
HAL Id: inria-00597070
https://hal.inria.fr/inria-00597070

Submitted on 15 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Business Process to Component Architecture:
Engineering Business to IT Alignment

Karim Dahman, François Charoy, Claude Godart

To cite this version:
Karim Dahman, François Charoy, Claude Godart. From Business Process to Component Architec-
ture: Engineering Business to IT Alignment. The Scientific Workshop on Service-oriented Enterprise
Architecture for Enterprise Engineering, Aug 2011, Helsinki, Finland. �inria-00597070�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49985436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00597070
https://hal.archives-ouvertes.fr

From Business Process to Component Architecture:
Engineering Business to IT Alignment

Karim Dahman, François Charoy, Claude Godart
Université de Lorraine, UHP - LORIA

BP 239 54506 Vandoeuvre-lès-Nancy Cedex, France
{karim.dahman, francois.charoy, claude.godart}@loria.fr

Abstract—Maintaining the alignment between the Business and
IT is of high strategic relevance in today’s enterprise roadmap. In
this paper, we follow our previous assumption that this alignment
will be better maintained if we are able to ensure a clear
conceptual alignment between the Business Processes and the
Software Architectures. As our aim is to provide an environment
that would flawlessly support evolutions of the processes or of the
architecture while maintaining this alignment, we build on the
formal foundation that we have developed to ensure it and shows
how it can be actually developed with current Model Driven
Engineering technologies.

Index Terms—Unidirectional Model Transformation, Business-
IT Alignment, BPMN, SCA, Conceptual Mapping, ATL

I. INTRODUCTION

For any enterprise that aims to conduct a successful Busi-
ness, being able to model its architecture is now an impor-
tant asset. Furthermore, being able to relate this business
architecture to its supporting Information Technology (IT)
is recognized as a driver for the efficiency of enterprise
computing resource management. One of the claimed goal for
the integration between the business dimension and the IT di-
mension is to allow the agility in conducting the business, and
adapting it to evolving business demands. The challenges to
enforce this alignment from the business strategic perspective
to the IT still need to be addressed. New approaches promoted
through Service Oriented Computing (SOC), Business Process
Management (BPM) and Enterprise Architecture are meant to
be efficient enablers of this alignment and of its maintenance.
Among these three disciplines, the BPM along with the SOC
paradigm have an interesting quality. The BPM provides a
direct bridge with almost no transformation between analysis,
design, implementation and execution. Moreover, the SOC is
supported by the Service Oriented Architecture (SOA [1])
architectural foundation, and has emerged as a new computing
paradigm for designing, building and using software appli-
cations to support business processes. The Business Process
Modeling Notation (BPMN 2.0 [2]) standard-related practices
try to sustain this bridge by letting business analysts and
application architects work on the same readily understandable
model to obtain a (business process driven) software system.

We are still far from the streamlined experience where
we could derive deployable software artifacts with sound
architectural foundation from a BPMN collaboration diagram.
This is even more true when we need to take into account
the deployment topology of heterogeneous, distributed and

continuously changing IT environments to support the process
executions. Our goal, however, is to show that it would be
possible to automate that business production line from the
service-enabled process dependencies into the architectural
software settings and its maintenance, while using the industry
recognized standards like the BPMN and the Service Compo-
nent Architecture (SCA 1.1 [3]). In a previous work [4], we
have shown that its was possible to leverage the Model Driven
Engineering (MDE) to generate SCA models from a subset of
the BPMN models. The contribution of this paper is to demon-
strate how these theoretical results can be implemented using
current model transformation technologies. For this purpose,
we have developed an ATLAS Transformation Language (ATL
[5]) transformation chain that is able to generate canonical
SCA artifacts from a BPMN collaboration model. We have
also identified how this technology will be an issue for our
future development to maintain the Business Processes/SOA
Assets alignment as it does not support incremental transfor-
mations. This is an important problem regarding the goal that
we are pursuing: being able to keep the consistency and to
maintain the alignment of the processes with the software
architectures in every directions (i.e., round tripping), thus
supporting agility from the realistic business settings with
complex IT environments.

The next section of this paper is a short reminder of our
previous work. Section III describes the theoretical result
for the implementation of our ATL transformation chain in
the Eclipse development environment [6]. In Section IV, we
situate our work through the related research and discuss the
limit that we have encountered during this work. The last part
conclude that work with a brief evaluation of other alternatives.

