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ABSTRACT 

The aim of this paper is to present a systematic method for 

verifying the force-closure condition for general 3-DOF fully-

constrained cable manipulators with four cables as based on 

the CAD (Cylindrical Algebraic Decomposition). A 

fundamental requirement for a cable manipulator to be fully 

controllable is that all its cables must be in tension at any 

working configurations. In other words, all the cable forces 

must be positive (assuming a positive cable force representing a 

tension and a negative cable force being a compression). Such 

a force feasibility problem is indeed referred to a force-closure 

problem (also called vector-closure problem assuming that the 

vectors of interest are the row vectors of the Jacobian matrix of 

the manipulator). The boundaries of the workspace can be 

obtained by the study of the Jacobian matrix of the 

manipulator. Therefore, this is equivalent to study the 

singularity conditions of four 3-RPR parallel robots. By using 

algebraic tools, it is possible to determine the singularity 

surfaces and their intersections yielding the workspace. Thus, it 

will be shown that the use of the CAD allows to get an implicit 

representation of the workspace as a set of cells. A comparative 

workspace analysis of three designs of mobile platforms, a line, 

a square and a triangle will be presented and discussed in this 

paper for a planar 4-cable fully-constrained robot. 

INTRODUCTION 

Cable-based parallel robots, in which legs are replaced by 

cables, are structurally similar to the classical parallel ones, and 

they consist of a fixed base (or frame) and mobile platform, 

which are connected by several cables [1]. Unlike rigid links, 

the unilateral characteristic of the cables (can pull but cannot 

push moving platforms), and therefore the formulations and 

results obtained for the kinematics, workspace, trajectory 

planning, and dynamics of the rigid-link mechanisms cannot be 

directly applied. Hence, the main issue can be recognized in 

determining the poses whereby the moving platform can be 

fully constrained by the cables.  

Due to the nature of cables, this type of parallel robots have 

in general good characteristics such as: good inertial properties, 

they can be modular, relatively low-cost, and easy to 

reconfigure. Moreover, their actuator-transmission systems can 

be fixed on the frame and cables are lighter and thus, they can 

have higher payload-to-weight ratio, which makes them 

attractive for a number of applications. According to their 

design, dynamics can be easily derived when the inertias of the 

cables can be neglected [2], and this holds for many practical 

applications if the cable mass is negligible if compared to the 

combined mass of the end-effector and payload.  

Cable manipulators have been classified into two basic 
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types, the fully-constrained type and under-constrained type, 

based on the extent to which the end-effector is constrained by 

cables only or they rely on gravity [3], [5].  

The necessary but not sufficient condition for a mobile 

platform with n degrees-of-freedom to have a fully-controlled 

motion is considering at least m = n + 1 cables, since many 

cable robots can be over-determined with respect to Forward 

Kinematics but under-determined with respect to cable forces 

distribution [5]. Therefore, a critical issue for their use is the 

evaluation of the cable force distributions. For cable-based 

parallel robots it is known that maintaining positive cable 

tension is critical in constraining the moving platform. Hence, 

the force-closure workspace is defined as the set of poses 

whereby resultant cable tensions can sustain an arbitrary 

external wrench acting on the moving platform.  

A better control of the mobile platform can be obtained by 

increasing the number of actuated cables, which will also 

reduce the tension in each cable for a given payload, but the 

workspace will be limited by possible interferences among 

cables and cables with mobile platform [6].  

Several workspace classifications have been proposed for 

fully constrained cable robots, namely the controllable [7], 

wrench feasible [8], dynamic [9] and force-closure [10], [11] 

workspaces. They are defined as the set of poses at which the 

mobile platform (or end-effector) can physically reach while all 

the cables have positive tension, and additional constraints are 

fulfilled. It is worth to note that in constraining positive cable 

tensions, main proposed analyses deal with the null space 

approach through pseudo-inverse matrices, graphical 

approaches, or condition expressed in terms of the convex hull 

which encloses the origin. Those approached have been applied 

to either planar and spatial cable-based parallel robots. 

