
HAL Id: inria-00597981
https://hal.inria.fr/inria-00597981

Submitted on 3 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Based Approach for Reconciliation of
Polychronous Execution Traces

Kelly Garcés, Julien Deantoni, Frédéric Mallet

To cite this version:
Kelly Garcés, Julien Deantoni, Frédéric Mallet. A Model-Based Approach for Reconciliation of Poly-
chronous Execution Traces. SEAA 2011 - 37th EUROMICRO Conference on Software Engineering
and Advanced Applications, Aug 2011, Oulu, Finland. �inria-00597981�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49984581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00597981
https://hal.archives-ouvertes.fr

A Model-Based Approach for Reconciliation of
Polychronous Execution Traces

Kelly Garcés, Julien Deantoni, Frédéric Mallet
Aoste Project I3S-INRIA

Université Nice Sophia Antipolis,
INRIA Sophia Antipolis Méditerranée,
Laboratoire I3S - UMR 6070 CNRS

Sophia Antipolis, France
Firstname.Lastname@inria.fr

Abstract—Embedded systems are very difficult to design and
debug because of the limited access to the device itself. Therefore,
debugging usually requires to instrument the code so as to pro-
duce execution traces that are then monitored from a base station.
Such an intrusive method has a direct impact on performances.
In case of multiple interacting embedded targets the problem
is even more severe and is not limited to computations but
also spreads to communications. To reduce the communication
overhead, we propose an approach in which unsynchronized
traces from several targets are reconciled a posteriori. Since
each target has its own time base without a built-in clock
synchronization protocol, our approach requires a multi-clock
reconciliation specification. This paper describes our model-
based proposal developed during the ANR project RT-Simex. The
different steps of the reconciliation are illustrated on a simple
case-study used in the project, a terrestrial robot controlled in
position.

Index Terms—Traces, Logical time, Debugging, Verification,
Model-Driven Engineering.

I. INTRODUCTION

Real-time and embedded system development is more and
more complex. This is due to the high-integration of increas-
ingly complex functions, and also to the deployment of such
systems over various, possibly heterogeneous, communicating
computational units. These computational units can be of a
very different nature, such as various CPU communicating
over a network on chip (multi-cores); various Electronic
Control Units (ECU) connected through a bus (CAN, TTA)
or even a mobile phone or a PC controlling a robot via a
wireless network (Zigbee, bluetooth). This distribution of the
execution resources creates physical concurrency that leads to
event interleaving and combinatorial explosion.

The multiplicity of possible behaviors makes the debugging
and verification of such systems more complicated. Because
real-time and embedded systems interact with their physical
environment, it is difficult and often impossible to follow a
classical debugging cycle with break points. To debug such
systems, execution traces are extracted and analyzed offline
(i.e., after the execution) [1]. Due to loose synchronizations
between the computational units, the global trace is a partial
ordering of events that represents the temporal and causal
relationships between the events of the system.

Most of the existing approaches [2], [3], [4], [5], [6] use a
runtime strategy to synchronize the different computational
units so that the partial ordering can be obtained during
the execution. These approaches imply an overhead on the
communications between the computational units and on the
computational units themselves to monitor and synchronize
the communications. For real-time embedded systems, even
the smallest overhead can lead to faulty executions because of
the tight synchronization constraints (deadline, data freshness)
and limited resources [7]. To produce a trace with a minimum
overhead, our proposal is to monitor each computational unit
independently and then, to reconcile them offline. More pre-
cisely, we propose to monitor the computational units to obtain
independent traces that report a sequence of events for each
unit. Then, based on the knowledge about the system topology,
we propose a way to reconstruct and make explicit the emerg-
ing partial ordering needed for debugging and verification. Our
proposal is based on a polychronous specification language
called CCSL (Clock Constraint Specification Language) [8].
The approach is illustrated on the case study of the ANR1

project RT-Simex2. This project aims at providing an improved
methodology and tools for the design and implementation of
complex embedded software systems by using Model-Driven
Engineering (MDE).

This work is structured as follows: Section II presents a
set of approaches dealing with event partial orders in the
distributed system field. Such approaches are briefly compared
to our proposal. Section IV describes our running example.
Section V presents the proposal. A discussion and conclusion
follow.