II. BACKGROUND AND FORMAL FOUNDATIONS

Typically, the Business Process Modeling combines graph-
ical and textual annotations to specify the business process
models that are decoupled from their supporting technical
and software architectures. Several languages can be used to
specify the business service interactions at different levels of
abstraction [7]. Specially, the BPMN collaboration models
express and put in logical relation the exchanges between
the internal processes of service-enabled business networks.
They aim at coordinating an explicit exchange of information
through automated service interactions under the control of
a single endpoint, called orchestration process [1]. In the

SOC those processes are mapped into models that describe
services in a uniform and technology-independent way. At this
lower abstraction level, i.e., the IT level, they describe the
configuration of the so-called SCA assembly models which
are organized in a SOA. The SCA assemblies modularize
and compose service-enabled business functions in a manner
that is decoupled from their application code. The SCA
provides an Architecture Description Language (ADL) that
offers means to define platform independent component kit
architectures and a path from the business goals to the program
code (e.g., executable process languages). With a graphical
notation support, it describes composites of components, their
connections and other related artifacts which specify how the
component functions are externally consumed and/or offered.

The SOC extends the Component Based Development
paradigm which states that applications expose their func-
tionality as services in a uniform and technology-independent
way such that they can be provided and invoked over loosely-
coupled architectures. Consequently, the service-enabled busi-
ness functions can be implemented as components with re-
motely published interfaces in a network. Our previous work
has introduced a MDE approach for the automated generation
of (target) canonical SCA assembly models from (source)
core BPMN collaboration models, and specified relations
among their metamodels as conceptual mappings [4]. In our
semantics, models are conform to a metamodel. As a part
of this view, the models are viewed as assorted collections
of typed objects with attributes, and typed links among the
objects. The mapping between the heterogeneous BPMN and
SCA models are viewed as rules that establish relations be-
tween the model types. We refer to the program executions that
implement conceptual mappings as transformations. Figure
1 depicts an example of a model transformation which will
be used through the reminder of this paper. It illustrates few
situations that occur when the “task-driven process logic” has
to be transformed into the “component composition logic”. In
the next section, we present the syntax of those models.

A. The BPMN and SCA Model Syntaxes

At the BPMN level, the processes are focused on the
composition of services in a business driven-fashion, i.e., the
orchestration process, and in that sense the business services
become process activities. Moreover, the processes become
composite business services that orchestrates other services
and the business service networks are modeled as BPMN
collaborations. A collaboration refers to the interactions be-
tween a collection of participants which represent the business
entities or roles. They form a business service network and
define the business process logic of each partner pertaining to a
domain being modeled. The BPMN refers to a service orches-
tration as a participant’s private process. Consider, the well-
known BPMN dealing network example [2] depicted in Figure
1. In this business service network, a retailer provides an
ordering service to a customer partner. In order to provide this
service, the retailer establishes business links with other part-
ners (e.g., scheduler, invoicer, and a shipper), and orchestrates

