that a generic tracer may bring to develop portable applications or to
standardization efforts, in particular in the field of constraints.

Keywords: Generic Trace, Constraints, Observational Semantics, Formal Spec-
ification, Portability, Standardization

1 Introduction

Following the RNTL OADymPPaC project [9], a generic trace format, called
GenTra4CP (Generic Trace for CP), has been proposed in 2004 in order to spec-
ify traces of CSP(FD) resolution. One of the objective was to allow the develop-
ment of portable powerful tools for solvers analysis. This format was designed
as a kind of standard, consisting of a precise syntax of trace events including an
XML DTD, and an operational semantics, called observational semantics, which
is a partial operational semantics applicable to a set of finite domains solvers.

Such “standard” conforming tracers were implemented in four solvers. Sev-
eral tools for analysis of resolution and search strategies were developed in four
different environments, just using the generic trace GenTra4CP. They have been
used with success after a minimal customization work for each of them. How-
ever, at that time, no formal characterization of the generic nature of the trace
format has been given. Even if the implementation of the tools starting from a
well defined generic trace could be realized without difficulty, and even if there
was obtained a considerable gain in portability, it was virtually impossible to
assess in advance the effort of adaptation needed for a solver to use the tools.
Moreover it was not always possible to figure out exactly what some tool was ac-
tually observing. GenTra4CP format has been used only in the project in which
it has been defined.

2 Deransart P.

This paper attempts to overcome these limits, by defining formally the con-
cept of generic trace. It analyzes formally the nature of the generic format Gen-
Tra4CP and its limitations that could have made difficult its broader use. It also
shows the interest that a generic tracer approach may bring for standardization
efforts and portability of applications, in particular for constraints, in proposing
an approach of trace based semantics grounded on a partial operational seman-
tics.

After an introductory section on operational semantics of traces, the Section 3
introduces some simple relations between traces in order to formalize the concept
of generic trace, and to provide a proof method of compliance of a particular
process trace with the generic one. The Section 4 explains the generic approach
and its interest for portability. The Section 5 applies this approach to the case
of GenTra4CP verifying the compliance of a particular solver. The formal de-
scription of the GenTra4CP trace format is borrowed from [9] and from [6] for
the solver. This allows a better understanding of the strengths and limitations
of this approach as introduced in 2004. We can then establish a possible link
between the efforts of constraints standardization, and the specification method
based on generic trace.

2 Preliminaries

A trace object consists of an initial state s0 followed by an ordered finite or
infinite sequence of trace events, denoted < s0, e >. T is a set of traces. A prefix
(finite, of size t) of a trace T = < s0, en > (finite or infinite, here of size n ≥ t)
is a partial trace Ut =< s0, et > which corresponds to the t first events of T , with
an initial state at the beginning. A prefix consisting of just an initial state is of
size 0. The set of all the prefixes of T is denoted Pref(T), with T ⊆ Pref(T).

Every trace can be decomposed into segments containing trace events only,
except prefixes which start with a state. An associative operator of concatenation
may be used to denote sequences concatenations. The neutral element is ǫ (empty
sequence). A trace may describe state transitions, such that a segment may also
be represented as sTtst where s is the state in which the sequence Tt starts and
st the state reached after the last trace event in the sequence. A segment (or
prefix) of size 0 is either an empty sequence or a state.

A domain of traces over T , DT T , is a set whose elements are sets of all
prefixes of one or more traces of T . An element is prefix closed. Such a set is
closed by union and intersection, and, two included elements are such that the
smaller contains all the prefixes of some traces of the largest. A trace domain
is a complete lattice denoted DTT (⊆,⊥,⊤,∪,∩) where ⊥ is the empty set and
⊤ = Pref(T).

Traces are used to represent the evolution of systems by describing the evo-
lution of their state. We will distinguish two kinds of traces:

– the virtual traces (T v) whose events have the form e = (r, s) where r is a
type of action associated with a state transition and s, called virtual state,

Constraints and Traces 3

the new state reached by the transition and described by a set of parameters.
Virtual trace corresponds to sequences of states of an observed system.

– the actual traces (T w) whose events have the form e = (a) where a is an
actual state described by a set of attributes. Actual traces corresponds to
sequences of events produced by a tracer of an observed system. Thy usually
encode states changes in a synthetic manner.

We give here a simplified but sufficient definition of observational semantics.
More general definitions can be found in [2].

Definition 1 (Observational Semantics).

An observational semantics consists of < S,R,A, T,E, I, S0 >, where

– S: domain of virtual states,

– R: finite set of action types, set of identifiers labeling the transitions.

– A: domain of actual states,

– T : state transition function T : R x S → S, denoted T (r, s) = s′ or T (r, s, s′)
if it is a relation,

– El: local trace extraction function El : S ×R× S → A,

– Il: local trace reconstruction function Il : S ×A → R× S,

– S0 ⊆ S, set of initial states.

