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Abstract—We propose a Globally Asynchronous Locally Syn-
chronous language DSystemJ for designing dynamic distributed
systems. DSystemJ, an extension of the reactive asynchronous
SystemJ language, enhances it with dynamic creation and
process mobility, and uses the Java language for programming
sequential data computations. Moreover, DSystemJ is equipped
with a formal semantics, which allows, formal system specifi-
cation, reasoning, and automatic code generation. Compared
to special purpose languages, DSystemJ is better in terms of
implementation, scalability, and features. Compared to general
purpose languages, DSystemJ is better because it exposes, at the
language level, OS features like communication, concurrency,
process creation and migration, therefore making it better
suited for system level design of complex distributed systems.

Keywords-GALS, distributed systems, dynamic process cre-
ation, weak process mobility, Java, DSystemJ.

I. INTRODUCTION

With the availability of high performing processors con-
nected in distributed configurations, the number of applica-
tions with dynamic changes of system structure and configu-
ration is increasing. Some typical examples of such systems
are complex sensor networks capable of dealing with nodes
being attached or detached at runtime, ad-hoc systems like
collaborative gaming and collaborative editing environments,
security surveillance systems, and medical robots, the last
two also being safety critical systems. Programming lan-
guages that can be used to abstractly and easily model,
design, and implement such systems are therefore becoming
essential. The required features of a programming language
to adequately design such dynamic distributed systems are:
dynamic process creation and migration, asynchronous con-
currency, communication, reactions on the events generated
in the environment, fusion of such events along with corre-
sponding data, and, of course, constructs for manipulation of
data structures and abstractions. Additionally, we advocate
that it is important to have a formal semantics, because the
complexity of such systems makes them hard to compile and
difficult to reason about.

The most popular languages of today, like C/C++ and
Java, are not suitable for describing such complex dynam-
ically evolving distributed systems (from here on referred
to as dynamic distributed systems) because these languages
lack the mechanisms to describe even static concurrency
and communication. For example, the Java threading model
is based on the shared memory model of communication,
which is absent in a distributed memory environment. Thus,

a program implemented using Java threads alone would
be unable to meet the needs of programming a dynamic
distributed system. Even in the presence of shared mem-
ory, programming concurrent systems with general purpose
languages is still considered difficult [1]. Moreover, Java
or C/C++ programs are usually run in conjunction with
large runtime libraries [2], [3], [4], which act as the middle-
ware for describing and implementing distributed memory
communication and concurrency. These runtime libraries are
often larger than the programs themselves and thus can be
too large a burden on the resources of a system, especially
in cases such as sensor networks. Besides, library based
approaches (e.g., [4]) are usually not supported by formal
semantics, hence they are unsuitable for designing safety
critical systems.

A number of formal languages and libraries, ULM [5],
JADE [2], ActorFoundry [6], RML [7], CRP [8], Occam [9],
Occam-π [10], and JoCaml [11], have been proposed to
model distributed, dynamic, and possibly even mobile sys-
tems. ActorFoundry and JADE are based on the actor
model of computation, they do not support reactivity, and
being libraries they are not amenable to automated formal
reasoning. Occam, Occam-π, RML, JoCaml, CRP, and ULM
are some of the most promising languages for describing
and implementing dynamic distributed systems. All these
languages have advantages and disadvantages: Occam and
Occam-π both lack the support for abstract data fusion
constructs, essential to ease the development of sensor
network applications. Besides, they lack support for complex
high level data manipulation capabilities. RML supports both
high level data manipulation capabilities, being based on
OCaml [12], and synchronous reactive data fusion constructs
like in Esterel [13], but lacks support for asynchronous
process creation and communication. JoCaml, on the other
hand, encompasses asynchrony but lacks support for pro-
cess migration and synchronous reactivity. ULM supports
asynchronous communication between synchronous islands,
but does not provide a generic communication framework
between these islands. Also, ULM cannot express all pos-
sible reactive programs, as it is based on the SL [14]
synchronous language rather than Esterel [13]. CRP [8]
as opposed to ULM extends the Esterel language with
asynchrony and thus is more expressive compared to ULM,
but CRP lacks support for process mobility and inbuilt sup-
port for complex data transformations. Finally, the approach



in [15] introduces higher-order Esterel synchronous pro-
cesses, which can be instantiated at runtime. This approach
is related to DSystemJ, because of its ability to send and
receive processes as closures, but, unlike our approach, it
neither provides mobility, as the Esterel processes cannot
be moved from one computation node to another (like in
DSystemJ), nor any form of asynchrony. Overall, none of
these languages natively support all the features required
for programming dynamic distributed systems.

SystemJ [16] is a recently introduced language that im-
plements the formal Globally Asynchronous Locally Syn-
chronous (GALS) Model of Computation (MoC). It com-
bines the Esterel style reactivity [13] and the CSP style mes-
sage passing [17], with the Java language to provide pow-
erful and abstract means of implementing complex concur-
rent and reactive systems with high level data-manipulation
constructs. SystemJ targets two contrasting application di-
rections: (1) multi-core single computer platforms by ex-
ploiting parallelism and (2) reactive safety critical systems.
However, SystemJ does not provide any means of exploiting
concurrency in a distributed setting.

In this article, we propose DSystemJ, a conservative
extension of SystemJ, which extends SystemJ with: (1)
the ability to create asynchronous processes called clock-
domains at runtime (dynamic creation), (2) exploitation of
parallelism at both the multi-core and distributed system
levels, (3) the ability to move clock-domains around (weak
process mobility), and (4) a rendezvous implementation
between multiple participants in a distributed setting without
a single point of failure.

The main contributions of this article are: (1) the pre-
sentation of a new reactive GALS language, DSystemJ,
capable of dynamic process creation and mobility in a
distributed setting; (2) the formalization of dynamic process
creation and mobility in presence of reactivity and the
GALS MoC; (3) the implementation and formalization of
communication protocol between processes running in a
distributed setting and in the presence of dynamicity and
mobility; (4) the implementation of an open-source compiler
for DSystemJ; (5) and finally, the implementation of a very
efficient and easily extensible runtime system and a library
for DSystemJ. DSystemJ’s library and runtime system are
written in SystemJ, a formal language itself, making the
complete system amenable to automated formal reasoning
and verification.

