
HAL Id: inria-00598504
https://hal.inria.fr/inria-00598504

Submitted on 6 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Omnidirectional texturing of human actors from
multiple view video sequences

Alexandrina Orzan

To cite this version:
Alexandrina Orzan. Omnidirectional texturing of human actors from multiple view video sequences.
Graphics [cs.GR]. 2005. �inria-00598504�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49984102?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00598504
https://hal.archives-ouvertes.fr

Ecole Normale Supérieure de Cachan MPRI 2005

Omnidirectional texturing of human actors
from multiple view video sequences

Alexandrina ORZAN

Master internship report

Artis - GRAVIR/IMAG-INRIA UMR CNRS C5527.

Jury composition :

Jean-Marc HASENFRATZ Directeur de stage

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE

Contents

Résumé 5

1 Introduction 11

2 Problem statement 13

2.1 Texture junction . 14

2.2 Choice of the cameras . 14

2.3 Visibility . 15

2.4 Temporal coherence . 15

3 State of the Art in Omnidirectional Texturing 19

3.1 3D Model reconstruction . 19

3.2 Multi-view texture mapping . 20

3.3 Visibility . 22

3.4 Temporal coherence . 23

4 Texture Mapping Methods 25

4.1 The 3D model and the constraints it imposes 25

4.2 Projective texture mapping that passes through geometry 27

4.3 View-dependent method . 28

4.3.1 Eliminating the wrong colors 28

4.3.2 Choice of cameras . 29

4.3.3 Algorithm . 30

4.4 View-independent method . 30

4.4.1 Visibility . 31

4.4.2 Eliminating the wrong colors 33

4 CONTENTS

4.4.3 Algorithm . 33

4.4.4 Median filter . 33

4.5 Shadow mapping method . 35

4.5.1 Shadow Mapping . 35

4.5.2 Eliminating the wrong colors 37

4.5.3 Choice of cameras . 39

4.5.4 Algorithm . 42

5 Results and Discussions 45

5.1 Results . 45

5.2 Discussion . 45

6 Conclusions and Future work 47

6.1 Conclusions . 47

6.2 Future Work . 48

A Article in the RoCHI Conference Proceedings 49

Résumé

Ces dernières années, de plus en plus d’activités de recherche sont consacrées à
l’étude de la vidéo tridimensionnelle, créée à partir de plusieurs flux vidéo. Le but
est d’obtenir une vidéo free-viewpoint, où l’utilisateur peut observer d’un point de
vue arbitraire, choisi de manière interactive, une scène filmée par plusieurs camé-
ras.

Les applications possibles sont diverses. Un système free-viewpoint peut augmen-
ter le réalisme visuel de la technologie de téléprésence1 . De ce fait des utilisateurs
situés physiquement en différents endroits peuvent collaborer à travers un même
environnement virtuel. En outre, les effets spéciaux employés par l’industrie du
film, comme ceux introduits dans le film Matrix (freeze-and-rotate), seraient ren-
dus accessibles à tous les utilisateurs.

Dans la plupart des applications de réalité virtuelle, nous cherchons à représenter
des acteurs sous la forme d’avatar. C’est pourquoi la recherche est importante dans
ce domaine.

Pour les vidéos de type free-viewpoint, la scène est filmée simultanément par dif-
férentes caméras depuis plusieurs points de vue. Les flux vidéo obtenus par les
caméras sont utilisés pour créer un modèle 3D de la scène. Cette reconstruction
tridimensionnelle est indispensable pour que l’utilisateur puisse regarder la scène
depuis n’importe quel point de vue. Dans le cadre de la réalité virtuelle, il est pos-
sible d’ajouter de nouveaux objets dans cette scène (objets virtuels) et de traiter les
problèmes d’éclairage (ombres au sol, . . .), ainsi que les problèmes d’occultation
[7, 8].

Le modèle 3D peut être décrit en utilisant différentes méthodes, telles que des
maillages, des échantillons de points ou des voxels. Pour rendre le modèle plus
réaliste, les flux vidéo provenant des caméras sont plaqués sur le modèle 3D. Fi-
nalement, en combinant le modèle 3D reconstruit et les différents flux vidéo, nous
sommes capables de reconstruire un monde virtuel réaliste.

Le but du stage effectué a été de réaliser le “texturage” en temps réel d’un modèle

1“Telepresence technology” enables people to feel as if they are actually present in a different

place or time (S. Fisher & B. Laurel, 1991) or enables objects from a different place to feel as if they

are actually present (T. Lacey & W. Chapin, 1994).

6 Résumé

3D d’un animateur. L’étude a été effectuée dans le cadre du projet CYBER-II2. Ce
projet vise à simuler, en temps réel (au minimum 25 images par secondes), la pré-
sence d’une personne (par exemple un présentateur de télévision ou un professeur)
dans un environnement virtuel.

Concernant la reconstruction 3D, nous distinguons généralement deux approches :
la reconstruction model-free, où l’on ne fait pas d’hypothèse à priori sur la forme de
l’objet et la reconstruction model-based pour laquelle nous connaissons à l’avance
les caractéristiques de l’objet.

La reconstruction model-free, ne faisant aucune supposition sur la géométrie de la
scène, nous pouvons traiter des scènes dynamiques et complexes. Dans le cas d’une
personne, cette méthode permet de tenir compte, par exemple, des mouvements
des vêtements ou des cheveux. La plupart de ces méthodes model-free cherchent
à construire le contour des objets [13]. Pour cela, les silhouettes de l’objet sont
extraites dans chaque image en détectant les pixels se trouvant au premier plan. A
partir de ces différents contours, nous pouvons reconstruire une représentation 3D
de l’objet. Nous parlons alors d’enveloppe visuelle. Cette enveloppe peut être re-
présentée sous la forme de voxels [8] ou sous la forme d’un ensemble de polygones
[14, 17, 16].

L’approche model-free permet une reconstruction et un rendu temps réel. Cepen-
dant, elle nécessite l’utilisation d’un grand nombre de caméras pour obtenir une
reconstruction précise et fidèle.

La reconstruction model-based suppose que l’on connaisse les caractéristiques de
l’objet observé. Dans notre cas nous supposons que c’est une personne et nous
cherchons à faire correspondre les différentes silhouettes à une représentation gé-
nérique d’un corps humain [2, 9, 10]. Cette approche a l’avantage de produire un
modèle 3D précis, mais est peu flexible. En effet, elle ne peut prendre en compte
les mouvements des habits, ou d’autres objets non prévus à priori.

Dans le projet CYBER-II, nous utilisons une méthode model-free pour la recons-
truction, avec six flux vidéo et un modèle polyédrique de la scène.

Pour augmenter le réalisme, il est indispensable d’habiller le modèle. Pour cela,
les flux vidéo sont plaqués sur la géométrie 3D [3]. Les méthodes pour effectuer
ce “multi-texturage” proposées dans la littérature sont classées en deux grandes
catégories : view-dependant et view-independant.

L’habillage view-dependant est fondé sur l’image qui sera affichée à l’écran. Cette
image est construite à partir des caméras les plus proches de l’observateur. Quand
celui-ci est situé entre différentes caméras, deux à quatre textures sont mélangées
afin d’obtenir l’image finale [4, 5]. Cette méthode introduit un certain nombre d’er-
reurs visibles, en particulier dans les parties o la géométrie du modèle ne corres-
pond pas exactement à la forme observée. De plus, les résultats sont souvent flous
et le changement de caméra dû au déplacement de l’observateur peut être visible.

2http ://artis.imag.fr/Projects/Cyber-II/

Résumé 7

Concernant l’approche view-independant, nous utilisons l’ensemble des caméras
pour habiller la totalité du modèle. Dans ce cas, nous ne tenons pas compte de la po-
sition de l’observateur. Dans cette méthode nous choisissons la caméra la plus ap-
propriée pour chaque polygone du modèle [2, 9, 16]. L’avantage de cette méthode
réside dans le fait qu’une texture est associée une fois pour toute à un polygone.
Il n’y a donc plus de discontinuité dans l’affichage d’un même polygone lors du
changement de point de vue de l’observateur. D’autre part, le flou dû à un mélange
de texture n’existe plus. Cependant, des discontinuités entre polygones adjacents
peuvent être visibles. Ce cas de figure apparaît lorsque des caméras différentes sont
utilisées pour des polygones d’une même région. Pour atténuer cette discontinuité,
nous pouvons mélanger (blending) les textures provenant des différentes caméras.
Les paramètre utilisés lors du mélange peuvent être calculés par sommet ou par
polygone [2, 4, 5]. Matsuyama [16] propose de déterminer la couleur pour chaque
sommet, puis de “recolorier” les triangles avec les couleurs obtenues en interpolant
linéairement les valeurs RGB des sommets. Cependant, pour de grands triangles,
les petits détails comme des plis dans les vêtements sont perdus. Li et de Magnor
[15] calculent le mélange pour chaque pixel de l’image finale, ce qui permet un
mélange plus précis.

Pour obtenir un texturage correct, il est nécessaire de déterminer quels points sont
visibles depuis chaque caméra. Si une caméra ne voit pas une certaine région, alors
elle ne devrait pas être employée dans le calcul de la couleur pour cette région. Afin
de résoudre le problème de visibilité, Debevec [4] divise les triangles du modèle de
sorte qu’ils soient entièrement visibles ou entièrement invisibles depuis toutes les
positions des caméras. Matusik [17] propose de déterminer la visibilité de chaque
sommet lors du calcul de l’enveloppe visuelle sans aucun coût supplémentaire. Ce-
pendant des erreurs existent lorsque tous les sommets d’un polygone sont visibles
alors que celui-ci est partiellement recouvert. Magnor et al. [15] résolvent le pro-
blème de visibilité par fragment, en utilisant une technique de shadow mapping.
Cependant, ils ont besoin d’effectuer deux rendus de la scène pour chaque caméra.
De plus, l’approche n’est pas temps réel même avec une implémentation utilisant
massivement les capacités des cartes graphiques.