Many fully-constrained manipulators have been proposed 

for a number of possible applications, but feasible tasks are 

limited due to the increasing number of cables, [12], [13]. 

In this paper a systematic method of verifying the force-

closure condition for general 3-DOF fully-constrained cable 

manipulators with four cables is proposed as based on CAD 

(Cylindrical Algebraic Decomposition).  

A comparison of the workspace of different designs is 

presented and discussed. The CAD algebraic tool has been 

successfully used for the workspace analysis and singularity 

determination of classical parallel manipulators as reported in 

[14], [15]. 

ALGEBRAIC TOOLS 

To analyze the workspace of a robot, we have to determine 

the equations that describe the Kinematics. These equations use 

trigonometric functions and we have to transform them to an 

algebraic system to make the CAD (Cylindrical Algebraic 

Decomposition). 

Algebraic formulation of robotics problem 

There are two methods to obtain algebraic equations 

starting from trigonometric equations: 

 Change an angle   by 2 variables 
x

 , 
y

  and a constraint 

equation 2 2
1 0

x y
     where  cos

x
   and 

 sin
y

  . This change of variables allows us to avoid 

the sine and cosine functions and keep the system 

algebraic. Moreover, this change of variables does not 

introduce any spurious solutions since the function 

 
 ,

(cos( ), sin( ))

C 

  

 


 (1) 

is bijective on the unit circle C . 

 Use the Weierstrass substitution. If we set 

 
2

2 2

2 1
tan  then sin( )  and cos( )

2 1 1

t t
t

t t


 

 
   

  
 (2) 

The first transformation is used for all our computation except 

for the rendering. In this case, we introduce a singularity 

representation for    . 

Discussing the number of solutions of the parametric 

system 

The workspace analysis requires the discussion of the 

number of solutions of the parametric system associated with 

the Inverse Kinematics. More precisely, we want to decompose 

the workspace in cells 
1 k
,...,CC , such that: 

 
i

C  is an open connected subset of the workspace; 

 for all pose values in 
i

C , the Inverse Kinematics problem 

has a constant number of solutions; 

 
i

C  is maximal in the sense that if 
i

C  is contained in a set 

E, then E does not satisfy the first or the second condition. 

This analysis is done in 3 steps: 

 Computation of a subset of the joint space (resp. 

workspace) where the number of solutions changes: the 

Discriminant Variety. 

 Description of the complementary of the discriminant 

variety in connected cells: the Generic Cylindrical 

Algebraic Decomposition. 

 Connecting the cells belonging to the same connected 

component of the complementary of the discriminant 

variety: interval comparisons. 
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From a general point of view, the discriminant variety can 

be defined for any system of polynomial equations and 

inequalities.  

Let 
1 1
,  ... ,  ,  ...,   

m l
p p q q  be polynomials with rational 

coefficients depending on the unknowns 
1
,  ...,  

n
X X  and on the 

parameters 
1
,  ...,  

d
U U . Let us consider the constructible set: 

 n+d

1 1
 = , ( ) 0,..., ( ) 0, ( ) 0, ..., ( ) 0

m l
p p q q    v v v v vC C  (3) 

If we assume that C  is a finite number of points for almost all 

the parameter values, a discriminant variety 
D  

V  of C  is a 

variety in the parameter space d
C  such that, over each 

connected open set U  satisfying 
D

V  U , C  defines an 

analytic covering. In particular, the number of points of C  

over any point of U  is constant. 

Let us now consider the following semi-algebraic set: 

 n+d

1 1
, ( ) 0,..., ( ) 0, ( ) 0, ..., ( ) 0

m l
p p q q     v v v v vS C  (4) 

If we assume that S  has a finite number of solutions over 

at least one real point that does not belong to 
D

V , then d

D
V  R  

can be viewed as a real discriminant variety of S , with the 

same property: over each connected open set d
U R  such that 

D
V  U , C  defines an analytic covering. In particular, the 

number of points of R  over any point of U  is constant. 

