
HAL Id: inria-00601840
https://hal.inria.fr/inria-00601840

Submitted on 20 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining SystemC, IP-XACT and UML/MARTE in
model-based SoC design

Jean-François Le Tallec, Julien Deantoni, Robert de Simone, Benoît Ferrero,
Frédéric Mallet, Laurent Maillet-Contoz

To cite this version:
Jean-François Le Tallec, Julien Deantoni, Robert de Simone, Benoît Ferrero, Frédéric Mallet, et al..
Combining SystemC, IP-XACT and UML/MARTE in model-based SoC design. Workshop on Model
Based Engineering for Embedded Systems Design (M-BED 2011), Mar 2011, Grenoble, France. �inria-
00601840�

https://hal.inria.fr/inria-00601840
https://hal.archives-ouvertes.fr

1

Combining SystemC, IP-XACT and UML/MARTE

in model-based SoC design
Jean-François Le Tallec∗†, Julien DeAntoni∗†, Robert de Simone†, Benoît Ferrero†, Frédéric Mallet∗† and Laurent

Maillet-Contoz‡

∗UNS, Nice Sophia-Antipolis, France †AOSTE Team, INRIA Rocquencourt / INRIA Sophia Antipolis /

Laboratoire I3S, France ‡STMicroelectronics, Crolles, France

Abstract—Modern SoC design may rely on models, or on high-
level description languages. Although very close, the benefits
obtained from either sides can be substantially different (and
mismatch may occur). The IP-Xact formalism, now a standard
(IEEE 1685), was introduced to help assemble component IP from
distinct sources into an integrated design. Components could be
expressed in high-level HDLs such as SystemC, so should be
the full design after translation. Experience shows that in fact
this is hardly the case, specially in publicly available methods
and tools. The present contribution goes one step into linking
SystemC designs to their IP-Xact structural representation by
translation. It then exports the resulting IP-Xact model into the
UML/MARTE profile modeling framework, to allow to annotating
existing models with additional information (again in a publicly
available fashion, as opposed to vendor extensions). Even if our
approach is still far from being complete, it bridges a number
of gaps induce by the combined uses of SystemC and IP-Xact.

I. INTRODUCTION

Design of digital circuits was always involved with many

representation formalisms. Some of them are formal or en-

gineering models of such circuits, some are programming

languages initially aimed at simulating such models. Com-

binatorial and sequential netlists, Mealy and Moore FSMs,

process networks fall into the first range; Verilog, VHDL and

SystemC language in the second. In particular, SystemC is

becoming a de-facto standard for more abstract representation

of Systems-on-Chip at higher level.

While modeling and programming formalisms do comple-

ment one another, they do not always coincide as well as one

should hope. This is certainly so because they follow distinct

goals. Analysis models aim at faithfully representing physical

objects, while allowing abstractions from details, or consid-

ering additional relevant views (consumption, timing closure).

Programming languages promote execution efficiency to allow

simulation of very large circuits, sometimes at the cost of

modeling accuracy.

The interplay of models and programming languages has

thus always been a big issue for correct design (as for instance,

in synthesizability requirements). The matter has been renewed

with the advent of model-driven engineering techniques (based

on UML or similar formalisms), which should provide a

middle point between the demands of formal models and

mathematical properties on the one hand, programing and

This paper has been partially supported by the French ANR project HELP
(ANR-09-SEGI-006).

design efficiency on the other one. Currently the IP-Xact

standard initiative (initiated in the Spirit consortium and now

handled at Accelera) aims at providing a dedicated ADL

(Architecture Description Language) to model the hierarchical

structure of SoCs and interconnects, and support representation

of additional feature aspects in a normalized way. Ties between

IP-Xact and SystemC should be obvious, but currently they

remain rather obscure and implicit, hidden in proprietary tools

and implementations.