A partir des méthodes d’habillage décrites ci-dessus, nous avons proposé trois al-
gorithmes de “multi-texturage”. L’objectif était de trouver le meilleur compromis
qualité/temps.

Comme nous disposons d’un ensemble de caméras, plusieurs vues du même point
sont disponibles. De ce fait et à cause des imperfections du modèle, plusieurs pro-
blèmes sont à résoudre :

– comment obtenir des transitions douces entre les triangles adjacents, de sorte
que les bords ne soient pas visibles ?

– comment choisir l’ensemble de caméras qui contribueront à la texture ?
– comment décider quelle partie du modèle 3D est visible pour chaque caméra ?

8 Résumé

– comment assurer la cohérence temporelle, de sorte que les couleurs demeurent
les mêmes d’une image à l’autre pour chaque partie du modèle ?

Nous nous sommes concentrés sur des algorithmes décidant la couleur de chaque
pixel indépendamment les uns des autres, choix justifié par les contraintes imposées
par le modèle.

Le premier algorithme implémenté a été un algorithme view-dependant. Dans cette
première approche nous avons cherché à éviter le traitement de la visibilité. Pour
cela, nous avons comparé, pour un même point, les couleurs provenant de chaque
caméra et nous avons conservé uniquement la couleur la plus souvent présente.
Par exemple, si pour un point sur la surface, trois caméras voient du rose et une
quatrième voit du gris, nous pouvons considérer que la couleur correcte est le rose.
Nous avons montré que comparer les couleurs est une chose pertinente dans notre
cas. Nous nous sommes basés sur l’écart type afin d’éliminer les couleurs erronées.
Cette approche permet ainsi un traitement intrinsèque de la visibilité.

La deuxième approche sur laquelle nous avons travaillé utilise un algorithme view-
independant. Le but était de résoudre le problème de discontinuité entre les poly-
gones adjacents.

La solution proposée élimine une grande partie des fausses couleurs. Cependant,
des régions visibles par moins de trois caméras ne sont pas considérées dans le
calcul de d’écart type, et des erreurs se produisent.

Une autre méthode de “multi-texturage” sur laquelle nous avons travaillé emploie
un algorithme view-independant pour choisir les meilleurs caméras pour chaque
triangle de la surface du modèle. Un test de visibilité est fait pour chacun de ces
triangles, pour décider s’ils font face à la caméra ou non. Si un triangle est back-
facing, il est invisible du point de vue de la caméra ; mais s’il est front-facing, il
pourrait être visible ou caché par un autre triangle. Dans ces cas, nous employons
l’écart type pour trancher.

Les méthodes view-independant “fixent” les texture une fois pour toute pour chaque
polygone. Pour les régions où l’objet est vu par au moins trois caméras, l’algo-
rithme réussit à éliminer les fausses couleurs et a mélanger les couleurs restantes
sans que l’on ne s’aperçoivent que les textures proviennent de différentes caméras.
Cependant, pour les régions où l’objet est vu par au plus deux caméras, l’algo-
rithme fonctionne sans élimination de couleur.

Pour améliorer ces résultats, nous avons appliqué un filtre médian à l’image finale.
Cette variation de l’algorithme lisse la texture et empêche le changement rapide de
couleur dans le temps, mais elle double le temps de calcul.

Une dernière méthode emploie la technique de shadow-mapping pour déterminer,
pour chaque caméra, les points cachés par d’autres objets. Elle utilise le mode
view-independant de texturage pour combiner l’information de couleur provenant
des diverses caméras qui voient ce point. L’utilisation de la couleur dominante

Résumé 9

permet de supprimer divers artefacts. Pour de petites parties non visibles, le filtre
médian est employé pour compléter la couleur.

Dans le contexte du projet CYBER-II, nous avons observé que pour habiller le
modèle nous n’utilisons généralement que cinq caméras. En effet, la sixième ca-
méra est généralement située à l’opposé du point de vue de l’observateur. Nous
avons donc développé une technique rapide choisissant les cinq caméras les plus
pertinentes qui seront les seules utilisées.

En conclusion, nous avons proposé d’éliminer les fausses couleurs en faisant un
test d’écart type. Les résultats sont plutôt bons grâce à la correction des artefacts
de visibilité et à la suppression des erreurs induites par l’utilisation d’un modèle
imparfait.

Nous avons utilisé une version modifiée du filtre médian pour remplir les petites
régions invisibles. La méthode proposée fonctionne dans le plan image et n’a pas
besoin de l’information géométrique.

La méthode view-independant que nous avons utilisée, couplée au choix de la cou-
leur dominante, réussit à éliminer les fausses couleurs pour les pixels vus par plus
de deux caméras, sans faire une vérification coûteuse d’occultation. Cependant, le
système à six caméras que nous avons employé n’offre pas l’information suffisante
pour que cet algorithme fonctionne sans erreur. Il existe des cas où seulement deux
caméras, ou moins, voient un point.

L’algorithme qui emploie la technique de shadow-mapping est mieux adapté à
notre système. Combiné avec l’écart type et la méthode pour remplir les “trous”,
il produit des textures très réalistes. C’est un algorithme qui convient à un nombre
restreint de caméras. Puisqu’il dépend du nombre de lumières permis par OpenGL,
il est limité à un maximum de huit caméras. Pour plus de caméras, l’algorithme
view-independant pourrait probablement habiller correctement un objet sans avoir
recours à la vérification des occultations avec une technique de shadow-mapping.

Ce mémoire est organisé en six chapitres. Après une introduction du domaine de
la vidéo 3D, une présentation détaillée des problèmes de recherche rencontrés pen-
dant ce stage est faite (chapitre 2). Un état de l’art est proposé dans le chapitre 3. Le
chapitre 4 est consacré aux méthodes proposées de “multi-texturage”. Le chapitre
5 est une discussion des résultats et le chapitre 6 conclut ces recherches et annonce
les travaux futurs.

10 Résumé

Chapter 1

Introduction

Currently, visual media such as television and motion pictures only present a two-
dimensional impression of the real world. In the last few years, increasingly more
research activity has been devoted to investigate three-dimensional video, created
from multiple camera views. The goal is to have a free-viewpoint video, where the
user is able to watch a scene from an arbitrary viewpoint chosen interactively.

The possible applications are manifold. A free-viewpoint system can increase the
visual realism of telepresence technology 1, thus enabling users from different lo-
cations to collaborate in a shared, simulated environment as if they were in the
same physical room. Also, special effects used by the movie industry, such as
freeze-and-rotate camera, would be made accessible to all users.

For free-viewpoint video, a scene is typically captured from several viewpoint by
different video cameras working simultaneously. From the views obtained by the
cameras a 3D model is created. The re-creation of the real objects is necessary,
because the purpose is not simply to anticipate how the scene would look from an
arbitrary point of view, but to integrate the real objects into a virtual scene, with
virtual obstacles and lights. In order to do so, we have to be able to compute the
way the model is lighted by the virtual lights and how it shadows the virtual objects,
and this is impossible without knowing the 3D geometry [7, 8] (See Figure 1.1 for
an example of 3D model integrated into a virtual world).

The 3D shape can be described using various methods, such as polygon meshes,
point samples or voxels. To make the model more realistic, images captured from
the video streams are typically mapped onto the 3D shape, thus completing the
virtual representation of the real object.

Since people are central to most visual media content, research has been dedicated
in particular to the extraction and reconstruction of human actors.

1“Telepresence technology” enables people to feel as if they are actually present in a different

place or time (S. Fisher & B. Laurel, 1991) or enables objects from a different place to feel as if they

are actually present (T. Lacey & W. Chapin, 1994).

12 Introduction

Figure 1.1: Recovered 3D model of a human actor integrated in a virtual environ-
ment with virtual lighting.

The rest of the paper proceeds with a detailed presentation of the research problems
encountered during this internship, in chapter 2. A review of related work is done in
chapter 3, while chapter 4 will be dedicated to describing the proposed methods of
texture-mapping. The remaining chapters discuss the results and future tasks. Part
of this internship’s work was described in an article at the Romanian Conference
on Computer-Human Interaction, article that we included as an appendix.

Chapter 2

Problem statement

During this internship, the goal was to texture in real-time the recreated 3D model
of a moving actor. The study was conducted within the context of CYBER-II
project1, which aims to simulate, in real-time (at least 25 images/second), the pres-
ence of a person (e.g. a TV presenter or a teacher) in a virtual environment.

The system used by CYBER-II has 6 cameras, positioned as seen in Figure 2.1.

The person can move freely in a cube of approximatively 8m3, where it is captured
on film by the video cameras; the geometrical form is then reconstructed in real
time. The acquisition is not restricted to a single human actor. Moreover, the
system allows the reconstruction of multiple persons and objects present in the
scene.

The computed geometrical form has to be textured with the images recovered from
the cameras. As we dispose of a set of cameras, we have more then one view
for the same patch of the 3D model. In addition, the geometry of the model is
limited to about 5000 triangles, not sufficient to have a good mesh representation,
but necessary if we want to obtain it in real time. This small number of triangles
makes the texturing errors more visible.