II. RELATED WORK

Questions arising from the distribution of a software onto
concurrent and communicating units have been intensively
studied in the domain of distributed systems. In a distributed
system, the computational units (called processes) interact
with each other to achieve a goal. Within a process, events
are totally ordered. Processes communicate through message

1ANR: French Research Agency
2http://www.rtsimex.org/

passing over a network where the communication latency is,
a priori, unpredictable. Message passing are loose synchro-
nizations among the processes and imply causal relationships
on inter-process events. The total order of events within each
(sequential) process combined with the loose synchronizations
from the messages provide a partial ordering on which it is
possible to reason about the distributed computations.

To describe such a partial ordering, logical clocks have
been used for many years. The first use of a logical clock
in this context has been done by L. Lamport [4]. A logical
clock is a sequence of instants representing the occurrences
of an event. Some of the logical clock instants are pairwise
connected by a so-called “happened-before” relationship. This
relation represents a causality between two events. To obtain
a partial ordering, [4] proposes an algorithm that piggybacks
a “timestamp” on every message at runtime. This idea has
been extended and improved in various ways [1], [2], [9].
These approaches basically differ in two aspects. Firstly, the
data structure chosen to represent timestamps (e.g., a scalar,
vector, or matrix), and secondly, the protocol to update such
a data structure consistently [3]. In a system of scalar clocks,
a timestamp is a non-negative integer value. It is not strongly
consistent because the local and global logical clocks are
squashed into one, as a result one loses causal dependency
information among events at different processes. To capture
the notion of causality more precisely, scalar time is extended
to vector and matrix representations. The main drawback of
these data structures is the communication cost, for example,
maintaining matrix clocks in a system of n processes implies
to augment every message with O(n2) integer values [10].

In the domain of real-time embedded systems, the com-
putational units are often heterogeneous. As a consequence,
it is more difficult to provide a framework to synchronize
clocks at runtime. Moreover, real-time embedded systems are
often subject to constraints over their events (either temporal
or causal constraints). The communication overhead needed
to synchronize clocks at runtime can introduce a violation of
the constraints. It is not possible to trace events without a
minimum overhead. However, this overhead can be reduced
by avoiding additional synchronizations between the various
computational units. It results in a set of totally ordered sets of
events; one totally ordered set by computational unit (assuming
sequential processes). To observe a total ordering on a specific
computational unit, various approaches exist. After a survey
on the state of the art about execution traces, the RT-Simex
project partners have chosen the Open Trace Format (OTF).
OTF is an efficient format supported by a library that serves
as a read/write layer [11]. An OTF trace sorts events by
their time stamps. The supported event types include: function
call events, point to point message events, and collective
communication events.

Some other approaches, like LogScope [12] used in space-
craft telemetry, also promote low-impact verification by re-
ducing the instrumentation of code to a minimum. However
LogScope assumes that traces are totally ordered and proposes
a temporal logic-inspired specification language for specifying

and analyzing log properties. CCSL can also express some
properties of temporal logics [13], however, the scope here is
to reconcile unsynchronized traces, not to analyze one specific
trace. Once reconciled, the resulting partial ordering needs to
be flattened into a total order before it can be analyzed against
temporal logic properties.

In contrast to the aforementioned approaches, that are
mostly concerned by causality relations at runtime, we are in-
terested in both causal and temporal relationships. We propose
to monitor each computational unit independently to produce
a set of OTF traces. Then, based on possible communications
between the computational units, our approach is able to
reconstruct the partial ordering offline. This reconciled trace
is then used to perform analysis while still minimizing the
overhead.

To reconcile the independent traces, we use the Clock
Constraint Specification Language (CCSL) [8] that provides
a concrete syntax to handle logical time. CCSL is briefly
described in the following section.

III. CCSL IN A NUTSHELL

The Clock Constraint Specification Language (CCSL) was
initially defined as a companion language for the Time Model
of the UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) [14]. The central concept on
MARTE Time model is the notion of clock, which represents
a (possibly infinite) totally ordered set of instants [15]. In
this model, clocks extend the Unified Modeling Language
(UML) [16] events and instants stand for the event occurrences.
These clocks can be logical or physical, dense or discrete. In
the remainder of this paper we only consider discrete clocks,
whether logical or physical.

The MARTE time model also provides Clock Constraints
that refer to at least two clocks and constrain the respective
evolution of their instants.

CCSL has a formal semantics [8] that can be exploited to
detect invalid specifications (e.g., deadlocks) or compute a
correct execution (by simulation), if any, in the TimeSquare
tool [17]. Foundational CCSL constraints are defined in a
kernel library. CCSL allows building new libraries and the
definition of user-defined constraints by composing existing
relations (from the kernel library or from other libraries) in
order to build specific constraints adequate for a given domain.