The rest of the paper is organized as follows. Section II
presents the DSystemJ syntax and intuitive semantics. Sec-
tion III motivates and introduces the DSystemJ language
via an example. Section IV explains the formal semantics
of the DSystemJ language. Section V shows the compila-
tion and implementation of the language. Section VI gives
some quantitative comparisons, and finally, we present the
conclusions in Section VII.

II. DSYSTEMJ: MODEL OF COMPUTATION, SYNTAX AND

INTUITIVE SEMANTICS

DSystemJ is a conservative extension of SystemJ and
hence it follows the Globally Asynchronous Locally Syn-
chronous (GALS) MoC of the SystemJ language.

A. DSystemJ: Model of Computation

A SystemJ program system consists of a set of
asynchronous concurrent processes called clock-domain(s)
(CD(s)) composed using the >< operator and executing at
unrelated logical clock ticks (from here on referred to as
tick), and synchronizing and communicating with each other
using channels. SystemJ uses CSP [17] style rendezvous for
synchronization and data transfer between CDs. Each CD
itself consists of one or more processes, called reactions,
executing in lockstep, defined by the CD’s tick, representing
a logical clock at which the CD executes. The reactions
are combined and controlled using the synchronous parallel
operator (||). Reactions within the same CD communicate
using the synchronous broadcast mechanism over signals.
Finally, a SystemJ program interacts with its environment
through a set of input and output signals and operations
on these signals. Every CD samples inputs from the en-
vironment, reacts to these inputs instantaneously (perfect
synchrony hypothesis [13]) and produces the outputs back
to the environment, thereby implementing a state machine.
The synchronous statements, reactions, and operations on
signals, and asynchronous statements, CDs, and channels,
are together responsible for the control-flow of SystemJ
programs. The data-driven computations and transformations
are written in Java.

A DSystemJ program extends this with the ability to fork
new CDs dynamically at runtime (dynamic process creation)
and passing CDs over channels (weak process mobility).

B. DSystemJ: Syntax

DSystemJ combines features from Esterel [13], CSP [17],
and π-calculus [18] with the Java programming language.
Tables I and II show the SystemJ and DSystemJ kernel
statements and their meanings. A more detailed explanation
of these constructs is presented later in the sub-sections.

Signals are the most basic means of communication
in a DSystemJ program; they have a status and possibly
a value. Signals can be either local or interface signals.
Interface signals are qualified with either the input or the
output keywords and are used for communication with the
environment, while local signals are used for communication
between concurrent reactions within a single CD. A signal
emission broadcasts the signal throughout its CD, making

Table I: The SystemJ kernel statements and their meaning

Kernel Statements Meaning

[input] [output] [type] signal S declare signal S

emit S [(value)] broadcast signal S

present (S) {p} else {q} do p if S is present, else do q

abort (S) {p} preempt program p if S is

present

suspend (S){p} suspend p if S is present

trap (T){p. . . exit T. . .} preempt p if exit is executed

p||q run p and q in lock-step

p><q run p and q asynchronously

send C([value]) send a value through C, block-

ing send

receive C() receive a value through C,

blocking receive

pause finish a tick and communicate

with environment



it instantaneously visible to all the reactions running in
lock-step within that CD. The emission of an output

signal makes it visible to the environment too. A signal
emission can be pure or include a value, which can be of any
Java data type. The present instruction is used to check
the presence of a signal, while the abort and suspend

instructions are used for preemption. The trap and exit

statements together implement user defined preemptions, as
opposed to environment based ones through signals (abort,
suspend).

Table II: New syntactic constructs in DSystemJ.

Syntactic constructs Interpretation

unique-name -> cd() pointer to a named CD cd

unique-name -> {. . .} pointer to an unnamed CD

given between {}
run unique-name ([args]) run a new instance of a CD

send channel-name (unique-name) send the code of a CD

receive channel-name receive the code of a CD

run #channel-name ([args]) run a new instance of the

received CD code

[input] [output] [type] channel

channel-name

declare a new channel

C. DSystemJ: Intuitive Semantics

In this section, we describe the intuitive semantics of the
DSystemJ syntactic constructs presented in Table II.

1) The unique-name -> cd() and unique-name -> {}
constructs: The -> construct acts as the pointer to named
or unnamed CDs, as shown in Listing 4 (lines 7-13). The
-> delimited names (“unique-name”) can then be used to
fork or send the CD code via channels. These unique-names
have a global scope in the system, i.e., they are visible to
all the reactions and other CDs including themselves. The
-> operator can also create a closure, similar to functional
programming languages. For example, in Listing 4 (lines 7
and 9), cam1 and cam2 enclose the signals a, c, and b,
d, respectively. Every closure keeps a separate copy of the
enclosed variables, which can also include reactive objects
like signals. These enclosed variables are not shared amongst
the closures. Finally, the -> operator can be applied to the
same named CD but with different arguments (Listing 4,
lines 7 and 9).

2) The run unique-name ([args]) and run #channel-
name([args]) constructs: The run construct is used to
dynamically fork CDs. The version “run unique-name
([args])” forks a CD already present within the system,
while the version “run #channel-name ([args])” forks a
CD received via the channel “channel-name”. The run

statement performs a rendezvous with the runtime system,
asking it to fork the required CD. The run statement takes
a finite but unbounded number of ticks (i.e., the number
of ticks cannot be determined statically) to succeed, “tick”
being the logical tick of the CD that invokes the run

statement. Any CD forked via the run statement starts from
its initial state, i.e., the running state of a CD cannot be
saved and, hence, DSystemJ only allows weak mobility. For
the same reason, a top-level CD can be migrated but it has
to restart from its initial state.
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output signal S;
R -> {
//fork itself and move to the next statement
//once the rendezvous with runtime is complete.
run R();
//emit S forever.
while(true) {emit S; pause;}

}

The figure above shows one possible outcome of running
the sample code above: CD R forks itself. Multiple instances
of CD R run at the same time, each emitting the signal S
forever. These are different instances of S since S is enclosed
by R. As one can see from this example, DSystemJ unlike
SystemJ and other reactive languages, like Esterel, does not
guarantee bounded time and memory consumption, which is
expected since it is dynamic.

