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What you seam is what you get: automatic and interactive UV unwrapping

Figure 1: Left: from a meshed model, our system automatically proposes an initial set of seams (black lines) and a valid texture mapping that
the user starts with. Right: the user can interactively improve the mapping, by sewing charts and constraining seams (blue lines). As shown
in the video, each user interaction is systematically echoed with instant visual feedback.

Abstract

3D paint systems opened the door to new texturing tools, directly
operating on 3D objects. However, although time and effort was
devoted to mesh parameterization, UV unwrapping is still known
to be a tedious and time-consuming process in Computer Graphics
production. We think that this is mainly due to the lack of well-
adapted segmentation method. To make UV unwrapping easier, we
propose a new system, based on three components :
• A novel spectral segmentation method that proposes reasonable

initial seams to the user;
• Several tools to edit and constrain the seams. During editing,

a parameterization is interactively updated, allowing for direct
feedback. Our interactive constrained parameterization method
is based on simple (yet original) modifications of the ABF++
method, that make it behave as an interactive constraint solver;

• A method to map the two halves of symmetric objects to the same
texels in UV space, thus halving texture memory requirements
for symmetric objects.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
I.3.4 [Computer Graphics]: Graphics Utilities—Paint systems;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms;

Keywords: segmentation, parameterization, spectral geometry

1 Introduction
3D paint systems, introduced in the pioneering work of Hanrahan
and Haeberli [1990] permitted to enhance the visual richness of
Computer Graphics objects by texturing them. Behind the scene,
generating a texture atlas from a 3D mesh is vital for texturing ap-
plications. It consists in putting the object in correspondence with
(a subset of) R2 in the following way :

• (1) Segmentation: the object is cut into one or more charts;

• (2) Parameterization: each chart in 3-space is put into one to one
correspondence with a subset of R2;

• (3) Packing: the charts are arranged in texture space to minimize
storage requirements.

Time and effort was devoted to the problem of mesh parameteriza-
tion (see e.g. SIGGRAPH course notes [Hormann et al. 2007] for
an overview). Such mesh parameterization techniques are now well
known and broadly used in the Computer Graphics industry. Re-
cently, formalizing the relations between deformations and curva-
ture lead to both efficient and provably correct methods [Ben-Chen
et al. 2008].

However, texture atlas generation - that graphists call ”UV unwrap-
ping” - is still mentioned as a difficult task, that requires a great deal
of user interaction, as can be seen in the tutorials and videos of pop-
ular softwares [DeepUV ; Unfold3D b; BodyPaint ]. Most of the
user time is taken by the tedious task of manually defining seams
and cutting the object [Unfold3D a], also called “edge marking”.

A natural idea would be to use one of the numerous available seg-
mentation methods instead. However, segmentation methods rarely
achieve results comparable to how an artist would cut a model.
Thus, artists usually prefer to manually cut the object, then param-
eterize, and iterate while the result is not satisfactory, which can be
very time consuming.

The requirements of a U,V mapping are dictated by the way artists
texture-map models. They use a mixture of 3D paint systems and
2D image editing. For instance, working in 2D makes it possi-
ble to use regular patterns and cutting/pasting existing 2D images.
Therefore, during the editing process, artists continuously go back
and forth between 3D and 2D space, using different softwares. To
“know where they are” in 2D, they superimpose a stencil with a 2D
projection of the mesh. For this reason, it is important to have a
segmentation that yields a 2D space that is meaningful for the user.

Such a structure-aware U,V mapping is shown in Figure 2. Note
also in the figure that symmetric features can be mapped to a single
image in texture space (for instance the two legs and the two arms
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Figure 2: A low-polygon mesh and the associated texture (from
Cubix studios), that was painted in 2D. Note how important parts
(legs, hands, face) are kept. Note also that the legs (and also the two
arms) are mapped to a single image, thus reducing texture storage.

and the two halves of the skirt). For this example, the U,V map-
ping was carefully designed by an artist, which is reasonable for
such a low-detailed mesh. In this paper, we propose a set of tools
to facilitate creating such U,V mappings for more detailed model,
by automating the process as much as possible. The requirements
of a structure-aware U,V mapping (structure preservation and fea-
tures alignment) involve semantic information. In general, it is not
possible to automatically infer the semantics from the data.