Several problems arise:

• how to obtain smooth transitions between adjacent patches, so that the edges
are not visible.

• how to choose the set of cameras that will contribute to the texture.

• how to decide which part of the 3D model is visible from each camera.

• how to ensure temporal coherence, so that the colors remain the same from
one frame to another for each part of the model.

These were the problems that we tried to solve during this internship.

1http://artis.imag.fr/Projects/Cyber-II/

14 Problem statement

Figure 2.1: Camera setting

2.1 Texture junction

Given that we have 6 views of the object, the textures on neighboring patches are
often extracted from different images. This introduces jitters at patch boundaries,
as seen in Figure 2.2.

Ensuring continuity at the patches frontier is a very important problem, since with-
out it the final result has important errors.

2.2 Choice of the cameras

Usually, for a specific point of view, not all cameras need to be considered. There
are some cases when a camera sees little or nothing of the currently visible part of
the model. These cameras need to be identified, especially if we are dealing with
a greater number of cameras, and considering all of them would make impossible
reaching real-time.

The problem here is to decide quickly how much of the visible image a camera
sees, and if it’s not the only camera that sees a certain part of the model. Moreover,

2.3 Visibility 15

Figure 2.2: Two examples of the texture junction problem. Note how visible the
texture borders are.

when we zoom out the object, some parts of the model become almost invisible,
and some cameras could be disregarded.

Figure 2.3 shows a case when a camera view brings almost no contribution to the
current view.

2.3 Visibility

Deciding what part of the 3D model is visible to each reference view is a very im-
portant problem for multi-view texture mapping. For those parts that are invisible
in a reference view, the information should be ignored when doing the texturing.
Otherwise, important errors will be obtained in the final result. Such an error can
be seen in Figure 2.4, where the image of a hand is textured on the body.

2.4 Temporal coherence

The geometry of the model is decided for each frame in part and there is no connec-
tion between models derived from successive frames. Therefore, we cannot color
each patch at the beginning, and then just follow how the patch moves in time. We
have to decide for each frame, separately, what color the final pixel will have. This
gives place to fast color-variations. More precisely, parts of the 3D model may
change color for each image, which is very disturbing for the viewer.

16 Problem statement

(a) A camera that doesn’t bring much con-

tribution to the current point of view.

(b) The same camera is used, but the scene

is viewed from a different position.

Figure 2.3: Snapshots illustrating how a camera contribution varies for different
views.

Figure 2.4: Visibility problem example. See the two right hands textured on the
model.

An example of two consecutive frames, with different colors for the same zone,
can be observed in Figure 2.5.

Consequently, we need to develop a method for preserving the color in a way con-

2.4 Temporal coherence 17

(a) Texturing of the first frame (b) Texturing of the second frame

(c) Zoom in of the first frame texturing (d) Zoom in of the second frame texturing

Figure 2.5: Temporal coherence problem: two consecutive frames with different
texture color for the same region.

sistent with the model movements, without considering geometrical temporal co-
herence.

18 Problem statement

Chapter 3

State of the Art in
Omnidirectional Texturing

Three-dimensional production from multiple view video, or 3D video, was first
popularized by Kanade et. al. [11, 18], who proposed to obtained an immersive
visual medium that lets the viewer select his viewing position. Kanade named this
medium Virtualized Reality, since it virtualizes the event in order to permit the free
movement of the user.

3.1 3D Model reconstruction

Two different approaches of model reconstruction have been studied in the recent
years: model-free and model-based reconstruction.

Model-free reconstruction makes no a priori assumptions on scene geometry, al-
lowing the reconstruction of complex dynamic scenes. In human modeling it al-
lows the reproduction of detailed dynamics for hair and loose clothing.

Most model-free methods aim to estimate the visual hull, an approximate shell that
envelopes the true geometry of the object [13]. To achieve this, object silhouettes
are extracted from each camera image by detecting the pixels not belonging to the
background.

The visual hull can then be reconstructed either by voxel-based or polyhedron-
based approaches. The first approach discretizes a confined 3D space in voxels
and carves away those voxels whose projection fall outside the silhouette of any
reference view [8]. Polyhedron-based approaches represent each visual cone as a
polyhedral object and computes the intersection of all visual cones [14, 17, 16].
Examples of different model-free object reconstructions are given in Figure 3.1.

The visual hull allows real-time reconstruction and rendering, yet it needs a large

20 State of the Art in Omnidirectional Texturing

Figure 3.1: Model-free methods. From left to right: cube model, pure marching
cubes surfaces, smoothed surfaces (image taken from [8]).

number of views to accurately represent a scene, otherwise the obtained model is
not very exact.

Model-based reconstruction assumes that the real object is a human body and
uses a generic humanoid model, which is deformed to fit the observed silhouettes
[2, 9, 10]. Although it results in a more accurate model and permits motion track-
ing over time, this approach is restricted to a simple model and does not allow
complex clothing movements. Moreover, it places a severe limitation on what can
be captured (i.e. a single human body) and it is not real-time.

3.2 Multi-view texture mapping

Original images from multiple viewpoint are often mapped onto recovered 3D ge-
ometry in order to achieve realistic rendering results [3]. Proposed methods for
multi-texture mapping are either view-dependent or view-independent.

View-dependent texture mapping is based on the idea that what the viewer sees
is the “real view”, and it is best represented by the camera views closest to him.
Therefore, it takes into consideration only the cameras nearest the current view-
point. In between camera views, two to four textures are blended together in order
to obtain the current view image [4, 5]. This method exhibits noticeable blending
artifacts in parts where the model geometry does not exactly correspond to the ob-
served shape. What’s more, the result is usually blurred and the passing from one
camera view to another does not always go unnoticed.

3.2 Multi-view texture mapping 21

View-independent texture mapping main idea is that the “real view” of a flat surface
is that seen from a point on the normal in the center of the surface. Consequently,
it selects the most appropriate camera for each triangle of the 3D model, indepen-
dently of the viewer’s viewpoint [2, 9, 16]. The advantage of this method is that it
does not change the triangle texture when the user changes the viewpoint. More-
over, the blurred effect is less noticeable. However, the problem is that the best
camera is not the same from patch to patch, even if they are neighboring. Here
also, blending between visible views is necessary in order to reduce the abrupt
change in texture at triangle edges.

Blending is done using various formulas that depend of:

1. the angle α between the surface normal and the vector towards the consid-
ered camera

2. the angle β between the surface normal and the vector towards the viewpoint

3. the angle γ between the vector towards a camera and the vector towards the
viewpoint

Figure 3.2: Angles considered while computing blending weights.

Blending weights can be computed per vertex or per polygon [2, 4, 5]. Matsuyama
[16] proposes using this method for determining each vertex color and then paints
the triangles with the colors obtained by linearly interpolating the RGB values of
its vertices. However, for large triangles, small details like creases in the clothes
are lost.

Li and Magnor [15] compute the blending for each rasterized fragment, which
results in a more accurate blending.

22 State of the Art in Omnidirectional Texturing

(a) A view-dependent texturing. Note the

bluish color on the left (color taken from

the background)

(b) The same model with a view-

independent texturing. See the rapid

change of color on the face and the right

part of the body

Figure 3.3: View-dependent vs. view-independent texturing

3.3 Visibility

As we mentioned before, deciding visibilities with respect to camera views is a
necessary task, because there are often cases where the camera’s view of a surface
point is occluded by another part of the geometric model. In these cases, the camera
should not be used in computing the point’s color.

In order to solve the visibility problem, Debevec et al. [4] splits the object triangles
so that they are either fully visible or fully invisible to any source view. This
process takes a long time even for a moderately complex object and is not suitable
for real-time applications.

Matusik [17] proposes computing the vertex visibility at the same time that the
visual hull is generated, at virtually no additional cost. Still, this does not guarantee
that if the vertices are visible, the whole triangle is. Magnor et al. [15] solves the
visibility problem per fragment, using shadow mapping. However, they require
rendering the scene twice from each input camera viewpoint and is not real-time
even with a hardware-accelerated implementation.

For the invisible triangles, Debevec [4] proposes assigning to the vertices the color
of the closest visible triangle and using the Gouraud interpolation technique to fill
in the triangle. Matsuyama [16] uses the linear interpolation to fill in the triangle

3.4 Temporal coherence 23

with the vertices color, if at least one of the vertices is visible; if not, the triangle
remains black.

3.4 Temporal coherence

Temporal coherence refers to keeping track of how each object geometry varies in
time and coloring the 3D model accordingly.

Vedula and Kanade [21] compute the scene flow, a measure of the scene motion, is
a three-dimensional vector filed defined for every voxel. This scene flow describes
how a voxel moves over time. The idea is that any 2D flow observed by a camera
is the projection of the corresponding 3D flow of the point, so, if we have two or
more cameras viewing a particular point, the scene flow can be recovered from
the 2D images. Once a voxel evolution in time is known, the color can then be
“controlled” so it doesn’t have “unnatural” variations. The 3D model used is a
voxel-based one. However, computing the scene flow is very slow (1.5 minutes for
a single pair of frames).

Theobalt and Magnor [20] use a predefined human model that is overlapped on the
computed silhouettes. Then the scene flow is reconstructed by searching through
various possible motions of the model’s joints. This approach restrains the search
space considerably, but it also limits the scene to a single human. It still takes about
50 seconds to compute the scene flow between two consecutive frames.