3) The send channel-name (unique-name) and
receive channel-name constructs: The send statement
in DSystemJ is similar to the send statement in SystemJ.
It performs a rendezvous with the receive statement
on the same channel-name. In SystemJ the send and
receive statements can pass any Java object. DSystemJ
provides the syntactic sugar of being able to pass the CD
unique-name itself, rather than manually constructing a Java
object containing the marshalled CD code, to implement
weak CD mobility.

The major difference between DSystemJ and SystemJ ren-
dezvous communication stems from the fact that DSystemJ
rendezvous communication is not point-to-point (linear).
DSystemJ allows one to many (single sender multiple re-
ceivers), many to one (multiple senders single receiver) and
many to many (multiple senders and receivers) rendezvous
between multiple participants. See Listing 1.

Listing 1: An example of non-linear channel communication
in DSystemJ

1 // Example of Many to One non−linear channel communication on channel M.
2 // Note that >< is the asynchronous composition operator from SystemJ.
3
4 // CD P running on machine 1 sends itself via channel C.
5 // In parallel, it also sends values via channel M.
6 P −> {{send C(P);} || { while(true) send M(4);}}
7 ><
8 // CD Q running on machine 2 gets the value via channel M.
9 Q −> {while(true) receive M;}

10 ><
11 // CD R running on machine 3 forks CD P obtained via channel C
12 // and finishes itself. But, now CD P runs on machine 3 as well,
13 // blocking on channel C and also sending values on channel M.
14 R −>{receive C; run #C();}

In the multi-participant case, the DSystemJ runtime non-
deterministically chooses a parter to rendezvous with, sim-
ilar to the select statement in ADA [19]. This raises
fairness issues as it is possible to introduce starvation in
a system in presence of multi-participant rendezvous. For
example, in Listing 1 the receive statement might always



choose to rendezvous with the send on machine 1, thereby
starving the CD on machine 3.

The DSystemJ compiler is able to partially detect dead-
locks/starvation in presence of multi-participant rendezvous
at compile time. The deadlock detection algorithm is based
on the SystemJ deadlock detection algorithm described
in [20]. As DSystemJ is targeted towards dynamic dis-
tributed systems with the goal of no single point of failure,
there is no single entity in the system with the complete
knowledge of the system at runtime. As a result, DSystemJ
does not guarantee process fairness. Instead, the developer is
advised to use separate channels by creating them at runtime
using the channel construct. To avoid such problems,
DSystemJ might allow, in the future, multiple communica-
tion alternatives, such as rendezvous in a distributed envi-
ronment and join calculus based communication in a single
subnet or a single machine. The join calculus allows the
combination of multiple sent and received values by using
combinator function [21]. This approach is practical in a
small subnet or single machine implementations, where data
delivery time between senders and receivers can be bounded.
The implementation details of the DSystemJ rendezvous are
described in [22].

III. A COMPLETE DSYSTEMJ EXAMPLE

In this section we show a complex security surveillance
system modelled and implemented in DSystemJ. This sys-
tem is used as a running example throughout the article to
familiarise the reader with the language features.
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Figure 1: Pictorial representation of Listing 2

Listings 2, 3, and 4 show parts of a security surveillance
system, for which Figure 1 shows a pictorial view. This
system consists of multiple sensors (different types of cam-
eras) that are used to track people in an indoor environment.
This example features asynchronous concurrency, commu-
nication, dynamic asynchronous process creation, reactivity,
and CD (clock-domain) mobility. The system consists of
IP enabled cameras, which act as sensors for tracking.
Listings 2, 3, and 4 show an abstract representation of the
main components of the DSystemJ program implementing
the surveillance system.

Listing 2: The DSystemJ code that runs on machine avedon

1 // Import the required classes from the DSystemJ library.
2 import org.systemj.dynamic.util.Helper;
3 import org.systemj.dynamic.interfaces.SignalArgs;

4 // This reaction listens to the environment and forks CD as required.
5 reaction listenAndfork(:output channel boolean ask,
6 input channel Object reply){
7 // Wait for a signal for two different type of cameras
8 while(true){
9 // If we get a cam1 signal from environment

10 present(cam1){
11 // Check if this CD is registered with the runtime.
12 // ‘‘controller’’ is the name of the DSystemJ program.
13 if(Helper.exists(‘‘controller.cam1’’)
14 // Run it using the default arguments cached in the runtime system.
15 run cam1();
16 else{
17 // Ask for this CD.
18 send ask(‘‘controller.cam1’’);
19 // Receive a reply with the CD in it.
20 receive reply;
21 // Create the new signal args that will bind the signals
22 // used in cam1 CD to the physical layer.
23 SignalArgs
24 a1 = new SignalArgs(‘‘a’’,‘‘44569’’,‘‘avedon’’
25 ‘‘org.systemj.dynamic.Communication.TCPClient’’, ‘‘0’’,
26 ‘‘null’’,‘‘String’’,‘‘0’’),
27 b1 = new SignalArgs(‘‘b’’,‘‘44570’’,‘‘avedon’’,
28 ‘‘org.systemj.dynamic.Communication.TCPServer’’, ‘‘200’’,
29 ‘‘null’’,‘‘int’’,‘‘0’’);
30 ArrayList list = new ArrayList();list.add(a1); list.add(b1);
31 // Run the received CD passing it the new args.
32 run #reply(list);
33 }
34 }
35 else present(cam2){//Same for cam2}
36 }
37 }