The extraction and reconstruction functions can be extended into functions
E (resp. I) between sets of virtual and actual traces, and must verify the relation
of faithfulness, I = E−1. Local and extended functions satisfy the properties:

E(s0e1...ei...) = s0El(s0, r1, s1)...El(si−1, ri, si)... with El(si−1, ri, si) = ai,
and

I(s0a1...ai...) = s0Il(s0, a1)...Il(si, ai+1)... with Il(si−1, ai) = (ri, si).

The local and transition functions may be represented by rules as illustrated
by the Figure 1.

The observational semantics of an observed process can be considered as
an abstraction of some refined operational semantics [1]. This relation will be
expressed here as a relation between domains of traces. Such a relation may
be expressed either between virtual or actual traces. Due to the faithfulness
property, the abstraction function Dw on actual traces verifies with Dv, the
abstraction function on virtual traces, the following relations: Dv = Ec ◦Dw ◦ Id
and Dw = Ic ◦Dv ◦ Ed.

In the following it will be assumed that the faithfulness property is satis-
fied, whatever is the abstraction level of the trace description. In this case, the
extraction function is deducible from the reconstruction one and reciprocally.
Therefore it is sufficient to specify the transition function with the extraction
only or with the reconstruction. In practice, only actual traces are manipulated
by the users, but thanks to the faithfulness property, for validation purposes,
the virtual trace may be used.

4 Deransart P.

reduce
< D(v), Se, A >

< D(v)−∆c
v, Se ∪ ā, A′ >







remove ∆c
v), a wake up c

(c, a) ∈ A, A′ = A− {(c, a)}
v ∈ var(c), generate ā







reduce
< D(v), Se, A′ ∪ {(c, a)} > → < D′(v), S′

e, A′ >

[reduce, c, v, (S′

e − Se), (D(v)−D′(v)), a]
{}

reduce
[reduce, c, v, ā, ∆c

v, a]

< D(v), Se, A > → < D(v)−∆c
v, Se ∪ ā, A− (c, a) >

{}

Fig. 1. Example of description of reduce in the OS of GenTra4CP (Section 5) with
transition rule, extraction and reconstruction. Computations are specified on the right
side

3 Abstraction relations: subtraces and derivations

We introduce simple transformations on traces: subtraces and derivations. As it
is sufficient to describe transformations on the virtual traces, they are described
using one part of their description, namely < S,R, T, S0 > only.

Subtraces are obtained by considering a subset of parameters.

Definition 2 (Subtrace).
Given a set of virtual traces T defined by < S,R, T, S0 >, if S′ ⊆ S is defined

on a subset of parameters which do not depend1 on any other parameter of S−S′,
R′ ⊆ R is a subset of action types which use or modify these parameters only
such that no other action type of R−R′ modifies them, S′

0 is the restriction of S0

to S′, and T ′ the restriction of T to S′ and R′, then the set of traces T ′ defined
by < S′, R′, T ′, S′

0 > is a (parametric) subtrace of T , denoted SubP (T , T ′).

Note: it is possible that S′ ⊆ S and R′ = R (S−S′ contains redundant parame-
ters, i.e. which depend only on the other parameters and thus may be removed).

Definition 3. (Derivation field and derived trace)
Given two sets of traces Tc and Td, where Tc and Td are said respectively

concrete and derived, Td is a derivation field of Tc by D if there exists a mapping
D : Pref(Tc) → Pref(Td), called a derivation, such that for all finite derived
prefixes td of size n and for all concrete prefix tc such that D(tc) = td, there exists
an increasing chain of concrete prefixes [t0c , t

1
c , ..., t

i
c, ..., t

n−1
c , tc] (not necessarily

contiguous), such that

– D(t0c) ∈ S0,d,
– ∀i > 0 if D(tic) = tid with tid prefix of td made of the i first events, then

D(ti+1
c) = ti+1

d .

If D is surjective, the set Td is called derived trace by D of Tc, noted DrvD(Tc, Td).

1 A parameter p depends on p′ iff p′ is used in the computation of p in some transition.

Constraints and Traces 5

As defined, D is a partial function. It can be made total by considering that
all elements of S0,c have an image in S0,d and that the image of each prefix
between tic and ti+1

c is D(tic).

s_c s_c

s d s_d s’_d

s’_c

t_c

t_d t’_d

s c
0

0

0

t’_c

r_d

Fig. 2. Derivation (dashed arrow correspond to the totalized derivation), tx denotes a
prefix

This approach puts emphasis on traces without considering the way they
have been produced or the way they are specified. The main idea is that a trace
transformation is the result of a computation on likely full prefixes of concrete
traces, represented by de derivation D.

