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Abstract: The uprising use of embedded systems and Networked Control Systems (NCS)
requires reductions of the use of processor and network loads. In this work, we present a state
dependent sampling control that maximizes the sampling intervals of state feedback control.
We consider linear time invariant systems and guarantee the exponential stability of the system
origin for a chosen decay rate α. The proof of the α-stability is based on a quadratic Lyapunov
function which is computed, thanks to LMIs, so as to optimize some performance criterion on
the sampling intervals. A mapping of the state space is then designed offline: it computes for
each state of the state space the maximum allowable sampling interval, which makes it possible
to reduce the number of actuations during the real-time control of the system.

Keywords: networked/embedded control systems, state dependent sampling, self-triggered
control, linear matrix inequality, convex polytope

1. INTRODUCTION

In the last decades, a large attention has been given
to embedded and Networked Control Systems (Zhang
et al. [2001]). Such systems present several advantages
such as: reduced system wiring, plug and play devices,
increased system agility, and ease of system maintenance.
However, from the control theory point of view, they bring
up new challenges: these systems are often required to
share a limited number of computational and transmission
resources. In practice, this often leads to fluctuations of the
sampling interval, which may have a destabilizing effect if
it is not properly taken into account.

Several studies about robust stability with respect to
sampling period variations have been made (see Fridman
[2010], Seuret [2009], Fujioka [2009], Fridman et al. [2004],
and Cloosterman et al. [2010]). Also, intensive research
has been conducted to adapt dynamically the sampling
in order to ensure the desired control performances. Two
main approaches exist in the literature:
Event-triggered control (Tabuada [2007], Heemels et al.
[2008], Lunze and Lehmann [2010]), in which sensors are
equiped with special intelligence so that information is
sent to the controller only when special events occur (i.e.
crossing a frontier of the state space, or a level of a
Lyapunov function). However, the main drawback of this
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approach is that it generally requires dedicated hardware
to continuously monitor the plant state and check the
defined stability conditions.
Self-triggered control (Velasco et al. [2003], Mazo-Jr. et al.
[2010], Anta and Tabuada [2010], Wang and Lemmon
[2010]), in which at each sampling instant one computes
a lower bound estimation of the next largest admissible
sampling interval, so as to emulate event-triggered control
without resorting to extra hardware. However, in these
works, the computations for the next sampling times are
made online. Moreover, most of the works found in the
literature require the use of a Lyapunov function, but
there is no method to compute such a Lyapunov function
guaranteeing stability while optimizing a performance
criterion on the sampling intervals.

In this paper, we design offline a state dependent sampling
function maximizing the sampling intervals under some
Lyapunov exponential stability conditions. The approach
is based on a mapping of the state space defining the
sampling intervals. Moreover, we provide a formal method
based on LMIs to compute the adequate Lyapunov func-
tion, in order to maximize the lower bound of the sampling
function.

The paper is organized as follows. First, we introduce
the studied problem in Section 2. Then, Sections 3 and
4 describe the proposed method and the guaranteed per-
formances. Finally, some simulation results are shown in
Section 5 before concluding in Section 6. The proof of
the first theorem is given in Appendix 7 along with two
lemmas.

Notations: Throughout the paper, the superscript ’T ’
stands for matrix transposition. Mn(R) is the set for all



n × n matrices, and the notation P ≻ 0 (resp. P � 0)
for a symmetric matrix P ∈ Mn(R) means that P is
definite positive (resp. semi-definite positive). The set of
eigenvalues of a matrix M ∈ Mn(R) will be written
eig(M). We also denote by ⌊x⌋ the floor of x (i.e. the
largest integer n not greater than x: x − 1 < n ≤ x).
Eventually, the notations ‖.‖ and ‖.‖∞ will stand for the
Euclidean and the infinity norm respectively. We recall
that for a bounded function f : R

p → R
q, ‖f‖∞ =

Supx∈Rp‖f(x)‖.

2. PROBLEM STATEMENT

Consider the linear time invariant (LTI) system

ẋ(t) = Ax(t) +Bu(t), ∀t ∈ R+

x(t) = x0, ∀t ≤ 0,
(1)

where x : R → R
n and u : R → R

m represent the system
state and the control function, and the matrices A and B
are constant and of appropriate dimensions. The control
function is defined as a piecewise constant state feedback

u(t) = −Kx(tk), ∀t ∈ [tk; tk+1), (2)

where 0 = t0 < t1 < · · · < tk < · · · are the sampling
instants satisfying lim

k→∞
tk = ∞ and defined by

tk+1 = tk + τ(x(tk)), ∀k ∈ N, (3)

with a state dependent sampling function τ : Rn → R+.