Discriminant varieties can be computed using basic and 

well known tools from computer algebra such as Groebner 

bases (see [16], Chapter 3) and a full package computing such 

objects in a general framework is available in Maple software 

through the RootFinding[Parametric] package. 

Kinematics tool for the workspace analysis 

The vector of input variables q and the vector of output 

variables X for a n-DOF parallel manipulator are linked by a 

system of non linear algebraic equations as 

  ,F q X 0  (5) 

where 0 is the n-dimensional zero vector. Differentiating 

Eq. (5) with respect to time leads to the velocity model 

 0 A X B q   (6) 

where A and B are n  n Jacobian matrices. These matrices 

are functions of q and X 

 
F F 

 
 A B

X q
 (7) 

These matrices are useful for the determination of the 

singular configurations [17].  

PLANAR 4-CABLE ROBOTS AND THEIR SUB-

ASSEMBLY 

Kinetostatics equations for 4-cable robots 

Let us consider a planar 4-cable robot shown in Fig. 1, it is 

composed by a fixed frame whose dimensions are LX and LY 

and end-effector, whose dimensions are referred as b and h. The 

manipulator has four cables to constrain the end-effector 3-

DOFs in the plane of motion XY. Let us consider the attachment 

points at the base named as Ai and those in the end-effector 

named as Bi. The cables’ lengths 
i

l  and 
i

  angles can be 

evaluated as (for i = 1…4) 

    0 0
, A R B  

i i i
l  P P   (8) 

  
    

    

sin cos
tan

cos sin

iy ix iy

i

ix ix iy

A y B B

A x B B

 


 

   


  
 (9) 

in which 
0

[ ]P =  
T

x y  and  represent the end-effector pose 

in the fixed frame and R is the rotation matrix, which relates the 

moving and fixed frames denoted as GX’Y’ and OXY. 

A fundamental requirement for a cable manipulator to be 

fully controllable is that all its cables must be in tension at any 

working configurations. In other words, all the cable forces 

must be positive (assuming a positive cable force representing a 

tension and a negative cable force being a compression).  

 

b

h

θ2
θ4

A2 A4

O≡A1

Y

X

X’

Y’



l2

l4

cable 2 cable 4

cable 3cable1

θ3

θ1

g

A3

l3

l1

B2 B4

B1

B3
LY

LX

G

 

Figure 1:  A scheme for a planar 4-cable robot and its parameters. 



 

 4  

Such a force feasibility problem is indeed a force-closure 

problem (also called vector-closure problem in the mathematics 

literature where the vectors of interest are the row vectors of the 

Jacobian matrix of the manipulator).  

Let us consider the wrench applied at G, which is the origin 

of the moving frame by the i-th cable in the form 

 
T

T

i i i
n 

 
w f  (10) 

in which fi and ni are the force and moment about G 

produced by the i-th cable. Since the abovementioned force is 

parallel to its corresponding cable and its related moment is 

perpendicular to the plane, they can be expressed as 

 
i i i

tf u   and    i i i i
det ,n t R B u  (11) 

In which ui is the unit vector along li and ti is the tension in 

the i-th cable. If we arrange the wrench and tension in matrix 

form the static equilibrium equation for the end-effector can be 

expressed as  

 
G

W t w  (12) 

in which wG is the wrench applied to the end-effector by 

external forces and moments and can include gravity force, 

without loss of generality, and W represents the wrench matrix 

also called structure matrix [5], being J the transpose of W.  

A cable-based parallel manipulator is said to have a force-

closure in a particular pose if and only if any arbitrary external 

wrench applied at the moving platform can be sustained through 

appropriate tension forces in the cables [10]. 

In order to solve the force-closure problem, the linear 

system of equations given by Eq. (12) has to be solved.  