CCSL is a means for specifying constraints on the evolu-
tion of clocks. A constraint can be either a relation or an
expression. A CCSL expression defines a new clock based on
existing ones. In this paper, we do not give all the details
about the semantics of CCSL but a full description is available
as a research report [8]. However, we informally describe the
relations and expressions used in this document. An example
of the user-defined CCSL relations is provided in Section IV-B.

We consider all the instants for a given system, I, and
we build a time structure 〈I,≺,≡〉 on it. ≺ is an irreflexive
and transitive partial relation called precedence. ≡ is a partial
equivalence relation, i.e., reflexive, transitive and symmetric,
called coincidence. From these two relations, we build two

more: causality (denoted 4) and exclusion (denoted (#). Let
a and b be logical clocks, when a causes b, then either a ≺ b
or a ≡ b. When a and b are exclusive, then either a ≺ b or
b ≺ a.

A clock c = 〈Ic,≺c〉 is such that Ic ⊂ I and ≺c is a
projection of ≺ over Ic and is a total order relation. If Ic is
discrete (c is called a discrete clock), we denote c[k] the kth

instant of c where k ∈ N \ {0}.
Clock relations are a practical way to create infinitely

many instant relations at once. For instance, the clock rela-
tion Precedes (denoted ≺) defines infinitely many instant
relations of the kind precedence. a ≺ b means that for
all natural numbers k, the kth instant of a occurs before
the kth instant of b: ∀k ∈ N \ {0}, a[k] ≺ b[k]. Another
example is the coincidence relation (denoted =) imposes
a strong synchronous dependency: a = b means that the
kth instant of a must be coincident with the kth instant of b:
∀k ∈ N \ {0}, a[k] ≡ b[k].

Expressions are directly defined on clocks. The clock ex-
pression FilteredBy (denoted H) builds a subclock, i.e., a clock
such that all its instants coincide with exactly one instant
of the super clock. We use infinite binary words to select
those instants of the super clock with which the subclock is
coincident. For instance, a H 00(01)ω builds a subclock b of
a, such that ∀k ∈ N \ {0}, b[k] ≡ a[2 ∗ k + 2]. In this simple
example, there is only one 1 in the periodic part of the filter
(i.e., (01)), therefore we have a periodic pattern: b is periodic
on a with a period of 2 and an offset of 3. When the periodic
part only contains 1, then it becomes equivalent to the operator
delayedFor (denoted $a). a $a 2 is equivalent to a H 00(1)ω .

A CCSL specification is the conjunction of constraints. This
language is central to our approach and is used in the next
section, which describes the running example of the paper.

IV. RUNNING EXAMPLE

We illustrate the need for trace reconciliation by using
the case study of the RT-Simex project: a terrestrial robot
controlled in position.

The Robot is a Lego Mindstorms NXT platform [18].
NXT is an integrated embedded system provided by Lego to
build robots. By adding from one to four sensors (e.g., touch,
light and ultrasonic sensors) and from one to three actuators
(servo motors), it is then possible to interact with the physical
environment. By using a USB connection, it is also possible
to make the bricks communicate with other bricks or other
computational units. Then, building a robot controller is done
by programming the NXT ARM7 microcontroller.

In the context of this work, NXT allows us to program
easily a resource-constrained computational unit. Moreover,
due to its USB communication, it is possible to connect it to
another computational unit.

The considered robot is a mono-axis robot moving on an
A3-size sheet of paper (see Fig. 1). On the sheet, a shaded lane
from black (location 0) to white (location 100) is drawn. The
robot owns two light sensors; the first one monitors the ground
to assess the robot current location on the paper sheet and

the second one always monitors the white on the border lane
to provide a reference independently of the room luminosity
changes. The robot moves on the shaded lane mono-axis by
using a servo motor. The control application is in charge of
moving the robot to a desired location as quick as possible.
The robot is connected via a USB cable to a Java Perc virtual
machine3.

Fig. 1. The robotic demo example

A. A UML-MARTE model for the Robot
RT-Simex uses UML to represent the different views of

a system. For that specific example, we use two composite
structure diagrams, one for describing the application and
another for describing the execution platform. The UML model
is annotated with MARTE profile stereotypes. We mainly use
three chapters of MARTE specification [14]. The Hardware
Resource Modeling (HRM) part to describe the resources (de-
vices, communication media, processing units, memories) and
their properties; The Time chapter to identify the clocks and
apply the constraints to build the reconciliation specification;
Finally, the Allocation part is used to allocate the parts of the
application onto the execution platform.