Dealing Network

O
rd

er
S

hi
pm

en
t

In
vo

ic
e

S
ch

ed
ul

e

Receive
Order

Initiate
Price

Calculations

Complete
Price

Calculations

Request
Shipping
Schedule

Receive
Shipping
Schedule

Send
Shipping
Schedule

R
et

ai
le

r

StartEvent

SequenceFlowConversation

BPMN Collaboration Graphical Constructs

ConversationLink

ServiceReference

Service or
Reference
Callback Wire

ImplementationComposite ComponentEndEvent
SendTask ReceiveTask

P
oo

l

Process

SCA Assembly Graphical Constructs

Participant
Fork/Join
Parallel

Gateway

Request
Product

Scheduling

Shipping

InvoicerCustomer

ShipperScheduler

Retailer Invoicer
Customer

Target Canonical SCA Assembly Model

Source Core BPMN Collaboration Model

Dealing Network

Receive
Product

Scheduling

Scheduling

Process
Invoice

Invoicing

Send Invoice

Ordering

Receive
Order

Send Invoice

Shipping
Start

Initiate
Price

Calculations

Complete
Price

Calculations

Process
Invoice

Request
Shipping
Schedule

Receive
Shipping
Schedule

Send
Shipping
Schedule

O
rd

er
S

hi
pm

en
t

In
vo

ic
e

S
ch

ed
ul

e

Partitioned Core BPMN Collaboration Model

Dealing Network

Scheduling
End

Scheduling
End

Shipping
Intermediate

Shipping
End

Request
Product

Scheduling

Receive
Product

Scheduling

Scheduling
Start

Invoice
Start

Invoice
Start

Invoicing
End

Shipping
Start

Shipping
End

Shipping
Intermediate

Invoicing
End

Scheduling
Start

Promotion

Retailer

Invoice

Order

Schedule

Shipment

ShipperScheduler

Fig. 1. BPMN-to-SCA transformation example and languages constructs.

their exposed services: scheduling, invoicing, and shipping. To
sustain the separation of concerns in the service “orchestration
logic” [8], the retailer participant’s private process is modeled
with different sub-roles (e.g., order, schedule, invoice and
shipment). Those roles contain tasks which invoke or provide
operations for a single external service provider (i.e., relative

to the retailer). The collaboration specifies the behavioral
and architectural views of the business structures and their
participant roles. The business links between participants are
modeled as conversations that capture the service contracts.
Formally, we define those models as below.

Definition 1 (Source Core BPMN Collaboration Model):
A source core BPMN collaboration model is a tuple
s = (P ,R,A,A�,A�, E ,F , conv,H,L) where P is a set
of participants which can be partitioned to disjoint sets
of sub-roles R and interaction tasks A which can be
partitioned into disjoint sets of send tasks A�, receive
tasks A�, E ⊆ P × P is a participant association relation,
F ⊆ A×A is the sequence flow relation between the tasks,
conv : ∪p∈PAp → ∪p∈PAp is an injective function which
maps interaction tasks, H = {(a, a′) ∈ Ap × Ap′ | ∃p,p′∈P
conv(a) = a′} is the conversation relation, and L ⊆ R ×A
is a process relation.

Likewise, when mapped to the SCA space, the services
become components. The processes are executed by service-
components that contain the effective implementation artifacts.
The inter-component interactions are conceptually similar to
the inter-process invocations. Consequently, the conversations
between processes can map to the connectors between com-
ponents. It must to be noticed, that we intentionally hide
definition of the rest of BPMN constructs shown in Figure
1 (e.g., events, sequence flows and gateways), since those
types have not conceptually equivalent counterpart types in
SCA as explained in Section II-B. In order to generate
sound component compositions we have introduced in [4] a
technique that emphasizes the separation of service modeling
concerns between the BPMN design space and the SCA
level. This technique, which we called orchestration process
partitioning, is intended for avoiding the straight mapping of
the inter-task dependencies to the component connectors. As
shown in Figure 1, it transforms the inter-task control flow
of a single orchestration process with different roles, e.g.,
retailer, into a new collaboration between separated processes,
with singular roles. Also, it decomposes monolithic “task-
driven logic” into functionally equivalent decoupled logics.
Each resulting participant, e.g., order, schedule, invoice and
shipment, contains its own private process with additional
synchronization tasks.

Due to the lack of space, we do not give details of the parti-
tioning algorithm. Those processes directly interact with each
other with additional conversation. Formally, for any p ∈ P ,
the subset of interaction tasks Ap that have conversations with
the same external participant (i.e., service denoted p ′′ ∈ P)
is denoted Ap��p′′ = {a ∈ A�

p ∪ A�
p | ∃a′′ ∈ Ap′′aHa′′}.

By applying the orchestration partitioning algorithm to its
process, i.e., denoted Lp ⊆ Rp × Ap, we obtain a set of
participants P ′ where P ′ = Rp and ∀p′∈P′ | ∃p′′∈PAp′ =
Ap��p′′ ∧Rp′ = {p′}. Each obtained participant, i.e., “process
partition” denoted p′, includes only a subset of the tasks that
invoke (resp., provide) operations on a same service provider,
i.e. denoted p′′ (resp., consumer). Those partitions represent

“proxy” orchestrations that are related to each external service.
They are fine-grained internal services composing the initial
service (i.e., relative to the initial participant p) and they are
matched up with p through participant associations, i.e., E ⊆
∪p∈P ×∪p′∈P′ . In this case, we refer to the initial participant
as an associated participant. The orchestration partitioning
ensures a more manageable component architecture and adds
a clear architectural view about how fine-grained services are
composed, that the BPMN per se fails to capture.