The feedback control matrix K is supposed to be fixed
such that the continuous state feedback u(t) = −Kx(t)
stabilizes the ideal control loop system (A − BK is Hur-
witz).

The objective of this work is to study how to update
the given control law as few times as possible, while
insuring the exponential stability of the system origin for a
chosen decay rate α. At each sampling instant, we want to
determine for how long it is possible to let the control input
unchanged, without additional sampling. A first, literal
problem formulation can be expressed as:

General Problem: Given the LTI system (1) and the
linear state feedback control (2), find the state dependent
sampling function τ that maximizes the sampling intervals
while insuring the exponential stability of the system
origin for a chosen decay rate α.

Before computing the state dependent sampling function,
we need to decide how to check the system exponential
stability. In this respect, the Lyapunov stability theory
has proved to be a very useful tool. In this paper, in
order to keep things simple and easy to read, we will work
exclusively with quadratic Lyapunov functions. We will
use the following well known property:

Proposition 1. Let V : Rn → R
+ be a quadratic Lyapunov

candidate function satisfying V (x) = xTPx, ∀x ∈ R
n, with

P = PT ≻ 0. If the condition

V̇ (x) + 2αV (x) ≤ 0 (4)

is satisfied for all trajectories of (1), for a given scalar
α > 0, then the system origin is globally α-stable (i.e.
there exists a scalar β such that the trajectories satisfy
‖x(t)‖ ≤ βe−αt‖x0‖ for any initial condition x0).

Throughout this work, we will focus on solving two main
problems. The first one concerns the design of the sampling
function and is formulated as:

Problem 1: Given system (1), the state feedback control
(2), and a Lyapunov function V (x(t)), find the state
dependent sampling function τ satisfying the stability
condition (4) from Proposition 1 that maximizes the
sampling time τ(x) for all x ∈ R

n.

One can see in that formulation that the Lyapunov func-
tion is supposed to be given, which makes us wonder if
there is a clever way to choose it. Since the objective is to
sample as few times as possible, one will also want to make
sure the minimal sampling interval is as big as possible by
solving the following problem:

Problem 2: Given system (1) and the state feedback
control (2), find a Lyapunov function V (x(t)) such that
there exists a sampling function τ satisfying the stability
condition (4) from Proposition 1 and maximizing the
minimal sampling time τ = infx∈Rn τ(x).

3. A GENERIC STABILITY PROPERTY

The goal of this section is to provide checkable stability
conditions from Proposition 1. For that purpose, we prove
the following Lemma that will be used as a stability
condition basis throughout the whole here reported work:

Lemma 2. Given a scalar α > 0, if there exist a matrix
P = PT ≻ 0 ∈ Mn(R) and a bounded function τ : Rn →
R+ such that for all x ∈ R

n and σ ∈ [0; τ(x)]:

xTΦP,α(σ)x ≤ 0, (5)

with

ΦP,α(σ) =
(

Λ(σ)
I

)T
(

A
T
P + PA+ 2αP −PBK

−K
T
B

T
P 0

)

(

Λ(σ)
I

)

(6)
and

Λ(σ) = I +

∫ σ

0

esAds(A −BK), (7)

then the origin of system (1) (2) is globally α-stable for
any time varying sampling function τ̃ : R+ × R

n → R+

that defines sampling instant sequences by the sampling
law tk+1 = tk + τ̃ (tk, x(tk)), k ∈ N and which satisfies
0 < τ̃ (t, x) ≤ τ(x) for all t ∈ R+ and x ∈ R

n.

Proof: Let α > 0 be given. Let P = PT ≻ 0 ∈ Mn(R)
and V (x) = xTPx the associated quadratic function.
For the studied system, the stability condition (4) from
Proposition 1 can be written as: for all k ∈ N, for all
t ∈ [tk; tk+1),
(

x(t)
x(tk)

)T (

ATP + PA+ 2αP −PBK

−KTBTP 0

)(

x(t)
x(tk)

)

≤ 0.