Figure 2 shows a simplified version of the UML/MARTE
model. The bottom part describes the execution platform made
of the Robot and the external computer that controls the Robot.
The two components are physically distant and communicate
through a USB connection, a CommunicationMedia. Both
parts are identified as being HwResources.

On the application part, the two light sensors send directly
their raw information to the external computer. The computer
uses that information to decide on the adequate movements
to reach the goal position. These commands are sent back
to the Robot, which interprets these commands through the
part called TheMotorConnector and acts on the servo-
motor. The four parts on the left side are physically performed
by the Robot itself. We use MARTE allocation to denote this
spatial distribution (dashed line). The other parts are actually
performed on the external computer. Note also that some
connectors are allocated to the system communication media
to denote the cost of such a communication when appropriate.

The reconciliation specification should impose constraints
on when specific parts must be executed relative to each other.

3http://www.aonix.com/Perc.html

Fig. 2. This composite diagram shows how the application parts are allocated to the Robot and PC

For instance, it should specify when the sensors (located on
the Robot) operate relative to the controlling operation (located
on the computer). Such a specification can be built in CCSL as
long as the events involved are identified as Clocks. By tagging
the part TheLightSensor1 with the stereotype «clock», the
part becomes a clock and therefore the sensor operates when
the clock ticks.

B. Time constraints with CCSL
CCSL is used to specify time constraints on the model

elements. We give below some time constraints relevant for
this example.

TheLightSensor1 = sendLightSensorData1 (1a)

receiveMoveCommand 4 sendMoveCommand (1b)

sendLightSensorData1 + sendLightSensorData2 ≺
receiveLightSensorData (1c)

Equation 1a specifies that every time TheLightSensor1
operates, the value is sent through the port sendLightSen-
sorData1 and this is done instantaneously. The duration of
the sensing action is neglected.

Equation 1b is the classical causality relation induced by
a communication. The reception (receiveMoveCommand)
always occur if an emission (sendMoveCommand) has oc-
curred. It also states that there is no loss in the communication
channel.

Equation 1c is a bit more complex since it uses the union
operator (+). It states that every time one of the two sensors
operates then, with possibly some delays, a data is received
on port receiveLightSensorData. Note that, the two
sensors cannot operate simultaneously, since they are located
on the same unit (totally ordered).

V. PROPOSAL

Figure 3 gives an overview of our approach. The execu-
tion of software over heterogeneous computational units is
monitored by instrumenting the code. As a result, we obtain
one OTF execution trace for each computational unit. Every
trace defines a totally ordered set of event occurrences; the
computational units are assumed to be sequential (with their
own clock domain). Because the clock domains of the two
computational units are likely to be unsynchronized, or based
on different forms of time references (like in [19] for instance),
it is a priori not possible to use the timestamps reported by
the traces to sort the communication events. That is why
there is a need for the execution trace reconciliation. Our
approach goes in that direction. Each interaction between
two units is considered as a causality relation and as such
is used to order the events involved in this interaction; A
send event precedes a receive event. Since some events are
specific to one unit and not to an interaction, then the ordering
is only partial. The reconciliation results in a partial order
which is captured by our event occurrence relation model (see
Section V-C and Section V-D). The reconciliation process is
driven by a reconciliation specification extracted from UML-
MARTE models annotated with CCSL time constraints (see
Section V-A). Because our approach is mainly model-based it
is necessary to bring the OTF traces into the model technical
space. Therefore, the OTF traces are transformed into trace
models (see Section V-B).

The next subsections describe the approach in details. This
paper studies a simplified scenario with only two traces. Nev-
ertheless, our approach remains applicable to any number of
traces. In this case, the approach is executed in an incremental

Fig. 3. Reconciliation of execution traces

fashion. For each iteration, the approach selects a pair of traces
and its respective reconciliation specification, and uses the
result of the reconciliation in the next iteration. At the end, we
obtain a unique event occurrence relation model that contains
the time and causal relationships for all the pairs of traces.