Property 1.

Given two derivations D1 and D2, if D1 is surjective or if D2 is total, D1 ◦D2

is a derivation.
A parametric subtrace (definition 2) is a derived trace.

The following establishes a method of proof that two sets of traces specified
by transition relations are related by a derivation.

Definition 4. (Simulable Trace)
Given two sets of traces Tc (concrete) and Td (derived), respectively defined

with < Sc, Rc, Tc, S0,c > and < Sd, Rd, Td, S0,d >, Tc is simulable in Td if Rc and
Rd are in a one-one mapping h, and if there exists an application d : Sc → Sd

such that:

– ∀s0 ∈ S0,c, d(s0) ∈ S0,d.
– ∀rc ∈ Rc, sc, s

′
c ∈ Sc, Tc(sc, rc, s

′
c) ⇒ ∃sd, s

′
d ∈ Sd, d(sc) = sd ∧ d(s′c) =

s′d ∧ Td(sd, h(rc), s
′
d).

Theorem 1.
Given two sets of traces Tc (concrete) and Td (derived), such that Tc is simu-

lable in Td, then Td is a derivation field for Tc and the corresponding derivation
is total.

Corollary 1.
Given two sets of traces T and T ′ such that there exists a parametric subtrace

of T simulable in T ′, then T ′ is a derivation field for T .

6 Deransart P.

4 Generic Trace

The idea of generic trace meets the needs of specification and portability. It is
intended to specify a process or an algorithm by its observable behavior, i.e.
the trace of abstracted operations that it is expected to implement. The level of
description must be general enough to include family of processes, and the level
of granularity must be sufficiently refined to be used by a family of applications.
This may be the case for example for applications such as monitoring, debugging,
visualization tools, or any application using the generic trace.

Definition 5 (Generic Trace (GT)).
Given a family of processes p ∈ P , each of them equipped to produce traces

Tp, a set of traces Tg is generic if, for each process p in the family, there exists
a derivation Dp of its traces which is a parametric subtrace of Tg, that is:

∀p ∈ P, ∃ T such that DrvDp
(Tp, T) ∧ SubP (Tg, T).

Three questions are then worth posing:

– How to ensure that the trace produced by some process is compliant with
the GT?

– Can the GT be used in application development, with the guarantee that
the application will work with any compliant process?

– Can the GT be extended to handle more processes in such a way that existing
applications will still work?

Here are some possible answers.

Compliance to the Generic Trace
A trace of a process is compliant w.r.t. the GT if it satisfies the definition 5,

i.e. there exists a subtrace of the GT which is a derivation of a subtrace of those
of the process. It is thus possible either to implement straightforwardly the GT
as it is (in this case the process produces exactly the GT), or to prove that the
traces a process p may generate verifies ∃T ′, DrvDp

(Tp, T ′) ∧ Subp(Tg , T ′).

Building tools with the Generic Trace
The interest of a generic trace is that it facilitates the development of tools

that can be used with all compliant processes. The development is made consid-
ering that the tool uses at least a sub-GT covering sufficiently many processes.
Thus it is possible to adapt the tool to the process p by applying to the trace
generated by the process (without any modification) the derivation Dp to get a
GT. This can be done at le level of the process (process can use any tool) or at
the level of the tool (tool can be run with this particular process). The Figure 3
illustrates these two ways to adapt processes with compliant tracer and tools.

The fact that the GT has a formal specification makes it possible to realize
a prototype (executable specification) which shall be itself a new compliant pro-
cess. It is thus possible to use such a prototype to develop and test tools. This
development method guarantees that any tool made on the top of the GT will
be able to work with any compliant processes.

Constraints and Traces 7

MI Tp Tg
Dp

Process p

Api

Api

Fig. 3. Use of a Generic Trace: process or application adaptation

Generic Trace extensions

As long as an extension of the GT preserves the fact that a process is com-
pliant w.r.t. a subtrace of the extended GT, they still are compliant w.r.t. the
extended GT. It is sufficient to ensure that any GT extension preserves the para-
metric subtraces. This guarantees that the compliant processes will continue to
be usable by tools using the original GT.

5 The Generic Trace GenTra4CP

In the final document [9], the generic trace GenTra4CP is defined with an obser-
vations semantics whose transition function is defined with a subset of parame-
ters. Thus only a generic subtrace has a formal semantics. The other parameters
are described informally by the description of other attributes of the actual trace.
Their syntax is fixed by a DTD XML and informal explanations are provided
for each new attribute. We recall here the semantics as originally presented in
[9] (section 3.3.1)2

Beginning of Citation:

Definition 6. (Solver State)

A solver state is a 8-tuple: S = (V , C,D, A,E,R, Sc, Se)
where: V is the set of declared variables; C is the set of declared constraints;
D is the function that assigns to each variable in V its domain (a set of values
in the finite set D); A is the set of active pairs of the form (constraint, solver
event 3); E is the set of solved constraints; R is the set of unsatisfiable (or
rejected) constraints. Sc is the set of sleeping constraints; Se is the set of solver
events to propagate (“sleeping events”).