Listing 3: The DSystemJ code that runs on machine strange-
love

1 // The generic camera controller present on strange−love
2 reaction camControl(:output signal a,
3 input signal b){//tracking control}
4 // Abstract representation of the CD that replies to the requests
5 // from listenAndfork, running on strange−love.
6 reaction listenAndsend(:output channel Object reply,
7 input channel boolean ask){
8 while(true){
9 receive ask;

10 send reply(cam1);
11 }
12 }

Listing 4: The top-level system

1 system{
2 interface{
3 input signal a,b;output signal c,d;
4 // Some other channel declarations.
5 }
6 {
7 cam1 −> camControl(a,c)
8 ><
9 cam2 −> camControl(b,d)

10 ><
11 listener−> listenAndfork(//channel args)
12 ><
13 sender −> listenAndsend(//channel args)
14 }
15 }

All the listings are well commented for ease of under-
standing. The CD listenAndfork (Listing 2, lines 4-
37) is running on a machine called avedon, while the
other CDs (Listing 3 and 4) are running or present on
another machine called strange-love. Although we run
Listing 4 on strange-love in this case, it could also have
been run on avedon, since it is the top-level system and
is not bound to a specific machine. The top-level system
instantiates the CDs that are then bound to the machines (as
shown in Figure 1) using an XML architecture description
(see [22] due to lack of space).



A CD is considered to be present on a machine
if it is registered with the runtime system on this
machine. Accordingly, a CD is said to be registered
with the runtime system if the fully qualified name
(name_of_systemj_file.name_of_CD) is known by
the runtime. At start-up, allocation and distribution of the
CDs on different machines is done by the DSystemJ runtime
system, where the system is described using XML [22]. The
listenAndfork CD listens to incoming signals and forks
camera controllers accordingly. If the camera controller that
needs to be forked is already registered with the runtime (the
registration is carried out implicitly via the run statement)
the camera controller is forked internally using a rendezvous
with the runtime. If the required CD is not registered with
the runtime system then the listenAndfork CD asks
for the required camera controller CD code via the channels
ask and reply (Listing 2 lines 18, 20). Once the required
camera controller CD code is received, it forks this CD,
passing the appropriate arguments to the camera controller
(Listing 2 line 32). The # operator retrieves the value from
the channel.

In Figure 1, the dotted arrows show the channels, while
the rigid arrows show the signals. Similarly, the dotted
ellipses show the instances of the CDs forked using the run
statement, while the rigid ellipses show the CDs running
at startup or present in the system but not instantiated.
Furthermore, the fork, fork_ok, ask_for_CDs, and
reply_with_ CD_objects channels shown in Figure 1
are the internal rendezvous channels used to instantiate new
CDs via the run statement and to obtain Java objects
encapsulating the marshalled CD code ready to be sent via
channels, respectively.

As can be seen from Listings 2, 3, and 4, DSystemJ
provides very abstract means for describing code mobility
via channels and rendezvous. The system’s topology and
physical configuration are also represented within the lan-
guage (e.g., Listing 2, lines 23-29).

Compared to Java alone, asynchronous concurrency, com-
munication between CDs, dynamic creation of CDs, and data
encapsulation can be described very easily and abstractly
in DSystemJ. For example, the developer does not need to
delve into the low level details of mutual exclusion like in
Java. Similarly, the locality of each asynchronous CD can
be abstracted out when communicating via channels, unlike
in Java, where the designer needs to deal with socket or
Remote Method Invocation (RMI) calls explicitly. Overall,
DSystemJ is a very abstract programming language with a
runtime support for designing complex distributed systems
that evolve in their life time.

IV. FORMAL SEMANTICS

This section presents the formal semantics and the MoC
of DSystemJ. Both are described in terms of SystemJ MoC
and micro-step semantics, so we describe these two first in
Section IV-A. These micro-step semantics can be used to
construct the macro-step semantics of compiled DSystemJ
programs. The macro-step operational semantics are essen-
tial for formal reasoning and Worst Case Reaction Time
(WCRT) analysis of DSystemJ programs.

A. Semantics of SystemJ

All of SystemJ’s constructs utilize a structural translation
scheme. We use one or more semantical rule(s) to rewrite the
reactive control and Java data statements. Such a translation
scheme helps us obtain a direct intermediate representation
of the program from which back-end code can be efficiently
generated. The semantical rewrite rules presented are very
fine grained, being targeted towards compiler construction,
and thus, we also call them micro-step kernel semantics.

Let p be a SystemJ kernel statement, we write,

term(p), data
k,e

−−−→
E,Ec

term′(p), data′ (1)

where term(p) and term′(p) represent the antecedent
and consequent states of p respectively, during a micro-
step transition. Term e represents the signals that are emitted
during the transition, and if none are emitted then it takes
the value of ⊥. Term data represents the value stores
attached to the statement p before transition and data′ after
the transition. Term k represents the termination code. It
has a value of ⊥, i.e., unknown, if p does not generate
a termination code after this transition, else, an integer
value within [0,∞]. A termination code of 0 represents the
completion of reaction; 1 represents the completion of a
single tick; a value in the interval [2,∞) is reserved for
preemptions based on trap/exit constructs; and finally
∞ represents an unresolved signal dependency.

Input event E is the status of all the signals used in p, but
declared somewhere else. Ec is the status of all the channel
ports used in p but declared somewhere else. For n number
of channels, there are 2∗n number of input and output ports,
corresponding to the receiving and sending ends, respec-
tively. Thus, the cardinality of set Ec is 3∗2∗n. For a channel
C, Ec = {{Cws, Cwr, Cps}, {Crs, Crr, Cpr}}. Here, the
set’s elements represent the output and input channel port
statuses. In the transition rules, for brevity, we use the array
indexing notation to refer to the channel and signal statuses:
E[Cws] represents the output channel port’s write-sent status
ws, i.e., Cws ∈ Ec, while wr and ps are the write-
received and preemption statuses, respectively. Similarly for
the input channel port, rs, rr, and pr, represent the read-
sent, read-received, and preemption statuses, respectively.
These statuses are used to carry out a full handshake when
communicating via channels.