From linear algebra, it is known that the vector sum of any 

solution of Eq. (12) with a vector in the null space of W is again 

a solution to Eq. (12) [1]. Therefore, if *
t  is a solution of Eq. 

(12) and t
  being a vector in the null space of W, then the sum 

 ,t t t 
  

     (13) 

is again a solution of Eq.(12).  

Therefore, for a vector t
  whose components are all 

strictly positive, a sufficiently large scalar multiple  of this 

vector can be added to any particular solution t

 of Eq. (12) to 

obtain a cable-tension vector t with positive components. 

Several researchers pointed out that the force-closure 

problem of cable manipulators is similar to that of multiple 

fingers grasping a frictionless rigid-body [18]. In the former, all 

the cables must be in tension while in the latter all the fingers 

must be in compression. Hence, the equilibrium equations with 

inequalities on cable tensions are similar to the equations of 

equilibrium for the grasped object with constraints on finger 

forces. Handling the force-closure problem of cable 

manipulators based on the similarity between cable 

manipulators and multi-finger hands can be found in [19] in 

which the antipodal method is used for the workspace analysis 

of planar cable robots.  

A graphical method was proposed in [20] to determine the 

types of conic sections forming the boundary of the constant 

orientation wrench-closure workspace of a planar cable-robot, 

which were firstly determined in [21], and then obtained for the 

spatial case in [20], when a constant orientation of the moving 

platform is considered. In particular, it is shown in [23] that the 

boundaries of the constant orientation workspace of a cable 

robot consists of parts of cubic surfaces. 

By reviewing the literature, it is worth to note that the 

determination of the boundaries of the wrench-closure 

workspace for any given planar cable-robot is still a challenging 

problem that has not been completely solved yet and it is 

worthy of investigation. 

Singularity of 3-RPR parallel robot  

Less work is done in developing systematic methods of 

judging whether the force-closure condition is satisfied for a 

given configuration of a cable manipulator. The proposed 

algorithm to determine the workspace of cable manipulator can 

be summarized in three steps:  

1. Determine one pose where all the cables are in tension 

starting from the geometric center of the attached 

points. 

2. Determine all the 3-RPR associated sub-mechanisms to 

get their singularity conditions. 

3. Study the parametric system to have the locus where 

Inverse Kinematic solutions exist. 

As the first step has been already detailed, we will explain 

more deeply steps 2 and 3. We will start from the 4-cable robot 

used in [19] and depicted in Fig. 2.  

As the dimension of the wrench matrix W is four, we have 

four equivalent 3-RPR parallel mechanisms, as it is shown in 

Fig. 3. The cable robot is controllable as long as the four cables 

remain in positive tension. This is the case if none of the four 

equivalent 3-RPR manipulators cross a singular configuration. 

If we change the shape of the mobile platform and number of 

attachments k at the end-effector, then we have a great impact 

on the size and shape of the workspace.  
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In this paper, we will study the cases where k is equal to 2 

(line platform), 3 (triangular) and 4 (rectangular). 

A1 A3

A2 A4

B1

P
B2

B3

B4

 

Figure 2: An example of a planar 4-4-cable robot. 
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P
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A4

B1

P

B4

A3

A2 A4

B1

P

B2

B3

B3

B4

B3

B4

B2

 

Figure 3: The four sub assembly for the planar 4-4-cable robot. 

Definition of the geometric properties of the cases 

study and parallel singularities 

For the following three examples, we fix the attachment 

points onto the base as [18]. Let  1
0 0

T
A  , 

2
0

T

y
A l    , 

 3
0

T

x
A l  and 

4

T

x y
A l l     with 6

x
L   and 5

y
L  . 

Constraint equations can be expressed as 

 

2

2 2

: ( )

( )

i Bi x Bi y Ai

Bi y Bi x Ai i

Eq x x y x

y x x y l

 

 

   

   
 (14) 

for 1, ..., 4i   and [ ]
T

i Bi Bi
B x y . 