2 Here one uses n instead of ν to denote the current node of the choice-tree.
3 This work inherits from two areas, constraint solving and debugging, which both use
the word “event” in correlated but different meanings: a solver event is produced
by the solver and has to be propagated (e.g. the update of the domain bounds of a
variable); a trace event corresponds to an execution step which is worth reporting
about.

8 Deransart P.

Control

new variable v, Dv,i

new constraint c

post, remove c

restore v, ∆v

choice point n

back to n, n′

solution, failure n

Propagation

reduce c, v, ā,

∆c
v, a

suspend,
solved

c

reject c, a

awake c, a

schedule c, a

Table 1. Attributes of the actual trace of GenTra4CP

A, Sc, E and R are used to describe four specific states of a constraint during
the propagation stage: active, sleeping, solved or rejected.

The store of constraints is the set of all constraints taken into account. The
store is called σ in the following and defined as the partition σ = {c | ∃(c, a) ∈
A} ∪ Sc ∪ E ∪ R. All the constraints in σ are defined, thus σ ⊆ C. The set
of variables involved in the constraint c is denoted by var(c). The predicate
false(c,D) (resp. solved(c,D)) holds when the constraint c is considered as
unsatisfiable (resp. solved: it is universally true and does not influence further
reductions any more) by the domains in D.

The search is often described as the construction of a search-tree.

Definition 7. (Search-Tree State)
The search-tree is formalized by a set of ordered labeled nodes N representing

a tree, and a function Σ which assigns to each node a solver state. The nodes in
N are ordered by the construction. Three kinds of nodes are defined and charac-
terized by three predicates: failure leave (failed(S)), solution leave (solution(S)),
and choice-point node (choice-point(S)). The last visited node is called current
node and is denoted n. The usual notion of depth is associated to the search-
tree: the depth is increased by one between a node and its children. The function
δ assigns to a node n its depth δ(n).Therefore, the state of the search-tree is a
quadruple: T = (N , Σ, δ, n).

In the initial solver state, n0 denotes the root of the search-tree and all the sets
that are part of S are empty.

End of Citation

The remaining description consists of the description of each event type of the
actual trace (called in [6] “generic trace schema”) by introducing other attributes
(some of them are redundant like external and internal constraint identifier). One
illustrates the methodology of GT construction by analyzing one “implementa-
tion” of the GT as presented in [6]. In this paper three “specializations” of the
GT are detailed for three solvers (GNU-Prolog, Choco and PaLM). They consist
of a description of the operational semantics of each solver by their transition
function. We show here that the proposed OS for PaLM [5] is compliant. Among

Constraints and Traces 9

new variable
< V, D >

< V ∪ {v}, D ∪ {(v,Dv,i)} >

{

v 6∈ V,
D(v) = Dv,i

}

new constraint
< C >

< C ∪ {c} >

{

c 6∈ C,
var(c) ⊆ V

}

post
< A >

< A ∪ {(c,⊥)} >

{

c ∈ C,
c 6∈ σ

}

choice point
< N , Σ, S >

< N ∪ {n}, Σ ∪ {(n, S)}, n >

{

ch-pt(S),
n /∈ N

}

back to
< S, ν >

< Σ(n), n >

{

n 6= ν, n ∈ N ,
ch-pt(S)

}

solution
< N , Σ, S >

< N ∪ {n}, Σ ∪ {(n, S)}, n >

{

sol(S),
n /∈ N

}

failure
< N , Σ, S >

< N ∪ {n}, Σ ∪ {(n, S)}, n >

{

flr(S),
n /∈ N

}

remove
< σ >

< σ − {c} >

{

c ∈ σ
}

restore
< D(v) >

< D(v) ∪∆v >

{

v ∈ V,
∆v ∩ D(v) = ∅, ∆v ⊆ Dv,i

}

Fig. 4. OS of GenTra4CP (control, without the parameter δ)

the three experimented solvers, PaLM has a clearly different semantics. The
transition part of the OS is depicted in the figures 4 and 5.

In order to show that the OS (trace semantics) of PaLM is compliant, one
need the following properties of the GT:

(G1) sol(S) ⇒ R = ∅

(G2) flr(S) ⇔ R 6= ∅

(G3) (evtype = reduce) ⇒ R = ∅

(G4) (evtype = awake) ⇒ (R = ∅ ∧A = ∅)

(G5) (evtype = schedule) ⇒ (R = ∅ ∧A = ∅)

One admits:

(P1) dependence(c, a) ⇔ awcond(c, a)

(P2) select(a) ⇒ ∃c ∈ C action(c, a)

(P3) ∃v ∈ var(()c),D(v) = ∅ ⇒ false(c,D)

Theorem 2.