A. Reconciliation specification

A reconciliation specification is a CCSL specification ex-
tracted from a UML-MARTE model which has been annotated
with time constraints. To extract only the temporal/causal
relations of interest for the reconciliation, one must consider
the set of constraints expressed on the connectors between
ports whose instances are deployed on different computational
units. These connectors express occurrences of a (real-time)
communication event. For instance, in the running example
Eq. (1c) and Eq. (1b) should be selected because they represent
communications, which may be delayed, between the Perc
JVM and the Robot brick. Even if the automatic extraction
is not part of this paper, we believe that it can be automated
for cases where the deployment is trivial (like in the running
example). However, for more complex cases, user assistance
may be necessary. In the remainder of the paper, we consider
that the CCSL reconciliation specification is given.

B. Trace models

For each computational unit, there is a trace model which
conforms to the metamodel depicted in Figure 4. The prin-
cipal concepts are as follows. A Trace is a sequence of
LogicalSteps. Each step contains several (simultaneous)
EventOccurrences. A Reference associates an event
occurrence with a clock or clock expression/relation estab-
lished in the UML model. When all logical steps refer to a
unique PhysicalBase of time (e.g.,, milliseconds), the trace
is totally ordered.

In our approach, most of the event occurrences of a trace
model come from an OTF execution trace, details about the
translation process are out of the scope of this paper. However,
some event occurrences are added afterwards to reflect the
semantics of expression operators. For instance, to build the

Fig. 4. Simplified trace metamodel

union described in Eq. (1c), we need to extract from the trace,
the specific occurrences of clocks sendLightSensor-
Data1 and sendLightSensorData2. To do that, we use
FilteredBy expressions as illustrated in Figure 5. Trace1 is
the trace model obtained from a robot execution. The different
shapes correspond to occurrences of robot events, in particular,
the triangles represent occurrences of sendLightSensor-
Data1 and sendLightSensorData2. The first FilteredBy
expression selects instants of Trace1 that represent the event
sendLightSensorData1, that is, the second and nineth
occurrences. As indicated by the red arrows, the resulting
instants coincide with the occurrences of Trace1.

Trace1

0 1 0 0 0 0 0 0 1

sendLightSensorData1

= Trace1 010000001

sendLightSensorData2

= Trace1 000010000

0 0 0 0 1 0 0 0 0

= Trace1 000010000

Coincides

Fig. 5. Extracting event occurrences from a trace model

C. Event occurrence relation model

This model defines temporal and causal relationships be-
tween occurrences of trace models. The relationships indicate
that, for some event occurrences in a specific trace model,
there exist other occurrences (in another trace model), that
precede (happen before) or coincide with (are simultaneous)
the former occurrences. Unlike a reconciliation specification,

Fig. 6. The occurrence relation metamodel

that defines relationships between events (i.e., clocks), an
occurrence relation model defines relationships between event
occurrences (i.e., instants). An occurrence relation model
along with a set of trace models represents a partial order.
Occurrence relation models conform to a metamodel whose
main concepts are displayed in Figure 6. The next paragraph
explains the meaning of such concepts.

The root of the metamodel presented in Figure 6 is the entity
OccurrenceRelationModel. It contains a set of CCSLCon-
straintRef. This kind of elements references the clock con-
straints of a CCSL specification. It is just a way of sorting the
OccurrenceRelations with respect to the clock constraints that
enforce them. An OccurrenceRelation is an abstract concept
that represents the possible relationships between occurrences.
It is materialized by two kinds of relations, the Precedence
occurrence relation, which loosely synchronizes two event
occurrences and the Coincidence event occurrence relation,
which forces two event occurrences to be simultaneous. Note
that when a Precedence is said to be non strict (isStrict
boolean to false), it covers the union of the Precedence and
Coincidence.

D. Reconciliation algorithm

This algorithm builds an occurrence relation model from
a set of 3-tuples in an incremental way. For each 3-tuple
〈Trace1, T race2, ReconSpec〉, the algorithm calls the BPO
method (listed in Alg. 1) that stands for “Build Partial Order”.
The parameter occRelModel of the BPO invocation is cumu-
lative, i.e., every iteration may add new occurrence relations.
The BPO method (listed in Alg. 1) proceeds as follows: it
treats each constraint of a reconciliation specification sequen-
tially. For each constraint, the first step is to test if it contains a
clock expression or not (line 3). If not, the clocks referenced in
the constraint must be in the traces and the reconciliation can
be done (line 4). If the constraint contains a clock expression,
it is necessary to run TimeSquare to apply the semantics of
this expression to the traces. Rather than running a simulation
for each expression, we form three different sets E, CE, and
CST which (respectively) collect the expressions of all the
constraints, the clocks referenced by the expressions (i.e., a
set of FilteredBy expressions like the ones introduced