Square mobile platform 

Let  1 1 2
B h h   ,  2 1 2

B h h  ,  3 1 2
B h h  , 

 4 1 2
B h h  in the local frame and 

1
1h   and 

2
1h  . For the 

four 3-RPR robots the determinants of the Jacobian matrices are 

     

 

2

1

2 2

: 60 1

5 6 11 30 30 0

y x x x

y

x y x y xy

x y x y

   



      

    

C
 (15) 

   

   

2

2

2 2

: 55 5

1 5 5 6 11 30 30 0

y x x

x y

x y x y

xy x x y x y

  

 

     

       

C
 (16) 

   

   

2

3

2 2

: 66 6

1 6 5 6 11 30 30 0

y x x

x y

x y x y

xy y x y x y

  

 

       

       

C
 (17) 

   

   

2

4

2 2

: 61 11

31 5 6 5 6 11 30 30 0

y x x

x y

x y x y

xy x y x y x y

  

 

       

        

C
(18) 

Values of 
i

C  depend on the end-effector pose only, as it is 

shown in Fig. 4.  

Let 
0

P  be defined as 3x  , 2.5y   and 0  , then 

1
3C , 

2
3 C , 

3
3 C  and 

4
3C . As 

0
P  and 0   

represents a stable pose for the cable robot, we know that the 

workspace W  is defined up to the first singularity of at least 

one 3-RPR manipulator.  

   1 2

3 4

0  for 1...4

, , , / 0  and 0  and 

0  and 0

i

x y

Eq i

x y  

   
  

     
 

   

W C C

C C

 (19) 

Figure 5 represents the same information as Fig. 4, but the 

workspace is characterized by a set of cells obtained by the 

CAD. This result can be obtained by using the 

CellDecomposition function of Maple and depicted with 

PlotCell function for planar cases. The PlotCell3D function was 

implemented in Maple for this paper. This function has been 

extended to define the cells for spatial cases.  

Figure 6 represents the workspace described by 21 cells 

from 5758 cells obtained with the CAD decomposition. The 

borders represent the parallel singularities.  
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Figure 4: The singularity curves 
i

C  for 0   and 0.04  . 
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0     1    2     3     4     5     6

5
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2

1

0
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x

y

x

5

4
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1

0
0     1    2     3     4     5     6  

Figure 5: The workspace for the square mobile platform robot in 

Figure 2 for 0   and 0.04   with (0) 12S , (0 .04) 5.72S . 

 

Figure 6: The workspace for the square mobile platform robot in 

Fig. 2 with (0) 12S , (0 .04) 7.32S . 

Triangular mobile platform 

Let us consider the cable-robot with triangular mobile platform 

in Fig. 7 having  1 1 2
B h h   ,  2 4 2

0B B h   and 

 3 1 2
B h h   in the local frame with 

1
1h   and 

2
1h  . 

Singularity conditions can be expressed as 

 

2

1

2 2

2 2 2

: 6 30 3 3 8 4

45 30 5 3 3 3 3

15 4 3 15 0

y y y y x y x y

x y y y x x

x x x x x

y y xy x y

x x y y x

x yx y y

       

     

    

    

      

     

C

(20) 

 
2

: ( 5 )(1 2 2 ) 0
x x x y y

y y x y x          C  (21) 

 

2

3

2 2

2 2 2

: 5 3 63 8 4 3

6 30 12 * 3 18 3 3 4

3 3 21 39 0

y y x y y x y x y

y y y x x

x x x x x

x xy y x

y x y x y x

y xy y y

        

    

    

    

       

     

C

(22) 

 
4

: ( 5 )

( 1 12 2 2 6 ) 0

x

x x x y y y

y

x y x y



     

 

       

C
 (23) 

The values of 
i

C  depend on the pose of the end-effector 

only, as it is shown in the examples of Figs. 8 and 9.  