The GT restricted to all events depicted in the Figures 4 and 5 but back to and
solved, is a parametric subtrace of GenTra4CP, derived from the trace specified
for PaLM (Figures 6 and 7).

10 Deransart P.

reduce
< D(v), Se, A >

< D′(v), S′
e, A′ >







D′(v) = D′(v)−∆c
v, supprime ∆c

v,
(c, a) ∈ A, v ∈ var(c), Red. gn. ā,
A′ = A− (c, a), S′

e = Se ∪ ā







suspend
< A, Sc >

< A− {(c, a)}, Sc ∪ {c} >
{(c, a) ∈ A}

solved
< A, E >

< A− {(c, a)}, E ∪ {c} >

{

(c, a) ∈ A,
solved(c,D)

}

reject
< A, R >

< A− {(c, a)}, R ∪ {c} >

{

(c, a) ∈ A,
false(c,D)

}

awake
< A, Sc >

< A ∪ {(c, a)}, Sc − {c} >

{

c ∈ Sc, a ∈ Se ∪ {⊥},
awcond(c, a)

}

schedule
< Sc, Se >

< S′

c, S′

e >

{

c ∈ Sc, e ∈ Se,
action(c, a)

}

Fig. 5. OS of GenTra4CP (propagation)

new variable, new constraint idem GenTra4CP

post , choice point idem GenTra4CP

solution
< N , Σ, S >

< N ∪ {n}, Σ ∪ {(n, S)}, n >

{

sol(S),
n /∈ N

}

failure
< N , Σ >

< N ∪ {n}, Σ ∪ {(n, S)}, n >

{

n /∈ N ,
R 6= ∅

}

remove idem GenTra4CP

restore
< D(v), Qt, E >

< D(v) ∪ Rv, Qt ∪ ā, E − E >







v ∈ V, Rv ⊆ {d ∈ D|E(v, d) ∩ σ 6= ∅},
E = {E(v, d)|d ∈ Rv},
ā actions de restauration de D(v)







Fig. 6. OS of PaLM [6] (control)

6 Generic Trace and Constraints Specification

This approach of semantics can be applied to constraints specification. The ques-
tion then is whether it exists a generic trace covering all the constraints that one
wishes to describe, i.e. covering different types of constraints (single, global,
...), different domains (FD, intervals, ...), different classes of solvers (CSP, SAT,
rules, such as CHR), different levels (algorithms, modules, modeling) or different
aspects (language, interaction, interfaces, ...) as well.

We limit ourselves here to the CSP case. Each constraint has a declarative
semantics defined by the relation it represents on its domains. The GT can thus
provide a description of the possible effects of each constraint separately or in
a network, regardless the particular algorithm it implements. In this sense such
semantics is a kind of minimal description of what we should be able to observe

Constraints and Traces 11

reduce
< D(v), Qt, E >

{

< D(v)−∆ca
v , Qt ∪ {ā},

E ∪ {(v, d, C) | d ∈ ∆ca
v } >

}















v ∈ var(c), R = ∅, A = {(c, a)},
∆ca

v 6= ∅ set of inconsistent values for v,
C ⊆ σ explains the removal of ∆ca

v from D(v),
The reduction generates ā















suspend
< A, Sc >

< ∅, Sc ∪ {c} >
{A = {(c, a)}}

reject
< A, R >

< ∅, R ∪ {c} >

{

A = {(c, a)}, v ∈ var(c), D(v) = ∅
}

awake
< Sc, A >

< Sc − {c}, {(c, a)} >

{

A = ∅, c ∈ Sc, R = ∅,
a ∈ Qh ∪ {⊥}, dependence(c, a)

}

schedule
< Qh, Qt >

< {a}, Qt − {a} >

{

select(a), A = ∅, a ∈ Qt, R = ∅Sc 6= ∅
}

Fig. 7. OS of PaLM [6] (propagation)

of the behavior of a constraints set. It can be used to define any kind of interfaces,
particularly for problem modeling.

In practice, as is what has been done for GenTra4CP, one should start with
a definition of an actual trace whose meaning can be given by a reconstruc-
tion function. It should be completed by an OS as large as possible such that
parameters relevant to potential interfaces and applications are fully described.