Therefore, our algorithm first computes a valid mapping, that the
user can interactively refine and improve. The design of our inter-
actve tools is guided by the following two principles :

• Sewing is easier than cutting. Cutting involves complex user in-
teraction [Unfold3D a], whereas sewing requires a single click;

• continuous and systematic feedback on each individual user ac-
tion is important. ”Black box” systems that separate seam-
cutting from unfolding are problematic since they involve long
error-and-trial loops in the process. This can be avoided by pro-
viding the user with direct feedback while editing the seams.

Contributions:

Based on these two guiding principles, we propose a semi-
automatic ”UV unwrapping system” with the following features :

• We introduce a novel spectral segmentation algorithm, that pro-
vides the user with a reasonable initial set of seams and parame-
terization. To our knowledge, this is the first approach that uses
higher-order spectral cuts. This allows to detect good seam can-
didates (Section 3). We also prove that our set of seams contains
all the axes of symmetry of the mesh (Appendix) ;

• When the detected seam is an axis of symmetry, our method can
parameterize the two halves onto a single zone in U,V space, thus
halving storage requirements ;

• We provide the user with interactive editing and constraint tools
to improve this initial segmentation. We describe an original way
of using the ABF++ algorithm, with two simple modifications
that make it act as a constraint solver. (Section 4).

Before entering the heart of the matter, we summarize the previous
works and give an overview of the system.

2 System overview

2.1 Previous works

Many automatic atlas generators and 3D paint systems have been
proposed in the past years. Pedersen [1996] developed a “patchino-
based” texturing method. His approach uses existing images that
can be translated, rotated and deformed on implicit surfaces. In the
same spirit, a constrained texture mapping for polygonal meshes
was proposed [Lévy 2001]. More recently, a system [Schmidt
et al. 2006] based on exponential maps was proposed to texture-
map manifolds with multiple patchinos. These approaches are well
adapted to texture-map a model with existing images, but do not
integrate well in the modeling pipeline if new textures need to be
created, since the representations that they use are non-standard.

Other approaches were proposed to assign (u,v) coordinates to the
vertices of the mesh. Therefore, since they use a standard represen-
tation, these approaches can easily cooperate with other tools. In
interactive texture mapping [Maillot et al. 1993] much effort was
put into interactivity, but overlaps and high deformations often oc-
cur. The ”model pelting” system [Piponi and Borshukov 2000] pro-
poses a pragmatic approach for Catmull-Clark surfaces. It was im-
plemented in several commercial products (e.g., 3D Studio). How-
ever, it may fail for complicated models. The texture atlas generator
of LSCM [Lévy et al. 2002] achieves better parameterization but is
highly dependent on the quality of the segmentation and on the sur-
face curvature. Finally, Iso-charts [Zhou et al. 2004] is probably
currently the best compromise and is now part of DirectX 10, but
still lacks user interaction.

Our system is based on a new spectral segmentation algorithm com-
bined with an interactive parameterization method. We will show
how this achieves good interactivity and robustness altogether.

2.2 Initial segmentation

The first step of our system consists in computing reasonable initial
seams, that the user can start with. Based on the idea that it is easier
to remove a seam than to create a new one, our system creates more
seams than necessary, and lets the user remove the undesired ones.
Most of the so-constructed seams are natural, and resemble what an
artist would have made. Our new spectral segmentation method is
presented in Section 3.

2.3 Tools

Starting from this segmentation, the charts are parameterized (with
ABF++) and packed in texture space, providing a texture atlas. In
contrast with previous non-interactive methods where this atlas is
the final result, we only consider it as a starting point for an interac-
tive process. To improve this initial mapping, we provide the user
with the following tools :

• Seam editing: Since the initial segmentation contains in general
too many seams, the user can delete seams (and conversely create
new ones if need be, although this is seldom the case);

• Sew/Unsew (Figure 3): The user can choose to keep only parts
of a seam by sewing/unsewing it with a ”zipper” metaphor. As
shown in the figure, this can be used both to group related parts
and to untangle overlaps;

• Boundary angle constraint (Figure 4): An alternative way of un-
tangling an overlap is to constrain an angle on the boundary.

• Straightening (Figure 5): When the user selects a sequence of
edges with this tool, all the selected edges will be aligned. Seams
that cross at a vertex can also be constrained to be orthogonal;
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Figure 3: The user can interactively sew seams. The red zone dis-
plays the overlaps (the two thumbs cross in UV space). With a
“zipper” metaphor, the user can glue the two thumbs and resolve
the overlaps. Editing can be done in 3D (top) and/or in UV space
(bottom).