Our present work consists of two parts. First, we capitalize

of previous efforts by others to extract a complete structural

model in IP-Xact from a SystemC program during its so-

called elaboration phase; it provides a way to compose and

assemble SystemC programs more easily and modularly. Sec-

ond, we consider the representation of these IP-Xact structural

descriptions into the MARTE profile of UML. MARTE is the

UML extension meant to deal with Real-Time Embedded

aspects of systems, which suits closely digital circuits. MARTE

allows also to represent various non-functional aspects (timing,

consumption,...), in a standardized fashion. This comes as an

extension to IP-Xact feature for introducing extra information,

usually restricted to proprietary Vendor Extensions. In MARTE,

additional features will become integral public parts of the

model. We choose to take test cases in external library to test

the robustness of our tool confronted to different coding styles.

For that purpose, we stress our tools on the SoCLib library

and generic SystemC examples.

The benefits of our results are two-fold. To the best of

our knowledge no explicit translation from SystemC to IP-

Xact that would preserve and even identify and promote the

hierarchical structure was available to this date. Also, the

potential ability of a dedicated format such as IP-Xact to

support annotations for representation of additional feature

aspects was again not something available at this stage. Our

contributions should help in the future experiment with various

such additions, with the main impact of using the same basic

skeleton model to add or extract different feature aspects that

can efficiently be dealt with for mathematical analysis by

a large spectrum of existing tools. In this paper, we will

present in section II different existing technologies on which

our approach/tool is relying on. Then, we will explain more

precisely in section III-A how we built it and what possibilities

it permits. We will conclude in section IV by enumerating

earthly perspectives for the future works.

2

II. OVERVIEW

A. SystemC

SystemC1 is a Hardware Description Language, meant to

represent circuits and SoCs at various levels of abstraction (in

particular at RTL and TLM levels) [5]. Conceived as library

extension of C
++, it benefits from data types and compiler

environments from this host language. It adds provisions for

parallel threads, signal wires, clocks, timing features, low

and high level communication mechanisms. These extensions

are semantically dealt with by a specific non-preemptive

scheduling discipline, for simulation of designs. Simulation

goes through two successive phases. First, the elaboration

phase instantiates the parallel processes and the static network

of components (i.e., the sc_modules and their interconnects),

as requested by the program in an initial object creation

part. Then the actual behavioral simulation itself takes place,

combining the individual component bodies according to the

scheduler. Simulation itself can be untimed (causal), cycle-

accurate, approximate or even loosely timed. SystemC designs

are usually strongly influenced by formal modeling with so-

called Models of Computation and Communication (MoCC). It

can be traced back to the pioneering work of Daniel Gajski and

fellow co-authors on SpecC [4]. Also the seminal SystemC

reference [5] mentions Kahn Process Networks. Modeling

Kahn Process Networks, CSP and Synchronous Reactive

systems in SystemC is also explored in [6]. Heterogeneous

modeling in SystemC is addressed in [12], [17]. However, the

connection remains implicit, or even unclear, when looking

at actual programs. The elaboration phase can be seen as

the construction of the structural parts of models (process

networks and interconnect topology), while component be-

haviors can usually be seen as some form of interacting

FSMs (possibly with timing). One of our goal is to extract

such modeling information in an explicit way (in IP-Xact for

structure and interfaces, in later work in UML MARTE for

component behaviors).

B. IP-XACT

IP-Xact2 is an XML format dedicated to the design, inte-

gration and reuse of IP (Intellectual Property) components

from various vendors into larger designs by enabling automatic

configuration and integration through industrial tools. IP-Xact

was created by the Spirit Consortium and is now handled

by Accelera, recently becoming the IEEE 1685 standard. IP-

Xact provides a means to describe information relative to the

structural part of a design. A component definition describes

the interface of a component and contains a reference to a file

that describes the implementation of its functional behavior in

a specific HDL. A design is a set of component instances and

links that interconnect these instances.

Because correctness is an essential concern for integration

and reuse, functional and extra-functional properties can be

embedded in a component definition or a design by using

so called vendor’s extensions. The format and the kind of

1The Open SystemC Initiative www.systemc.org
2The Spirit Consortium www.spiritconsortium.org

information contained in a vendor extension is not part of the

standard, and thus can not be shared across different vendors

tools. This prevents integration of IP developed individually

in different tools. Another limitation is the lack of mechanism

to easily handle parameterizable structures. These are the

main reasons why we believe that more generic definition

formalisms such as those found in UML could be useful here.