Let us then take a bounded function τ : Rn → R+ and a
sampling function τ̃ : R+×R

n → R+ that defines sampling
instant sequences from the sampling law tk+1 = tk +
τ̃ (tk, x(tk)), k ∈ N and which satisfies 0 < τ̃ (t, x) ≤ τ(x)
for all t ∈ R+ and x ∈ R

n. For a given trajectory of (1),
k ∈ N, and for t ∈ [tk; tk+1), when using the notations
x = x(tk) and σ = t − tk ≤ τ̃ (tk, x(tk)) ≤ τ(x(tk)), one
can write x(t) = Λ(σ)x, with Λ(σ) defined in (7), so that
the stability conditions can be rewritten as: for all x ∈ R

n,
for all σ ∈ [0; τ(x)], xTΦP,α(σ)x ≤ 0, with ΦP,α(σ) defined
in (6). This ends the proof. 2

Remark 1: Since the LTI system (1) is supposed to
be asymptotically stable with u(t) = −Kx(t), one can



show that there always exist a couple of parameters α,
P satisfying ΦP,α(0) = (A − BK)TP + P (A − BK) +
2αP ≺ 0 and that, for such parameters, we can find
sampling functions τ satisfying the stability conditions of
Lemma 2 that are lower-bounded by a strictly positive
scalar, hence avoiding any Zeno phenomenon issue.

Remark 2: This lemma also says that if a state depen-
dent function τ : Rn → R+ satisfies the conditions from
Lemma 2, with given P and α, then any time varying
sampling law τk = tk+1 − tk satisfying at each sampling
instant 0 < τk ≤ τ(x(tk)) will make the system origin
globally α-stable. In particular, if τ is a constant function,
τ(x) = τ∗, ∀x ∈ R

n, the system origin will be globally
α-stable for any varying sampling interval bounded by τ∗.

Remark 3: For any given state x 6= 0, the stability
conditions from Lemma 2 are the same for any state
y = λx, λ ∈ R

∗. Therefore it is sufficient to work with ho-
mogeneous state dependent sampling functions of degree 0
(i.e. satisfying τ(λx) = τ(x) for all x ∈ R

n, λ ∈ R
∗) and to

check Lemma 2 stability conditions on the n-dimensional
sphere when attempting to solve Problem 1.

Lemma 2 gives some preliminary stability conditions for
a state feedback control system with a state dependent
sampling. However, one can see that there is an infinite
number of inequalities to check because of both temporal
and spatial dependencies in the stability conditions.

4. A NUMERICAL METHOD TO DERIVE A FINITE
NUMBER OF STABILITY CONDITIONS

Here a two step tractable methodology is proposed to
derive a finite number of stability conditions from Lemma
2:
Convex embedding according to time: The matrix function
ΦP,α is replaced by a finite number of constant matrices
whose convex hull embed this matrix: for this, a Taylor
expansion of ΦP,α is used.
Space discretization: Finally, the state space is divided into
conic regions in order to design a state dependent sampling
period such that Lemma 2 holds.

A finite number of LMI stability conditions will then be
derived so to compute the Lyapunov function V (x) =
xTPx solving Problem 2 and build offline (once for all)
the associated state dependent sampling function τ solving
Problem 1.

4.1 Convex embedding - Technical result

In this part, the objective is to obtain a finite number of
sufficient conditions to satisfy xTΦP,α(σ)x ≤ 0, ∀σ ∈ [0;σ]
for given state x, scalar σ and parameters P , α and τ in
order to get rid of the time dependency of the stability
conditions in Lemma 2.

The idea behind the convex embedding is to use the
knowledge we have of the system to predict the evolution
of the state in order to design a convex polytope around
the function ΦP,α(.) and derive a finite number of stability
conditions on the vertices. The method is proposed as
follows:

Theorem 3. Let scalars α > 0, σ̄ > 0 and integers N ≥ 0,
l ≥ 1 be given.