In the SCA, the assembly models logically modularize and
compose components in a manner that is decoupled from
their code. A component can be a composite (i.e., an assem-
bly of components glued together using some “composition
logic”) or atomic when it is considered without its inside
structure. The components expose their provided ports, i.e.,
called services, and require (i.e., or discover) other services
by means of references. They are configured to interact with
the other components through the connectors, i.e., called wires.
Also, the callbacks can be defined for services and references
when the components play per se both the service consumer
and provider roles. Finally, each component contains the
implementation with an appropriate technology of the process
specified by the mapped participant’s orchestration. We define
those models to be used for the further formal foundations of
the model transformation which are given in the next section.

Definition 2 (Target Canonical SCA Assembly Model):
A target canonical SCA assembly model, i.e.,
assimilated to a composite, is a tuple t =
(B,M,N , C,O,Q,K,G,J , I,R,V ,W) where B is a
set of sub-composites which can be partitioned to disjoint
sets of composite services M and composite references
N , C is a set of components which can be partitioned into
disjoint sets of component services O and component
references Q, K is a set of callbacks, G ⊆ (M∪N) ×K is
the composite callback relation, J ⊆ (O ∪ Q) × K is the
component callback relation, I is the of implementations,
R ⊆ (M × O) ∪ (N × Q) is the promotion relation,
V ⊆ C ×B is the implementation as composite relation, and
W ⊆ (M∪Q) × (N ∪O) is the wire relation.

B. The BPMN to SCA Conceptual Mapping

Before we delve into the formal details, a look at the
general model transformation problem is needed. Given two
metamodels S and T , the model-to-model transformation,
denoted transmap : S → T , is a partial function that takes
a source model s in S and produces a target model t in
T . The source-to-target types correspondences are defined
by a partial function, denoted map, which is based on the
semantics of the source core BPMN collaboration and the
target SCA assembly types. This means that only the source
model objects with types that has proper conceptual mapping
into target types are transformed. For example, only the tasks
that specify service interactions (i.e., send or receive) are
transformed. The other constructs such as gateways and events
are not relevant for sketching the component assembly, but,

define functional aspects of the component implementation.
Moreover, we define an index function as follows: ∀p,p′∈P |
∃a∈Ap,a′∈Ap′ , aHa′, index(a) = initialp

′
if �a′′∈Ap | a′′ ∈

prev∗(a) and index(a) = finalp
′
if �a′′∈Ap | a′′ ∈ next∗(a).

This function is used to differentiate the tasks in the ser-
vice interaction patterns [9] in the following definition. The
functions denoted prev∗(a) = {a′ ∈ Ap | a′F∗

p a} and
next∗(a) = {a′ ∈ Ap | aF∗

p a′} give the set of all direct
and transitive predecessors and successors of a task a, where
F∗

p is the reflexive transitive closure of Fp. A static analysis
of the process flow is considered to distinguish tasks in
conversations. We formally define the mapping below.

Definition 3 (Collaboration to Composite Mapping):
Let s = (A,R,P ,A�,A�, E ,F , conv,H,L) be a
well-formed and well-behaved source core BPMN
collaboration model (i.e., given in Definition 1). s can
be conceptually mapped to onto a target canonical
SCA assembly model, i.e., assimilated to a composite
map(s) = (B,M,N , C,O,Q,K,G,J , I,U ,V ,W) where