A statement p is also said to be selected iff a pause is hit
during the execution of statement p. A selected statement is
further decorated with a hat, e.g., p̂. We use the notation
p̄ to indicate that the selected state for term p is currently
unknown. Also, a p̈ indicates that the position of the current
control point over p is unknown. We refer the reader to [23]
for full definitions of p̂, p̄, and p̈.

The example below shows the micro-step semantics of
pause execution. The • represents the control point move-
ment in the SystemJ program code. When a pause is hit
for the first time (also called the start rule) the statement
gets selected and the program ends with a termination code
of 1. In the next instant (also called the resumption rule)
the selected statement continues further and completes exe-
cution (termination code 0). The selection status is upward-



propagative. Thus, any statement enclosing a pause is
considered selected if the enclosed pause itself is currently
selected. In the rules below, data stores have been omitted
since we are dealing with a pure control statement:

•pause
1,⊥
−−→
E

p̂ause • p̂ause
0,⊥
−−→
E

pause

In our operational semantics, the control point (•) is con-
sidered as a part of the semantic rules, i.e., a construct is
considered enabled for execution iff it is decorated with
a •, else the construct cannot be executed. Consequently, as
opposed to the more traditional way of rewriting a construct
into a nothing (or empty) statement upon the completion of
its execution, we represent this behavior with the control
point movement. Our representation, as opposed to the
more traditional approach, is borrowed from the operational
semantics of Esterel [23]. There are a number of other
rewrite rules associated with reactive constructs of SystemJ,
which are out of the scope of this article (see [16], [24] for
the complete set of rewrite rules).

A CD’s execution is represented with a macro-step →֒,
which is defined as a sequence of micro-steps:

→֒ := {→,→, , , }

where → are the micro-steps of the DSystemJ constructs
encapsulated within the CD. The macro-step transition rule
for a SystemJ program is expressed in terms of the macro-
step transition of individual CDs. The macro-step transition
for a SystemJ program is:

•s̄1
es1 ,ks1

→֒
Es1

,Ecs1

¨̄s1, •s̄2
es2 ,ks2

→֒
Es2

,Ecs2

¨̄s2 . . . •s̄m
esm ,ksm

→֒
Esm ,Ecsm

¨̄sm,

(2)

where, sm is some CD and Esm , Ecsm , esm , and ksm are
the signal sensitivity set, channel status sensitivity set, output
signal set, and termination code for CD sm, respectively.

B. Semantics of DSystemJ

Before describing the micro-step rewrite rules for all
DSystemJ syntactic constructs, we first present the equiv-
alence between the DSystemJ MoC and SystemJ MoC, i.e.,
we define the DSystemJ program in terms of a static SystemJ
program.

1) DSystemJ Formal MoC:: DSystemJ program is equiv-
alent to a SystemJ program if it has the same number of
executing CDs, (m = n) and for every CD dm in the
DSystemJ program there exists a CD sn in the SystemJ
program, which, when given an input signal set, results
in an equivalent macro-step transition and produces the
same output signal set. We define equivalence over a tick
only. This is because a DSystemJ program may diverge in
its behaviour over an execution trace due to its ability to
dynamically instantiate new CDs at runtime.

2) Rewrite rules for DSystemJ syntactic constructs:: We
now describe the rewrite rules of the DSystemJ constructs
presented in Table II.

The -> construct: The -> construct completes instan-
taneously with an exit code of 0 like any other instantaneous

statement in SystemJ.

•unique-name → {}
0,⊥

−−−→
E,Ec

unique-name → {}

(3a)

•unique-name → cd
0,⊥

−−−→
E,Ec

unique-name → cd

(3b)
The run construct: The run statement does not have

a single micro-step rule. Instead, every run statement is re-
written into send and receive statements to perform a
rendezvous with the runtime system.

Consider an executor CD p running concurrently and
asynchronously with the CD q, where p is:
receive C; m

m being the program code of some other CD CD and C

being a unique named point-to-point channel between p and
q respectively. As a result, a program q:
run CD(args); emit S

can be rewritten as:
send C(args); emit S;

The programs p and q take a transition τ , which is the
macro-step rendezvous transition on channel C and the state
change results in p transforming into m, while q transforms
into emit S. The result is a system where the CD CD (m)
runs in asynchronous parallel with the forking CD q after
an extra transition τ . This is the required behaviour of the
run statement.

Informally, the semantics of the run statement assumes
that every possible CD in the DSystemJ program is running
but blocked on a receive channel-name statement,
waiting for a successful rendezvous on the unique name
“channel-name” before proceeding further with CD program
code. The run statement in turn performs a rendezvous with
one of these CDs. Note that every run statement requires a
fresh channel name.

The send and receive constructs: DSystemJ’s
send and receive constructs implement CSP [17] style
message passing. The difference with SystemJ is that we
introduce the non-deterministic choice operator �, which
chooses a rendezvous partner in case of a non-linear ren-
dezvous with multiple participants (see Section II-C3). This
is similar to select statement in ADA [19].

Ecp [Cps] = Ecq [Cpr], Ecq [Crr] > Ecq [Crs], Ecr [Cps] = Ecq [Cpr]

{•p̂, data� • r̂, data
0,⊥
→֒

E,Ec
p, data′ • r̂, data}, {•q̂, data

0,⊥
→֒

E,Ec
q, data′}

(4a)
Ecp [Cps] = Ecq [Cpr], Ecq [Crr] > Ecq [Crs], Ecr [Cps] = Ecq [Cpr]

{•p̂, data� • r̂, data
0,⊥
→֒

E,Ec
r, data′ • p̂, data}, {•q̂, data

0,⊥
→֒

E,Ec
q, data′}

(4b)

Rules (4a) and (4b) show the macro-step rendezvous
transition, when the rendezvous conditions are fulfilled, for
two senders and a single receiver. The rules are read as
follows: provided that no CDs are preempted, that Ecp [Cps]
is equivalent to Ecq [Cpr], and Ecr [Cps], and the receiving
CD q is ready to rendezvous, (shown by Ecq [Crr] >
Ecq [Crs]), then the rendezvous takes place by making a
non-deterministic choice between either of the sending CDs.
The � operator internally and non-deterministically chooses



one of the sending CDs p (Rule (4a)) or r (Rule (4b)) to
rendezvous with the receiving CD q. The other CD blocks
waiting for an acknowledgement from the receiver. The rr
port status is updated at the start of every tick by sampling
the ws statuses of the sending CDs.