If there exist a matrix P = PT ≻ 0 ∈ Mn(R) and a
bounded function τ : Rn → R+ satisfying ‖τ‖∞ ≤ σ̄ and
such that for all x in R

n, for all i ∈ {0; · · · ;N} and for

all j ∈ {0; · · · ; ⌊ τ(x)l
σ̄

⌋}, the conditions xTΦi,jx ≤ 0 are
satisfied, with

Φi,j = Φ̂i,j + νI, (8)























Φ̂i,j =

(

i
∑

k=0

Lk,j

( σ̄

l

)k
)

if j < ⌊
τ(x)l

σ̄
⌋,

Φ̂i,j =

(

i
∑

k=0

Lk,j

(

τ(x) −
jσ̄

l

)k
)

otherwise,

(9)















































L0,j = ΠT
3,jΠ1Π3,j −ΠT

3,jΠ2 −ΠT
2 Π3,j ,

L1,j = ΠT
4,j(Π1Π3,j −Π2) + (ΠT

3,jΠ
T
1 −ΠT

2 )Π4,j ,

Lk≥2,j = ΠT
4,j

(Ak−1)T

k!
(Π1Π3,j −Π2)

+ (ΠT
3,jΠ

T
1 −ΠT

2 )
Ak−1

k!
Π4,j

+ΠT
4,j

(

k−1
∑

i=1

(Ai−1)T

i!
Π1

Ak−i−1

(k − i)!

)

Π4,j ,

(10)

{

Π1 = ATP + PA+ 2αP , Π2 = PBK,
Π3,j = I +Mj(A−BK), Π4,j = Nj(A−BK),

(11)

Mj =

∫ j σ̄
l

0

eAsds, Nj = AMj + I, (12)

and

ν ≥ max
σ
′

∈ [0;
σ̄

l
]

r ∈ {0; · · · ; l − 1}

(

max
λ∈eig(ΦP,α(σ′+r σ̄

l )−Φ̂P,α,N,r(σ′))
λ

)

,

(13)

with the function Φ̂P,α,N,r defined on [0; σ̄
l
] as

Φ̂P,α,N,r(σ
′) =

N
∑

k=0

Lk,rσ
′k, (14)

then the origin of system (1) is globally exponentially
stable with a decay rate α regarding the control (2) for
any time varying sampling function τ̃ : R+ × R

n → R+

that defines sampling instant sequences by the sampling
law tk+1 = tk + τ̃ (tk, x(tk)), k ∈ N and which satisfies for
all t in R+ and for all x in R

n, 0 < τ̃ (t, x) ≤ τ(x).

The proof, which describes the principle in details, can be
found in the Appendix. Compared to Lemma 2, Theorem
3 reduces the number of α-stability conditions. They
depend on a finite number of matrices Φ̂i,j representing
the vertices of a convex polytope built around a polynomial
approximation of the function ΦP,α(.), and on a scalar ν
which bounds the approximation error. It is possible to
compute an approximation of such a bound ν by using
a gridding. In this theorem, N represents the order of
the polynomial approximation, while l is the number of
polytope subdivisions, as described in the first step of the
proof as well as in Figure 4, in the Appendix.

The number of α-stability conditions to check has been
reduced, but there is still an infinite number of conditions
regarding the state x.



4.2 Main result

Remember that when trying to solve Problem 1, it is suffi-
cient to work with homogeneous state dependent sampling
functions of degree 0 (see Remark 3). Therefore, in order
to derive a finite number of conditions, one will want to
divide the state space into a finite number of subspaces
Rs defined by conics centered on the origin and try to find
for each subspace its maximum allowable sampling time
τs, as shown for a 2 dimensional system in Figure 1. For
higher dimensions, one can use the generalized spherical
coordinates in R

n, each regionRs being associated to some
range of the (n− 1) angular coordinates θi: θi ∈ [θ−i,s, θ

+
i,s].

Fig. 1. Dividing the space into conic subspaces

The following theorem gives a finite number of conditions
to solve this problem.

Theorem 4. Let a matrix P = PT ≻ 0 ∈ Mn(R), scalars
α > 0 and σ̄ > 0 and integers N ≥ 0 and l ≥ 1 be given.
Let us divide the state space into a partition of q conic
subspaces Rs, s ∈ {1; · · · ; q}, defined for all s ∈ {1; · · · ; q}
as Rs = {x ∈ R

n, xTQsx ≥ 0}, with Qs = QT
s ∈ Mn(R),

and let us define sampling times for these subspaces,
τ1, · · · , τq, satisfying τs ≤ σ̄ for all s ∈ {1; · · · ; q}, and
a bounded function τ : Rn → R+ satisfying τ(x) = τs for
all x ∈ Rs, s ∈ {1; · · · ; q}.
If there exist scalars εs,i,j ≥ 0, for s ∈ {1; · · · ; q},

i ∈ {0; · · · ;N} and j ∈ {0; · · · ; ⌊ τsl
σ̄
⌋}, such that the

LMI conditions Φi,j,s + εs,i,jQs � 0 are satisfied for all

i ∈ {0; · · · ;N}, s ∈ {1; · · · ; q} and j ∈ {0; · · · ; ⌊ τsl
σ̄
⌋},

with
Φi,j,s = Φ̂i,j,s + νI, (15)