C. UML/MARTE

MARTE
3 [11] is the profile extension to the UML modeling

framework aimed to deal with Modeling and Analysis of

Real-Time Embedded systems. It inherits from UML several

diagrammatic styles (such as components for structural design,

hierarchical FSMs and data-flow activity blocks for behaviors,

amongst several others). It also provides standard annotation

features (there called “stereotypes”) to represent functional

and extra-functional properties, as well as a way for the

user to introduce others. As a result, further specialization

of MARTE could allow encoding IP-Xact notions, as well

as easy extensions like the IP-Xact vendor’s extensions, but

this time publicly exposed. The emphasis put in model-driven

engineering (as around UML) on model transformation should

then allow the relevant information to be directed to whichever

proprietary tool may understand how to deal with them.

Furthermore, it embeds a logical time model [2] to allow

description of constraints to formally link different views of a

model such as consumption, timing or safety and possibly a

TLM to RTL refinement way [7]. Repetitive structure modeling

(RSM) package defined in the standard UML MARTE profile

also simplifies the representation of complex parameterizable

structure.

D. Our approach

CPU DMA RAM

BUS

Flash

IP1 IP2 IP3 IPN

Figure 1. Common SoC Design

Classically, SoC platforms are depicted in a block diagram

fashion as in figure 1. But such an informal picture is not

a true model, as it lacks usually important information. As

the purpose of IP-Xact is to promote platform assembly using

IP blocks, it requires further information of the port interface

and interconnect features. Furthermore, MARTE profile could

provide graphical editing and formal support for annotation in

3UML Profile for MARTE www.omgmarte.org

3

distinct non-functional domains (e.g., power domain). It is our

main goal to model such a platform as in figure 1, but with

possibly all the details needed to understand it fully (such as

the protocol description).

Thus, our global vision is that composite SoC design

descriptions integrating IPs from different sources should

be provided in the IP-Xact fashion, certainly extended with

useful annotation features in a way less obscure than “vendor

extensions”. Generic model-driven engineering, in our case

embodied in the UML/ MARTE profiles, could help prototyping

such extensions. In turn, SystemC could be used as an efficient

target simulation language, with programs benefiting from

"correct-by-construction" features obtained by early model

analysis. Individual component behaviors could also be pro-

vided as SystemC descriptions (or with formal MoCCs).

Still, there are currently many more design descriptions

directly provided in SystemC, and lifting them back up into

model-level descriptions in IP-Xact could greatly help populate

the design methodology. This is why a model extraction

scheme from SystemC programs is so desirable. It is the main

topic of this paper, pointing out the potential difficulties as well

as openings of the approach.

SystemC SCiPX model
extraction IP-XACT

Ipxact2Marte
transformation

Marte2Ipxact
transformation

UML/MARTE
Consumption view,

Timing view
Safety view

Figure 2. Global Tool Flow

So, we consider the automated bottom-up translation from

SystemC to UML/ MARTE, through IP-Xact, as shown in

figure 2. To translate from SystemC to IP-Xact, we extract

information from the original program using two different

methods. The first method consists in running a simulation

along its elaboration phase, and recover from that a model

for the fully instantiated network of components; this part is

directly indebted to former work on PinaVM (see below).

The second method uses static analysis introspection of the

SystemC code to recover structural syntactic information that

were not preserved during the compilation process; it relies

heavily on the Doxygen C
++ static analyzer (again described

below). After these two were conducted in parallel, we merge

their results into a complete IP-Xact view that conforms to the

IEEE 1685 standard description. We defined and realized a

second translation, this time from IP-Xact to a corresponding

subset of UML/MARTE. It uses advanced model transformation

techniques. The main point here is that resulting models could

then easily be extended to allow supplementary annotation

features (such as timing or low-power), in a public repre-

sentation format (as opposed to current vendor extensions

in IP-Xact). While this part is still underdeveloped, we can

envision potential further work, for instance in describing early

abstract designs that are "bus protocol agnostic", and can then

be refined to accommodate AMBA or OCP-IP requirements.

Corresponding vendor extensions could then automatically be

synthesized in a way compliant to IP-Xact. We have already

implemented a reverse translation from UML/MARTE to IP-

Xact, currently bare regarding such extended annotations, but

which could easily support them once defined.