Figure 10 represents the workspace described by 21 cells 

from 5758 cells obtained with the CAD decomposition. 

A1 A3

A2 A4

B1

P

B2

B3

 

Figure 7: An example of a planar 3-4-cable robot. 
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Figure 8: The singularity curves 
i

C  for 0   and 0.04   
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y

x
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2

1

0
0     1    2     3     4     5     6  

Figure 9: The workspace for 0   and 0.04   for the triangular 

platform robot in Fig. 7 with (0) 7.5S , (0.04) 7.32S . 

 

Figure 10: The workspace for the cable-robot in Fig. 7. 
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Line mobile platform 

Let us consider  1 3
0B B h    and  2 4

0B B h   

expressed in the local frame with 1h  , as it is depicted in 

Fig. 11.  

For the four 3-RPR manipulators, determinants 
i

C  of the 

matrices are 

 
1

: ( - )( 5 ) 0
x x y y

y x y      C  (24) 

 
2

: ( 5 )( ) 0
x x y

y x y     C  (25) 

 
3

: ( - )(6 5 ) 0
x x x y y

y x y       C  (26) 

 
4

: ( 5 )( 6 ) 0
x x x y

y x y        C  (27) 

It is worth to note that in this case left terms of 
1

C  and 
3

C , 

(resp. 
2

C  and 
4

C ) are the same. Values of 
i

C  depend on the 

pose of the end-effector only, as it is shown in Fig. 12. 

Singularities occur whenever
1

A ,
1

B ,
2

B  and 
2

A  are aligned 

(resp.
3

A ,
1

B ,
2

B  and 
4

A ). 

Figure 13 shows the workspace of the cable-robot with line 

platform when 0  and 0.04  . The complexity of the 

CAD depends on the order of the parameter in which we realize 

the projection. For the three cases, the simplest one is 

 y x . The CAD yields 330 cells but only six represent 

the intervals in which  0 0 0
P t y x  is associated to a stable 

pose of the cable robot, as is shown in Fig. 14.  

 

A1 A3

A2 A4

B1

P

B2

 
Figure 11: An example of a planar 2-4-cable robot. 
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Figure 12: The singularity curves 
i

C  for 0   and 0.04  . 
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Figure 13: The workspace for 0   and 0.04   for the line 

platform robot in Fig. 11 with (0) 18S , (0 .04) 17.23S . 

 

 

Figure 14: The workspace for the line mobile platform. 

For example 2
R oot(3 5 3,  1)t t   means the first real root 

of 2
3 5 3t t  . The CellLocation function permits to known in 

which cell is located one pose. So we can easily test the 

feasibility of one task.  

 

 

2

0 4 2

2 2

0 2 2

2

0 2 2

R oot (3 5 3,  1);
 in   

R oot (7 30 3,  2)

R oot( 1 ,  1); 
 in  

R oot( 4 6 ,  1)

R oot( 2 ,  1); 
 in  

R oot(6 6 10 2 ,  1)

t t
t

t t

y t y t
y

t y t y

x yt xt
x

t x xt t yt

  

 
  

   

 
    

   

 
     

 (28) 

 

4

0 4 3 2

2 2

0 2 2

2

0 2 2

R oot(7 30 ^ 2 3,  2); 
 in  

R oot(7 24 10 24 3,  2)

R oot( 1 ,  1); 
 in  

R oot( 4 6 ,  1)

R oot( 2 ,  1); 
 in  

R oot(6 6 10 2 ,  1)

t t
t

t t t t

y t y t
y

t y t y

x yt xt
x

t x xt t yt

  

 
    

   

 
    

   

 
     

 (29) 
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4 3 2

0 4 3 2

2 2

0 2 2

2

0 2 2

R oot(7 24 10 24 3,  2); 
 in  

R oot(7 24 30 24 3,  2)

R oot( 1 ,  1); 
 in  

R oot( 4 6 ,  1)