Φ̂i,j,s =

(

i
∑

k=0

Lk,j

( σ̄

l

)k
)

if j < ⌊
τsl

σ̄
⌋,

Φ̂i,j,s =

(

i
∑

k=0

Lk,j

(

τs −
jσ̄

l

)k
)

otherwise,

(16)

with the Lk,j and ν defined by the equations (10) to (14),
then the origin of system (1) is globally α-stable regarding
control (2) for any time varying sampling function τ̃ : R+×
R

n → R+ that defines sampling instant sequences by the
sampling law tk+1 = tk + τ̃ (tk, x(tk)), k ∈ N and which
satisfies 0 < τ̃ (t, x) ≤ τ(x) for all t ∈ R+ and x ∈ R

n.

Proof: Let x be in R
n. There exists a subspace Rs =

{x ∈ R
n, xTQsx ≥ 0}, s ∈ {1; · · · ; q}, Qs = QT

s , such that
x ∈ Rs and τ(x) = τs. Using the lossless version of the
S-procedure, one can see that for any i ∈ {0; · · · ;N} and
any j ∈ {0; · · · ; ⌊ τsl

σ̄
⌋} the condition xTΦi,j,sx ≤ 0, x ∈ Rs

is satisfied if and only if there exists a scalar εs,i,j ≥ 0 such
that Φi,j,s+εs,i,jQs � 0. As a consequence, if the condition
Φi,j,s + εs,i,jQs � 0 is satisfied for all i ∈ {0; · · · ;N}, for

all s ∈ {1; · · · ; q} and for all j ∈ {0; · · · ; ⌊ τsl
σ̄
⌋}, then the

stability conditions from Theorem 3 are satisfied for any
x ∈ R

n, which ends the proof. 2

Corollary 5. Let scalars α > 0 and σ̄ > 0 and integers
N ≥ 0 and l ≥ 1 be given. Let us define a sampling time
τ∗ ≤ σ̄ for the whole state space: the sampling function
τ : Rn → R+ satisfies τ(x) = τ∗ for all x ∈ R

n.
If there exist a matrix P = PT ≻ 0 ∈ Mn(R) such that the
LMI conditions Φi,j � 0 are satisfied for all i ∈ {0; · · · ;N}

and j ∈ {0; · · · ; ⌊ τ∗l
σ̄
⌋}, with Φi,j defined by the equations

(8) to (14), then the origin of system (1) with control (2) is
globally α-stable for any time varying sampling bounded
by τ∗.

Proof: This comes naturally from Theorem 4 when
working with a single subspace: Rn itself. 2

4.3 General algorithm

Theorem 4 and Corollary 5 are solutions to Problem 1 and
2 respectively. While Corollary 5 gives a way to compute
the Lyapunov function parameter P maximizing the lower
bound τ∗ of the sampling function τ under the stability
conditions of Proposition 1, Theorem 4 gives a way to
maximize the sampling function on state subspaces for a
given P . A method to apply the proposed technique is the
following:

First, use Corollary 5 with ν = 0 at first to compute
(using a line search algorithm) an approximation τ̃∗ of the
maximal admissible τ∗ as well as the Lyapunov function
parameter P that enables such a bound.

Then, compute the variable ν corresponding to that Lya-
punov function. It is possible, though not needed, to
compute the real lower bound τ∗ verifying the stability
conditions of Corollary 5 using the calculated P and ν.

Finally, divide the state space into a partition of q conic
subspaces Rs, s ∈ {1; · · · ; q} and use the LMI conditions
from Theorem 4 with the computed values of P and ν to
compute the maximal admissible sampling intervals τs for
each subspace Rs (again using a line search algorithm).
The state dependent sampling function τ can then be
defined as τ(x) = τs, for all x ∈ Rs, s ∈ {1, · · · , q}.

5. NUMERICAL EXAMPLE

Consider the standard double integrator:

ẋ(t) =

(

0 1
0 0

)

x(t)−

(

0
1

)

Kx(tk),

K = (2 3) .