Figure 4: To untangle overlap, besides sewing the sides of the over-
lap, the user can also install an angle constraint (yellow dot). By
moving the mouse left and right, the user changes the angle at the
yellow dot, and the parameterization is updated accordingly.

Figure 5: Seams can be constrained to be straight in UV space.
They can be also constrained to cross with right angles. This feature
is useful for texturing models with regular patterns, by ensuring that
the pattern will line-up.

These tools can be applied either in the 3D view or in UV (tex-
ture) space. After each individual action, the parameterization is
updated, and visual feedback is given to the user. In particular,
overlaps are displayed in the 3D window, as red zones (see Figure
3). This is done on the GPU, by using the stencil buffer. We will
now describe in detail the two main parts of our system (segmenta-
tion and editing).

3 Segmentation

3.1 Previous works

The problem of segmentation is generally ill-posed, so it has re-
ceived a broad variety of treatments. Segmentation papers special-
ized for parameterization include Seamster [Sheffer and Hart 2002]
and D-charts [Julius et al. 2005]. Seamster generates seams run-
ning through regions of high curvature and minimum visibility, and
D-charts creates near developable charts with some criteria on their
shape. Other segmentation techniques (see [Attene et al. 2006] for
a comparative study) try to extract object features. In [Katz and Tal
2003], the segmentation relies on the extraction of feature points
and cores.

A hierarchical segmentation is performed in [Katz et al. 2005] us-
ing a fuzzy clustering. The segmentation of [Cohen-Steiner et al.
2004], relies on building clusters as planar as possible. A recursive
segmentation approach is proposed in[Zhang and Liu 2005] based
on part saliency.

Segmentations based on the eigenvectors of a Laplacian or affin-
ity matrix are called spectral and are reviewed in Zhang’s recent
EG star [Zhang et al. 2007]. Spectral approaches usually rely on
embedding the mesh using the first eigenvectors, and K means-
clustering [Liu and Zhang 2004] or contour analysis [Liu and
Zhang 2007] is performed in that space. [Rustamov 2007] defines
a spectral embedding that makes the segmentation pose-invariant.
Namely, they first transform the mesh into the GPS coordinates
(Global Point Signature) defined by :

GPS(pi) =
(

1
λ1

2
vi

1,
1
λ2

2
vi

2, . . .
1
λn

2
vi

n

)
where λk denotes the kth eigenvalue of the Laplacian, and where
vk denotes the kth eigenvector (and vi

k is the component associated
with pi). This also corresponds to the Manifold Harmonics trans-
form [Levy 2006; Vallet and Levy 2008]. As recalled in [Levy
2006], the first GPS coordinate is constant and associated with the
eigenvalue λ1 = 0, since the Laplacian operator vanishes for con-
stant functions. The second GPS coordinate is called the Fielder
vector. It is well known in spectral graph theory that the Fielder
vector is a good candidate for partitioning a graph.

3.2 Higher-order spectral cuts

In terms of signal processing, the GPS coordinates correspond to
the whitening transform, that decorrelates the component of a sig-
nal [Comon 1994]. In other words, each GPS coordinate has a min-
imum covariance with the GPS coordinates of lower order. We al-
ready know that the Fielder vector yields good spectral cuts. Since
the higher-order eigenvectors are decorelated from the previous
ones, they are likely to contain the remaining meaningful geometric
information. More specifically, we show that the set of spectral cuts
yielded by the eigenvectors contains all the symmetry axes of the
mesh (see Appendix A). Motivated by this result, we propose in the
next section to select the seam among the spectral cuts yielded by
all the higher-order eigenvectors.
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Our goal is to find a good
initial segmentation that the
user can start with. If we
consider for instance a hand,
most existing segmentation
algorithms separate the fin-
gers from the palm. This
is what would be expected
if the goal was to recover
semantic information. In
our case, this would gener-
ate too many charts. We rather want to split the hand into
two halves, that will be easy to unwrap. Moreover, the user
will more easily recognize the shape of the hand in 2D-space.
In other word, what we want to detect is the “equator” of
the object. To split the hand this way, i.e. to detect where
the thickness of the object is, a (wrong) idea that comes nat-
urally to mind would be to use principal components analysis.