• B =
⋃

p∈P{p | ∃p′∈P pEp′}, i.e., associated participant
to composite,

• M =
⋃

p∈P{a ∈ A�
p | ∃p′,p′′∈P pEp′ ∧ index(a) =

initialp
′′}, i.e., initial receive task to composite service,

• N =
⋃

p∈P{a ∈ A�
p | ∃p′,p′′∈P pEp′ ∧ index(a) =

initialp
′′}, i.e., initial send task to composite reference,

• C = P \
⋃

p∈P{p | ∃p′∈P pEp′}, i.e., participant to
component,

• O =
⋃

p∈P{a ∈ A�
p | �p′∈P pEp′ ∧ ∃p′′∈P index(a) =

initialp
′′}, i.e., initial receive task to component ser-

vice,
• Q =

⋃
p∈P{a ∈ A�

p | �p′∈P pEp′ ∧ ∃p′′∈P index(a) =
initialp

′′}, i.e., initial send task to component refer-
ence,

• K =
⋃

p∈P{a ∈ A�
p ∪A�

p | ∃p′∈P,a′∈Ap a ∈ next∗(a′)∧
index(a′) = initialp

′ ∧ index(a) = finalp
′}, i.e., final

receive task or final send task to callback,
• G =

⋃
p∈P{(a, a′) ∈ A�

p × A�
p | ∃p′,p′′∈P pEp′ ∧

a ∈ prev∗(a′) ∧ index(a) = initialp
′′ ∧ index(a′) =

finalp
′′}, i.e., associated receive task relation to com-

posite callback relation,
• J =

⋃
p∈P{(a, a′) ∈ A�

p × A�
p | �p′∈P pEp′ ∧ ∃p′′∈P

a ∈ prev∗(a′) ∧ index(a) = initialp
′′ ∧ index(a′) =

finalp
′′}, i.e., associated send task relation to compo-

nent callback relation,
• I =

⋃
p∈P{p | �p′∈P pEp′ ∧ ∃a∈Ap,r∈Rp rLa}, i.e.,

process to implementation,
• U =

⋃
p∈P{(a, a′) ∈ (A�

p×A�
p′)∪(A�

p×A�
p′) | ∃p′,p′′∈P

pEp′ ∧ index(a) = initialp
′′ ∧ index(a′) = initialp

′′},
i.e., associated task relation to promotion relation,

• V =
⋃

p∈P{(p, p′) ∈ P × P | ∃p′∈P pEp′}, i.e., partici-
pant association to implementation as composite,

• W =
⋃

p∈P{(a, a′) ∈ A�
p × A�

p′ | ∃p′∈P index(a) =
initialp

′ ∧ index(a′) = initialp ∧ aHa′}, i.e., conver-
sation to wire.

Note that we assume the well-formedness of the source
models and its well behavedeness. It means they are consistent
with the structural and the behavioral requirements of service
interaction specification, e.g., defined in [9]. For the minimal
correctness requirements on the structure of the processes we
follow [10], e.g., there is a single start event, there is one or
more end events, and every process task is on a path from
the start event to an end event. Due to lack of space, we
refer to [11] for detailed structural requirements on the SCA
models. Since the BPNM participants map into SCA compo-
nents, then, after the orchestration partitioning, the obtained
participant associations between the new participants map into
the implementations as composites. For example, Figure 1
shows the mapping of participants resulting from the retailer’s
process partitioning. The associated participant is mapped to
a component. The collaboration obtained after the partitioning
maps into the retailer composite which is attached to the
implementation of the initial retailer component. Recursively,
each obtained sub-participant, e.g., order, schedule, invoice
and shipment, is mapped onto a component, and it is placed
within the implementing composite. The process of each sub-
participant maps to a single component implementation. This
allows different technologies to be used for each process
implementation. It has to be noticed that we do not make
recommendations on the technology usage.

III. BPMN TO SCA MODEL TRANSFORMATION

In the previous section, we have introduced the conceptual
mapping for the transformation of canonical SCA assembly
models from core BPMN collaboration models. This section
performs a more through investigation on the implementation
of the transformation code. In order to implement the transfor-
mation of the model artifacts, we use the ATL transformation
chain which is depicted in Figure 2. The ATL is integrated in
the Eclipse development environment and can handle models
based on the core Eclipse Modeling Framework (Ecore [6]).
It also provides support for models using EMF-based UML
profiles. In our proof-of-concept prototype, the BPMN and
SCA metamodels are created using the Ecore. The BPMN
diagrams and the SCA definitions metamodels are specified
in the eXtensible Markup Language Metadata Interchange
(XMI).

Simplified BPMN Metamodel Simplified SCA Metamodel

Participant SendTask ReceiveTask

FlowElement

Collaboration

Process ComponentReference

Composite

Component

ComponentService
*

* *

Ecore

BPMN Metamodel SCA Metamodel

Source Model

SCA XMI FilesBPMN-To-SCA

Target Model Partitionned Model

Orchestration Partitioning

Legend:
Conforms To
Transformed In

*

Transformation Chain

BPMN XMI File

Definition*

0..1
*

*

Fig. 2. BPMN-to-SCA transformation ATL chain overview.