After setting the polynomial approximation degree term
N = 5, and the number of polytopic subdivisions l = 100,
we can obtain a mapping of the state space that gives
the maximal allowable sampling time for each state for
a given decay rate α > 0 thanks to Corollary 5 and
Theorem 4. State dependent sampling functions obtained
offline and insuring the exponential stability of the system
origin for different decay rates α are presented Figure 2,



using the spherical coordinate angle of the state, θ. These
state dependent sampling functions were obtained using
the partition of the state space shown in Figure 1 with a
number of q = 1000 conic subspaces (which explains this
impression of having smooth curves).
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Fig. 2. Example 1: State-angle dependent sampling func-
tion τ for different decay rates α.

Note that for constant samplings greater than Tmax =
0.67s the discrete time model is not Schur anymore, so
the system becomes unstable. However we can see that
with the proposed technique, for some subspaces of the
state space we can go beyond that limit Tmax.

Figure 3 shows simulation results with α = 0 and a random
initial state. It first shows the sampling intervals (in blue),
with the lower bound (in red) of the offline computed state
dependent sampling function, and the ”Schur limit” Tmax

(in magenta), before showing the decreasing Lyapunov
function, and the control input.
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Fig. 3. Example 1: Inter-execution times τ(x(tk)), Lya-
punov function V (x) = xTPx evolution, and control
input u(t) for a decay rate α = 0.

6. CONCLUSION

We have introduced a method based on Lyapunov stability
conditions to design a state-dependent sampling function
τ that insures global exponential stability with a chosen
decay rate α for linear state feedback control systems. It
presents two main advantages.

The first advantage of the method is that it makes it
possible to maximize the minimal sampling time τ∗ of the

state dependent sampling function τ and to compute the
associated quadratic Lyapunov function.

The second advantage is that the method makes it possible
to compute offline a mapping of the state space with
a maximum allowable sampling time for each subspace.
The online number of computations are then reduced to
the minimum since at each sampling instant tk one only
needs to compute the spherical coordinates of the state
x(tk), check and memorize the offline computed associated
sampling time τ(x(tk)) and compute the control input
u(t) = −Kx(tk).

Extensions to perturbed, delayed, and nonlinear systems
are currently being studied.

7. APPENDIX

Proof of Theorem 3: In order to prove Theorem 3, we
first need to introduce two important lemmas.

Lemma 6. (From Hetel et al. [2007]) Consider the matrix
polynomial function

L(σ) = L0 + L1σ + · · ·+ LNσN

such that the variable σ is positive bounded: 0 < σ < σ.
Then we can find a convex polytope formed by N + 1
vertices which envelopes the matrix polynomial function
L(σ), i.e. there exists an indexed family µi(σ) > 0, i =

0..N , verifying

N
∑

i=1

µi(σ) = 1, and such that

L(σ) =

N
∑

i=1

µi(σ)Ui

where the matrices Ui represent the vertices of the poly-
tope and are given for all i = 0..N by

Ui =

i
∑

k=0

σkLk.

Lemma 7. Consider a state x ∈ R
n, scalars σ̄ > 0,

0 < σ ≤ σ̄, integers N ≥ 0, l ≥ 1, and parameters α > 0,
P = PT ≻ 0 ∈ Mn(R). If the conditions xTΦi,jx ≤ 0

are satisfied for all i ∈ {0; · · · ;N} and j ∈ {0; · · · ; ⌊
σl

σ̄
⌋},

with Φi,j defined by the equations (8) to (14) (with σ
replacing τ(x) in the equations), then for all σ ∈ [0;σ],
xTΦP,α(σ)x ≤ 0, with ΦP,α(σ) defined in (6).

Proof of Lemma 7: Let x ∈ R
n, σ̄ > 0, 0 < σ ≤ σ̄,

N ≥ 0, l ≥ 1, P = PT ≻ 0 ∈ Mn(R) and α > 0. The
proof of the Lemma is divided into 4 steps.

(1) First, we divide the time interval [0; σ̄] into l sub-
divisions and take a time σ ≤ σ into one of these
subdivisions. The aim of this step is to prepare the
field to compute a precise estimation of ΦP,α(.) by
building up to l small convex embeddings around it
instead of building one big one (see Figure 4).