Principal components analysis
(PCA) approximates the shape
of the object by an ellipsoid, and
computes the axes of this ellip-
soid. They are obtained as the
eigenvectors and eigenvalues of
a certain matrix (the covariance
matrix). The shortest axis (as-
sociated with the smallest eigen-

value) corresponds to the “equator”. Unfortunately, this only works
for straight objects. Methods based on fitting planes (e.g., VSA
[Cohen-Steiner et al. 2004]) suffer from the same limitation (see
Figure 7).
Therefore, we need a defi-
nition of the “equator” that
also works for curved geom-
etry. To do so, our idea is
to use spectral segmentation,
i.e., in a certain sense, PCA
in a curvilinear space, that
follows the shape of the ob-
ject. Spectral segmentation
is a classic tool, see [Levy
2006] and [Zhang et al.
2007] for a complete survey
of this family of methods.
One of these methods [Rus-
tamov 2007] uses the eigen-
functions of the Laplace op-
erator to define a “pose-invariant” embedding, then use VSA in this
space. Our idea is different. As shown in the inset, what we want
to do is to find the “curvilinear version” of the cuts detected by
PCA, since this detects the “equator” of the object, which is suit-
able to texture mapping. The next subsection explains how this can
be done. Moreover, we will show that this also detects the symme-
tries of the mesh.

3.3 Spectral seams generation

We first need to briefly recall the definition of a graph Laplacian.
Let (V,E,F) be the V ertices, Edges and Facets sets of a structured
polygonal mesh, and G = (F∗,E∗) its dual graph (graph of facets).
The Laplacian matrix L of G is defined as L = A−D where A is
the adjacency matrix of the G and D is a diagonal matrix where
Dii is the valence of vertex i (ith row sum of A). We can efficiently
compute the eigenpairs (vi,λi) of L following the numerical method
in [Vallet and Levy 2008] (and replacing Laplace-Beltrami with the
graph Laplacian). To each eigenvector vi corresponds a bipartition

Figure 6: Facet-graph Laplacian eigenvectors. The eigenvector v13
corresponds to the “equator”. The undesired oscillatory ones can
be filtered out by analyzing their nodal sets (red and blue zones).

of the set F of facets into F+
i = { f ∈ F |vi( f )≥ 0} and F−i = { f ∈

F |vi( f ) < 0}. Thus we will call ”seam” related to vi the set of edges
E0

i = {e∗( f , f ′) ∈ E∗|vi( f )vi( f ′) < 0} where e∗( f , f ′) is the dual
edge between facets f and f ′.

We prove the following theorem (see Appendix) : Given a mesh
(V,E,F), the set of seams related to the eigenvectors vi of the dual
graph Laplacian L contains all the axes of symmetry of the mesh.

At this point, by similarity with PCA, one may think that we will
use the first three eigenvectors of L. However, there are some com-
plications in our (curvilinear) case : we need to compute more
than just 3 eigenvectors. Figure 6 shows that one needs to com-
pute up to the 13th eigenvector to find the eigencut that corresponds
to the “equator” of this hand. This can be explained as follows :the
meaning of orthogonality is simple in Euclidian space. The three
eigenvectors of the covariance matrix used by PCA are orthogo-
nal, and yield orthogonal seams. In contrast, the eigenvectors of
L have several means of being orthogonal. In addition, they can
also wind (like sine waves). Fortunately, the unwanted oscillatory
eigenvectors can be filtered-out, by noticing that they generate non-
connected F+

i and F−i domains. They are redundant with eigen-

Figure 7: Segmentation comparison: A: initial model; B: VSA gen-
erates jaggies; C: our segmentation is more natural and cleaner; D:
resulting parameterization.
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Figure 8: Compared segmentation results (more of them in com-
panion document).

vectors with lower eigenvalues. More precisely, they correspond
to oscillations in a direction that was already found. In contrast, if
F+

i and F−i are connected, the eigenvector corresponds to a new
direction, independent of the previous ones.

Therefore, only the eigenvectors that yield connected nodal do-
mains F+

i and F−i are used for the segmentation. With this cri-
terion, the selected eigenvectors correspond to the main extents of
the surface, and can be seen as curvilinear principal directions. This
point of view is strengthened by recent results [Jones et al. 2007]
that prove that such principal directions always exist on geodesic
disks of the surface. The choice for this criterion was also guided by
the result on symmetry that we prove in Appendix A. We show that
all the seams that correspond to antisymmetric eigenvectors contain
the axis of symmetry. In many case, the first one corresponds to this
axis and is found by our method.