24 State of the Art in Omnidirectional Texturing

Chapter 4

Texture Mapping Methods

In this chapter we present the different methods of texture-mapping we imple-
mented. We start with a description of the 3D geometrical model used, briefly
explaining how it was built and what constrains it imposes on our texture mapping
algorithms. Next, we specify the OpenGL method employed for determining the
texture coordinates in the object space. Finally, we discuss every texture-mapping
method separately, giving an overview of the algorithm and commenting on the
results.

4.1 The 3D model and the constraints it imposes

The 3D model employed during this internship is one created in the context of
CYBER-II project and it’s a polyhedron-based model obtained in real-time.

The method used to reconstruct the real scene is a model-free one that doesn’t
restrict the scene to a single human actor, like the model-based methods. However,
since the purpose of the project was the reconstruction of a person, we did our
research on a human model.

In order to recreate the geometry of the real object, our system computes the 2D
silhouettes of the object, as viewed by each camera, and uses these to estimate the
3D shape.

Silhouette extraction is done by first acquiring the static background, as it is seen
by every camera. Once the background is known, the pixels whose value differs
from the corresponding background color are detected and treated as belonging to
the silhouette. The result is a series of black and white pictures representing the
silhouettes seen by each camera (as in Figure 4.1).

For every extracted silhouette, we specify the silhouette contour as a set of edges
joining consecutive vertices. Then, for each camera view, the silhouette cone is

26 Texture Mapping Methods

Figure 4.1: Silhouette extraction (image taken from [8])

calculated as the volume that originates from the camera’s center of projection and
extends infinitely while passing through the silhouette’s contour (see Figure 4.2).

The three-dimensional intersection of all the silhouette cones will result in a set
of polygons (in our case triangles) that define the surface of the visual hull. This
surface, specified by the computed set of polygons, is the final 3D model (see
Figure 4.2).

Figure 4.2: Computing the visual hull

The described method of creating the 3D object, while working in real-time, im-
poses some constraints on the resulting model. Firstly, it recreates the geometrical
object at each frame. Secondly, the number of triangles, their form and position in
space vary greatly in time, so we cannot track vertices from one frame to another.

This means that it is impossible to decide the color of the triangles only once, at
the beginning of the video. Color values have to be computed in real-time, for each
frame.

4.2 Projective texture mapping that passes through geometry 27

Moreover, the triangles which describe the model are not guaranteed to have a good
aspect ratio (close to equilateral). There are cases when they are very elongated, as
seen in Figure 4.3.

Figure 4.3: Example of elongated triangles, that are difficult to texture.

This poses problems in determining the visibility per triangle, since there are often
cases where the triangle vertices are visible, but a part of the triangle is occluded.
In order to correctly decide what parts are visible and what parts are not, we should
check for visibility in every point, and not only at the triangle vertices and center.

Besides, considering each pixel separately would allow us to compute weighting
information for each pixel, and not for a whole triangle or image.

This is why we decided to concentrate on per-pixel methods of texturing, rather
than per-vertex or per-triangle methods.

4.2 Projective texture mapping that passes through geom-
etry

To achieve realistic rendering results, we use the projective texture mapping, a
method introduced by Segal [19] and included in the OpenGL graphics standard.
Using this technique, the texture coordinates at a vertex are computed as the result
of a projection rather than being assigned fixed values.

This method allows us to re-project the photograph of the real object back onto the
geometry of the object. Still, the current hardware implementation of projective
texture mapping in OpenGL lets the texture pass through the geometry and be
mapped onto all back-facing and occluded polygons

28 Texture Mapping Methods

Thus it is necessary to perform visibility check so that only regions visible to a
particular camera are texture mapped with the corresponding image.

4.3 View-dependent method

The starting point for this method was the idea that we could avoid visibility check-
ing by comparing the corresponding colors from the image views and eliminating
those outside the general “trend”. For instance, if at a point on the surface three
cameras see rose and a fourth sees yellow, we could consider that the correct color
is rose.

Next, we decided to try a view-dependent method, in the effort of having smooth
continuous results by using the same image for adjacent triangles.

4.3.1 Eliminating the wrong colors

In order to be able to do multi-texturing, the supposition must be made that we
are dealing with almost Lambertian surfaces. This means that the surfaces have
mostly matte properties, their luminance being the same regardless of the viewing
angle. Reflective materials, like brass or silver, are not Lambertian surfaces. All
the same, this is not a very restrictive assumption, since most objects are not shiny.
In the case of human reconstruction, for example, the skin and clothes are nearly
Lambertian.

Furthermore, the cameras are calibrated prior to use, and the images are acquired
at the same time and in the same lighting conditions.

All this makes it safe for us to suppose that if the cameras see the same point, they
see it as having approximatively the same color. Therefore, we can compare colors
and calculate distances in the RGB space; it is not necessary for us to switch to Lab
color space, where we would be able to recognize the same object under different
illumination [1, 6].

In order to decide which are the wrong colors, we use the standard deviation test.
This test offers a measure of the degree of dispersion of the data from the mean
value and allows us to eliminate the colors that are farther than expected from the
average.

The test first computes the standard deviation σ of a set of n values µ1 . . . µn as:

σ =

√
1
n
·

n

∑
k=1

(µk −µ)2 , where µ is the mean.

The standard deviation is the expected variation around the average value, and is
used in defining a confidence interval for which the values are considered plausible.
Usually, these values are within one standard deviation away from the mean.

4.3 View-dependent method 29

We use this test to eliminate the wrong colors, because even if an outlier moves the
mean away from the main body of data, the standard deviation will indicate where
the majority of values is situated. Still, in order to get a result, it is necessary that
at least three cameras see the point and the majority sees the correct color.

If a sufficient number of color values are available for a pixel, we compute the
mean (µ) and the standard deviation (σ) for each of the R, G, B channels. Individ-
ual colors falling outside the range µ±β ·σ for at least one channel are excluded.
The factor β permits us to modify the confidence interval for which the colors are
accepted. While the classical normal deviation test considers β is 1, we experi-
mentally concluded that it was best to set it at 1.17, to allow for slight errors in
manipulating the color-values.

If less than three possible colors are available for a pixel, we do not exclude any of
them. If the pixel is invisible for all cameras, we compute its color using the color
values of the neighbors whose color was already decided.

4.3.2 Choice of cameras

We select the cameras that observe the scene under an angle close to the current
one. To do this, we consider the center of the scene to be the center of the model’s
bounding volume (the bright green point in Figure 4.4) and we compute the angle
with which each camera deviates from the current viewpoint.

Figure 4.4: Angles between cameras and current viewpoint.

We define the penalty penalty(ci,v) as being the angular deviation of camera ci
from the current view v. We then do the interpolation by using the first k cameras
having the smallest penalty. In our case, k was considered to be first 3, then 4.

To decide on the weight given to each camera, we have to define a weight function.
This should give a maximum value to a camera with the penalty close to zero and

30 Texture Mapping Methods

should drop to zero when the camera leaves the set of closest k. We therefore define
the weight function as:

weight(ci,v) = 1−
penalty(ci,v)
threshold(v)

where threshold(v) is the penalty(ck+1,v).

The threshold is considered to be the penalty of the first camera out of the chosen
set in order to smooth the transition from one set of cameras to another. Normally,
a camera leaves the set of the first k when the (k+1)th camera becomes better, and
including the latter into the already computing mean would make less visible the
switch.

Since in OpenGL the maximum value for blending is 1, we normalize the weights
to sum the unity, and the final weight function is:

weight(ci,v) =
weight(ci,v)

∑k
j=1 weight(c j,v)

So, once we decided which cameras to use, we can eliminate the wrong colors by
using the algorithm described in the previous subsection. Each color that passes the
test is then blended with the other contributing colors by using the corresponding
camera weight. Thus, the final color is obtained.

4.3.3 Algorithm

The algorithm runs as described in Algorithm 4.3.1.

This method succeeds in eliminating a great deal of the wrong colors, as it can be
seen in Figure 4.5. However, it isn’t enough. There are cases where big portions
of the model are invisible for all but one camera, and we texture them wrongly.
There are also portions where only two cameras are near, and in this case we do
not eliminate any of the colors.

Moreover, the passing from one camera set to another is still visible, even if it is
less disturbing then for a naive implementation of view-dependent algorithm. This
is because the nearest cameras are too far apart and we cannot smoothly interpolate
between them.

We conclude that, although the implemented method might have satisfactory re-
sults for a larger number of cameras, for our system a visibility test is necessary. In
addition, there is the problem of noticeable changes of camera views when rotating
around the scene. For this, a view-independent method might be better.

4.4 View-independent method

This method of multi-texturing uses a view-independent algorithm to chose the
best cameras for every triangle on the model’s surface. A visibility test is perform

4.4 View-independent method 31

Input: A triangulated 3D mesh in the form of successive XYZ triplets
describing the object surface.
Color images and camera parameters for each of the 6 cameras.

Output: A textured 3D model.

Find out the k nearest cameras;1

for each pixel in the image view do2

if there are three or more cameras then3

Compute the mean and standard deviation;4

for each individual color do5

If it is not in the allowed interval, exclude;6

end7

if there are colors left then8

Compute the weighted mean;9

end10

else11

Compute the color using neighboring colors12

end13

end14

if there are less than three cameras then15

Compute the weighted mean;16

end17

end18

Draw;19
Algorithm 4.3.1: View dependent algorithm with selection of the dominant
color

for each of these triangles, to decide whether they are facing the camera or not. If a
triangle is back-facing, then it is invisible from the camera’s point of view; but if it
is front-facing, it could be visible or occluded by another triangle. For these cases,
we use the method of eliminating wrong colors described in the previous section.