We illustrate this approach of a generic semantics with a simple resolu-
tion example, showing the two traces obtained with GNU-Prolog and PaLM
for this example. Both solvers have been instrumented to produce the generic
trace for CSP(FD), and their traces can be “understood” using the OS of the
Figure 8. Both traces (Figure 9) correspond to the resolution of (GNU-Prolog
syntax) fd element var(I,[2,5,7],A), (A#=I ; A#=2) which admits one so-
lution only4. The declarative semantics of this constraint (all variables are finite
domain) can be expressed as: fd element var(I, L, V) (L liste) constrains V
to be equal to the Iith element of L. Thas is to say all triples such that i ∈ I,
u ∈ L(i), v ∈ V and u = v are valid. The interval [a-b] denotes from a to b and
[a,b], a and b. One may observe5 that the traces are different, so, in particular:

– the domain of I is not the same for GNU ([1-3]) and for PaLM ([0-2]);
– the order and the values of the values removal are not the same, as the choice

of variables to consider;
– search spaces are different;
– a specific variable occurs in the trace of PaLM (v-1).

4 PaLM produces shortcuts such that the sequence reduce suspend schedule awake is
displayed as reduce awake. Such shortcut does not have any semantics in GenTra4CP
(it could be adapted). This shows only that the PaLM OS given in [6] was not actually
compliant to the GT.

5 GenTra4CP produces traces in XML, readable but verbose. A more concise repre-
sentation has been adopted here.

12 Deransart P.

new variable
[new variable, v, Dv,i]

< V, D >→< V ∪ {v}, D ∪ {(v,Dv,i)} >
{}

new constraint
[new constraint, c]

< C >→< C ∪ {c} >
{}

post
[post, c]

< A >→< A ∪ {(c,⊥)} >
{}

choice point
[choice point, n]

< N , Σ, S >→< N ∪ {n}, Σ ∪ {(n, S)}, n >
{}

reduce
[reduce, c, v, ā, ∆c

v, a]

< D(v), Se, A >→< D(v)−∆c
v, Se ∪ ā, A− (c, a) >

{}

suspend
[suspend, c, a]

< A, Sc >→< A− {(c, a)}, Sc ∪ {c} >
{}

awake
[awake, c, a]

< A, Sc >→< A ∪ {(c, a)}, Sc − {c} >
{}

Fig. 8. OS of GenTra4CP (reconstruction)

These variations are irrelevant when comparing the respective semantics (re-
naming, extra variable) and from both actual traces one may reconstruct the
corresponding virtual ones. However some variations should be examined and
fixed like the limit values of I, or some specific attributes.

7 Discussion

The semantics of traces presented here corresponds to the “Observable Seman-
tics” of Lucas [8] or the partial trace semantics of Cousot [1]. The parameters of
the virtual states are, as expressed by Lucas, “syntactic objects used to represent
the conduct of operational mechanisms”. The traces are abstract representations
of process semantics which allow to take into account the sole details we want to
consider as common to a set of processes. The choice to relate two forms of trace
(virtual and actual) corresponds to the need to reconcile different pragmatic ap-
proaches: formal specification of semantics more or less abstract, and empirical
manipulations of traces like in trace-based systems [10]. We established here a
particular method to demonstrate compliance of a process trace with regards to
a generic trace. This approach allows to establish formal relations with the trace
theory [3] too.

We have shown here that the definition of the trace GenTra4CP can be well
defined in such a theoretical framework, and we have characterized by relatively
simple transformations (parametric subtrace, similarity and derivation) the for-
mal linkages between the observed processes and the generic trace. This analysis
revealed some insufficiencies in the formal definition of GenTra4CP as the lack
of formal verification of particular traces solver compliance. Simonis & al [11]

Constraints and Traces 13

1[0]choice point node(0)
2[1]newVariable v1 [0-mx]
3[1]newVariable v2 [0-mx]

4[1]newConstraint c1
fd_element([v1,[2,5,7],v2])

5[1]post c1
6[1]reduce c1 v1 [0,4-mx]

7[1]reduce c1 v2
[0-1,3-4,6,8-mx]

8[1]suspend c1

9[1]choice point node(1)
10[2]newConstraint c4

x_eq_y([v2,v1])
11[2]post c4

12[2]reduce c4 v2 [5,7]
13[2]reduce c4 v1 [1,3]
14[2]suspend c4

15[2]schedule v2 dom
16[2]awake c1

17[2]reject c1
18[2]failure node(2)
...

0[0]newVariable v0 I [0-mx]
1[0]newVariable v1 A [0-mx]

2[0]newConstraint c0
element(I,[2,5,7],A)

3[0]post c0
4[0]suspend c0

5[0]awake c0
6[0]reduce c0 v0 [3-mx] max
7[0]reduce c0 v1 [0,1] min

8[0]reduce c0 v1 [8-mx] max
9[0]suspend c0

10[0]newConstraint c1 eq(I,A)
11[0]post c1

12[0]suspend c1
13[0]awake c0 (v0,max)
14[0]reduce c0 v1 [2-7] empty

15[0]reject c0 empty
16[0]failure

17[0]newVariable v-1 I [0-1]
18[0]reduce c2 v-1 [0,1] empty
...