We compute 30 eigenvectors. Among all the valid spectral cuts, we
select the “equator”, i.e., the one that has maximal length, and sub-
divide the mesh along its zero-set. The process is then recursively
iterated on F+

i and F−i until a valid parameterization is obtained
on each part. We compared our method with VSA and Isocharts
on a database of 36 models (see companion document, some of
them are shown in Figure 8). As can be seen, our method generates
a structure-preserving segmentation. Global and local symmetries
are also often captured. However, as compared to Isocharts, our
method sometimes tends to oversegment (arms on the 3rd and 4th
rows). As far as timing is concerned, our method never took more
than 4 min. 30 to segment a model (Pentium M, 2 GHz).

4 Interactive Constrained Parameterization

Once the initial seams have been computed as explained in the
previous section, the user can chose to sew, unsew and straighten
them, and can set some angle constrains on the border. During the
editing process, the parameterization is updated. This provides the
user with direct feedback on the distortion (visualized by a checker-
board) and overlaps (visualized by red zones). This step relies on
parameterization with user constraints. A good survey on parame-
terization can be found in [Hormann et al. 2007]. We chose to use
the ABF++ [Sheffer et al. 2005] parameterization technique which
offers a good compromise between angle and area distortions.

4.1 Angle Based Flattening review

The parameterization method is based on ABF++, as it already has
all the machinery to implement the new constraints corresponding
to the tools. We briefly recall the ABF method then explain how
the constraints can be taken into account. In ABF, the variables
are not the vertices’ texture coordinates but angles αv

t in texture
space (angle of corner v in triangle t). Starting from the angles β v

t
measured on the 3D mesh, optimal angles φ v

t are defined as:

φ
v
t =

2πβ v
t

∑t β v
t

if v is interior, else β
v
t

Angular deformation of the parameterization is then minimized
through the energy:

EABF = ∑
t

∑
v∈t

(αv
t −φ

v
t )2 (1)

ABF minimizes EABF under constraints

∀tg1(t) = ∑
v∈t

α
v
t −π = 0 (2)

∀vg2(v) = ∑
t|v∈t

α
v
t −2π = 0 (3)

∀vg3(v) = ∏
t=(v,v′,v′′)

sin(αv′
t )/sin(αv′′

t )−1 = 0 (4)

which are enforced through Lagrange multipliers and ensure that
the α’s define a valid planar embedding. The constrained mini-
mizer is found by an iterative Newton solver, and the texture co-
ordinates can then be reconstructed by least squares minimization
(not detailed here).

4.2 Tools implementation

First, since our surface is a polygon mesh (represented by a
halfedge data structure), we (virtually) triangulate it. Then
an initial atlas is computed using the regular ABF++ method.
Once this first atlas is computed, a new parameterization is
computed each time a tool is applied. Seam creation/removing
and sewing/unsewing tools correspond to the regular setting of
ABF++. Each time one of this tool is used, the list of variables,
energy and constraints are updated accordingly. To speed-up the
sewing operation, we store in each border halfedge an additional
pointer refering to the opposite halfedge on the other side of the
seam. Therefore, no geometric search is required to sew a seam,
only simple pointer operations are done.

The other tools that allow specifying constraints can be imple-
mented by simple modifications of ABF++’s g2 constraints.
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Figure 9: Angle-on-border tool: The border angle at vertex b is
constrained through the sum of angles incident to b (purple).

Figure 10: Straightening tool: Blue edges are aligned by splitting
the constraint g2 into 2 constraints g1

2 and g2
2. If two straightening

lines cross, g1
2 and g2

2 are split again into 4 constraints g11
2 , g12

2 , g21
2

and g22
2

Angle-on-border constraint : To enforce a constraint on the angle
at a border vertex b (see Figure 9), we constrain the sum of angles
incident to vb by creating an additional g2 constraint.