The rendezvous transition Rules (4a)–(4b) are valid only
in the absence of strong preemptions, possible due to con-
structs such as an abort. DSystemJ’s strong preemption
in presence of rendezvous is similar to that of SystemJ’s,
except, a preemption can occur even before choosing a
partner in case of multi-participant rendezvous.

Ecp [Cpr] 6= Ecq [Cps], Ecr [Cpr] 6= Ecq [Cps]

{ ¨̄p
⊥,⊥
→

E,Ec

¨̄p}, {¨̄r
⊥,⊥
→

E,Ec

¨̄r}, {•q̄
1,⊥
→

E,Ec

˙̄q}
(5a)

Ecp [Cpr] = Ecq [Cps], Ecr [Cpr] 6= Ecq [Cps]

{•p̄
0,⊥
→

E,Ec
p}, {¨̄r

⊥,⊥
→

E,Ec

¨̄r}, {•q̄
0,⊥
→

E,Ec
q}

(5b)

Ecp [Cpr] 6= Ecq [Cps], Ecr [Cpr] = Ecq [Cps]

{ ¨̄p
⊥,⊥
→

E,Ec

¨̄p}, {•r̄
0,⊥
→

E,Ec
r}, {•q̄

0,⊥
→

E,Ec
q}

(5c)

Ecp [Cpr] = Ecq [Cps], Ecr [Cpr] = Ecq [Cps]

{•p̄
0,⊥
→

E,Ec
p}, {•r̄

0,⊥
→

E,Ec
r}, {•q̄

0,⊥
→

E,Ec
q}

(5d)

Rules (5a)–(5d) give the preemption rules in case of
a single sender and multiple receivers. If the sender is
preempted then it keeps on broadcasting this request until it
receives at least a single reply (Rules (5a)–(5c)). If all the
receivers get the message and send a reply, then no choice
is made and all the receivers are preempted (Rule (5d)).
Similar preemption rules apply for multiple senders and
single receivers. If the preemption occurs after selection of
a partner then the preemption rules from SystemJ apply.

The channel declaration construct: The DSystemJ
channel declaration construct has the same semantical
rewrite rules as the SystemJ channel declaration statement.
The differences between the two are purely syntactic: in
DSystemJ, the input and output keywords, which define
the input and output ports of the channel, are optional; the
DSystemJ compiler infers the type of ports implicitly. Also,
unlike SystemJ, DSystemJ allows new channel declarations
at runtime. Rule (6a) declares an input channel, while (6b)
declares an output channel.

•channel C p̄, data
⊥,⊥

−−−−−−−→
E,Ec∪Src

channel C[Src ← 0], data
′
• p̄ (6a)

•channel C p̄, data
⊥,⊥

−−−−−−−−→
E,Ec∪Swc

channel C[Swc ← 0], data
′
• p̄ (6b)

C. Reactivity

Informally, a DSystemJ CD is reactive if, for every given
input signal and channel sensitivity sets, there is at least a
single macro-step transition that results in the production
of an output signal set. Note that this output set might be
empty.

Formally, given a DSystemJ CD dm, an input signal
sensitivity set Edm

, and a channel sensitivity set Ecdm
, dm

always takes a transition
edm ,kdm

→֒
Edm ,Ecdm

, where kdm
∈ {0, 1}. The

definition for the reactivity of a SystemJ CD is identical.
Theorem. Every DSystemJ CD is reactive.

Proof sketch. The proof for reactivity of a SystemJ CD is
based on the structural induction on the micro-step rules,
and requires proving that every micro-step transition →,
contained in the macro-step →֒, finishes with a termination
code of k ∈ {0, 1}. The simple but lengthy proof that
a SystemJ CD is reactive is given in [24]. Then, as the
DSystemJ MoC is defined in terms of SystemJ, all DSystemJ
kernel constructs are rewritten into SystemJ constructs (Sec-
tion IV-B2). Thus, by implication, every DSystemJ CD is
reactive.

Rendezvous semantics (Rules (4a)–(5d)) of DSystemJ in
conjunction with those of SystemJ [16] are essential in
maintaining reactivity in the presence of multi-participant
non-linear rendezvous. As shown in the rendezvous rules,
send and receive constructs when blocked still take
a micro-step transition (Rule (5a)), producing a termina-
tion code kdm

of 1. Intuitively, in the general case of an
automaton, this is equivalent to having an implicit self-
transition in each state. In the particular case of DSystemJ,
this is equivalent to the reactive await statement waiting
for an input signal. Indeed, the rendezvous in DSystemJ
and SystemJ is implemented using the await statements
working on the channel sensitivity set Ecdm

.

V. COMPILATION AND IMPLEMENTATION

DSystemJ provides a number of abstractions for program-
ming dynamic distributed systems with inherent mobility.
Thus, it is essential that a DSystemJ program be compiled
correctly to low level code. Formal semantics describes the
exact behavior of the DSystemJ programs and hence, makes
writing compilers easier and less error prone. Particularly in
our case, the micro-step semantics also helps us generate
an intermediate format that is amenable to optimizations
and verification/real-time analysis using model checking
approach.