in Section V-B), and the constraints themselves (lines 6-10).
Once all the constraints without expressions have been treated
and the three previous sets have been constructed, TimeSquare
is called using as parameter a CCSL specification that contains
the union of the FilteredBys (CE) and the expressions
(E). CCSL simulates the specification and gives as a result a
new trace and an occurrence relation model (line 13). This
model referred to ExprOccRelModel contains occurrence
relations deduced from the expressions. Next the algorithm
establishes coincidence relationships between the occurrences
of the clock expression (contained in ExprOccRelModel)
and the occurrences of other clocks in the original traces
(line 14). At this step, all the occurrences resulting from
clock expressions are available, therefore it is possible to
create the occurrence relations (line 15). The type of the
relations depends on the constraint semantic (see Section III).
For instance, for a precedence constraint between a and b,
∀k ∈ N+ \ {0}, the method creates precedence occurrence
relations between a[k] and b[k].

Algorithm 1 The BPO method
1: BPO(Trace1, Trace2, ReconSpec,
occRelModel)

2: for all constraint ∈ ReconSpec do
3: if @expression ∈ constraint then
4: occRelModel← CreateOccRelations(Trace1,

T race2, constraint, occRelModel)
5: else
6: CST← CST.append(constraint)
7: for all expression ∈ constraint do
8: CE← CE.append(GetClockF ilteredBy(Trace1,

T race2, expression))
9: E← E.append(expression)

10: end for
11: end if
12: end for
13: 〈ExprTrace, ExpOccRelModel〉 ←

GetNewTrace((CE ∪E))
14: occRelModel← AddCoincidences(Trace1, T race2

ReconSpec, occRelModel, ExpOccRelModel)

15: for all constraint ∈ CST do
16: occRelModel← CreateOccRelations(Trace1, T race2,

constraint, occRelModel)
17: end for

Let us now show the algorithm in action. To do so, we
take a reconciliation specification with one constraint (the
one stated in Eq. (1c)) and the trace models obtained from
the execution of robot and Perc JVM. The key points of the
process are graphically illustrated in Figure 7. As indicated by
the legend, the different shapes represent occurrences of clocks
(i.e., events) and the arrows temporal relationships between
them. Below we describe how the algorithm derives such
relationships.

Because the constraint contains the union expression

Trace2
(Perc JVM)

receiveLightSensorData

Precedes

Computed From

Part of the occurrence
relation model

CoincidessendLightSensorData1

Trace1
(Robot)

sendLightSensorData2

+ <

CCSL reconciliation
specification

Union
Clock

sendLightSensorData1+sendLightSensorData2
Non meaningful event occurrences

Fig. 7. Overview of the reconciliation algorithm applied to the running
example

sendLightSensorData1 + sendLightSensorData2, the
algorithm has to build a CCSL specification which is
composed of the equations 2a, 2b, and 2c. The two
first equations are FilteredBys (representing the clocks
sendLightSensorData1 and sendLightSensorData2 sep-
arately) and the third one is the union expression itself. The
algorithm runs TimeSquare using as a parameter such a CCSL
specification, it gives as a result a new trace model and an
occurrence relation model. The new trace model contains the
occurrences of the union expression which have to be copied
into Trace1. The occurrence model relation, in turn, indicates
that Coincides relations have to be established between the
occurrences of the union expression and the occurrences of
sendLightSensorData1 and sendLightSensorData2 re-
ported in Trace1 (as shown by the red arrows). Finally,
Precedes relations that satisfy the constraint are created, the
result is depicted by the dotted black arrows. Both Coincides
and Precedes relations are captured in the occurrence relation
model.

sendLightSensorData1 = Trace1 H 010000001; (2a)

sendLightSensorData2 = Trace1 H 000010000; (2b)

union = sendLightSensorData1 + sendLightSensorData2 (2c)

E. Proof of concept

We have developed a prototype on top of Java, TimeSquare4,
and ATL5. A Java program translates OTF traces [11] into
models conforming to the trace metamodel. When a recon-
ciliation specification contains clock expression constraints,

4http://www.inria.fr/sophia/aoste/dev/time square
5http://www.eclipse.org/atl/

TimeSquare is called to simulate its corresponding new spec-
ification. Remember that the new specification consists of
FilteredBy expressions plus the initial constraints. The rec-
onciliation algorithm is a Java program that, for each 3-
tuple 〈Trace1, T race2, ReconSpec〉, calls the BPO method
implemented as an ATL transformation. The prototype has
been applied to the running example, it takes as an input a
pair of OTF traces of 54KB and a reconciliation specification
containing a simple precedence relationship. As an output, we
have obtained trace models of 74KB and an event occurrence
relation model of 22KB. Looking at these results shows that
trace models are almost 40% more verbose than the initial
OTF traces. However, this translation is needed for being
in the same technical space that UML-MARTE models which
are (as well as the code) the artifacts subject to debugging
and verification. An advantage is the availability of tools to
navigate, transform, and visualize such models.