4.4.1 Visibility

A point p on the object’s surface is visible from a camera ci if:

1. the triangle t j to which the point belongs faces the camera and

2. the point is not occluded by any other triangles.

The first condition can be fast determined by checking the truth of the inequality
nt j · vci→t j < 0, where nt j is the triangle normal vector and vci→t j is the viewing
direction from ci towards the centroid of t j (see Figure 4.6).

32 Texture Mapping Methods

(a) Naive implementation of the view-

dependent method.

(b) The view-dependent method after

choosing the dominant color. Note how

the blue color disappears

Figure 4.5: View dependent method before and after the wrong color elimination.

Figure 4.6: A surface triangle, with the considered vectors: normal vector and
camera viewing directions

Still, in a per-pixel approach, we do not have the geometrical data. We solve this
problem by an additional rendering of the object from the current viewpoint, where
we use the polygon ID as its color. Thus, we can determine what polygons are vis-
ible from the viewpoint and exactly which pixel of the current image view belongs
to which triangle.

Determining if a point viewed by the viewer is occluded or not to the cameras is
a less obvious problem and a time consuming one. Methods to determine what
points are occluded were briefly presented in the “State of the Art” chapter.

We propose to bypass the occlusion checking by doing a basic statistical test. The
strong condition that has to be fulfilled is that for each pixel at least three cameras
have to pass the first visibility test, and the majority has to see the correct color.

4.4 View-independent method 33

4.4.2 Eliminating the wrong colors

The method for eliminating the wrong colors is the one described in the previous
section, with the exception that, instead of using only the closest 3 or 4 cameras,
we use all cameras that face a surface point to determine its final color.

After deciding which colors are accepted, they are blended using the weight func-
tion to obtain the pixel color. We define the blending weight of a camera ci for a
point p as:

weight(ci, p) =

{
cos(vci→t j ,nt j) if cos(vci→t j ,nt j) < 0
0 otherwise

where t j is the triangle to which the point p belongs, and nt j is the normal to the
triangle. We take in consideration the cosine because computing the angle requires
an inverse cosine operation, and it basically amounts to the same weight. Similarly
to the first method, the weight function is summed to 1 by the formula:

weight(ci, p) =
weight(ci, p)

∑n
j=1 weight(c j, p)

where n is the number of cameras

4.4.3 Algorithm

The resulting algorithm for the described method is the one presented in Algorithm
4.4.1.

Unlike the view-dependent method, this method results in a texture that doesn’t
change when the viewing camera is moved. The front-facing triangles check and
the dominant color selection help in eliminating the errors in texturing. It is a
clearer and more accurate result than the one obtained by the view-depending
method.

4.4.4 Median filter

The view-independent method greatly depends on the model’s normals, which
change from one frame to another. This amounts to color variation in time, less-
ened by texture blending, but still visible on the moving triangle boundaries. We
tried to reduce this variation without specifically following the pixel color in time.

To do this, we applied an image filter to the 2D output of the view-independent
method. Because the purpose of the filter is to eliminate jumps in pixel coloring
while preserving the details, we used the median filter, whose main property is that
it eliminates outliers without creating new pixels values.

Median filtering considers each pixel in the image and looks at the nearby neigh-
bors to compute the median of their values. It then replaces the pixel color with

34 Texture Mapping Methods

Input: A triangulated 3D mesh in the form of successive XYZ triplets
describing the object surface.
Color images and camera parameters for each of the 6 cameras.

Output: A textured 3D model.

Find out the (partially) visible polygons from the current viewpoint;1

for each pixel in the image view do2

for each camera do3

if the polygon that colored the pixel faces the camera then4

retain the corresponding color;5

end6

end7

if there are three or more colors then8

Compute the mean and standard deviation;9

for each individual color do10

If it is not in the allowed interval, exclude;11

end12

if there are colors left then13

Compute the weighted mean;14

end15

else16

Compute the color using neighboring colors17

end18

end19

if there are two colors then20

Compute the weighted mean;21

end22

if there is only colors then23

retain that color;24

end25

if there is no color then26

Compute the color using neighboring colors;27

end28

end29

Draw;30
Algorithm 4.4.1: View independent algorithm with visibility check and selec-
tion of the dominant color

the middle pixel value. This filter eliminates unrepresentative pixels, smooths the
transition between close colors and preserves the sharp, clearly defined edges (see
Figure 4.7).

Still, median filtering slows down the algorithm considerably and, if it preserves
the details, it nevertheless produces a slightly unrealistic texture.

4.5 Shadow mapping method 35

(a) Our view-independent method without

using the median filter.

(b) The view-independent method with

median filter. Note the color changing

more smoothly with the second method,

especially in the portion marked by the

green rectangle.

Figure 4.7: Comparison between textures before and after using the median filter.

Even if the view-independent method succeeds in texturing well most of the times,
it fails for the points that are invisible for all cameras, but front facing some of
them. A glaring example can be seen in Figure 4.8.

For these kind of problems, we have to determine the occluded 3D points.

4.5 Shadow mapping method

This method uses the shadow-mapping technique to determine, for each camera,
the occluded points. It then employs the view-independent mode of texturing to
combine color information taken from all the cameras than see a point. In order to
eliminate errors derived from point – eye view and point – camera view distance
computations, the dominant color is chosen. For small invisible portions, median
filtering is used to fill in the color.

4.5.1 Shadow Mapping

Shadow mapping, first introduced in [22], is a method for producing the shadows
cast by objects present in a scene.

36 Texture Mapping Methods

Figure 4.8: a) An example of bad-textured model, when a large portion is invisible
for all cameras (see the hand projected on the body). b) The same model, colored
in accordance with the degree of visibility.

To do this, it first represents the scene from the light’s point of view, and stores the
distances to the closest pixels; the result is a “depth map” or “shadow map” texture.

It then renders the scene for the second time, from the eye’s point of view. For
each pixel, it determines the (X ,Y,Z) position relative to the light, and compares
the depth value D at the (X ,Y) position in the shadow map with the Z value of the
pixel. If Z ∼= D, then the pixel is “viewed” by the light, and therefore illuminated.
If Z > D, there is something closer to the light than the considered pixel, and the
point is shadowed. Figure 4.9 illustrates the described process for both cases.

We have chosen this technique to determine the occluded points because it is faster
than methods based on geometrical computations, such as the shadow volumes.
It is an image space technique that does not require additional knowledge or pro-
cessing of the scene geometry, so it’s computational time doesn’t scale with the
increase of geometrical information. Moreover, the depth map can be stored in a
texture format, and therefore be more easily combined with the texture images we
work with.

We use this method to check, for each pixel belonging to the eye view image plane,
whether it is seen by a camera or not. We do this by considering each camera as a
light source and computing the lit areas. These pixels are exactly those visible to
the camera, and therefore the camera image can be used in texturing them. A scene
example, with its depth map, computed shadows and the resulting texturing can be
viewed in Figure 4.10.

4.5 Shadow mapping method 37

Figure 4.9: Depth comparisons that occur in shadow mapping (image inspired from
Mark Kilgard’s presentation [12]).

4.5.2 Eliminating the wrong colors

The shadow map method is prone to errors, especially at the border between the
visible and occluded parts. This is because when the geometry is rasterized from
eye’s point of view, it will be sampled in different locations than when it is raster-
ized from the light’s point of view. As a result, invisible pixels will be considered
visible, and “leaks” in texturing will result in erroneous final colors. Part of these
pixels are eliminated by considering only the front-facing triangles, but problems
at the boundary line between visible and invisible regions still remain. An example
is shown in Figure 4.11.

Moreover, the 3D model used during this internship is not a perfect one, and this
induces errors in texturing even after determining the occluded parts. You can see
in Figure 4.12 how a small “bump”, present in the model but not in the real object,
is considered as belonging to the hand, and textured as such, when in fact it belongs
to the torso.

This sort of errors can be eliminated by comparing the colors taken from all cam-
eras used to determine the final color. So, it is still necessary to apply the standard
deviation test to the available colors.

After eliminating the wrong colors, we compute the weighted mean as in sec-
tion 4.4.2 on page 33.

Another problem is the small regions that are invisible to all cameras. They are
apparent when using the shadow-mapping method, because no texture is mapped
on them. For these regions, we look at the already colored neighboring pixels, and
we compute the median color; this color we assign to the invisible pixel.

38 Texture Mapping Methods

(a) Scene viewed from the light’s point of

view

(b) The corresponding depths in gray lev-

els. Darker values are closer than the light

ones.

(c) Scene with the resulting shadows (d) The 3D wireframe model with texture

applied using the shadow map

Figure 4.10: Depth map example.

The altered median filter is also useful for eliminating the borders appearing at
texture intersection. This regions are generally not agreed on by the cameras that
see them, meaning that the colors are too far apart, and we can detect this during
the standard deviation test. For this regions we also choose the median color of the
neighbors.

Photos presenting the median filter results can be seen in Figure 4.13.

4.5 Shadow mapping method 39

(a) Texture result after shadow mapping

for one camera.

(b) Close-up on the texture. See the errors

towards the texture border.

(c) the same texture, after the elimination

of back-facing triangles. Note that the

border is clearer.

Figure 4.11: Shadow mapping imperfections, partly rectified by checking for front-
facing polygons.