(2) Then, we compute a polynomial approximation of
ΦP,α(.) for the chosen time interval subdivision.

(3) Afterwards, we bound the error term from this poly-
nomial approximation with a constant term.

(4) Finally, we build a convex polytope around the poly-
nomial approximation, using the method proposed
in Hetel et al. [2007] (see Lemma 6), to obtain the
desired sufficient finite number of conditions.



Fig. 4. Building polytope subdivisions (here with l = 6)

Step 1: Let us divide the time interval [0; σ̄] into l
subdivisions [j σ̄

l
; (j + 1) σ̄

l
], with j ∈ {0; · · · ; l − 1}. Let

σ ∈ [0;σ]. There exists j ∈ {0; · · · ; ⌊
σl

σ̄
⌋} such that

j σ̄
l

≤ σ ≤ (j + 1) σ̄
l
. Let us then define σ′ = σ − j σ̄

l

(σ′ ∈ [0;χ], with χ = σ̄
l
if j < ⌊

σl

σ̄
⌋, and χ = σ − jσ̄

l
otherwise).

Step 2: In order to have lighter equations, let us define
Π1 = ATP + PA+ 2αP and Π2 = PBK. From equations
(6) and (7), we deduce that

ΦP,α(σ) = Λ(σ)TΠ1Λ(σ)− ΛT (σ)Π2 −ΠT
2 Λ(σ). (17)

In order to derive a useful expression of Λ(σ) as a function
of σ′, we use the following equation obtained with some
computations:
∫ a+b

0

eAsds =

∫ a

0

eAsds+

∫ b

0

eAsds

(

A

∫ a

0

eAsds+ I

)

,

which is satisfied for any scalars a and b, in order to get

Λ(σ) = I +

(

Mj +

∫ σ′

0

eAsdsNj

)

(A−BK)

= Π3,j +

∫ σ′

0

eAsdsΠ4,j ,

(18)

with Mj =
∫ j σ̄

l

0 eAsds, Nj = AMj + I, Π3,j = I +Mj(A−
BK), and Π4,j = Nj(A−BK). Then, note that

∫ σ′

0

eAsds =

∞
∑

i=1

Ai−1

i!
σ′i. (19)

Combining equations (17), (18) and (19), one can compute

ΦP,α(σ) =

∞
∑

k=0

Lk,jσ
′k, (20)

with the Lk,j defined in (10). It is then possible to express
a polynomial approximation of order N of ΦP,α on the
temporal interval subdivision [j σ̄

l
; (j + 1) σ̄

l
] as

Φ̂P,α,N,j(σ
′) =

N
∑

k=0

Lk,jσ
′k, σ′ ∈ [0;

σ̄

l
].

Step 3: Let us denote the approximation error term
RP,α,N,j(σ

′) = ΦP,α(σ)− Φ̂P,α,N,j(σ
′). If we can compute

a bound with a scalar ν independent of σ′ such that

RP,α,N,j(σ
′) � νI then the condition xT (Φ̂P,α,N,j(σ

′) +
νI)x ≤ 0 will imply that xTΦP,α(σ)x ≤ 0. For a given

σ′, since RP,α,N,j(σ
′) = ΦP,α(σ) − Φ̂P,α,N,j(σ

′) is sym-
metric, then if we denote λσ′ the maximal eigenvalue of

RP,α,N,j(σ
′), we have RP,α,N,j(σ

′) � λσ′I.
As a consequence, we can write RP,α,N,j(σ

′) � νI with ν
a constant defined in (13).

Step 4: Since the function Φ̂P,α,N,j(.) + νI : [0;χ] →
Mn(R) is polynomial, we can use the convex polytope
given in Lemma 6 to prove that if xTΦi,jx ≤ 0 for all

i ∈ {1; · · · ;n}, with Φi,j =
(

∑i

k=0 Lk,jχ
k
)

+ νI, then

xT (Φ̂P,α,N,j(σ
′) + νI)x ≤ 0, and therefore xTΦP,α(σ)x ≤

0, which ends the proof of Lemma 7. 2

The proof of Theorem 3 is obtained by implementing
Lemma 7 conditions to satisfy xTΦP,α(σ)x ≤ 0, ∀σ ∈ [0; σ̄]
in Lemma 2 with σ̄ ≥ ‖τ‖∞ and σ = τ(x), for all
x ∈ R

n. 2
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