R oot( 2 ,  1); 
 in  

R oot(6 6 10 2 ,  1)

t t t t
t

t t t t

y t y t
y

t y t y

x yt xt
x

t x xt t yt

    

 
    

   

 
    

   

 
     

 (30) 

 

4 3 2

0

2 2

0 2 2

2

0 2 2

R oot(7 24 30 24 3,  2); 
 in  

R oot( ,  1)

R oot( 1 ,  1); 
 in  

R oot( 4 6 ,  1)

R oot( 2 ,  1); 
 in  

R oot(6 6 10 2 ,  1)

t t t t
t

t

y t y t
y

t y t y

x yt xt
x

t x xt t yt

    

 
 

   

 
    

   

 
     

 (31) 

 

4 2

0

2 2

0 2 2

2

0 2 2

 in  R oot( ,  1); R oot(7 30 3,  3)

R oot( 1 ,  1); 
 in  

R oot( 4 6 ,  1)

R oot( 10 2 ,  1); 
 in  

R oot( 6 6 2 ,  1)

t t t t

y t y t
y

t y t y

x xt t yt
x

x xt t yt

   

   

 
    

    

 
     

 (32) 

 

4 2

0 2

2 2

0 2 2

2

0 2 2

R oot(7 30 3,  3); 
 in 

R oot(3 5 3,  2)

R oot( 1 ,  1); 
 in 

R oot( 4 6 ,  1)

R oot( 10 2 ,  1); 
 in 

R oot( 6 6 2 ,  1)

t t
t

t t

y t y t
y

t y t y

x xt t yt
x

x xt t yt

  

 
  

   

 
    

    

 
     

 (33) 

where  tan / 2t  . Moreover, this representation allows us to 

compute the area of each cell using the built-in integration 

functions of Maple. Indeed, the Maple procedure int can handle 

functions of the form ( )   R oot ( ( ), )
t

f t p X n , that maps a real 

t to the n
th

 root of the polynomial ( )
t

p X  whose coefficients 

depend on t. 

A WORKSPACE COMPARISON FOR THE DESIGN OF 

PLANAR 4-CABLE ROBOTS 

Analysis 

In the following a comparison among the workspaces for 

the planar 4 cable robots reported in the previous Section is 

given. In particular, the 4-4, 3-4 and the 2-4 designs have been 

analyzed. As expected, increasing the number of attachment 

points on the mobile platform, the orientation capability of the 

robot decreases, as it can be clearly seen by Figs. 6, 10 and 14 

and Tab. 1. Moreover, the reported case of study for the 4-4 

cable robot (square platform) shows a poor orientation 

capability of the robot. The volume of the workspace cannot be 

use as a criterion to compare the cable robots. In Tab. 1, we 

have computed the area  S  of slicing of the workspace for 

0   and 0.04  .  

Moreover, we can show a meridian slice to evaluate the 

orientation capability, as in Fig. 15 for 3x  , and as in Fig. 16 

for 5 / 2y   to obtain 
m in

  and 
m ax

 . 

Let us suppose we want to design a cable-based parallel 

robot, with requirement of the user being to obtain a regular 

workspace (sphere, cylinder, cube, ..) for which the angular 

rotation range of the moving platform is defined. This request 

can be given as a set of constraints. 

Table 1: Comparison of the properties of the three 

type of mobile platform 

Shape of mobile platform Square Triangle Line 

m in
  0.0906  0.463  0.876  

m ax
  0.0906 0.463 0.876 

(0 )S  12  7.5  18  

(0 .04)S  7.32  7.32  17.23  

y



-1 -0.5 0.5  10
0

1

2

3

4

5



-1 -0.5 0.5  10

y

0

1

2

3

4

5



-1 -0.5 0.5  10

y

0

1

2

3

4

5

 

(a)                              (b)                              (c) 

Figure 15: The workspace for 3x   for (a) a square, (b) a triangle, 

(c) a line mobile platform. 

x



-1 -0.5 0.5  10
0

1

2

3

4

5



-1 -0.5 0.5  10
0

1

2

3

4

5 x



-1 -0.5 0.5  10
0

1

2

3

4

5 x

 

(a)                              (b)                              (c) 

Figure 16: The workspace for 2.5y   for (a) a square, (b) a 

triangle, (c) a line mobile platform. 