4.5.3 Choice of cameras

One idea to determine what cameras are of no use for the current viewpoint is to
count how many of the visible triangles face each camera. We know the visible
triangles by assigning to each a different color, representing the scene once and

40 Texture Mapping Methods

(a) Model viewed from the camera’s point

of view; note the normal looking left hand

(b) Model viewed from a different angle;

note the left hand textured on the torso

(c) Model textured using all the cameras;

the hand “shadow” is still present

(d) Model after choosing the dominant

color; the hand shadow is gone

Figure 4.12: Model imperfections reflected in the texturing.

see what colors are present (as described in section 4.4.1 on page 31). Then, for
each camera ci and each visible triangle t j, we compute d = nt j · vci→t j , where nt j

is the triangle normal vector and vci→t j is the viewing direction from ci towards the
centroid of t j (see Figure 4.6). If d < 0, then the triangle is facing the camera. We
finally consider only cameras that have mode then one front-facing triangle.

This method, although it eliminates one or two cameras for each frame, takes as

4.5 Shadow mapping method 41

(a) Model textured using shadow maps;

note the borders on the neck and shoulders

(b) Model after applying the median filter

(c) Model textured using shadow maps;

blue and green wireframe can be seen in

several places

(d) Same model after applying the median

filter

Figure 4.13: Snapshots comparing the shadow mapping algorithm with and with-
out the median filter

much time to compute as it would take to consider the eliminated cameras, so it is
not a good solution.

Another idea was to eliminate the camera that observes the scene from an an-
gle farthest away from the current one. To do this, we consider the center of the
scene to be the center of the model’s bounding volume and we compute the angle
with which each camera deviates from the current viewpoint (see section 4.3.2 on

42 Texture Mapping Methods

page 29). Even if not a very exact measure, this method succeeds in quickly choos-
ing the right camera, and there are not perceptible differences between it and using
all cameras. Moreover, the speed is visibly increased.

4.5.4 Algorithm

The algorithm runs as described in Algorithm 4.5.1.

4.5 Shadow mapping method 43

Retain only the 5 cameras closest to the viewing point;1

Find out the (partially) visible polygons from the current viewpoint;2

for each considered camera do3

Compute the shadow map; Retain only the illuminated pixels that4

belong to the front facing polygons;
end5

for each pixel in the image view do6

for each considered camera do7

if the polygon that colored the pixel faces the camera then8

retain the corresponding color;9

end10

end11

if there are three or more colors then12

Compute the mean and standard deviation;13

for each individual color do14

If it is not in the allowed interval, exclude;15

end16

if there are colors left then17

Compute the weighted mean;18

end19

else20

Compute the color using neighboring colors21

end22

end23

if there are two colors then24

Compute the weighted mean;25

end26

if there is only colors then27

retain that color;28

end29

if there is no color then30

Compute the color using neighboring colors;31

end32

end33

Draw;34
Algorithm 4.5.1: View independent algorithm using shadow maps and selec-
tion of the dominant color

44 Texture Mapping Methods

Chapter 5

Results and Discussions

5.1 Results

All our results were obtained with the system used by the CYBER-II project. The
system has 6 cameras, distributed as seen in Figure 2.1. The algorithms were tested
on a computer having an Intel 2.40GHz CPU and a GeForce 6800 GT graphic card.

We set the resolution of the rendered novel view to 512x512, and we tried all the
algorithms for a model of about 5000 polygons. We looked for a texturing method
that comes close to the real object aspect and hasn’t many errors, while working in
real time.

The results, characterized by the visual quality of the video and by the frame-rate,
are presented in Table 5.1. The visual quality of different algorithms is difficult
to compare and the comments may be subjective. Also difficult is to show video
characteristics by still images, as we did in this paper.

5.2 Discussion

The view-dependent method, combined with the standard deviation test, succeeds
in eliminating a great deal of the wrong colors. Still, regions visible to less then
three cameras are not considered by the standard deviation test, and errors do occur.
Besides, this method, although fast, needs a greater number of cameras to be able
to smoothly interpolate between them. In our system, the cameras are relatively far
apart, and the passing from one camera view to another is visible to the user.

The view-independent method results in a “fixed” texture, where the pixel color
doesn’t change with the change of viewpoint. For the regions where the object is
seen by at least 2 cameras, the algorithm succeeded in eliminating the wrong colors
and in seamlessly mixing data from various cameras. However, for the parts where
the object is seen by one camera or none at all, the algorithm works without color

46 Results and Discussions

Texturing method Visual quality Speed
(in frames
per second)

View dependent algo-
rithm

Acceptable. Model imperfections give
place to errors such as background be-
ing projected on the object.

42 fps

View independent algo-
rithm

Acceptable. Clear texturing, but invisi-
ble portions wrongly colored.

27 fps

View independent algo-
rithm with median filter

Acceptable. No fast-color variation, in
space or time.

11 fps

Shadow mapping Good. Invisible regions detected. Tex-
ture junction visible.

24 fps

Shadow mapping with
median filter

Acceptable. Tends to accentuate the
difference at texture junction.

11 fps

Shadow mapping, domi-
nant color, median filter
for invisible pixels. Use
all 6 cameras

Good. Most errors are detected and
eliminated. Invisible regions are prop-
erly filled.

17 fps

Shadow mapping, domi-
nant color, median filter
for invisible pixels. Use
the best 5 cameras

Good. Most errors are detected and
eliminated. Invisible regions are prop-
erly filled.

23 fps

Table 5.1: Algorithm results

elimination; this means that the texture that passes through the occluding geometry
is not detected. The median filter variation of the algorithm smooths the texture
and prevents the fast change of color in time, but it doubles the computation time.

Shadow mapping method, with dominant color selection and median filter for in-
visible pixels, has hardly any errors for the regions seen by the 4 front cameras. It
decides correctly the color for small invisible regions and eliminates most of the
texture boundaries. For the back views, some errors are noticeable at the junction
between the 2 camera views; they are due to insufficient color information at the
intersection.

Chapter 6

Conclusions and Future work

6.1 Conclusions

We implemented a number of per-pixel algorithms for multi-view texture mapping.
We used them to texture polyhedron-based 3D models obtained by computing the
visual hull from images taken by six video cameras.

We introduced the idea of eliminating the wrong colors by doing a simple standard
deviation test. This has very good results in correcting the “leaks” in visibility test
and in removing artefacts created by the use of an imperfect model. Moreover, this
test helps in detecting the texture frontiers, in order to rectify the color difference
visible at those points.

We used a modified version of the median filter to fill the color gaps for the small
invisible regions. The proposed method works in the image plane and doesn’t need
the geometrical information that Gouraud interpolation requires.

The view-independent method we implemented, coupled with the dominant color
choice, succeeds in eliminating wrong colors for pixels viewed by more that two
cameras, without doing a time-consuming occlusion checking. However, the six-
camera system we used does not offer sufficient information for this algorithm to
work without error. There are frequent cases were only two cameras, or less, see a
particular point.

The algorithm that uses shadow-mapping visibility check is better adapted for our
system. Together with the standard deviation test and the hole-filling method, it
has as result a close-to-reality texture. This is an algorithm suited to a small num-
ber of available cameras. Since it depends on the number of lights supported by
the OpenGL implementation, it is restricted to a maximum of eight cameras. For
more cameras, the view-independent algorithm would probably be able to correctly
texture an object without recourse to the shadow-map occlusion checking.

48 Conclusions and Future work

6.2 Future Work

Further enhancements are both necessary and feasible. Thus, a hardware-implementation
should be considered, since the main time-consuming task in our algorithm is trans-
ferring information from the frame-buffer to the CPU. Determining the frontier
triangles that appear in more than one camera view and making a local color cor-
rection might also be of interest.

Moreover, we would like to consider a continuity in time of the computed pixel
colors. The definition of a framework for measuring the video quality of different
texturing algorithms could be another direction of research.

An increase in the number of cameras should help in obtaining a better model and
would also give more information to be used in texturing.

Appendix A

Article in the RoCHI Conference
Proceedings

Alexandrina Orzan and Jean-Marc Hasenfratz. Omnidirectional texturing of hu-
man actors from multiple view video sequences. In Conference on Computer-
Human Interaction, 2005.

50 Article in the RoCHI Conference Proceedings

Omnidirectional texturing of human actors from multiple view
video sequences

Alexandrina Orzan∗, Jean-Marc Hasenfratz†

Artis‡, GRAVIR/IMAG - INRIA

Abstract

In 3D video, recorded object behaviors can be observed

from any viewpoint, because the 3D video registers the

object’s 3D shape and color. However, the real-world

views are limited to the views from a number of cam-

eras, so only a coarse model of the object can be re-

covered in real-time. It becomes then necessary to judi-

ciously texture the object with images recovered from

the cameras. One of the problems in multi-texturing is

to decide what portion of the 3D model is visible from

what camera. We propose a texture-mapping algorithm

that tries to bypass the problem of exactly deciding if

a point is visible or not from a certain camera. Given

more than two color values for each pixel, a statistical

test allows to exclude outlying color data before blend-

ing.

1 Introduction

Currently, visual media such as television and motion

pictures only present a 2D impression of the real world.

In the last few years, increasingly more research activity

has been devoted to investigate 3D video from multiple

camera views. The goal is to obtain a free-viewpoint

video, where the user is able to watch a scene from an

arbitrary viewpoint chosen interactively.