Fig. 9. Partial actual trace of GNU-Prolog and PaLM with the given example. The
second attribute is the choice-tree depth

note that the generic trace GenTra4CP contains too many details with a too so-
phisticated specification. This is certainly true if the objective is just to analyze
the evolution of some problem variables and some aspects of the search. In this
case the need of trace information is limited and it is less work to implement
directly the capture of the needed information rather than implementing a full
generic trace format. But it is different if the objective is to create a generic
interface between solvers and many more applications. Our study shows also
that GenTra4CP probably contains too many optional details with no clear se-
mantics, such that implementers feel free not to implement many of them, or
to implement them with just specific implementation dependent semantics. A
more demanding approach, but which may be more useful, could be to specify
formally more attributes of the generic trace.

Moreover, as it has been observed in the Section 4, it is the task of the
developer of a solver to implement a generic (sub)trace or to adapt the tools
which have been developed on the basis of the generic trace. The investment to
make is measured by the gap between the developed process trace and the generic
trace (formally a derivation, Figure 3). It may seem easier to implement an ad-
hoc trace systematically, rather than to implement once a compliant tracer, or
to adapt a tool each time needed. Langevine and Ducassé have shown [7] that a
generic approach could have more advantages than drawbacks, but it is similar
to a standardization effort.

Such an effort can only result from the action of a large community, and not
from a small group as in the case of GenTra4CP. The project of standard [4]
focuses mainly on the definition of a Java interface that includes in particular the
major types of variables, unary constraints, some binary and global constraints,
as some strategies to search for solutions. But the question of the semantics

14 Deransart P.

cannot be ignored. If the declarative semantics of simple constraints poses little
problem of specification, it is not the same for the operational semantics, whose
accuracy depends on potential applications developed with constraint problems.
The approach presented here, based on a generic trace semantics, may be a
way since it provides a framework for specifying outcomes and side effects of
constraint, revealing for example constraints interactions independently from
specific implementations.

8 Conclusion

GenTra4CP has been an innovative approach using a partial trace semantics to
handle both problems of specifying constraint solvers (on finite domains) and of
portable analysis tools. Such an effort was similar to a standardization effort,
but with no effective dissemination because of its limits (small group who made
it, some technical gaps and restricted to one constraints domain).

We have introduced a simple formal framework based on trace theory and
abstract interpretation to explain the method of generic trace construction, and
to show the potential value of this approach to specify a partial semantics of
constraints resolution.

The realization of a generic trace for a significant set of simple or global con-
straints certainly represents a considerable amount of efforts. It seems however
that such an approach could not only allow the portability of potential applica-
tions, but also contribute to the semantics of knowledge representation systems
which combine several methods like constraints and rules.

References

1. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: Proc. of POPL 2002. pp. 178–190 (2002)

2. Deransart, P.: Towards a Trace Meta-Theory (Mar 2011), working document
http://hal.inria.fr/ (mainly in French)

3. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing, Sin-
gapore (1995)

4. Feldman, J.: JSR-331, Java Constraint Programming API. Tr, Java Community
Process, Cork Constraint Computation Centre (2011), {\tthttp://www.jcp.org}

5. Jussien, N., Barichard, V.: The PaLM system: explanation-based constraint pro-
gramming. In: Proceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP 2000. pp. 118–133. Singa-
pore (Sep 2000), {http://www.emn.fr/jussien/publications/jussien-WCP00.

pdf}

6. Langevine, L., Deransart, P., Ducassé, M.: A generic trace schema for the portabil-
ity of cp(fd) debugging tools. In: Apt, K., Fages, F., Rossi, F., Szeredi, P., Vancza,
J. (eds.) Recent Advances in Constraints. No. 3010 in LNAI, Springer Verlag (May
2004)

7. Langevine, L., Ducassé, M.: Design and implementation of a tracer driver: Easy
and efficient dynamic analyses of constraint logic programs. Theory and Practice

Constraints and Traces 15

of Logic Programming, Cambridge University Press 8(5-6) (Sep-Nov 2008), http:
//arxiv.org/abs/0804.4116

8. Lucas, S.: Observable Semantics and Dynamic Analysis of Computational Pro-
cesses. Tech. Rep. LIX/RR/00/02, Laboratoire d’Informatique LIX (2000), http:
//users.dsic.upv.es/\verb.~.slucas

9. OADymPPaC: Tools for dynamic analysis and debugging of constraint programs,
french RNTL project (2001-2004) http://contraintes.inria.fr/OADymPPaC

10. Settouti, L.S.: Modeled Trace Based Systems: Model and Languages for the Use
of Traces of Interactions. Ph.D. thesis, Université Claude Bernard - Lyon I (Jan
2011)

11. Simonis, H., Davern, P., Feldman, J., Mehta, D., Quesada, L., Carlsson, M.: A
Generic Visualization Platform for CP. In: Petrie, K. (ed.) Proceedings of the 16th
International Conference on Principles and Practice of Constraint Programming.
St Andrews, Scotland (Sep 2010)

16 Deransart P.

ANNEX: Proofs

8.1 Proof of theorem 2

One shows that a parametric subtrace of PaLM is simulable by a parametric
subtrace of GenTra4CP.