VI. APPROACH APPLICABILITY AND LIMITATIONS

Our approach proposes a way to construct, offline, the
partial order that represents the execution of a distributed
real-time system. In this section we discuss the approach
limitations and the benefits provided by our partial order which
is model-based.

a) Limitations: We have seen that sometimes, it is nec-
essary to reconstruct some events (clocks) that are referenced
by the reconciliation specification but that do not exist in the
traces (lines 6-10 of Alg. 1 are devoted to this). In our example,
it is the case for the union clock (sendLightSensor-
Data1 + sendLightSensorData2). This union consists
of adding some Coincides occurrence relations between the
two clocks referenced by the expression and the union clock
itself. These relations indicate a partial order iff the two clocks
referenced by the expression are totally ordered (otherwise an
arbitrary order is chosen by TimeSquare). However, the two
clocks might be unsynchronized if they are allocated to dif-
ferent computational units. As a consequence, it is impossible
to make a meaningful reconciliation. In this case, one needs
to enrich the scenario with information at model or code level
before the reconciliation. At model level, it is necessary to
define a static constraint to ensure that each communication
is on a dedicated port (i.e.,receiveLightSensorData1
and receiveLightSensorData2). By doing so, there is
no need for a union expression in the reconciliation. Other so-
lution is to emulate the previous situation in the instrumented
code where a different event is monitored depending on the
sender of a message to the port receiveLightSensor-
Data.

b) Approach applicability: The resulting partial order is
adequate for classical analysis already conducted in previous
works [2], [3], [4], [5], [6]. In addition, because our approach
is fully integrated in an MDE workflow, many benefits, de-
scribed in the following paragraphs, are provided.

Because the events identified in the execution traces are
specified in the UML/MARTE model, the partial order is
actually linked to the model elements and can be used to

give feedback from the real execution directly at the model
level. For instance, it is possible to animate a UML diagram
according to the system execution. For example, the developer
may be able to run a “partial-order based” debugger to pinpoint
any problem of ordering between the messages of a sequence
diagram. This work is currently under realization in the RT-
Simex project.

Another way to help debugging would consists in creating
a consolidated timing diagram. That is, instead of visualizing
several timing diagrams representing the totally ordered behav-
ior of a single computational units in an isolated way, a partial
order can be used to represent a timing diagram of the whole
system. This timing diagram would contain the occurrences
of events belonging to each computational unit, including
the occurrences of communication events, and the causal and
temporal relationships between occurrences. From the timing
diagram one can perceive the ordering and scheduling of event
occurrences as well as the dependencies between them. This
view can be helpful in the first steps of the debugging but
some problems can be difficult to detect visually. In this case
we can decide to use an exhaustive verification technique.

In [20] we have described a verification strategy based on
the TimeSquare tool. It consists of building a CCSL specifica-
tion that represents the execution of the partial order. Then,
the original constraints specified on the model are marked as
assertions. TimeSquare takes such a CCSL specification and
checks if some assertions are violated. In case of violations,
the constraint and the step where the violation has occurred
are provided. For each violation, an event is raised so that it is
possible to launch specific feedback on assertions (for instance
meaningful annotation of the model).

VII. CONCLUSION

In many real-time systems, different computational units
communicate to deliver a functionality. To understand such
systems, it is common to produce execution traces. These
traces are traditionally produced by using a synchronization
between computational units clocks. To avoid the overhead
due to such a synchronization, we propose an approach that
reconciles the traces from different computational units offline,
after the execution. It therefore provides a partial order repre-
senting the distributed execution. To build the partial order, our
approach needs two inputs: 1) traces that result from the exe-
cution of instrumented code over all the computational units,
and 2) a reconciliation specification, i.e., the CCSL constraints
that represent the temporal and causal relations induced by the
communications between the computational units. Apart from
the execution traces, which are captured in the OTF format
for performance reasons, all the approach is based on MDE
techniques. Moreover, it uses the formal language CCSL as a
reconciliation specification language which would ease further
phases of analysis. The approach has been successfully tested
on a case study addressed during the ANR project RT-Simex.