Straightening constraints : For the straightening tool, the align-
ment of two successive edges is enforced by splitting g2 into two
constraints (see Figure 10) :

g1
2(v) = ∑t∈S1(v) αv

t −π = 0 (5)

g2
2(v) = ∑t∈S2(v) αv

t −π = 0 (6)

where S1(v) and S2(v) is the partition of the set of triangles inci-
dent to v into two sets by the constrained line. Since the new con-
straints enforce the old ones (g1

2 and g2
2 ⇒ g2), we still got a valid

mapping (that in addition satisfies the straight seams). If a second
constrained line crosses the first one, g1

2 and g2
2 are split again into

four constraints (see Figure 10) :

gnm
2 (v) = ∑

t∈Snm(v)
α

v
t −π/2 = 0

where Sn1(v) and Sn2(v) denote the partition of Sn(v) into two sets
by the new straightening line.

Each time the user moves the mouse (to sew an edge, or to change
the constrained angle), two iterations of ABF++ are applied to up-
date the result. It generally suffices to get a good result. When
the user releases the mouse, the regular stopping criterion is used
instead. Figure 11 and the companion video shows that complex

Figure 11: With our two simple modifications, ABF++ takes a net-
work of geometric constraints into account. Complex relations be-
tween constrained angles (yellow dots) and straight seams (blue
edges) are satisfied.

Figure 12: Example of symmetry-aware U,V unwrapping. Left: the
map obtained without symmetry detection. Right: the symmetry-
aware unwrapping. Note for instance that the four halves of the
legs are mapped onto a single location in U,V space (in orange).

networks of constraints can be taken into account, which is not that
surprising since in a certain sense, the regular ABF++ already con-
siders the mesh as a network of constraints. However, to our knowl-
edge, this modification and special use of ABF++ are original.

4.3 Symmetry-aware parameterization
As explained in Section 3 and proved in the Appendix, our set
of spectral seams contains all the axes of symmetry of the mesh.
Therefore, it is possible to detect symmetries and take them into
account to reduce texture storage requirements. Each time a seam
is cut by the algorithm, we check the graph isomorphism between
both halves. In general, graph isomorphism belongs to NP, but in
our case, symmetry can be checked in linear time by traversing both
halves from two halfedges that were previously connected. During
this traversal, pointers that connect each vertex to its symmetric ver-
tex are stored. When symmetry is detected, both halves are mapped
to a single zone of U,V space. The algorithm is recursively applied
to one of the halves, and the other half copies the texture coordi-
nates from the first one using the pointers computed at the previ-
ous step. The result is demonstrated in Figure 12 (result obtained
automatically, without any user intervention). Note the similarity
with the carefully designed mapping in Figure 2 in the introduc-
tion. Clearly this mechanism can be deactivated if the user wants to
apply a non-symmetric texture onto a symmetric part of the mesh.

Results

Figure 13 shows a model that is difficult to unwrap with traditional
tools. Indeed, many parts of the model are hidden by the legs, an-
tennas, etc. . . which makes it difficult for the user to mark edges
(the user would need to click on surface zones that are not visi-
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Figure 13: UV-unwrapping a challenging model. This surface is a topological sphere. The legs make it impossible to select seams with
traditional tools. Left: our system automatically constructs an initial texture atlas. Center: this unwrapping is obtained by editing the seams
in 2D and in 3D. Right: model being textured, texture can be edited, copy-pasted, mirror-cloned in 2D (session time: 10 minutes).

Figure 14: UV-unwrapping a plane. Top row shows initial mesh, automatically-obtained segmentation and user-refined segmentation (session
time: 3 minutes). Bottom row shows parameterization and textured model.
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Figure 15: An example of U,V unwrapping and texturing obtained
with our method. Our structure-aware unwrapping and straight-
ness constraints facilitate using repetitive patterns (wool) and plac-
ing structured elements (zipper).

ble). In contrast, our tool automatically constructs an initial UV-
unwrapping that is correct, and that permits initiating user inter-
action. Note that all the important seams (for instance the axis of
symmetry, and the seams that split the legs into two halves) are de-
tected by our initial segmentation. By selecting seams in both 3D
and 2D, one obtains a good result in less than 10 minutes. Figure
14 shows another example. After the initial automatic segmenta-
tion was obtained (in less than 2 minutes), the user glued 8 seams
(top row). The bottom row shows the parameterization and tex-
tured model (session time: 3 minutes). Figure 15 shows how our
alignment constraints facilitates painting with patterns (wool) and
elements (borders, zipper). Creating such a texture would not be
possible with a 3D paint system.