The possible applications are manifold. A free-

viewpoint system can increase the visual realism of

telepresence technology 1 , thus enabling users in dif-

ferent locations to collaborate in a shared, simulated

∗ENS de Cachan - France
†University Pierre Mendès France - Grenoble II
‡Artis is a team of the GRAVIR/IMAG laboratory, a joint research

unit of CNRS, INPG, INRIA, UJF
1”Telepresence technology” enables people to feel as if they are

environment as if they were in the same physical room.

Also, special effects used by the movie industry, such

as freeze-and-rotate camera, would be made accessible

to all users.

For free-viewpoint video, a scene is typically captured

by N cameras. From the views obtained by the cameras

a 3D video object, with its shape and appearance, is cre-

ated. The shape can be described by polygon meshes,

point samples or voxels. In order to make the model

more realistic, appearance is typically described by the

textures captured from the video streams. Appearance

data is mapped onto the 3D shape, thus completing the

virtual representation of the real object. The 3D video

object can be seamlessly blended into existing content,

where it can be interactively viewed from different di-

rections, or under different illumination.

Since people are central to most visual media content,

research has been dedicated in particular to the extrac-

tion and reconstruction of human actors.However, the

system used in this article is not restricted to human

actors, as [2]. Moreover, it allows the acquisition of

multiple objects present in the scene.

The rest of the paper proceeds with a review of related

work in section 2. Section 3 will be dedicated to de-

scribing the proposed method of texture-mapping, after

which results and future tasks are discussed.

2 Previous Work

Over the last few years, several systems with different

model reconstruction and different ways of texturing

the 3D model have been proposed.

actually present in a different place or time (S. Fisher & B. Laurel,

1991) or enables objects from a different place to feel as if they are

actually present (T. Lacey & W. Chapin, 1994).

1

A.Orzan, J-M. Hasenfratz / Proceedings of the Conference on Computer-Human Interaction, 2005

2.1 3D Model reconstruction

Two different approaches of model reconstruction have

been studied in the recent years: model-free and model-

based reconstruction.

Model-free reconstruction makes no a priori assump-

tions on scene geometry, allowing the reconstruction of

complex dynamic scenes. In human modeling it allows

the reproduction of detailed dynamics for hair and loose

clothing.

Most model-free methods aim to estimate the visual

hull, an approximate shell that envelopes the true ge-

ometry of the object [10]. To achieve this, object silhou-

ettes are extracted from each camera image by detecting

the pixels not belonging to the background.

The visual hull can then be reconstructed either by

voxel-based or polyhedron-based approaches. The first

approach discretizes a confined 3D space in voxels and

carves away those voxels whose projection fall outside

the silhouette of any reference view [7]. Polyhedron-

based approaches represent each visual cone as a poly-

hedral object and computes the intersection of all visual

cones [11, 14, 13].

The visual hull allows real-time reconstruction and ren-

dering, yet it needs a large number of views to accu-

rately represent a scene, otherwise the obtained model

is not very exact.

Model-based reconstruction assumes that the real ob-

ject is a human body and uses a generic humanoid

model, which is deformed to fit the observed silhouettes

[2, 8, 9]. Although it results in a more accurate model

and permits motion tracking over time, this approach is

restricted to a simple model and does not allow com-

plex clothing movements. Moreover, it places a severe

limitation on what can be captured (i.e. a single human

body) and it is not real-time.

In this paper, the 3D model used is the one created in

the context of CYBER-II project2, a polyhedron-based

model obtained in real-time.

2.2 Multi-view texture mapping

Original images from multiple viewpoint are often

mapped onto recovered 3D geometry in order to achieve

realistic rendering results [3]. Proposed methods for

2http://artis.imag.fr/Projects/Cyber-II/

multi-texture mapping are either view-dependent or

view-independent.

View-dependent texture mapping considers only the

camera views closest to the current viewpoint. In be-

tween camera views, two to four textures are blended

together in order to obtain the current view image [4, 5].

This method exhibits noticeable blending artifacts in

parts where the model geometry does not exactly cor-

respond to the observed shape. What’s more, the result

is usually blurred and the passing from one camera view

to another does not always go unnoticed.

View-independent texture mapping selects the most ap-

propriate camera for each triangle of the 3D model, in-

dependently of the viewer’s viewpoint [2, 8, 13]. The

advantage of this method is that it does not change the

triangle texture when the user changes the viewpoint.

Moreover, the blurred effect is less noticeable. How-

ever, the problem is that the best camera is not the same

from patch to patch, even if they are neighboring. Here

also, blending between visible views is necessary in or-

der to reduce the abrupt change in texture at triangle

edges.

Blending is done using various formulas that depend of:

- the angle between the surface normal and the vector

towards the considered camera

- the angle between the surface normal and the vector

towards the viewpoint

- the angle the vector towards a camera and the vector

towards the viewpoint

Blending weights can be computed per vertex or per

polygon [2, 4, 5]. Matsuyama [13] proposes using

this method for determining each vertex color and then

paints the triangles with the colors obtained by linearly

interpolating the RGB values of its vertices. How-

ever, for large triangles, small details like creases in the

clothes are lost.

Li and Magnor [12] compute the blending for each

rasterized fragment, which results in a more accurate

blending.

2.3 Visibility

Visibilities with respect to reference views are very im-

portant for multi-view texture mapping. For those parts

that are invisible in a reference view, the correspond-

ing color information should be ignored when blending

multiple textures.

2

A.Orzan, J-M. Hasenfratz / Proceedings of the Conference on Computer-Human Interaction, 2005

Debevec et al. [3] splits the object triangles so that they

are either fully visible or fully invisible to any source

view. This process takes a long time even for a mod-

erately complex object and is not suitable for real-time

applications. Matusik [14] proposes computing the ver-

tex visibility at the same time that the visual hull is gen-

erated. Magnor et al. [12] solves the visibility prob-

lem per fragment, using shadow mapping. However,

they require rendering the scene from each input cam-

era viewpoint and is not real-time even with a hardware-

accelerated implementation.

We propose a per pixel method that checks only poly-

gon visibility and eliminates the wrong colors by con-

sidering only those colors that are close to a computed

average.

3 Texture mapping algorithm

3.1 Model constraints

The polyhedron-based model-free method recreates the

geometrical object at each frame. The number of poly-

gons, their form and position in space vary greatly in

time, so we cannot track vertices from one frame to an-

other.

This means that it is impossible to decide the color of

the polygons only once, at the beginning of the video.

Color values have to be computed in real-time, for each

frame.

3.2 Algorithm description

To achieve realistic rendering results, we use the projec-

tive texture mapping, a method introduced by Segal [15]

and included in the OpenGL graphics standard. But the

current hardware implementation of projective texture

mapping in OpenGL lets the texture pass through the

geometry and be mapped onto all back-facing and oc-

cluded polygons. Thus it is necessary to perform visi-

bility check so that only polygons visible to a particular

camera are texture mapped with the corresponding im-

age.

A point p on the object’s surface is visible from a cam-

era ci if (1) the triangle t j to which the point belongs

faces the camera and (2) the point is not occluded by

any other triangles.

The first condition can be fast determined by checking

the equation nt j · vci→t j < 0, where nt j is the triangle

normal vector and vci→t j is the viewing direction from

ci towards the centroid of t j.

Still, in a per-pixel approach, we do not have the ge-

ometrical data. We solve this problem by an addi-

tional rendering of the object from the current view-

point, where we use the polygon ID as its color. Thus,

we can determine what polygons are visible from the

viewpoint and exactly which pixel of the current image

view belongs to which triangle.

Determining if a point viewed by the viewer is occluded

or not to the cameras is a less obvious problem. Meth-

ods to determine what points are occluded were briefly

presented in the previous section. We propose to bypass

the occlusion checking by doing a basic statistical test.

The strong condition that has to be fulfilled is that for

each pixel at least three cameras have to pass the first

visibility test, and the majority has to see the correct

color. Still, this is usually the case with a system having

an evenly distributed camera configuration.

As all the cameras are calibrated prior to use and the

images are acquired at the same time and in the same

lighting conditions, we can compare colors and calcu-

late distances in the RGB space [1, 6].

If a sufficient number of color values are available for

a pixel, we compute the mean (µ) and the standard de-

viation (τ) for each of the R, G, B channels. Individ-

ual colors falling outside the range µ±β · τ for at least

one channel are excluded. The factor β permits us to

modify the confidence interval for which the colors are

accepted. The classical normal deviation test considers

β is 1. We experimentally concluded that it was best to

set it at 1.17, to allow for slight errors in manipulating

the color-values.

If less than three possible colors are available for a

pixel, we do not exclude any of them.

A weighted mean of all contributing images is fi-

nally used for texturing each particular pixel. The

blending weight is computed using the value of the

cos(angle(nt j ,vci→t j)).

If the pixel is invisible for all cameras, we compute its

color using the color values of the neighbours whose

color was already decided.

The algorithm runs as follows:

3

A.Orzan, J-M. Hasenfratz / Proceedings of the Conference on Computer-Human Interaction, 2005

1: for all polygons in the 3D model do
2: check if they are at least partially visible from the

current view

3: end for
4: for all pixels in the image view do
5: for all cameras do
6: if the polygon that colored the pixel faces the

camera then
7: retain the corresponding color

8: end if
9: if there are three or more colors then

10: compute the mean and standard deviation

11: for all colors do
12: if they are not in the allowed interval

then
13: exclude

14: end if
15: end for
16: compute the weighted mean

17: else if there are two colors then
18: compute the weighted mean

19: else if there is no color then
20: compute the color using neighbouring col-

ors

21: end if
22: end for
23: end for
24: draw

4 Results

We tested this algorithm with the system used by the

CYBER-II project. The system has 6 cameras, 4 in the

front and 2 in the back, as seen in Figure 13.