E. Inspirational works

As mentioned above, the translation from SystemC to IP-

Xact requires two distinct methods to provide results, one

based on run-time simulation of the elaboration phase, one

based on static analysis of the source code. We now describe

in turn the two already implemented methods, due to others,

upon which we built our process by proper modifications

and enhancements. One main highlight of our approach in

SCiPX is to combine both techniques to get the final combined

models.

a) Elaboration run-time: PinaVM: PinaVM [9], [10] is a

SystemC front-End based on the LLVM compiler. It provides

an abstract representation of a SystemC programs after the

elaboration phase (i.e., it provides an abstract view of the

network of components). It also provides an extendable project

structure to plug specific backend, allowing the manipulation

of this representation. The abstract representation provided by

PinaVM is well suitable to verification / validation of the

behavioral part but, due to the use of precompiled information,

lacks of static information. For instance, as for every C
++ pro-

grams, the precompilation remove information on the attribute

names and mangle information on attribute types. Moreover,

PinaVM does not focus on architectural concern and does

not directly allow the translation of the representation into

a model view (either IP-Xact or UML-based). We chose to

take advantage of the already existing project structure and

to develop a back-end that have additional information from

static SystemC code analysis.

b) Static analysis: Doxygen: Doxygen4 is originally a

documentation generator but can also be used as a static code

source analyzer. It permits us to retrieve information about

the component definition. The goal is to retrieve information

that lacks in PinaVM like the name of the attributes, etc. Of

course, Doxygen can not give any relevant information about

the elaboration phase or the component network. It appears

that PinaVM and Doxygen can fit together and provide enough

information for the construction of both IP-Xact component

definition and IP-Xact design. From these IP-Xact description,

it is then possible to make an import into UML/ MARTE. These

steps are detailed in the next sections.

F. Related Works

The connection of SystemC to more engineering models

and meta-modeling frameworks (such as UML) is also not

entirely new [15], [3]. Early connections between IP-Xact and

4Doxygen www.doxygen.org

4

UML models were presented in [14], [16], [8]. The present

work is original in that it provides a general translation of

the structural aspects of SystemC programs into engineering

models, and allows this translation to be later completed

with various annotation aspects that capture more views of

the design (like behavioral aspects for instance). While we

focus on the code to model transformation at this point, to

benefit from existing collections of SystemC programs, we

are eager to reverse transformations so as to “synthesize”

SystemC programs from high-level models (something which

would sound obvious from many claims in the literature, but is

not yet achieved by any means to the best of our knowledge).

III. DETAILED TOOL DESCRIPTION

A. SCiPX description

We now explain why our tool requires combination of

dynamic execution (elaboration phase in PinaVM) together

with static analysis (Doxygen). We illustrate this on the simple

design depicted in Figure 3. c1,c2 are two components of the

design, respectively instances of M1 and M2. p1,p2,p1’,p2’ are

ports of the same type T1. c1 contains p1 and p2; c2 contains

p1’ and p2’. p1 is connected to p1’ through channel1 p2 is

connected to p2’ through channel2. While this information

alone allows to create a design view, more information about

the admissible number of port M1 and M2 instances can accept

should also be provided (not always “2” on all instances).

The dynamic runtime analysis recovers the involved instances

and their port instances as well as the link between the ports.

However, they loose information like port naming, exact type

of the definition (two ports or an array of size two makes

no differences), and other attributes of the component. In

the previous example, all ports have the same type and are,

after pre compilation identified by their memory address. It

is then impossible to deduce which address corresponds to

which name. More generally, the name loss makes impos-

sible to differentiate component ports of a same type. The

static approach on the other hand, can fill up attribute name

information. But, in case of dynamic (and / or conditional)

instantiation, is not able to retrieve the component network.

So we have to combine static and dynamic approaches in the

proper way.

Figure 3. Simple example of two communicating SystemC sc_modules

First, retrieve static knowledge about the SystemC compo-

nent definition; second, retrieve information about component

network resulting from the elaboration phase (i.e., need to

retrieve run time information); finally merge all these pieces

of information in order to have enough knowledge to create

an IP-Xact system from the SystemC code.