Discussion and Future Works

We have introduced a semi-automatic system for UV unwrapping.
Our new segmentation method automatically generates a reason-
able initial mapping, that preserves the symmetry of the model, and
that the user can iteratively refine using simple and intuitive tools.
Our interactive parameterization is based on two simple modifi-
cation of the now widely available ABF++ algorithm. Therefore,
starting from an implementation of ABF++, our toolset can be eas-
ily integrated into existing 3D modeling packages. We provide in
the supplemental material the C++ sources of a plugin for the open-
source Graphite modeler.

Several ideas could make our method more automatic. For in-
stance, using a visibility criterion similar to the one used by Seam-
ster would help selecting the seams automatically. To reduce tex-
ture memory storage, besides symmetry detection, we have also
experimented an extension of our framework that detects multiple
instances of the same mesh by using their graph spectra (already
computed by our segmentation) as a shape signature, as suggested
in [Reuter et al. 2005].
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A Spectral properties of symmetric graphs

In this Appendix, we study the properties of the facet graph of
a symmetric mesh, in other words, the properties of symmetric
graphs. We show that each axes of symmetry corresponds to an
eigenvalue λ and an antisymmetric eigenvector v. By antisymmet-
ric, we mean that for all pairs of symmetric facets ( f , f ′), we have
v( f ) = −v( f ′). The zero-set, i.e. the set of segments that connect
facets of opposite signs, corresponds to the axis of symmetry. We
first give the definition related with symmetric graphs then we prove
this result.

A.1 Symmetric graphs

We say that a graph G with 2n vertices is symmetric if there exists
an ordering for its vertices such that its (2n,2n) adjacency matrix
can be written as :

A =
(

A′ A′′
A′′ A′

)
where A′ and A′′ are (n,n) symmetric matrices (see Figure 16). In
other terms, the vertices set V of G can be split into two symmetric
sets V 1 = {vi ∈ V |0 < i ≤ n} and V 2 = {vi ∈ V |n < i ≤ 2n} such

Figure 17: A degenerate symmetric graph with n = 4

that vi ∈ V 1 and vi+n ∈ V 2 will be called symmetrics. The condi-
tion on the adjacency matrix simply means that if two vertices are
connected, their symmetrics are connected too. A′ is the adjacency
matrix within V 1 and V 2 and A′′ contains the adjacencies between
vertices of V 1 and V 2.

A.2 Graph Laplacian eigenvectors

Let D be the (n,n) diagonal matrix such that di is the valence of vi
(ith row sum of A′+A′′), then the graph Laplacian of G is given by :

L =
(

A′−D A′′
A′′ A′−D

)

Let ( f s,λ s) and ( f a,λ a) be the eigenpairs of A′+A′′−D and A′−
A′′−D (s and a stand for symmetric and antisymmetric). Then one
can check that:

L
(

f s

f s

)
=
(

(A′−D) f s +A′′ f s

A′′ f s +(A′−D) f s

)
= λ

s
(

f s

f s

)
and

L
(

f a

− f a

)
=
(

(A′−D) f a−A′′ f a

A′′ f a− (A′−D) f a

)
= λ

a
(

f a

− f a

)
which proves that((

f s

f s

)
,λ s
)

and
((

f a

− f a

)
,λ a
)

are eigenpairs of L. Thus there exists an eigen decomposition of L
into half symmetric (same value on a vertex and its symmetric) and
half antisymmetric (opposite value) eigenvectors. If the spectra of
A′+A′′−D and A′−A′′−D do not overlap (no common eigenval-
ues), this eigen decomposition is unique. If they overlap, any com-
bination of the corresponding symmetric and antisymmetric eigen-
vectors will also be an eigenvector. Thus in this degenerate case
a solver might return eigenvectors which are neither symmetric nor
antisymmetric. We never encountered such a degenerate symmetric
graph on the real life models we experimented with. However we
built an example with 8 vertices (see Figure 17) :

A′ =

 0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 A′′ =

 1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


for which (0,−1,1,0, ...,0)t is an eigenvector which is neither sym-
metric nor antisymmetric. Finally, if the graph has multiple sym-
metries (there are different decompositions of A in A′ and A′′) then
the same arguments hold for each decomposition. Thus, there will
exist an eigen decomposition of L where all eigenvectors will be
either symmetric or antisymmetric relative to each graph symme-
try, which will be unique iff the spectra of all A′ + A′′ −D and
A′−A′′−D do not overlap.
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