For the front views, the algorithm succeeded in elim-

inating the wrong colors and in seamlessly mixing

data from various cameras. Moreover, the pixel color

doesn’t change with the change of viewpoint. Images

comparing view-dependent and view-independent algo-

rithms, without occlusion checking, and our method can

be seen in Figure 2.

However, for the back views, where the object is

seen by at most 2 cameras, the algorithm does only a

weighted average, without color elimination.

3video sequences were acquired with the Grimage platform of In-

ria Rhône-Alpes

Figure 1: Camera setting

Figure 2: a) View dependent, b) View independent, c)

Our method

We set the resolution of the rendered novel view to

512x512, and we tested the algorithm for a model of

about 5000 polygons. On a Intel 2.40GHz CPU and a

GeForce4 Ti 4800 graphic card, the frame rate is of 17

fps.

5 Conclusions and Future work

A per-pixel algorithm for multi-view texture mapping

has been implemented. It succeeds in eliminating

wrong colors for pixels viewed by more that 2 cameras,

without doing a time-consuming occlusion checking.

Yet, further enhancements are both necessary and feasi-

ble. Thus, a hardware-implementation should be con-

sidered, since the main time-consuming task in our

algorithm is transferring information from the frame-

buffer to the CPU. Moreover, we would like to consider

a continuity in time of the computed pixel colors and a

dynamic deactivation of the unused cameras.

4

A.Orzan, J-M. Hasenfratz / Proceedings of the Conference on Computer-Human Interaction, 2005

References

[1] A. Agathos and R. Fishe. Colour texture fusion of

multiple range images. In Proceedings of the 4th
International Conference on 3-D Digital Imaging
and Modeling, pages 139– 146, 2003.

[2] Joel Carranza, Christian Theobalt, Marcus Mag-

nor, and Hans-Peter Seidel. Free-viewpoint video

of human actors. ACM Trans. on Computer
Graphics, 22(3):569 – 577, July 2003.

[3] Paul E. Debevec, Camillo J. Taylor, and Jitendra

Malik. Modeling and rendering architecture from

photographs: A hybrid geometry- and image-

based approach. Computer Graphics, 30(Annual

Conference Series):11–20, 1996.

[4] Paul E. Debevec, Yizhou Yu, and George D. Bor-

shukov. Efficient view-dependent image-based

rendering with projective texture-mapping. In 9th
Eurographics Workshop on Rendering, 1998.

[5] Bastian Goldlücke and Marcus Magnor. Real-

time microfacet billboarding for free-viewpoint

video rendering. In Proceedings of ICIP 2003,
IEEE Computer Society, volume 3, pages 713–

716, 2003.

[6] L. Grammatikopoulos, I. Kalisperakis, G. Karras,

T. Kokkinos, and E. Petsa. On automatic orthopro-

jection and texture-mapping of 3d surface models.

In ISPRS Congress - Geo-Imagery Bridging Con-
tinents, 2004.

[7] Jean-Marc Hasenfratz, Marc Lapierre, and

François Sillion. A real-time system for full

body interaction. Virtual Environments, pages

147–156, 2004.

[8] Adrian Hilton and Jonathan Starck. Model-based

multiple view reconstruction of people. In IEEE
International Conference on Computer Vision,

pages 915–922, 2003.

[9] Adrian Hilton and Jonathan Starck. Multiple view

reconstruction of people. In 3D Data Processing,
Visualization, and Transmission, pages 357–364,

2004.

[10] A. Laurentini. The visual hull concept for

silhouette-based image understanding. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 16(2):150–162, 1994.

[11] Ming Li, Marcus Magnor, and Hans-Peter Seidel.

Online accelerated rendering of visual hulls in real

scenes. In Journal of WSCG, 2003.

[12] Ming Li, Marcus Magnor, and Hans-Peter Sei-

del. A hybrid hardware-accelerated algorithm for

high quality rendering of visual hulls. In Proceed-
ings of the 2004 conference on Graphics interface,

pages 41–48, 2004.

[13] Takashi Matsuyama and Takeshi Takai. Gener-

ation, visualization, and editing of 3d video. In

3D Data Processing, Visualization, and Transmis-
sion, page 234, 2002.

[14] Wojciech Matusik, Chris Buehler, and Leonard

McMillan. Polyhedral visual hulls for real-time

rendering. In Proceedings of the 12th Eurograph-
ics Workshop on Rendering Techniques, pages

115–126, 2001.

[15] Mark Segal, Carl Korobkin, Rolf van Widenfelt,

Jim Foran, and Paul Haeberli. Fast shadows and

lighting effects using texture mapping. In SIG-
GRAPH ’92: Proceedings of the 19th annual
conference on Computer graphics and interactive
techniques, pages 249–252, 1992.

5

Bibliography

[1] A. Agathos and R. Fishe. Colour texture fusion of multiple range images. In

Proceedings of the 4th International Conference on 3-D Digital Imaging and
Modeling, pages 139–146, 2003.

[2] Joel Carranza, Christian Theobalt, Marcus Magnor, and Hans-Peter Seidel.

Free-viewpoint video of human actors. ACM Trans. on Computer Graphics,

22(3):569–577, 2003.

[3] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and ren-

dering architecture from photographs: A hybrid geometry- and image-based

approach. Computer Graphics, 30(Annual Conference Series):11–20, 1996.

[4] Paul E. Debevec, Yizhou Yu, and George D. Borshukov. Efficient view-

dependent image-based rendering with projective texture-mapping. In 9th
Eurographics Workshop on Rendering, 1998.

[5] Bastian Goldlücke and Marcus Magnor. Real-time microfacet billboarding

for free-viewpoint video rendering. In Proceedings of ICIP 2003, IEEE Com-
puter Society, volume 3, pages 713–716, 2003.

[6] L. Grammatikopoulos, I. Kalisperakis, G. Karras, T. Kokkinos, and E. Petsa.

On automatic orthoprojection and texture-mapping of 3d surface models. In

ISPRS Congress - Geo-Imagery Bridging Continents, 2004.

[7] Jean-Marc Hasenfratz, Marc Lapierre, Jean-Dominique Gascuel, and Ed-

mond Boyer. Real-time capture, reconstruction and insertion into virtual

world of human actors. In Vision, Video and Graphics, pages 49–56. Eu-

rographics, Elsevier, 2003.

[8] Jean-Marc Hasenfratz, Marc Lapierre, and François Sillion. A real-time sys-

tem for full body interaction. Virtual Environments, pages 147–156, 2004.

[9] Adrian Hilton and Jonathan Starck. Model-based multiple view reconstruc-

tion of people. In IEEE International Conference on Computer Vision, pages

915–922, 2003.

52 BIBLIOGRAPHY

[10] Adrian Hilton and Jonathan Starck. Multiple view reconstruction of peo-

ple. In 3D Data Processing, Visualization, and Transmission, pages 357–364,

2004.

[11] Takeo Kanade, Peter Rander, and P. J. Narayanan. Virtualized reality: Con-

structing virtual worlds from real scenes. IEEE MultiMedia, 4(1):34–47,

1997.

[12] Mark Kilgard. Shadow mapping with today’s hardware. In CESA Developers
Conference, 2001.

[13] A. Laurentini. The visual hull concept for silhouette-based image under-

standing. IEEE Transactions on Pattern Analysis and Machine Intelligence,

16(2):150–162, 1994.

[14] Ming Li, Marcus Magnor, and Hans-Peter Seidel. Online accelerated render-

ing of visual hulls in real scenes. In Journal of WSCG, 2003.

[15] Ming Li, Marcus Magnor, and Hans-Peter Seidel. A hybrid hardware-

accelerated algorithm for high quality rendering of visual hulls. In Proceed-
ings of the 2004 conference on Graphics interface, pages 41–48, 2004.

[16] Takashi Matsuyama and Takeshi Takai. Generation, visualization, and editing

of 3d video. In 3D Data Processing, Visualization, and Transmission, pages

234–245, 2002.

[17] Wojciech Matusik, Chris Buehler, and Leonard McMillan. Polyhedral vi-

sual hulls for real-time rendering. In Proceedings of the 12th Eurographics
Workshop on Rendering Techniques, pages 115–126, 2001.

[18] P. J. Narayanan, Peter Rander, and Takeo Kanade. Constructing virtual worlds

using dense stereo. In ICCV ’98: Proceedings of the Sixth International
Conference on Computer Vision, pages 3–11, Washington, DC, USA, 1998.

IEEE Computer Society.

[19] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Hae-

berli. Fast shadows and lighting effects using texture mapping. In SIGGRAPH
’92: Proceedings of the 19th annual conference on Computer graphics and
interactive techniques, pages 249–252, 1992.

[20] Christian Theobalt, Joel Carranza, Marcus A. Magnor, and Hans-Peter Seidel.

Combining 3d flow fields with silhouette-based human motion capture for

immersive video. Graph. Models, 66(6):333–351, 2004.

[21] Sundar Vedula, Simon Baker, and Takeo Kanade. Image-based spatio-

temporal modeling and view interpolation of dynamic events. ACM Trans.
Graph., 24(2):240–261, 2005.

BIBLIOGRAPHY 53

[22] Lance Williams. Casting curved shadows on curved surfaces. In SIGGRAPH
’78: Proceedings of the 5th annual conference on Computer graphics and
interactive techniques, pages 270–274, New York, NY, USA, 1978. ACM

Press.