This process is depicted in figure 4. First, we run Doxygen

over a SystemC source code where macro has been replaced

in order to get native C
++ source code (link no1). It results

in an xml file that contains all class definitions together with

inheritance and containment.

This xml file can then be analysed to extract the various

component definition (i.e., component, interface, attributes,

etc) (link no2). From the same xml file, a new main program

is produced. It does not modify the existing SystemC sc_main

code. The goal of this generated sc_main is to collect offset

of each attribute of each components identified by Doxygen,

using the standard ANSI C macro offsetof(). Technically, the

offset represents the difference between the attribute address

and the address of its class. A new xml file result of this. It

represents the mapping table between an attribute name and

its offset (link no3). It is important to notice that this mapping

depends on compilers/compiling options. Consequently, this

code must be compiled with exactly the same options and

compiler than the one used by PinaVM and on the same

execution platform.

In the next step, the original SystemC program is executed

until the end of elaboration by PinaVM. When this point is

reached, PinaVM returns to the back-end plug-in an access to

its component network internal representation. Now, using the

available attribute offset mapping table built before, informa-

tion about attribute names (and furthermore port names) can

be asserted by comparing the address of a port, the address of

the owner component and the offset(link no4).

In order to retrieve the attribute types in a human readable

form, we used RTTI (Run-time type information), a way to

keep information about an object’s data type in memory at

runtime. This has to be done at runtime to make sure types

are retrieved even when using template components.It becomes

then possible to build a complete IP-Xact design linked to the

appropriate component definitions (link no5).

Figure 4. SystemC to IP-XACT details

The following source code illustrates a number of dec-

larations that our SCiPX5 tool is able to handle. The first

5AOSTE www-sop.inria.fr/aoste

5

piece of code is an implementation of a Source component.

Assume that there is the mirror implementation for the Target

component.

As highlighted on line 2,3 and 4 we deal with dynamic

declaration of ports as well as with dynamic port array. As

SystemC do not allow instantiation when the elaboration

phases is done, any dynamic ports must have been created.

Knowing the address of these port objects and the reference

of port pointers in a component, a simple comparison between

port address and port pointer value permits us to map dynamic

ports. Dynamic port array is very similar to dynamic port.

The whole array is declared at the same time. The first port

of the array is detected as a simple dynamic port. A simple

comparison between unmapped port addresses and the size of

the port permits us to link unmapped ports to the first port of

it array.

1 SC_MODULE(Source){

2 sc_out<statType> statOUT;

3 sc_out<dynType> ∗ dynOUT;

4 sc_out<arrayType> ∗ arrayOUT;

5 SC_HAS_PROCESS(Source);

6 Source(sc_module_name name, unsigned arraySize){

7 dynOUT = new sc_out<dynType>;

8 arrayOUT = new sc_out<arrayType>[arraySize];

9 }

10 };

The last piece of code is the instantiation of both Source

and Target into an sc_main. Such a declaration is valid as it is

simple C
++. But, it could not be synthesized by classical static

analysis (i.e., without symbolic execution) because it contains

loops and conditional statements. Combining the runtime and

static approach permits us to overcome this limitation.

1 int sc_main(int argc, char ∗∗argv){

2 unsigned arraySize=2;

3 bool invertArray=true;

4 Source sourceInst("sourceInst", arraySize);

5 Target targetInst("targetInst", arraySize);

6 sc_signal<statType> statSIG;

7 sc_signal<dynType> dynSIG;

8 sc_signal<arrayType> ∗ arraySIG;

9 arraySIG = new sc_signal<arrayType>[arraySize];

10 sourceInst.statOUT.bind(statSIG);

11 sourceInst.dynOUT >bind(dynSIG);

12 for(unsigned i=0;i<arraySize;i++)

13 sourceInst.arrayOUT[i].bind(arraySIG[i]);

14 targetInst.statIN.bind(statSIG);

15 targetInst.dynIN >bind(dynSIG);

16 if(!invertArray) for(unsigned i=0;i<arraySize;i++)

17 targetInst.arrayIN[i].bind(arraySIG[i]);

18 else for(unsigned i=0;i<arraySize;i++)

19 targetInst.arrayIN[i].bind(arraySIG[arraySize i 1]);

20 sc_start();

21 return 0;

22 }

We ran SCiPX on a number of examples found in the

standard SystemC library (ver 2.2), and were able to correctly

generate IP-Xact representation for most. Examples that did

not pass the processing all contained the same feature: to spec-

ify connections, these examples do not use sc_port_base which

is the information handled in SystemC internals. Thus, asking

SystemC internals do not reveal these kind of connections as

it is not saved during the elaboration phase. One can argue

that the problem comes from a poor SystemC coding style on

these examples, but we are considering a work-around this.