As future work, two directions appear: using the partial order
to visualize real execution on the model and analyzing the
partial order to extract information about possible deadlock
schemes on the communications. The latter part would consist
in using the unfolding of clock relations into instant relations
to detect causality cycles.

VIII. ACKNOWLEDGMENTS

This work has been funded by the ANR RT-Simex project.

REFERENCES

[1] A. Pietschker and A. Ulrich, “A light-weight method for trace analysis
to support fault diagnosis in concurrent systems,” Systemics, cybernetics
and informatics, vol. 1, 2003.

[2] C. Fidge, “Logical time in distributed computing systems,” Computer,
vol. 24, pp. 28–33, August 1991.

[3] M. Raynal and M. Singhal, “Logical time: Capturing causality in
distributed systems,” Computer, vol. 29, pp. 49–56, February 1996.

[4] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Commun. ACM, vol. 21, pp. 558–565, July 1978.

[5] J. Moe and D. A. Carr, “Understanding distributed systems via execution
trace data,” in 9th International Workshop on Program Comprehension.
Society Press, 2001, pp. 60–67.

[6] A. Pietschker and A. Ulrich, “A light-weight method for trace analysis
to support fault diagnosis in concurrent systems,” Journal of Systemics,
Cybernetics and Informatics, vol. 1, no. 6, pp. 1–6, 2003.

[7] I. Bate, P. Nightingale, and A. Cervin, “Establishing timing requirements
and control attributes for control loops in real-time systems,” in ECRTS.
IEEE Computer Society, 2003, pp. 121–128.

[8] C. André, “Syntax and semantics of the Clock Constraint Specification
Language,” INRIA, Tech. Rep. 6925, 2009.

[9] S. K. Sarin and N. A. Lynch, “Discarding obsolete information in a
replicated database system,” IEEE Trans. Software Eng., vol. 13, no. 1,
pp. 39–47, 1987.

[10] F. Ruget, “Cheaper matrix clocks,” in Proc. of the 8th Int. W. on
Distributed Algorithms, ser. WDAG ’94. London, UK: Springer, 1994,
pp. 355–369.

[11] A. Knupfer, R. Brendel, H. Brunst, H. Mix, and W. Nagel, “Introducing
the Open Trace Format (OTF),” in Computational Science (ICCS), ser.
Lecture Notes in Computer Science.

[12] H. Barringer, A. Groce, K. Havelund, and M. Smith, “Formal analysis
of log files,” Journal of aerospace computing, information, and commu-
nication, vol. 7, no. 11, pp. 365–390, 2010.

[13] R. Gascon, F. Mallet, and J. DeAntoni, “Logical time and temporal
logics: comparing UML MARTE/CCSL and PSL,” in 18th Int. Symp.
on Temporal Representation and Reasoning (TIME), 2011, to appear.

[14] OMG, UML Profile for MARTE, v1.0, Object Management Group,
November 2009, formal/2009-11-02.

[15] C. André, F. Mallet, and R. de Simone, “Modeling time(s),” in MoDELS,
ser. Lecture Notes in Computer Science, G. Engels, B. Opdyke, D. C.
Schmidt, and F. Weil, Eds., vol. 4735. Springer, 2007, pp. 559–573.

[16] OMG, UML Superstructure, v2.2, Object Management Group, February
2009, formal/2009-02-02.

[17] J. DeAntoni, F. Mallet, and C. André, “TimeSquare: on the formal
execution of UML and DSL models,” Tool session of the 4th Model
driven development for distributed real time systems, 2008.

[18] Lego Systems, “mindstorms NXT,”
http://mindstorms.lego.com/eng/Overview/The NXT.aspx.

[19] M.-A. Peraldi-Frati and J. DeAntoni, “Scheduling multi clock real
time systems: From requirements to implementation,” in 14th IEEE
Int. Symp. on Object/Component/Service-oriented Real-time Distributed
Computing, 2011, pp. 50–57.

[20] J. DeAntoni, F. Mallet, F. Thomas, G. Reydet, J.-P. Babau, C. Mraidha,
L. Gauthier, L. Rioux, and N. Sordon, “RT-Simex: retro-analysis of exe-
cution traces,” in 18th Symp. on the Foundation of Software Engineering
(FSE), 2010.