A. Compiling a DSystemJ program into Java code

In this section we present the operational semantics of
the compiled DSystemJ program to Java code, which is
amenable to formal verification and real-time analysis using
a model checking approach.
Definition. A Java program is a machine MJ := (J,∆J , s0)
where, J are the states, ∆J are the transitions, s0 is the
starting state, and state
s := (g1, g2, · · · , gn, T1, T2, · · · , Tl,M1,M2, · · · ,Mp).
Here we have:

1) Function Global := [g1, g2, · · · , gn] is the set of
global static variables. Thus, s.Global[i] is the ith

static global variable of the Java program in state
s.

2) Function ThreadMap := [T1, T2, . . . , Tl] is the func-
tion that maps the index to the thread local variables
including references (all as integers). The first position
holds the thread location (−1 for uninitialized or
completed thread). Thus, s.ThreadMap[i](j) is the
jth local variable of the ith thread in state s.



3) Function InstanceMap := [M1,M2, · · · ,Mp] maps
the index to the state of each allocated instance of the
class in the program. Thus, s.InstanceMap[i](j)(k)
is the kth field of the jth instance of the ith class and
s.ThreadMap[i](j).InstanceMap[ℓ](m)(n) is the
nth field of the mth instance of the ℓth class pointed
to by the jth local of the ith thread and so on and so
forth.

Encoding the DSystemJ program into Java code is defined
by Rule 7:







∆J ⊆ J X  X J
 ⊆ {→֒ X →֒ . . . }

 := j1

−→
O1,

−→
k1

⇀
−→
E1,

−−→
Ec1

j1
′ . . . ji

−→
Oi,

−→
ki

⇀
−→
Ei,

−−→
Eci

ji
′,
−→
ki ∈ {0, 1}

(7)

where,

• ji ∈ {s.ThreadMap(i)} represents the DSystemJ
syntactic constructs.

• ⇀⊆ {→ X → . . . } is the interleaved partial evaluation
of micro-steps (→) as defined in Section IV and [16],
[24].

• Set
−→
Ei ∈ s.InstanceMap[i](j)(k) is the union of sig-

nal sensitivity sets for all CDs in a DSystemJ program
as defined in Section IV.

• Set
−→
Eci ∈ s.InstanceMap[i](j)(k) is the union of

all channel sensitivity sets for all CDs in a DSystemJ
program as described in Section IV.

• Set
−→
Oi ∈ s.InstanceMap[i](j)(k) is the union of all

output signals sets for all CDs in a DSystemJ program
as described in Section IV.

• Set
−→
ki ∈ s.InstanceMap[i](j)(k) is the union of all

termination codes for all the CDs in the DSystemJ
programs as described in Section IV.

As can be seen from Rule (7), every DSystemJ CD is
compiled into a Java thread. All synchronous parallelism
(‖) is compiled away to form single threaded code, like
in Esterel. All signal and channel sets are compiled into
Java fields. These Java threads do not share any global
variables, i.e., all communication is carried out via channels
(implemented as sockets) as described in [22]. The generated
Java program proceeds by interleaving the micro-steps of
all the active CDs. Overall, the complexity of the compiled
Java program is a CCS [18] cross product of the CD macro-
transitions and hence, exponential.
Lemma.  is reactive when all CDs (macro-transitions →֒)
are reactive, but it need not be deterministic even if all →֒
are.

Proof. According to the theorem in Section IV and [24],
all CDs (→֒) are reactive and deterministic. According to
Rule (7),  transition is the result of a CCS style cross
product of →֒ for all CDs in a DSystemJ program.

DSystemJ programs and more importantly its subset the
SystemJ programs can be formally verified for correctness
(e.g., safety and liveness properties) using a model-checker
like Java Path Finder (JPF) [25]. We use the aforementioned
Java encoding of DSystemJ programs for verification using
JPF.

• Formal reasoning and verification: Formal verification
of a DSystemJ program using a model-checking engine,
like any other asynchronous language, suffers from
problems of state space explosion (due to interleaving
of the CCS product). But, the macro-step transition
rule (Rule (7)) helps reduce the state space compared
to verifying plain asynchronous languages like Java.
A macro-step transition (→֒) can be used for state
demarcation. The macro-step transition hides the partial
function evaluations (⇀) along with all Java variables.
It exposes only the interface signals/channels that can
then be observed for correct program behavior. Model-
checking a Java program creates a larger state space
compared to a DSystemJ program, as every execution
of a statement amounts to a new state transition. Note
that execution of a statement is equivalent to a partial
function evaluation (⇀ transition). To overcome such
problems, many model-checkers take the approach of
arbitrarily demarcating a state boundary, thereby mak-
ing the model-checking process heuristic. Granted that
formally verifying a program at the partial evaluation
level gives much better granularity, such fine granularity
is not necessary in all situations. Besides, any required
variables and micro-steps can be observed using the
macro-step transition by using dummy interface signals,
containing the Java variables, emitted along with the
partial evaluations.

• Real time analysis: Every reactive DSystemJ CD fol-
lows the perfect synchrony hypothesis, which states:
CD reactions are instantaneous. In practice, a CD
always completes its reaction before the next input
signal set is presented by its environment, which is
equivalent to saying that a CD always needs to meet
its deadline. The model-checking approach described
in the previous point can also be utilized for Worst
Case Reaction Time (WCRT) analysis. The macro-step
transition along with the rendezvous rules presented in
this article play a crucial role in simplifying the WCRT
analysis. These rendezvous rules allow a CD to proceed
with its transition even while synchronizing with other
CDs (thanks to the await statement). Furthermore,
rewriting the run statement as a send/receive
construct simplifies the analysis, as dynamic process
creation only happens at a macro-step transition. Hence,
it is possible to observe CD creations and relate them
directly to a tick and consequentially to time.

Finally, we would like to mention that although we allow
recursion and CD instantiation, these features need to be
bounded when performing model checking. One approach
is to extract finite sub-sets of DSystemJ programs, i.e.,
programs that do not instantiate new CDs infinitely. The
DSystemJ compiler can extract such programs, but this
would require the compiler to over-approximate the infinite
sub-sets of instantiated CDs due to conditional constructs.
For example given a program like such as:

R->{present(A){ run R(); }}

the compiler would over approximate this to be an infinite
sub-set as it is impossible to determine during compilation
the number of times the present statement will evaluate



as true. Another approach is to bound the CD instantiation
at runtime. With JPF, this can be achieved by using the pro-
vided Application Programming Interface, which disallows
or throws an error after a certain bound.