For a cylindrical shape workspace, we can use a cylinder 

toped by two planes or an approximation by a Lame’s curve. 
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For example, Eq.(34) (resp. Eq.(35)) approximates a cylinder 

(resp. a cube), where 
x

c , 
y

c  and c


 are the geometric centre 

coordinates and 
x

l and 
y

l  are the radius of the cylinder if 
x

l =
y

l  

and 


  its depth (resp. the sizes of a cube). 

 

22 20

1 0
yx

x y

y cx c c

l l





     
       

    

 (34) 

 

2020 20

1 0
yx

x y

y cx c c

l l





     
       

    

 (35) 

These constraints can be included when we compute the 

workspace. If we obtain a workspace smaller than expected, it 

means that the cable robot has singular configurations within 

the requested regular shape workspace. Then we have to change 

the design parameters.  

Fig. 17 shows the approximated cylindrical and cubic 

shaped workspace by Lame’s curves. Figure 17 shows the 

maximal value of 


  that we can reach when 4
x

l   and 

3
y

l  . 

 

Figure 17: The approximation of a cylinder and a cube by 

Lame’s curves to approximate a regular workspace. 

 

Figure 18: The intersection of a cubic regular workspace 

with the workspace made by a line mobile platform for (a) 

0.78


   and (b) 0.5


  , 4
x

l   and 3
y

l  . 

Over-constrained manipulators 

Let us consider the above-mentioned planar 4-cable 

manipulator, which is a fully-constrained robot having 3 DOFs 

in the plane, if we add a 5
th

 cable, then we get an over-

constrained manipulator. This means that we admit that the 

tension in one cable can have no positive value.  

In this case, we have to study the workspace of cable-based 

parallel robot taking into account four cables only. For each 

one, we will have four constraints 
i

C  to define the border of the 

workspace W . If we have 0
i
C  for a stable pose for 

1, ..., 5i  , the workspace can be defined as the following 

 

 

 

 

 

 

 

 

1 2 3 4

1 2 3 5

1 2 4 5

1 3 4 5

2 3 4 5

, , , /

0  for 1...5

0  and 0  and 0  and 0  or

0  and 0  and 0  and 0  or

0  and 0  and 0  and 0  or

0  and 0  and 0  and 0  or

0  and 0  and 0  and 0

x y

i

x y

Eq i

 


 

   

    

   

   

   

C C C C

W C C C C

C C C C

C C C C

C C C C
















 (36) 

CONCLUSIONS 

A new method was introduced to compute workspace of the 

general 4-cable robot by algebraic tools. We obtain 

automatically the algebraic formulation of the boundary of the 

workspace first described in [21]. Furthermore, our approach 

can be generalized to higher dimension and other type of 

constraints. Contrary to methods based on discretization of the 

workspace or the interval analysis based method, we obtain an 

exact formulation of the boundary of the workspace. For the 

same location of the attachment points, we have compared the 

size of the workspace and the angular rotation range for several 

types of mobile platforms. When the shape of the mobile 

platform is a line, the equations representing the workspace 

boundary were simple and the angular rotation range was the 

greatest. 

The proposed method provides a powerful tool to analyze 

fully-constrained planar or spatial cable-robots as an extension 

of the proposed formulation, which will be developed as future 

work. Furthermore, it may allow the analysis of the over-

constrained manipulators, for which the number of cables is 

greater than the number of DOFs + 1. For the latter case, the 

analysis can be performed by recursively applying the described 

method, providing all possible combinations of sub-assembly 

manipulators, the workspace being the union of the computed 

sub-workspaces.  
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