B. Ipxact2Marte and Marte2Ipxact

Figure 5. There and back between IP-XACT and UML / MARTE

IP-Xact allows the specification of additional, NFP (Non-

Functional Property) annotations only through so-called ven-

dor extentions, which remain private and not standardized. We

used the UML standard profile MARTE as a substitute, where

such NFP annotations can be defined and charaterized in an

open public way and then possibly translated to IP-Xact in any

vendir format that is made available.

Another advantage of MARTE is the possibility to use

already existing tools to realize / visualize / edit an IP-Xact

design. For visualization purpose, in addition of the IP-Xact

to MARTE transformation, we developed an automatic di2

generator which permits us to display the extracted design in

Papyrus 6, a free and open source UML/ MARTE environment.

Another side effect is that behavioral and NFPs can be

analysed by different available tools directly at the model

level. For instance, works around data flow network allow the

computation of static periodical schedule and results can be

injected back in the MARTE model.

The transformation from IP-Xact to MARTE is a reverse

implementation of the mapping described in [1]. Together with

this previous work, we provide a mean to travel between IP-

Xact and MARTE. It is then possible to import component

definitions and (possibly) a design, to modify (or create) the

design in a UML editor, to annotate the design, to analyze it

and then to re-generate IP-Xact representation of our extended

design keeping retro compatibility with IP-Xact tools. For now,

we only prototype a specific vendor extension transformation

6Papyrus www.papyrusuml.com

6

from and to IP-Xact. Because vendor extension is a very

general extension mechanism, there is no way to provide a

generic transformation for that purpose. However, doing it

on various vendor extensions promotes them to a first order

concern, publicly exposed while keeping the advantage of the

algorithm / tool in charge of the extension.

Figure 6. MARTE diagram of the example of section III-A

After processing the source code of the example of the

section III-A, we have the MARTE model and diagram whose a

screen-shot is given in figure 6. To stress our implementation,

we ran our tool on the SoCLib SystemC library. We succeeded

in generating IP-Xact component definitions and transforming

then into UML/ MARTE components as well. Then, we were

able to graphically create various designs in Papyrus MARTE

with these extracted components. Then, we were able to

generate IP-Xact design file from MARTE. As SCiPX, tools

to achieve these transformations are also avaliable on AOSTE

webpage.

IV. CONCLUSION AND FUTURE WORK

An ideal SoC design flow would allow to assemble well un-

derstood components models, through well defined structural

interfaces. Early analysis at model level could help guarantee

correctness properties, in the functional and non-functional

domains. IP-Xact goes in this direction by providing clear in-

terfacing and configuration mechanisms, but extra information

is currently provided as vendor extensions outside the range of

the standard. Also, component models are defered elsewhere,

and in fact provided as HDL code. SystemC ambitions to

allow the representation of MoCCs at several levels, but as it

relies on code there is no guarantee that programs match this

need (even though the language itself is expressive enough

for that of course). Since there are currently many more

SystemC designs than IP-Xact models openly available, we

considered extraction of IP-Xact structural representation from

composite SystemC designs, our first contribution. To allow

further model annotations beyond vendor extensions we also

studied further transformations to UML MARTE profile. Next

one should provide useful examples of such annotations.

Currently we have not extended the model extraction from

SystemC to component behaviors themselves (as PinaVM

does to some extent). As IP-XACT does not provide features

for behavior modeling, this would have to target directly

MARTE behavioral models (which then are amply defined,

with hierarchical FSMs for control and data-flow activity

diagrams for netlists. While it could be interesting to check

whether extracted models there reflect the designer’s intuition,

we strongly believe that proper design flow should produce

efficient code representation in SystemC from MoCCs, not

the other way around. Principles of abstraction/refinement

(between RTL and various TLM sublevels), as well as timing

level accuracy, would certainly find a more natural formulation

at model level than code level.