Rather than using intermediate model facilities [12], we

advocate a direct transformation chain that starts off from
a BPMN XMI file containing the source core BPMN col-
laboration model. Then, its orchestrations are partitioned.
Subsequently, this model is transformed into a target canonical
SCA assembly model resulting in XML files which contain the
Service Component Definition Language (SCDL [3]) of the
mapped composites, i.e., the particular ADL of the SCA. An
ATL-code is composed of rules describing how to generate the
objects of the target models. It is compiled into the ATL byte-
code and then executed by the ATL virtual machine [5]. As a
simple running example, consider the following BPMNtoSCA
ATL program, i.e., the module.

module BPMNtoSCA;
create OUT : SCA from IN : BPMN;
helper context BPMN!Definitions

def : CollaborationHasParticipants() : Boolean =
if (self.getCollaboration().

participants.oclIsUndefined()) then false
else true endif;

helper context BPMN!Definitions
def : getDefinitions() : BPMN!Definitions = self;

helper context BPMN!Definitions
def : getCollaboration() : BPMN!Collaboration =
(self.rootElements -> select (e | e.oclIsTypeOf(

BPMN!Collaboration))).asSequence().first();
rule CollaborationtoComposite {
from d: BPMN!Definitions, s: BPMN!Collaboration
to t: SCA!Composite(name <- s.name,

component <- BPMN!Participant.allInstancesFrom(’IN’)
-> collect(e | if not e.processRef.oclIsUndefined()

thisModule.ParticipanttoComponent(e,
d,e.processRef))}

lazy rule ParticipanttoComponent {
from d: BPMN!Definitions, p: BPMN!Participant,

l: BPMN!Process
to c: SCA!Component(name <-

if d.CollaborationHasParticipants()=true
then p.name

else d.getCollaboration().name endif,
reference <- BPMN!SendTask.allInstancesFrom(’IN’)->
select(e | l.flowElements.includes(e))->
collect(e | thisModule.SendTaskToReference(e)),
service <- BPMN!ReceiveTask.allInstancesFrom(’IN’)
-> select(e | l.flowElements.includes(e))->
collect(e | thisModule.ReceiveTaskToService(e)))}

lazy rule SendTaskToReference {
from sen: BPMN!SendTask
to ref: SCA!ComponentReference(name <- sen.name)}
lazy rule ReceiveTaskToService {
from rec: BPMN!ReceiveTask
to ser: SCA!ComponentService (name <- rec.name)}

It defines four rules from the conceptual mapping given in
Definition 3. Those rules uses the simplified BPMN and SCA
metamodels shown in Figure 2. The ATL is a hybrid model-
to-model transformation language that supports both declar-
ative and imperative constructs [13]. The preferred style is
declarative, which allows simpler implementation for relatively
simple conceptual mappings. However, imperative constructs
are provided so that some not trivial mappings to be handled
declaratively can still be specified. Roughly speaking, the
ATL program transforms a collaboration to a composite and
each participant of the collaboration to a component of the
corresponding composite. Also, the rules map the send and the
receive task in a straightforward manner to component services
and references. The order of the rule execution is determined
automatically, with the exception of lazy rules, which needs to
be called explicitly. The helper functions provide imperative
constructs.

In order to ensure the consistent BPMN-to-SCA mapping,
we partition the service-enabled business process into smaller
decoupled service-components with separate concerns. The
orchestration process partitioning is written with imperative
constructs (i.e., not presented in the above ATL-code due to
lack of space). It provides a better view on the dependencies
between the component inside the application being modeled
(e.g., order, schedule, invoice and shipment within retailer
in Figure 1) and their relationships with the outside of the
system (e.g., customer, scheduler, invoicer, and a shipper).
Also, it makes the overall component architecture more robust
and flexible for the later business process or IT evolutions.
Eventually, realizing some change in a specific single business
service contract brings into play only a part of the component
configuration architecture. Finally, it becomes possible only
when looking at this SCA architecture to localize the con-
cerned parts to be changed, without spying on the opaque
application code. It is undeniable, however, that the flexibility
to adapt the processes in order to respond to evolving business
needs is the most relevant trend in the MDE success.