DSystemJ’s syntactic constructs are re-written into
SystemJ constructs and hence, we follow the same compi-
lation mechanism as in SystemJ. The micro-step transitions
presented in Section IV lead to a direct intermediate rep-
resentation, called the Asynchronous GRaph Code (AGRC).
AGRC is an asynchronous extension of the GRaph Code
(GRC) format used to compile Esterel. A complete descrip-
tion of the AGRC compilation format is out of the scope of
this article and the reader is referred to [24], [16], [22].

Although DSystemJ uses the same compilation scheme,
it differs from SystemJ as it requires runtime and library
support to execute. We describe the DSystemJ library and
runtime system briefly in the next section.

B. DSystemJ Runtime system and library support

The runtime system and library provide support for pro-
gramming dynamicity in DSystemJ. The runtime system
is responsible for (1) implementing the run statement
and (2) garbage collecting the CDs, which have termi-
nated their execution. The library essentially implements the
rendezvous protocol (send and receive) as described
in Section IV-B2, and provides convenience functions for
writing DSystemJ programs.

The DSystemJ runtime system and library are written in
the formal programming language SystemJ. This approach
makes the DSystemJ language and runtime/library amenable
to formal reasoning and verification. For a complete descrip-
tion of the components and implementation of the runtime
system and library please, refer to [22].

VI. EXPERIMENTATION RESULTS

Currently, only the JADE multi-agent system platform is
capable of competing with DSystemJ, in terms of features
and available implementation. ULM, does not have an imple-
mentation. The released version of ActorFoundry does not
support distributed processes. Occam, and Occam-π do not
provide support for complex data-transformations. Finally,
JoCaml and RML do not support process mobility. Thus,
we quantitatively compared DSystemJ only with JADE.

Table III shows the lines of code (LOC), memory foot-
print, and runtime comparison of a large security surveil-
lance system. The runtime memory footprint consumption is
shown in Figures 2 and 3. The security surveillance system is
as presented in Section III and is extended to monitor and
control 100 cameras. This example shows abstraction and
scalability of our approach. This example was implemented
on two physical machines, 64-bit and 32-bit Intel processors
with 2 GB of RAM, and with two 2.3 GHz cores each. For
the security surveillance system, DSystemJ has 3.7 times
smaller compiled memory footprint compared to the JADE
implementation (Table III (a)). Similarly, DSystemJ has on
average 6.75 times faster runtime compared to JADE (Ta-
ble III (b)). The exhaustive comparison results of DSystemJ
with JADE are presented in [22]. In general, DSystemJ
programs have a much smaller memory footprint, being on

Table III: DSystemJ Vs JADE

(a) Lines of Code and Compiled Memory footprint: DSystemJ Vs JADE

Comparison metrics DSystemJ JADE Ratio (JADE/DSystemJ)

LOC 1464 1777 1.213

Memory footprint (KB) 860 3184 3.7

(b) Runtime: DSystemJ Vs JADE

DSystemJ (ms/tick) JADE (ms/tick)

CD1 CD2 CD3 CD4 CD1 CD2 CD3 CD4

342.7 491.6 165.4 123.2 3201.4 1376.78 1426.6 1578

Figure 2: Single machine, multi-core implementation of the

security surveillance system with 100 cameras

average 13 times smaller than JADE programs. Similarly,
DSystemJ programs have faster runtimes compared to their
JADE counterparts. In our benchmarks, DSystemJ programs
were 20 times faster on a single (2-core) machine and
12 times faster in a distributed setting with 2 machines
and 4 cores. Our benchmarks and case studies along with
the DSystemJ compiler and runtime system are available
from [26].

DSystemJ provides a much more efficient compilation and
runtime environment thanks to the optimized code generated
from the AGRC intermediate format, recall that the runtime
environment is written in the SystemJ language, which itself
is compiled using the AGRC format. DSystemJ commu-
nication is also optimized for a single physical machine
implementation. JADE on the other hand uses a number
of complex Java features along with the very complex
FIPA [27] protocol, which substantially increases runtime
and the memory footprint. Similarly, DSystemJ’s abstract
representation of process forking, mobility, and reactive
constructs for data fusion help reduce the overall code
written by the programmer, which in turn reduces debug
and maintenance time.

The DSystemJ implementation also presents a consistent
runtime memory footprint, profiled using the -Xprof JVM
switch, along all the profile points in time (Figures 2 and 3),
whereas with JADE the memory consumption keeps on
increasing. Overall, DSystemJ program is more scalable
compared to the JADE program.



Figure 3: Distributed implementation of the security surveil-

lance system with 100 cameras

VII. CONCLUSIONS

We have presented a new language called DSystemJ,
which is targeted towards modelling and implementing dy-
namic distributed systems, such as sensor networks and col-
laborative environments. DSystemJ is based on the Globally
Asynchronous Locally Synchronous Model of Computation,
with the ability to abstractly model reactivity, data fusion
from sensors, dynamic creation of asynchronous processes
at runtime, and process mobility via message passing. Com-
bined together, all these features provide a very powerful lan-
guage and paradigm for implementing complex distributed
and dynamic systems. We also provide the micro-step and
macro-step semantics of DSystemJ, which are amenable to
formal verification and Worst Case Reaction Time (WCRT)
analysis using the model-checking approach.

DSystemJ implements message passing via channels for
communicating between asynchronous clock-domains. In
a multi-participant non-linear channel communication sce-
nario, a non-deterministic choice operator is used to choose
a rendezvous partner; this method is well suited for com-
munication between distributed components, with the aim
of having no single entity with the complete knowledge of
the system, and thus no single point of failure.
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