REFERENCES

[1] C. André, F. Mallet, A.M. Khan, R. De Simone, and I.S.A. Méditerranée.
Modeling SPIRIT IP-XACT with UML MARTE. In Conf. on Design,

Automation and Test in Europe (DATE), MARTE Workshop.(March

2008), volume 35, page 40, 2008.
[2] Charles André, Julien DeAntoni, Frédéric Mallet, and Robert de Simone.

The time model of logical clocks available in the OMG MARTE profile.
In Sandeep K. Shukla and Jean-Pierre Talpin, editors, Synthesis of

Embedded Software: Frameworks and Methodologies for Correctness

by Construction, chapter 7, pages 201–227. Springer Science+Business
Media, LLC 2010, July 2010.

[3] Rabie Ben Atitallah, Eric Piel, Julien Taillard, Smail Niar, and Jean Luc
Dekeyser. From high level mpsoc description to systemc code gen-
eration. In International ModEasy’07 Workshop of the Forum on

specification and Design Languages (FDL’07, 2007.
[4] D. D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao. SpecC:

Specification Language and Methodology. Kluwer Academic Publishers,
2000.

[5] Th. Grötker, S. Liao, G. Martin, and S. Swan. System Design with

SystemC. Kluwer Academic Publishers, 2002.
[6] Fernando Herrera, Pablo Sánchez, and Eugenio Villar. Modeling of CSP,

KPN and SR systems with systemC. 2004.
[7] Jean-François Le Tallec and Julien DeAntoni. Toward a TLM to RTL

refinement: a formal approach. In Proc. of the 3rd Junior Researcher

W. on Real-Time Computing, JRWRTC’09, in conjunction with the 17th

Int. Conf. on Real-Time and Network Systems, RTNS’09, Paris, France,
October 2009.

[8] F. Mallet, Ch. André, and R. de Simone. Ip-xact components with
abstract time characterization. In Advances in Design Methods from

Modeling Languages for Embedded Systems and SoCs, volume 63 of
Lecture Notes in Electrical Engineering. Springer Sciences+Business,
2010.

[9] Kevin Marquet and Matthieu Moy. PinaVM: a SystemC front-end based
on an executable intermediate representation. Technical Report TR-
2010-8, Verimag, 2010.

[10] Kevin Marquet, Matthieu Moy, and Bageshri Karkare. A theoretical and
experimental review of SystemC front-ends. Technical Report TR-2010-
4, Verimag, 2010.

[11] OMG. UML Profile for MARTE, v1.0. Object Management Group, Nov.
2009. OMG document number: formal/09-11-02.

[12] Hiren D. Patel and Sandeep K. Shukla. Towards a heterogeneous
simulation kernel for system level models: A SystemC kernel for
synchronous data flow models. VLSI, IEEE Computer Society Annual

Symposium on, 2004.
[13] M.-A. Peraldi-Frati and Y. Sorel. From high-level modelling of time in

MARTE to real-time scheduling analysis. In MoDELS’08 W. on Model

Based Architecting and Construction of Embedded Systems on ACES-

MB, pages 129–143, Toulouse, France, September 2008.
[14] S. Revol, S. Taha, F. Terrier, A. Clouard, S. Gerard, A. Radermacher, and

JL. Dekeyser. Unifying hw analysis and soc design flows by bridging
two key standards: Uml and ip-xact. In Distributed Embedded Systems:

Design, Middleware and Resources, volume 271 of IFIP International

Federation for Information Processing. Springer, 2008.
[15] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A uml 2.0 profile

for systemc: toward high-level soc design. In EMSOFT ’05: Proceedings

of the 5th ACM international conference on Embedded software. ACM,
2005.

[16] T. Schattkowsky, T. Xie, and W. Mueller. A uml frontend for ip-xact-
based ip management. In Conference in Design Automation and Test in

Europe (DATE’09), 2009.
[17] J. Zhu, I. Sander, and A. Jantsch. HetMoC: Heterogeneous modeling

in SystemC. In Proceedings of the Forum on Design Languages

(FDL’2010), 2010.