IV. RELATED WORK

In order to align the Business and IT capabilities, various or-
ganizational considerations need to be taken into account [14],
[15]. In this paper, we focus on the Business-IT alignment
through the business processes, particularly, on the generation
of the software architectures from service-enabled (business
process driven) system specifications. Several languages can
be used to specify the service interaction models at different
levels of abstraction [7]. Using the BPMN 2.0 [2] can pro-
vide the sufficient conceptual information needed to specify
a complex service-enabled system in a cross-organizational
setting. Likewise, the SCA [3] provides a framework for
creating software solutions based in a multi-language and
multi-platform environment that are based on complex IT
environments. As an alternative to the BPMN along with the
SCDL, one could use UML Activity Diagrams and Sequence
Diagrams, which offer comparable features along with any
other ADL. However, as the UML is neither fully service-
centered, nor business process-oriented, it is necessary to
provide alternative methods to design the business process
logic independently of their implementation infrastructure.
Thus, the MDE techniques needs to address the gap in existing
UML modeling methodologies for the system engineering with
a Service Dominant Logic [14], [15].

In [12], the authors present a MDE scenario that uses the
Eclipse SOA Tools Platform Intermediate Metamodel. The
scenario starts off with a business process specified in the
BPMN, leading to an intermediate model and resulting in
a SCA model [3]. The approach is promising, however, the
absence of accurate mappings between the two metamodels
makes the model transformation not viable. First, it requires
further manual adaptation to reflect the initial process require-
ments because the BPMN per se neither specifies the roles
(e.g., consumer or provider) that participants are expected
to play in a business collaboration. Of course, adapting the

generated SCA configurations necessarily leads to their mis-
alignment with the business process layer, and implies design
decision losses. Second, the provided automated incremental
transformation is fictional, since from the initial mapping, the
source constructs are mapped to conceptually different target
elements. Thus, providing consistency management over this
approach turns out to very challenging endeavor in practice.
Furthermore, the change propagation is a major use case
for the MDE. When a source model is changed and that a
transformation has previously generated a corresponding target
model, it is necessary to keep the models synchronized. The
model transformation languages [13], specifically the ATL
[5], cannot work well here. It supports a mode for in-place
transformation, called the refining mode [5], but it does not
support incremental model transformations: a complete source
model is read and a complete target model is created. Thus,
the manual changes in the target model are not preserved [16].
Morevover, the Query/View/Transformation (QVT) is a stan-
dardized language for model unidirectional transformations.
Some of the issues for the QVT usage was raised in [17].
The ATL supports only unidirectional transformation code.
First, it requires to explicitly write the synchronization code
to deal with each kind of update on each type of assorted
models. Second, the complexity of each combinatorial change
mapping is inherently compounded with decisions regarding
the potential information loss or gain related to different levels
of model’s expressiveness. They make the synchronization
code much complex, particularly, when not all the source
model elements correspond the to target model elements. For
example, it is necessary to revise both the SCA definitions
and their implementations, just to make a minor change on
the service interaction patterns [9] at the BPMN level.

V. SUMMARY AND OUTLOOK

In this paper, we have presented a development scenarios
for the SOC, where business process specifications drive
component architectures that are organized in a SOA. At the
design-time, the business analyst focus on the modeling of
task-driven and service-oriented logics without being bothered
by any implementation-specific configuration information. The
introduced conceptual mapping rules enable the transformation
of BPMN collaboration models into canonical SCA assembly
models. The later models describe and guide the final system
deployment architecture and its implementation. Thus, the
reuse of some existing software applications as well as creating
new ones to be reused in other system parts become more
evident for the architects. At the execution-time, the assembly
models are instantiated for the SCA runtime environments and
benefit from those frameworks for deployment and monitoring.
Since there is no mean of control flows between the SCA
components, then, it seems that some BPMN behavioral
aspects have no counterparts in the SCA. However, other
semantics can be defined in the SCA components. Therefore,
we want to enlarge our approach by transforming other BPMN
constructs to non-standard SCA elements for example for the
implementation of non-functional requirements.