One considers the GT GenTra4CP, restricted to all the events of the Fig-
ures 4 and 5 but back to and solved. Ignoring back to does not affect the search-
tree construction but only its visiting strategy, and ignoring solved corresponds
to removing the parameter E in the solver state. Furthermore the parameter
corresponding to the explanations can be ignored, as it is not formalized in the
OS of GenTra4CP.

According to the definition 2, the restriction to the subset of considered
events is a parametric subtrace of GenTra4CP.

The subtrace of PaLM to be considered consists just in ignoring the expla-
nations. This does not restrict the set of action types (definition 2).

In GenTra4CP and the considered subtrace, the control part Tg uses ac-
tually 4 parameters: N , Σ, δ, ν, and the propagation part Sg 8 parameters:
V , C,D, A,E,R, Sc, Se, in total 12 parameters.

In PaLM, the control part Tp uses 5 parameters: N , Σ, δ, ν,Qt, and the
propagation part Sp 9 parameters: V , C,D, A,R, Sc, Qh, Qt, E ; in total 13 pa-
rameters (Qt is common). There are some differences:

– E, the subset of the “constraint store”, containing the valid constraints, is
irrelevant in PaLM, as no satisfiability test is realized in PaLM (no “entail-
ment”).

– The set Se of the current events in PaLM is a queue (Se = Qh ∪Qt) whose
head Qh (a singleton) contains the selected current event.

– The state of the PaLM solver contains an additional parameter E , the expla-
nation function which serves to store the what is called the “explanations”.
E is a partial function: E : V × D −→ P(σ)6 which assigns to each value
removal (v, d) (v ∈ V , d ∈ D(v)) a set of non relaxed constraints which ex-
plains this removal. This partial function is updated by the events reduce and
restore.

– A, in PaLM, has at most one element.

Thus one shows that the PaLM subtrace is simulable in the subtrace “PaLM”
of GenTra4CP.

One uses the theorem 1. One defines the application d between the modified
states Tp×Sp and Tg×Sg, that is: (one omits δ which is deducible directly from
N)

N , Σ, ν,V , C,D, A,R, Sc, Qh, Qt and
N , Σ, ν,V , C,D, A,R, Sc, Se

6 P(σ): powerset of the store σ (instance of the constraints which are in A, Sc and R
for PaLM).

Constraints and Traces 17

as follows: identity for the 9 first parameters of PaLMN , Σ, ν,V , C,D, A,R, Sc,
then Qh ∪Qt = Se.

The action types have the same names ans their set is restricted to those in
the Figures 6 and 7.

The initial states T0,p × S0,p and T0,g × S0,g to be considered are:
{rcp}, (rcp, S0,p), rcp, ∅p, ∅p, ∅p, ∅p, ∅p, ∅p, ∅p, ∅p and
{rcg}, (rcg, S0,p), rcg , ∅g, ∅g, ∅g, ∅g, ∅g, ∅g, ∅g, ∅g

new variable, new constraint, post, choice point and remove are in correspondence
as the transition rules are the same, as their modified parameters as well.

For solution and failure, it is the same provided the properties (G1) and (G2)
hold.

The case of restore is more complex. But, if one ignores the explanations and
take for ∆v, Rv (∆v = Rv) for the same variable v, the conditions associated to
the event of Gentra4CP are deducible from the explanations properties (restitu-
tion of the removed values, then inexistent in the current domain of v). But one
has to justify the update of Se in the transition rule of GenTra4CP.

reduce. To ∆ca
v it corresponds ∆c

v (set of inconsistent values) of the GT.
By (G3) the properties R = ∅ correspond. Finally as d(Qh ∪ Qt) = Se, then
d(Qh ∪Qt ∪ ā) = Se ∪ ā.

suspend. In the corresponding initial states (c, a) ∈ A, and A′ = A− {(c, a)}
in the final states.

reject. Uses (P3) for the initial states, and the final states are in correspon-
dance.

awake. Uses (P1) and (G4).
schedule. Uses (P2) and (G5). Sc and Se are invariants in the GT.