The experimental results for the BPMN-to-SCA transfor-
mation with the ATL are encouraging, and the MDE approach
seems very promising, however, it still needs to be validated
in a real-scale case studies. The integration of our ATL chain
in the Eclipse SOA Tools Platform [18] is in development.
Furthermore, the (full) round-tripping between the business
processes and the SOA is essential to rapidly realign the
IT to accommodate changing business conditions. Conse-
quently, striving for further alignment via service pattern-based
techniques, and making SOA development more tractable
to reconfigure architectures without disrupting the functional
capabilities of the implementations remain as a future work.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” Computer,
vol. 40, no. 11, pp. 38–45, 2007.

[2] Business Process Model and Notation 2.0, Beta 1, OMG, May 2009.
[3] SCA Assembly Model Specification 1.1, Open SOA, Mar. 2009.
[4] K. Dahman, F. Charoy, and C. Godart, “Generation of Component Based

Architecture from Business Processes: Model Driven Engineering for
SOA,” in ECOWS 2010 - The 8th IEEE European Conference on Web
Services, Ayia Napa, Greece, 12 2010.

[5] F. Jouault and M. Tisi, “Towards incremental execution of atl trans-
formations,” in Proceedings of the Third international conference on
Theory and practice of model transformations, ser. ICMT’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 123–137.

[6] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework 2.0. Addison-Wesley Professional, 2009.

[7] M. Dumas and T. Kohlborn, “Service-enabled process management,” in
Handbook on Business Process Management 1, ser. International Hand-
books on Information Systems, P. Bernus, J. Blazewics, G. Schmidt,
M. Shaw, J. v. Brocke, and M. Rosemann, Eds. Springer Berlin
Heidelberg, 2010, pp. 441–460.

[8] M. Rosen, B. Lublinsky, K. T. Smith, and M. J. Balcer, Applied SOA:
Service-Oriented Architecture and Design Strategies. Wiley P., 2008.

[9] W. van der Aalst, A. Mooij, C. Stahl, and K. Wolf, “Service Inter-
action: Patterns, Formalization, and Analysis,” in Formal Methods for
Web Services, ser. Lecture Notes in Computer Science, M. Bernardo,
L. Padovani, and G. Zavattaro, Eds. Berlin, Heidelberg: Springer Berlin
/ Heidelberg, 2009, vol. 5569, ch. 2, pp. 42–88.

[10] R. M. Dijkman, M. Dumas, and C. Ouyang, “Semantics and analysis of
business process models in bpmn,” Information and Software Technol-
ogy, vol. 50, no. 12, pp. 1281 – 1294, 2008.

[11] M. Léger, T. Ledoux, and T. Coupaye, “Reliable Dynamic Reconfigura-
tions in a Reflective Component Model,” in Component-Based Software
Engineering, ser. Lecture Notes in Computer Science, L. Grunske,
R. Reussner, and F. Plasil, Eds. Berlin, Heidelberg: Springer Berlin /
Heidelberg, 2010, vol. 6092, ch. 5, pp. 74–92.

[12] A. Mos, A. Boulze, S. Quaireau, and C. Meynier, “Multi-layer perspec-
tives and spaces in soa,” in SDSOA ’08, New York, USA, 2008, pp.
69–74.

[13] M. Biehl, “Literature Study on Model Transformations,” Royal Institute
of Technology, Tech. Rep. ISRN/KTH/MMK/R-10/07-SE, Jul. 2010.

[14] H.-M. Chen, R. Kazman, and O. Perry, “From software architecture
analysis to service engineering: An empirical study of methodology
development for enterprise soa implementation,” IEEE Trans. Serv.
Comput., vol. 3, pp. 145–160, April 2010.

[15] K. Levi and A. Arsanjani, “A goal-driven approach to enterprise com-
ponent identification and specification,” Commun. ACM, vol. 45, no. 10,
pp. 45–52, 2002.

[16] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei, “Towards
automatic model synchronization from model transformations,” in Pro-
ceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, ser. ASE ’07. New York, NY, USA:
ACM, 2007, pp. 164–173.

[17] P. Stevens, “Bidirectional model transformations in qvt: Semantic issues
and open questions,” in MoDELS, 2007, pp. 1–15.

[18] “Eclipse soa tools platform project,” (accessed 29 March 2011).
[Online]. Available: http://www.eclipse.org/stp/

